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1. Introduction and motivation

A natural problem to consider in manifold theory is the filling problem: is a given n-
dimensional smooth manifold the boundary of some compact (n+ 1)-dimensional mani-
fold? While the problem is not entirely trivial (for example, the complex projective space
CP2 is not the boundary of any compact 5-manifold [Fre, Theorem 2.28]), it is the subject
of another field called bordism theory which is well-established and well-understood.

The problem gets much more interesting when imposing additional structure on the
manifolds. In this thesis, we will be concerned about symplectic manifolds, i.e. when the
(n+1)-dimensional manifold carries a symplectic structure (see Definition 2.2). Symplec-
tic manifolds are the object of study in symplectic geometry. In this case, since symplectic
manifolds are even-dimensional, the n-dimensional manifold cannot be symplectic, but
is required to carry the odd-dimensional analogue of a symplectic structure, a contact
structure (see Definition 2.23). This type of filling is called a symplectic filling.1

There are several different kinds of symplectic fillings, such as strong, weak, Liouville and
Stein or Weinstein fillings. In the setting of this thesis, the natural fillings to consider
are Liouville and Weinstein fillings (see Chapter 2).

Before seriously investigating symplectic fillings, one should perhaps study whether there
are topological obstructions. For instance, every symplectic manifold admits an almost
complex structure (see Definition 2.7 and Proposition 2.11), hence a contact manifold
can only be symplectically fillable if it admits a filling with an almost complex structure.
However, it turns out that there is no such obstruction: every contact manifold admits
a filling with an almost complex structure! We refer the reader to Naomi Kraushar’s
thesis [Kra16] for a complete proof.

A natural question to consider is the existence and uniqueness of symplectic fillings
of a given type. Interestingly, the answers to both questions come from very different
methods. This is related to a contrast first observed by Mikhail Gromov [Gro87]: there

1We are glossing over a subtle detail: both symplectic and contact manifolds have a natural orientation;
for a symplectic filling, the induced orientation of the boundary of the symplectic manifold must agree
with the orientation of the contact manifold. One can also define symplectic caps, by requiring that
the orientations be opposite. The general picture is that symplectic caps add no or little restrictions
compared to topological fillings, whereas symplectic fillings do. For example, the sphere Sn can be
topologically filled by any closed (n + 1)-dimensional manifold, by removing a small ball from it
and gluing the sphere to the newly created boundary. By Darboux’ theorem [MS17, Theorem 3.2.2],
an analogous construction works for symplectic manifolds and shows that S2n−1 can be capped by
any closed symplectic 2n-dimensional manifold. In contrast, we will see in Chapter 4 that any
symplectically aspherical strong symplectic filling of S2n−1 is diffeomorphic to the unit ball D2n.
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is a distinction between rigidity or “hardness” and flexibility or “softness” which runs at
the heart of symplectic geometry.

In many cases, objects in symplectic geometry behave rigidly: their behaviour is severely
constrained compared to, for example, the underlying almost complex geometry—the
reason is the existence of some abstract invariants which restrict the possible behaviour.
In this thesis, we will deal with two of these invariants, Hamiltonian Floer homology and
its generalisation symplectic homology.

In some settings these invariants necessarily vanish and the objects considered behave
rather flexibly—for example, symplectic questions are then constrained only by some
algebro-topological2 conditions which must be satisfied. In such cases, one speaks of
an h-principle (where h stands for homotopy). In this thesis, we will see that flexible
Weinstein domains (see Definition 2.131) do satisfy an h-principle; their h-principle in
turn rests on an h-principle for so-called loose Legendrians (see Section 2.4).

The flexibility and rigidity phenomena work together to create the rich structure found
in symplectic geometry today—as a rule of thumb, all interesting questions concern
the boundary between these two regimes. Determining and mapping out the boundary
between flexibility and rigidity is still a matter of current research, with sometimes
surprising insights. The h-principles for loose Legendrians and also for flexible Weinstein
domains are such examples.

Aim and main results The aim of this thesis is to explain the result and proof of a
theorem by Zhengyi Zhou [Zho18]. The result concerns the question whether a given
contact manifold has a unique Liouville filling (see Definition 2.64). It has been known
for fifteen years that the answer is No in general—there are contact manifolds, in all
dimensions, which admit infinitely many Liouville fillings [OS04; Oba18].

However, there are classes of contact manifolds which seem to remember information
about their fillings—so that the filling is determined at least topologically, and sometimes
up to diffeomorphism or even up to symplectomorphism. In Chapter 4, we review the
relevant literature: for now, let us say that almost all results which apply in higher
dimension (i.e. for contact manifolds of dimension at least five) give only information
about the diffeomorphism type of Liouville fillings of the contact manifold.

Zhou’s result, refining and essentially building on a preprint by Oleg Lazarev [Laz17],
goes beyond that: Zhou shows that if a contact manifold of dimension at least five
admits a flexible Weinstein filling (see Definition 2.135), all its topologically simple
(see Definition 5.2) Liouville fillings have trivial symplectic homology (see Section 3.3).
This doesn’t go as far as establishing uniqueness of the fillings, but it shows that their
symplectic homology vanishes, which provides evidence towards their uniqueness. (A
flexible Weinstein filling is a special case of a topologically simple Liouville filling; one
can show that it always has trivial symplectic homology.)

2This is the adjective corresponding to algebraic topology.
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Structure of this thesis All material we present is known; we make no claims of origi-
nality. We begin by presenting the two concepts needed to understand the statement of
the main theorem.

In Chapter 2, we introduce the concepts of Liouville and Weinstein manifolds, which
are the setting we are working in. We explain what flexible Weinstein domains are and
state their h-principle, which is essential for the proof of Zhou’s result. We also define
the concepts of surgery and handle attachment which we need later.

In Chapter 3, we define symplectic homology, the invariant used in Zhou’s main theorem.
We begin by presenting the definition of Hamiltonian Floer homology, and explain how
this can be generalised to define symplectic homology. The proof of Zhou’s result uses
several key properties of symplectic homology (such as an exact sequence and a ring
structure), which we also explain.

After these preparations, in Chapter 4 we state the main theorem and outline how it
extends previous research. Zhou’s proof follows the same overall outline as a previous
proof, but requires significant new insights to carry out the overall plan. The main
technical advance concerns a class of asymptotically dynamically convex (Definition 5.8)
contact manifolds, which have two crucial properties that make the proof work. In
Chapter 5, we explain and motivate their definition and outline their crucial properties.
In Chapter 6, we give a proof of Zhou’s main result, combining the algebraic properties
of symplectic homology with the special properties of ADC manifolds. In Chapter 7, we
reflect on this proof and look at next steps for research.

This thesis is based on a lot of material, and there is not enough space to explain
everything. I have attempted to explain the essential concepts in detail, to give all the
high-level ingredients and to outline how these fit together. Some technical points will
be skipped; others are only sketched. Nevertheless, when skipping something I have
tried my best to give precise statements of the result used, and to phrase the result in a
way that is useful in a wider context than just this thesis.
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2. Liouville and Weinstein manifolds

In this chapter, we present the concepts of a Liouville and (flexible) Weinstein domain,
and their associated fillings. Almost all material in Section 2.1 can be found in either or
both of McDuff and Salamon’s [MS17] and Geiges’ [Gei08] textbooks. Most of the ma-
terial in Sections 2.2 through 2.6 is taken from Cieliebak and Eliashberg’s book [CE12].

2.1. Symplectic and contact manifolds

We begin by reviewing the very basic definitions underlying everything written thereafter:
those of symplectic and contact manifolds. For space reasons, not everything will be
shown in detail; henceforth a proof symbol will denote either the end or the lack of a
proof. In the latter case, we will give a reference for the result.

Definition 2.1. A symplectic vector space is a pair (V, ω) of a finite-dimensional R-
vector space V and a non-degenerate skew-symmetric bilinear form ω : V × V → R.

Definition 2.2. A symplectic structure on a smooth manifold M is a closed 2-form on
M which is also non-degenerate, i.e. at each point p ∈M , the bilinear form ωp : TpM ×
TpM → R, (X,Y ) 7→ ωp(X,Y ) is non-degenerate. The form ω is called a symplectic
form on M . A symplectic manifold is a pair (M,ω) of a smooth manifold M and a
symplectic form ω on M .

Remark. Equivalently, a closed 2-form ω on a smooth manifold M is symplectic if and
only if for each p ∈M , the tangent space (TpM,ωp) is a symplectic vector space.

In general, it is a delicate question whether a given smooth manifold admits a symplectic
structure. Two elementary necessary conditions are the following.

Proposition 2.3 ([MS17, p. 94]). A symplectic manifold is even-dimensional and has
a natural orientation.

Orientability part follows from the following result, which we state explicitly since we
will use twice more in this section.

Lemma 2.4 ([MS17, Corollary 2.1.4]). For a 2-form ω on a 2n-dimensional smooth
manifold M , the n-fold exterior power ωn = ω ∧ . . . ∧ ω︸ ︷︷ ︸

n times
is a volume form on M if and

only if ω is non-degenerate. In particular, if (M,ω) is symplectic, then ωn is a volume
form.
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For closed manifolds, there are further topological conditions.

Proposition 2.5. If (M,ω) is a closed 2n-dimensional symplectic manifold, the form
ω is never exact.
Proof. This follows from Stokes’ theorem (which can be applied since M is closed).
Assume ω = dλ were exact, then ωn were also exact since ωn = (dλ)n = d(λ ∧ (dλ)n−1).

By Lemma 2.4, the form ωn is a volume form, hence we obtain a contradiction from

0 < vol(M) =
∫

M
ωn =

∫
M
d(λ ∧ (dλ)n−1) =

∫
∂M

λ ∧ (dλ)n−1 = 0.

In later sections, we will encounter exact symplectic manifolds, which consequently will
not be closed any more.

In exactly the same way, one can show the following result, which shows that, e.g.,
spheres Sn for n > 2 never admit a symplectic structure.

Proposition 2.6. If (M,ω) is a closed 2n-dimensional symplectic manifold, each de
Rham cohomology group H2k(M) for 1 ≤ k ≤ n− 1 does not vanish.

Both necessary conditions in Proposition 2.3 follow from a much deeper result: every
symplectic manifold admits an almost complex structure.

We explain this concept for general vector bundles, since we will use a similar result for
contact manifolds (see Definition 2.23 below) and this definition allows treating both
settings on the same footing.

Definition 2.7. Let E →M be a smooth vector bundle. A complex (bundle) structure
on E is a smooth family J of fibre-preserving linear maps Jp : Ep → Ep such that J2 =
− id, i.e. Jp ◦ Jp = − idEp for all p ∈ M . Formally speaking, smoothness means that
the map p 7→ Jp is a smooth section of the endomorphism bundle End(E). An almost
complex structure on a smooth manifold is a complex structure on its tangent bundle.

Since an almost complex structure gives any vector bundle the structure of a complex
vector bundle, the conditions in Proposition 2.3 follow from the existence of almost
complex structures on any symplectic manifold.

In many applications (including Hamiltonian Floer homology in Section 3.1), the space
of all almost complex structures is too vast to be useful. Instead, one considers the
class of compatible almost complex structures.1 Again, this definition can be made in
the general context of vector bundles: we just have to generalise symplectic manifolds
appropriately.

1There is also a weaker condition, of tame almost complex structures. This sometimes has advantages
since the set of tame almost complex structures is an open subset, but some applications become
much simpler when using compatible almost complex structures.
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Definition 2.8. A symplectic structure ω on a smooth vector bundle E → M is a
smooth family of symplectic structures ωp on each fibre Ep. Formally, smoothness means
that the map p 7→ ωp is a smooth section of the bundle Λ2E∗ → M , the second exterior
power of the dual bundle of E. A symplectic vector bundle is a pair (E,ω) of a smooth
vector bundle E →M and a symplectic structure ω on E.

Remark 2.9. A symplectic structure on a smooth manifold M is a particular symplectic
structure on the tangent bundle TM , hence the tangent bundle of every symplectic
manifold is a symplectic vector bundle. For contact manifolds, we obtain a symplectic
vector bundle in a different way (see Lemma 2.29).

Definition 2.10. A complex structure J on a symplectic vector bundle (E,ω) over M
is called compatible with ω if and only if for each p ∈ M , the bilinear form gp :=
ωp(·, Jp(·)) defines an inner product on the fibre Ep. In other words, g := ω(·, J ·) defines
a Euclidean structure on E. In particular, an ω-compatible almost complex structure J
on a symplectic manifold (M,ω) defines a Riemannian metric g := ω(·, J ·) on M .

The following result is crucial for the further theory and goes back to Gromov [Gro85].

Proposition 2.11 ([Gei08, Proposition 2.4.5]). Let (E,ω) be a symplectic vector bundle
over a manifold M . Then the space J (E) of ω-compatible complex structures on E is
non-empty and contractible.

Remark 2.12. Here, we endow the space J (E) with the C∞
loc-topology, i.e. a sequence

Jk ∈ J (E) converges if and only if it is C∞-convergent on all compact subsets. This
topology is also known as weak C∞-topology; see e.g. [Hir76, Chapter 2] for details.

Hence, every symplectic manifold admits a compatible almost complex structure. This
is another (much deeper) necessary condition for the existence of a symplectic structure,
and in fact implies the conditions in Proposition 2.3.

There are various natural concepts of submanifolds of a symplectic manifold. Since they
are defined point-wise, they also make sense for symplectic vector spaces.

Definition 2.13. Let (V, ω) be a symplectic vector space and Y ⊂ V be a linear subspace.
The subspace Y is called

• symplectic if and only if the restriction ω|Y is non-degenerate, i.e. if and only if
(Y, ω|Y ) is a symplectic vector space again.

• isotropic if and only if ω vanishes on Y , i.e. if and only if ω|Y ≡ 0.

• Lagrangian if and only if Y is isotropic and dimY = n.

Remark. As this definition may suggest, any isotropic subspace of a given symplectic
vector space is contained in a Lagrangian subspace, i.e. Lagrangian subspaces are the
maximal isotropic subspaces (with respect to the natural partial order by inclusion).
This can be shown by applying Zorn’s lemma, but there is also a more conceptual proof
that does not use Zorn’s lemma.
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Definition 2.14. For a subspace Y ⊂ V of a symplectic vector space (V, ω), we define
its symplectic complement Y ω as the set

Y ω = {v ∈ V : ω(v, u) = 0 for all u ∈ Y }.
In Section 2.5, we will also use the following result.

Lemma 2.15 ([Gei08, Lemma 1.3.3]). Let (V, ω) be a symplectic vector space and U ⊂ V
an isotropic subspace. Then ω induces a symplectic structure on the quotient Uω/U .

These definitions transfer to symplectic manifolds by considering them at each point.

Definition 2.16. Let (M,ω) be a 2n-dimensional symplectic manifold and N ⊂ M be
a smooth submanifold. The submanifold N is called

• symplectic if and only if each TpN ⊂ TpM is a symplectic vector space, i.e. if and
only if the restriction ω|N defines a symplectic form on N .

• isotropic if and only if each TpN ⊂ TpM is an isotropic vector space, i.e. if and
only if for each p ∈ N , the restriction ωp|TpN vanishes.

• Lagrangian if and only if each subspace Tp ⊂ TpM is Lagrangian, i.e if and only
if N is isotropic and dimN = n.

In these cases, we call N a symplectic (isotropic, Lagrangian) submanifold of (M,ω).

The dimension of an isotropic submanifold is severely restricted, as the following propo-
sition states.

Proposition 2.17. If N ⊂ (M,ω) is an isotropic submanifold, then dimN ≤ 1
2 dimM .

Proof sketch. There is a dimension formula for the symplectic complement of any sub-
space Y ⊂ V :

dimY + dim Y ω = dimV.

See [MS17, Lemma 2.1.1] for details. Now the result follows from observing that N is an
isotropic submanifold if and only if each tangent space TpN ⊂ TpM for p ∈ N satisfies
the condition TpN ⊂ (TpN)ω.

The most natural notion of equivalence between symplectic manifolds is the following.

Definition 2.18. A diffeomorphism φ : M → N between symplectic manifolds (M,ω1)
and (N,ω2) is called a symplectomorphism if and only if one has φ∗ω2 = ω1. In this
case, the manifolds (M,ω1) and (N,ω2) are called symplectomorphic.

In this thesis, we will encounter another approach for defining equivalence: we have sev-
eral notions of equivalence by deformation. The simplest one is for symplectic manifolds,
where it is called symplectic deformation.

11



Definition 2.19. Two symplectic structures ω and ω′ on a smooth manifold M are
called deformation equivalent if and only if there is a smooth family of symplectic forms
{ωt}t∈[0,1] on M such that ω0 = ω and ω1 = ω′. Two symplectic manifolds (M,ω) and
(M ′, ω′) are called deformation equivalent if and only if there exists a diffeomorphism
φ : M →M ′ such that ω and φ∗ω′ are deformation equivalent.

In odd dimension, there are no symplectic manifolds, but there is the related notion of
a contact manifold. Their definition requires two technical concepts.

Definition 2.20. A smooth hyperplane field on a smooth m-dimensional manifold M
is a collection {ξp}p∈M of m − 1-dimensional linear subspaces ξp ⊂ TpM which “vary
smoothly with p”. Smoothness means that the union

⋃
p∈M ξp ⊂ TM forms a smooth

subbundle of rank (m− 1) of the tangent bundle TM ; equivalently, any point p ∈M has
a neighbourhood U 3 p on which there are smooth vector fields X1, . . . , Xm−1 : U → TM
such that at each point q ∈ U , the vectors X1(q), . . . , Xm−1(q) ∈ TqM form a basis of ξq.

Definition 2.21. A smooth hyperplane field ξ on a smooth manifold M is called co-
oriented if and only if there exists a 1-form α on M such that ξp = ker(αp) for all
p ∈M .

Example 2.22. For R2n−1 with coordinates (x1, y1, . . . , xn−1, yn−1, z), the smooth 1-
form α := dz +

∑n−1
i=1 xidyi defines a smooth hyperplane field ξ = kerα. We compute

dα =
∑

i dxi ∧ dyi and thus

α ∧ (dα)n−1 = (n− 1)! dz ∧ dx1 ∧ dy1 ∧ . . . ∧ dxn−1 ∧ dyn−1 6= 0,

since dx1 ∧ dy1 ∧ . . . ∧ dxn−1 ∧ dyn−1 ∧ dz is the standard volume form on R2n−1.

Definition 2.23. Let M be a smooth manifold of dimension 2n−1. A contact structure
on M is a co-oriented smooth hyperplane field ξ = kerα ⊂ TM on M which satisfies
the condition α ∧ (dα)n−1 6= 0, i.e. the form α ∧ (dα)n−1 is non-zero at each point. The
1-form α is called a contact form for ξ. The pair (M, ξ) is called a contact manifold.

The condition α ∧ (dα)n−1 is often referred to as ξ being “maximally non-integrable”.

Remark 2.24. One can show (see e.g. [Gei08, Lemma 1.1.1]) that any smooth hyper-
plane field can be locally co-oriented, i.e. every point p ∈M has an open neighbourhood
U 3 p and a 1-form α on U such that ξp = kerαp for all p ∈ U . There need not exist
a global co-orientation. In this thesis, however, we only consider co-oriented contact
structures.

Remark 2.25. A contact form α for a (2n − 1)-dimensional contact manifold (M, ξ)
induces an orientation, via the form α ∧ (dα)n−1. If M has a prescribed orientation, a
contact form α is called positively oriented if and only if this orientation matches the
orientation induced by the volume α ∧ (dα)n−1 > 0.
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Example 2.26. The 1-form α on R2n−1 from Example 2.22 is a contact form, hence
ξ = kerα is a contact structure on R2n−1, called the standard contact structure on R2n−1.
It is positively oriented w.r.t. the standard orientation of R2n−1.

Example 2.27. Consider an odd-dimensional sphere S2n−1 ⊂ R2n with coordinates
(x1, y1, . . . , xn, yn) on R2n and the smooth 1-form α :=

∑n
i=1(xjdyj − yjdxj). Let r :=√∑

i x
2
i +

∑
i y

2
i be the radial coordinate on R2n. One easily computes that

r dr ∧ α ∧ (dα)n−1 = r2 (n− 1)! dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn,

hence α is a contact form on the non-zero level sets of r, including on S2n−1. The form
α is positively oriented w.r.t. the standard orientation on S2n−1. Thus, (M, ξ = kerα)
is a contact manifold; ξ is called the standard contact structure on S2n−1.

In general, there is a large space of contact forms for a given contact structure. We can
view a contact structure as an equivalence class of 1-forms. Sometimes, the choice of
contact form matters. For example, in Section 3.3, it will be instrumental to choose a
contact form α which has a certain property.

Lemma 2.28 ([MS17, Proposition 3.5.1]). Let α and α′ be 1-forms on a smooth manifold
M with ξ = kerα = kerα′. Then, there exists a non-zero smooth function f : M → R
with α′ = fα. Hence, α is a contact form if and only if α′ is. Moreover, the symplectic
structures dα and dα′ on ξ are related by dα′|ξ = fdα|ξ.

In particular, we observe that the compatibility of a complex structure J ∈ J (ξ, dα) is
independent of the choice of contact form α as long as the resulting orientation of M is
prescribed.

The reader may wonder how symplectic and contact manifolds are related. There are
several such relations, the first of which is the following.

Lemma 2.29. Let (M, ξ = kerα) be a (2n−1)-dimensional contact manifold. For each
p ∈ M , the space (ξp, dαp) is a symplectic vector space. In fact, (ξ, dα) is a symplectic
vector bundle over M .
Proof. By definition, ξ is a smooth vector bundle. Since α ∧ (dα)n−1 6= 0 and ξ = kerα,
we have (dα)n−1 6= 0 on ξ, hence dα|ξ is non-degenerate by Lemma 2.4. The forms dαp

vary smoothly since α is smooth.

The reader may wonder whether a stronger statement can be made, such as whether
ξ is the tangent bundle of some submanifold. The answer is no, and this is where the
condition of ξ being “maximally non-integrable” comes in.

Definition 2.30. Let ξ ⊂ TM be a smooth hyperplane field on M . A submanifold
N ⊂ M is called integral for ξ if and only if TpN = ξp for all p ∈ N . The hyperplane
field ξ is called integrable if and only if every point p ∈ M is contained in an integral
submanifold for ξ.

13



In other words, we could wonder whether a contact structure ξ can be integrable. A
general criterion for determining this is given by the Frobenius integrability theorem.

Theorem 2.31 (Frobenius integrability theorem, e.g. [Lee02, Theorem 19.10]). A smooth
hyperplane field ξ on a smooth manifold M is integrable if and only if local sections of ξ
are closed under the Lie bracket.

Observation. If a contact structure ξ = kerα were integrable, the Lichnerowicz rule

dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ]) (2.1)

would imply that dα vanishes for vectors in ξ, i.e. one would have α ∧ dα = 0. The
condition α ∧ (dα)n−1 in Definition 2.23 is as far from that as possible, hence the term
“maximally non-integrable” hyperplane field.

Hence, there is no (2n− 1)-dimensional submanifold L ⊂M with TpL = ξp for all p ∈ L.
The weaker condition TpL ⊂ ξp can be satisfied, but only for submanifolds of dimension
at most n− 1.

Definition 2.32. A submanifold L of a (2n− 1)-dimensional contact manifold (M, ξ =
kerα) is called isotropic if and only if TpL ⊂ ξp for all p ∈ L. If in addition dimL = n−1,
it is called Legendrian.

Proposition 2.33. Let (M, ξ = kerα) be a (2n− 1)-dimensional contact manifold and
L ⊂ M be an isotropic submanifold. Then TqL is an isotropic subspace of (ξq, dαq) for
each q ∈ L. In particular, we have dimL ≤ n− 1.

Proof. If X,Y ∈ TpL are tangent vectors at p ∈ L, we have α(X) = 0 = α(Y ) and also
dαp([X,Y ]p) = 0 since L is integral. Thus, equation (2.1) implies dαp(X,Y ) = 0. Hence,
dα vanishes on L.

Finally, we also mention the natural definition of morphism of contact structures. For
that, we emphasize that the contact structure is really given by the hyperplane field ξ.
Usually, we want to also preserve the orientation of ξ.

Definition 2.34. Let (M, ξ = kerα) and (N, η = kerβ) be contact manifolds. A smooth
map φ : M → N is called a contactomorphism if and only if φ∗β = fα for some posi-
tive smooth function f on M .2 The map φ is called a strict contactomorphism if and
only if the same holds for f ≡ 1. In this case, (M, ξ) and (N, η) are called (strictly)
contactomorphic. In particular, a contactomorphism is orientation-preserving.

A contact form determines a special vector field, the Reeb vector field.

Lemma/Definition 2.35 ([Gei08, Lemma/Definition 1.1.9]). Let (M, ξ) be a contact
manifold. For a contact form α, there is a unique vector field Rα on M , called the Reeb
vector field for α, which satisfies the conditions dα(Rα, ·) = 0 and α(Rα) = 1.

2While our terminology is the commonly used one, note that Geiges’ book uses these terms differently.
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Note that the Reeb vector fields for different contact forms α and fα may have very
different properties. We will exploit that in Section 3.3. In that section, we will also
meet its close cousin, the Hamiltonian vector field.

There is another relation between contact and symplectic manifolds: every contact mani-
fold can be converted into a symplectic manifold by a construction called symplectisation.

Definition 2.36 ([MS17, Proposition 3.5.23]). Let (M, ξ = kerα) be a contact manifold.
Consider the product manifold R ×M and the 1-form erα := (erα)(r,p) = erαp. The
symplectisation of (M, ξ = kerα) is the manifold R×M together with the 2-form d(erα).

Proposition 2.37. The form d(erα) is a symplectic form on R ×M , hence the sym-
plectisation of a contact manifold is a symplectic manifold. Each level set ({r} ×M,α)
of the symplectisation (R×M,d(erα)) is a contact manifold.

Observation 2.38 ([MS17, Proposition 3.5.23]). The symplectisation (R ×M,d(erα))
of (M, ξ) is independent of the choice of contact form: for any two positively oriented con-
tact forms α, α′ for (M, ξ), the resulting manifolds (R×M,d(erα)) and (R×M,d(erα′))
are symplectomorphic.

Remark 2.39. In the literature, there are several variants of this definition, differing in
signs and other conventions. For example, some authors (including Lazarev [Laz17]) put
the factor M first, which is wrong: unless one takes further contortions (which Lazarev
doesn’t), this gives the wrong orientation to the symplectisation. See [Wen15] for details.
We take the liberty to just correct this.
One can also use the convention ((0,∞) ×M, d(rα)), which poses no problems. See
Appendix A.1 for a collection of the sign conventions we use in this document. Note
that the definitions in [MS17] use different sign conventions.

It is an easy exercise to show that two contactomorphic contact manifolds have symplec-
tomorphic symplectisations. The converse statement was an open problem for a long
time, but now has a negative answer.

Theorem 2.40 ([Cou14; Cou16]). In any dimension 2n − 1 ≥ 3, there are contact
manifolds which are not contactomorphic, but have exact symplectomorphic3 symplecti-
sations.

When defining symplectic homology, we will need another basic concept of the first Chern
class. Since explaining this in all detail would take far too long, we contend ourselves to
the following result.

Lemma/Definition 2.41 ([MS17, Section 2.7]). One can associate to every complex
vector bundle E over a smooth manifold N a cohomology class c1(E) ∈ H2(N), called
the first Chern class of the bundle E, such that

3See Definition 2.52 in the next section.
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(i) for all smooth maps f : M → N , one has c1(f∗E) = f∗c1(E), and

(ii) c1(E ⊕ F ) = c1(E) + c1(F ).

(iii) If N =: Σ is a closed oriented surface and E → Σ a line bundle, the number∫
Σ c1(E) = 〈c1(E), [Σ]〉 ∈ Z is called the first Chern number of E. Here, [Σ] ∈
H2(Σ) is the fundamental class of Σ. If s : Σ→ E is a section of E and transverse
to the zero section, the first Chern number c1(E) equals the number of zeroes of s,
counted with signs. See [MS17, Theorem 2.7.5].

In the first item, f∗E → M is the pullback of the bundle E via f , and f∗c1(E) is the
pullback of the homology class c1(E) under the map f . In other words, the first Chern
class is compatible with pullbacks and direct sums.
In particular, the first Chern class is an invariant of complex vector bundles.

As we already saw, any symplectic vector bundle becomes a complex vector bundle after
choosing a compatible complex structure. Since both symplectic and contact manifolds
have a symplectic vector bundle naturally associated to them, we can try to define the
first Chern class of a symplectic or contact manifold by choosing any compatible almost
complex structure.

Definition 2.42. For a symplectic manifold (M,ω), the first Chern class c1(M,ω) of
(M,ω) is defined as c1(M,ω) := c1(TM, J), where J ∈ J (TM,ω) is any compatible
almost complex structure. For a contact manifold (M, ξ = kerα), the first Chern class
c1(M, ξ) of (M, ξ) is defined as c1(M, ξ) := c1(ξ, J), where J ∈ J (ξ, dα) is any compat-
ible almost complex structure.

The natural question is whether this is well-defined. Fortunately, using Proposition 2.11,
one can show that the answer is yes. Recall that two choices for the contact form α yield
isomorphic symplectic vector bundles; hence our back is covered by the following result.

Proposition 2.43 ([Che07, Theorem 2.7]). Given a symplectic vector bundle (E,ω)
over a smooth manifold M and two compatible almost complex structures J1, J2 ∈ J (E),
the vector bundles (E, J1) and (E, J2) are isomorphic as complex vector bundles.

2.2. Liouville manifolds and domains

In this thesis, we will mostly deal with a special type of symplectic manifolds, called
Liouville manifolds. In addition to a symplectic form, they have two equivalent pieces
of extra structure, either a Liouville form or a Liouville vector field.

Definition 2.44. A Liouville form on a smooth manifold M is a 1-form λ on M such
that ω := dλ is a symplectic form.
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Since a symplectic form is non-degenerate, Liouville forms give rise to a dual notion, of
a Liouville vector field.

Proposition 2.45. Let λ be a Liouville form on a smooth manifold M , denote ω = dλ.
There is a unique vector field X which satisfies the relation ιXω = λ, i.e. ω(X, ·) = λ.
The vector field X is called the Liouville vector field of λ.

Definition 2.46. An exact symplectic manifold is a pair (V, λ) of a smooth manifold
V and a Liouville form λ on V . Equivalently, an exact symplectic manifold is a triple
(V, ω,X) consisting of a symplectic manifold (V, ω) and a vector field X satisfying LXω =
ω.

Remark 2.47. More precisely, these two definitions correspond via the mappings

(V, λ) 7−→ (V, ω = dλ,X defined by ιXω = λ)
(V, λ := ιXω)←−[ (V, ω,X)

To check that these are well-defined, we use Cartan’s formula and that ω is closed: in
direction “ 7→”, we see that

LXω = ιXω + dιXω = 0 + dλ = ω;

for the direction “←[”, we perform the same computation in reverse:

dλ = dιXω = dιXω + ιX(dω) = LXω = ω.

It is easy to check that these mappings are mutually inverse.

A slightly confusing point in the literature is that Liouville vector fields can also be
defined without recourse to Liouville forms: in that case, the definition is the following.

Definition 2.48. A Liouville vector field on a symplectic manifold (V, ω) is a smooth
vector field X which satisfies LXω = ω.

There is no ambiguity about the definitions: by Remark 2.47, X is a Liouville vector
field for the exact symplectic manifold (V, λ) if and only if it is one for the symplectic
manifold (V, ω = dλ). A more subtle point is that the space of Liouville vector fields as in
Definition 2.48 is infinite-dimensional in general, and similarly that an exact symplectic
form ω has many possible primitives λ (if ω = dλ, the form λ′ = λ+ df for any smooth
function f is another primitive). However, in the definition of an exact symplectic
manifold, we have already chosen a specific λ, so that the Liouville vector field for an
exact symplectic manifold is uniquely determined by its definition.

Observation 2.49. Let (V, ω,X) be an exact symplectic manifold. The set of Liouville
vector fields on the symplectic manifold (V, ω) is an infinite-dimensional linear space.
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Proof. Observe that if X is a Liouville vector field on (V, ω), so is X + XH , where XH

is the Hamiltonian vector field (see Definition 3.1) of any smooth function H : V → R.
Then apply Observation 3.3.

The condition LXω = ω implies that a symplectic form behaves nicely under the flow of
a Liouville vector field.

Proposition 2.50. Let X be a Liouville vector field for the Liouville form λ on V . Then
the flow φt of X “dilates” the symplectic form ω = dλ: one has (φt)∗ω = etω whenever
φt is defined.

Proof sketch. Given any p ∈ V and X,Y ∈ TpV , consider the smooth function f : R→ R
defined by f(t) := ((φt)∗ω)p(X,Y ). For any t ∈ R, using the group law for the flow φt

and the identity LXω = ω, we compute

f ′(t) = ∂sf(s)|s=t = ∂s φ
∗
sω(X,Y )|s=t = φ∗

t (∂s̃ φ
∗
s̃ω(X,Y )|s̃=0)

= φ∗
t (LXω(X,Y )) = φ∗

tω(X,Y ) = f(t).

This differential equation implies that f(t) = etf(0), hence the claim follows.

Because of this observation, one calls the Liouville vector X symplectically expanding
and its negative −X symplectically contracting.

Proposition 2.51. On an exact symplectic manifold (V, ω,X) with λ := ιXω, we have
LXλ = λ, hence the flow φt of X also expands the Liouville form λ, i.e. (φt)∗λ = λ
whenever φt is defined.
Proof. By definition of λ resp. X, we have ιXλ = dλ(X,X) = 0 resp. ιX(dλ) = λ,
hence Cartan’s formula implies LXλ = λ. The remaining proof is the same as for
Proposition 2.50.

The natural maps between exact symplectic manifolds are not symplectomorphisms, but
are required to satisfy a slightly stronger condition.

Definition 2.52. A map Φ: (V1, ω1, X1)→ (V2, ω2, X2) between exact symplectic mani-
folds is called exact symplectic or an exact symplectomorphism if and only if the 1-form
Φ∗λ2 − λ1 is exact, where λi := ιXiωi for i = 1, 2.

Remark 2.53. An exact symplectomorphism φ : (V, ω,X) = (V ′, ω′, X ′) does not pre-
serve the associated primitives on V resp. V ′, but the pullback φ∗ω′ of the symplectic
form on V ′ is still exact. For all later applications, that is sufficient.

Finally, we get to the definition of Liouville manifolds.

Definition 2.54. A Liouville manifold is an exact symplectic manifold (V, ω,X) with
the properties
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• the expanding vector field X is complete,

• the manifold V is convex, in the sense that there each connected component Vi

of V has an exhaustion Vi =
⋃∞

k=1 V
k

i by nested compact domains V k
i ⊂ Vi with

smooth boundaries along which X is outward pointing.

In this case, we call (ω,X) a Liouville structure on V .

Remark 2.55. By the second condition, a Liouville manifold has no boundary. Since
every connected smooth manifold can be exhausted by compact domains with smooth
boundary, the crucial part of the second condition is that X be outward pointing along
each boundary ∂V k

i .

The compact analogues of Liouville manifolds are called Liouville domains. By Propo-
sition 2.5, they must have non-empty boundary. The correct definition contains an
additional condition on the Liouville vector field at the boundary, which is motivated by
the following result.

Lemma 2.56 ([Gei08, Lemma 1.4.5]). Let (M,ω) be a symplectic manifold, S ⊂ M
be a hypersurface4 and X a Liouville vector field defined in a neighbourhood of S. The
1-form α := ιXω is a contact form on S if and only if X is transverse to S; by the latter,
we mean that Xp /∈ TpS for all p ∈ S (“X is nowhere tangent to S”).

Hence, if X is transverse to the boundary of a Liouville domain, the boundary has an
induced contact structure. This is a natural condition to impose since contact manifolds
are in many ways the odd-dimensional analogue of symplectic manifolds (for example,
they also enjoy analogues of Darboux’ and Moser’s theorem, which are two classical
results for symplectic manifolds). A priori, the vector field could be outward or inward
pointing at the boundary. An easy application of Stokes’ theorem shows that there are
some restrictions.

Observation 2.57. There is no compact exact symplectic manifold (W,ω,X) such that
X is inward-pointing along ∂W .

Depending on whether there is some region in which X is inward-pointing, we arrive at
the definitions of a Liouville cobordism and Liouville domain.

Definition 2.58. A cobordism W is a compact oriented smooth manifold W with ori-
ented boundary ∂W which decomposes as ∂W = ∂+W ∪ ∂−W , where the orientation
agrees with the boundary orientation for ∂+W and is opposite to it for ∂−W . One or
both of ∂± may be empty.

Definition 2.59. A Liouville cobordism (W,ω,X) is a compact cobordism W with an
exact symplectic structure (ω,X) such that X points outwards along ∂+W and inwards
along ∂−W . A Liouville cobordism W with ∂−W = ∅ is called a Liouville domain. We
call (ω,X) a Liouville structure on W .

4By definition, a hypersurface in a manifold is a submanifold of codimension 1.
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Corollary 2.60. If (W,ω,X) is a Liouville domain, then α := λ|∂W defines a contact
form on ∂W .

Observe that the second property in Definition 2.54 is precisely that a Liouville manifold
can be exhausted by a sequence of Liouville domains. What is more, every Liouville
domain W can be turned into a Liouville manifold Ŵ in a canonical way, by attaching a
cylindrical end, a certain subset of the symplectisation R×∂W , to W along the boundary.
This is called the completion of W (as the Liouville vector field on Ŵ is complete.)

Lemma/Definition 2.61 ([CE12, p. 239]). Let (W,ω,X) be a connected Liouville do-
main.5 For ε > 0 sufficiently small, the map φ : (−ε, 0]×∂W →W, (t, x) 7→ φt(x) defined
using the flow (φt) of X is an embedding to its image. For λ := ιXω we have φ∗λ = erα,
where α := λ|∂W . Define

Ŵ := W ∪∂W [0,∞)× ∂W := W t (−ε,∞)× ∂W/∼φ,

where we identity two points of they are mapped to each other via φ. Then Ŵ is a smooth
manifold (since φ is smooth). We extend the Liouville form λ to Ŵ via

λ̂ :=
{
λ on W

erα on (−ε,∞)× ∂W.

Then (Ŵ , λ̂) is an exact symplectic manifold. Extending X by

X̂ :=
{
X on W
∂
∂t

on (−ε,∞)× ∂W

yields a complete Liouville vector field on Ŵ . As a result, we obtain a Liouville manifold
(Ŵ , ω̂ = dλ̂,X), called the completion of (W,ω,X).

Note that this definition involves no choices, since our definition of Liouville domain
entails a choice of the primitive λ (or equivalently, the Liouville vector field X). On the
cylindrical end, we use the contact form determined by λ and X.

Yet, we can also perform an analogous construction with any other contact form on the
cylindrical end; this will be important in Section 3.3. For any other contact form α′ =
efα on ∂W , we attach the collar neighbourhood to the cylinder along the hypersurface
{(t, p) : f(p) = t}, i.e. we use an equivalence

∼G : (−ε, 0]× ∂W → U, (t, x) 7→ φt+f(p)(x),

where U is a neighbourhood of that hypersurface. This yields the following.

5We restrict to connected domains for simplicity; the construction applies to non-connected manifolds
just as well.
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Remark 2.62. For any other contact form α′ = efα, the completion (Ŵ , ω̂) contains
some cylindrical end ([T,∞)× ∂W, d(erα′) for some T > 0 for this contact form α′.

One may wonder about the converse question: is a given Liouville manifold V the
completion of some Liouville domain? The answer is affirmative if and only if V is of
finite type. We will only approximately explain what this means: for a class of Liouville
manifolds called Weinstein manifolds (see Definition 2.75), being of finite type is easy
to define, and there are extremely few known examples of Liouville manifolds which are
not Weinstein. See Remark 2.81 for details.

Proposition 2.63 ([CE12, p. 239]). The completion of a Liouville domain is a Liouville
manifold of finite type. Any finite type Liouville manifold is the completion of some
Liouville domain.

Now, we come to the definition of a Liouville filling. In the literature, the term exact
filling is often used synonymously.

Definition 2.64. A Liouville filling of a contact manifold (M, ξ = kerα) is a Liouville
domain (W,λ) such that (∂W, kerλ|∂W ) is contactomorphic to (M, kerα).

Example. Any Liouville domain (W,λ) is a Liouville filling for its boundary (∂W, kerλ|∂W ).

The natural notion of equivalence of Liouville domains or manifolds is called Liouville
homotopy. For Liouville domains, the definition is the natural adaption of symplectic
deformations.

Definition 2.65. A homotopy of Liouville cobordisms is a smooth family of Liouville
cobordisms (W,ωs, Xs)s∈[0,1], i.e. the data ωs and Xs vary smoothly in s.

One can make the same definition for Liouville manifolds. However, it is not obvious
whether that yields an equivalence relation. Hence, the definition is modified to make
this true by definition.

Definition 2.66. A smooth family (V, ωs, Xs)s∈[0,1] of Liouville manifolds is called a
simple Liouville homotopy if and only if there exists a smooth family of exhaustions
V =

⋃∞
k=1 V

k
s by compact domains V k

s ⊂ V with smooth boundaries along which Xs is
outward pointing. A smooth family (V, ωs, Xs)s∈[0,1] of Liouville manifolds is called a
Liouville homotopy if and only if it is the composition of finitely many simple Liouville
homotopies.

A natural question is whether there are Liouville manifolds which are Liouville homo-
topic, but without a simple Liouville homotopy (i.e., whether the concept of non-simple
Liouville homotopies is necessary at all). In the special case of Weinstein homotopies
(see Definition 2.88), there is such a counterexample (see Example 2.91). It is not clear to
the author whether this is also a counterexample for Liouville homotopies: a priori, there
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could be a simple Liouville homotopy between the manifolds which is not a Weinstein
homotopy.

Liouville homotopies are compatible with the completion of Liouville domains.

Lemma 2.67 ([CE12, Lemma 11.6]). A Liouville homotopy between two Liouville do-
mains induces a Liouville homotopy between their completions.

Remark 2.68. Such homotopy will be of finite type, i.e. going through finite type
Liouville manifolds. It seems to be an open question (see e.g. [CE12, Example 11.7])
whether the converse is true, i.e. whether a finite type Liouville homotopy between
the completions of two Liouville domains implies the existence of a Liouville homotopy
between the domains themselves.

For Liouville domains, there is another notion of equivalence, called Liouville isomor-
phism.

Definition 2.69 ([Sei08, p. 3]). A Liouville isomorphism between two Liouville domains
(W,λ,X) and (W ′, λ′, X ′) is a diffeomorphism φ : Ŵ → Ŵ ′ between their completions
such that φ∗λ̂′ = λ̂ + df , for some compactly supported smooth function f : Ŵ → R. In
particular, a Liouville isomorphism is an exact symplectomorphism between the comple-
tions Ŵ and Ŵ ′.

A key property of Liouville homotopies is the following.

Proposition 2.70 ([CE12, Proposition 11.8]). If two Liouville domains are Liouville
homotopic, they are Liouville isomorphic. More generally, if two Liouville manifolds
(V, ω1, X1) and (V, ω2, X2) are Liouville homotopic, they are exact symplectomorphic.

2.3. Weinstein manifolds and domains

At several points, we also need to talk about Weinstein manifolds and Weinstein domains.
These are Liouville manifolds respectively domains with additional structure. This fur-
ther structure is rooted in Morse theory, hence we briefly recall what the reader needs
to know. See Milnor’s book [Mil63] for a classical and the first part of Audin-Damian’s
textbook [AD14] for a modern account of Morse theory. Further details and background
about this section can be found in Cieliebak and Eliashberg’s book [CE12].

Recall. Let M be a smooth manifold. A critical point p of a smooth function f : M → R
is called non-degenerate if and only if the Hessian Hessp(f) of f at the point p is non-
degenerate. A Morse function on M is a smooth function f : M → R with the property
that every critical point of f is non-degenerate. The Morse index ind p of a critical point
p is the maximal dimension of a linear subspace on which Hessp(f) is negative definite.
In particular, a local maximum of a Morse function has Morse index dimM and a local
minimum has Morse index 0. If f : M → R is Morse, the set Crit(f) of critical points of
f is a discrete subset of M . In particular, if M is compact, Crit(f) is finite.
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Definition 2.71. Let M be a smooth manifold, f : M → R a smooth function and X a
smooth vector field on M . The vector field X is called gradient-like for f if and only if
the inequality

X(φ) ≥ δ(|X|2 + |df |2)

holds, where |X| is the norm with respect to some Riemannian metric on M , |df | is
the dual norm and δ is some positive continuous function.6 The pair (X, f) is called a
Lyapunov pair.

Observation 2.72. If X and f are a vector field resp. a smooth function on a smooth
manifold M such that X is gradient-like for f , the vector field X vanishes precisely at
the critical points of f , and X(f) > 0 holds on M \ Crit f .

Example 2.73. If (M, g) is a Riemannian manifold and f any smooth function, the
gradient ∇f of f with respect to the metric g is gradient-like for f .

Definition 2.74. A smooth function f : M → R on a smooth manifold M is called
exhausting if and only if f is proper and bounded below. In particular, all sublevel sets
f−1((−∞, a]) are compact.

Example. If M is a compact manifold, any smooth function f : M → R is exhausting.

Definition 2.75. A Weinstein manifold (V, ω,X, φ) is a symplectic manifold (V, ω) with
a complete Liouville vector field X which is gradient-like for an exhausting Morse func-
tion φ : V → R. A Weinstein cobordism (W,ω,X, φ) is a Liouville cobordism (W,ω,X)
whose Liouville vector field X is gradient-like for a Morse function φ : W → R which is
locally constant on each boundary ∂±W . In particular, since X is transverse to ∂W , all
critical points of φ must lie in the interior. In both cases, the triple (ω,X, φ) is called
a Weinstein structure on V resp. W . A Weinstein cobordism with ∂−W = ∅ is called a
Weinstein domain.

Remark 2.76. For a Weinstein cobordism (W,ω,X, φ), the function φ is automatically
exhausting since W is compact.

Example 2.77 ([CE12, Example 11.12(i)]). Cn carries the Weinstein structure

ωstd =
n∑

i=1
dxi ∧ dyi, Xstd = 1

2

n∑
j=1

xj
∂

∂xj
+ yj

∂

∂yj
, φstd = 1

4

n∑
j=1

(x2
j + y2

j ),

with coordinates (x1, y1, . . . , xn, yn) ∈ Cn, called the standard Weinstein structure.

The definition of Weinstein domains (and similarly, cobordisms) has a somewhat subtle
issue: the boundary ∂W of a Weinstein domain need not be connected. This is why φ
is only required to be locally constant. Since all resources we consulted overlooked this
issue and in addition had distinct definitions, we decide to elaborate on this further. See
Section A.2 in the appendix for details.

6Since δ may be chosen depending on the metric, one can show that this definition is independent of
the choice of Riemannian metric.
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Observation 2.78. Any Weinstein manifold (V, ω,X, φ) can be exhausted by Weinstein
domains Wk = {φ ≤ dk}, where (dk) is a sequence of regular values of φ which is strictly
increasing and diverging.

The following condition will be important in the proof of the main theorem.

Definition 2.79. A Weinstein manifold (V, ω,X, φ) is called of finite type if and only
if φ has finitely many critical points.

Observation 2.80. By attaching a cylindrical end, any Weinstein domain (W,ω,X, φ)
can be completed to a finite type Weinstein manifold, called its completion. The details
work the same way as for Liouville domains and manifolds.

Remark 2.81. Any Weinstein domain is also a Liouville domain and any Weinstein
manifold (V, ω,X, φ) is also a Liouville manifold (V, ω,X), simply by forgetting the
function φ. However, there are Liouville manifolds which are not even diffeomorphic to
a Weinstein manifold. The first example goes back to McDuff [McD91, Theorem 1.1]
(their manifold has disconnected boundary, hence is not Weinstein, by Proposition A.2).
There have been further examples by Mitsumatsu [Mit95], Geiges [Gei94; Gei95] and
Massot, Niederkrüger and Wendl [MNW13]. Still, the currently known examples are few
and far between, and it is not well-understood what kinds of examples can occur.

Observation 2.82. In a Weinstein manifold (V, ω,X, φ), by Lemma 2.56 any regular
level set Σ := φ−1(c) carries a canonical contact structure ξ defined by the contact form
α := (ιXω)|Σ. In particular, this applies to the boundary of a Weinstein domain.

Definition 2.83. A Weinstein filling of a contact manifold (M, ξ = kerα) is a Weinstein
domain (W,ω,X, φ) such that the contact boundary (∂W, ker(ιXω)|∂W ) is contactomor-
phic to (M, ξ = kerα). In other words, a Weinstein filling of (M, kerα) is a Weinstein
domain which is a Liouville filling of (M, ξ = kerα).

The natural equivalence relation between Weinstein domains is a Weinstein homotopy.
As it turns out, the correct definition is a bit subtle. In light of Definition 2.65, a first
guess at a definition would be something like the following.

Wrong definition. A Weinstein homotopy on a cobordism or manifold7 V is a smooth
family (ωs, Xs, φs)s∈[0,1] of Weinstein structures on V . In other words, we have smooth 1-
parameter families of symplectic forms ωs, Liouville vector fields Xs and Morse functions
φs which for each s ∈ [0, 1] define a Weinstein structure on V .

Of course, this is perfectly well-defined, but it is the wrong definition to make. Since the
conditions on ωs and Xs are the same as in Definition 2.65, the issue must be related to
the function φs—and indeed it is: the condition that two functions be homotopic through
a family of Morse functions is too restrictive. In fact, one can show the following.

7Since the conditions in Definition 2.66 are different from Definition 2.65, this definition should (and
in the end, will) be modified accordingly. We merely want to stress that the subtle issue with this
definition pertains to both Weinstein manifolds and domains.
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Proposition 2.84. Let M be a smooth manifold and (ft)t∈[0,1] be a smooth family of
Morse functions ft : M → R. Then the profile

C(ft) := {(t, s) ∈ [0, 1]× R : s ∈ ft(Crit(ft))}

is a collection of graphs of smooth functions. More precisely, there is a family (gi)i∈I of
smooth functions gi : [0, 1]→M such that gi(t) ∈ Crit(ft) and Crit ft = {gi(t) : i ∈ I} for
all t ∈ [0, 1]. Here, I is a potentially infinite index set; we could choose I = Crit f0.

In intuitive terms, the non-degeneracy of a critical point is stable under small perturba-
tions, so that the number of critical points must be preserved under Morse homotopies.
A formal proof uses the implicit function theorem and non-degeneracy of the critical
points; the details are skipped since they are not the focus of this thesis.

In general, a manifold admits Morse functions with various numbers of critical points,
hence restricting to a homotopy of Morse functions is too strong. One has to slightly
relax the definition, but then obtains a result of the kind we are looking for.

Definition 2.85. A critical point p of a smooth function f : M → R is called embryonic
if and only if ker Hessp f is 1-dimensional and the third derivative of f in direction
ker Hessp f is non-zero. See [CE12, Section 9.1] for details.
A generalised Morse function on a smooth manifold M is a smooth function f : M → R
such that all critical points of M are either non-degenerate or embryonic.

Proposition 2.86 (Folklore, see e.g. [CE12, Theorem 9.4(d)]). Any homotopy between
two Morse functions can be perturbed to a homotopy of generalised Morse functions.

When considering a family of generalised Morse functions, we still want the embryonic
critical points to satisfy a non-degeneracy condition. This is expressed in the following
definition.

Definition 2.87. A 1-parameter family of smooth functions ft : M → R has a birth-
death type critical point p ∈ M at t = 0 if and only if p is an embryonic critical point
of f0 and (0, p) is a non-degenerate critical point of the function (t, x) 7→ ft(x).

Hence, the proper definition for Weinstein homotopies is to consider homotopies through
generalised Morse functions, which will be Morse functions at almost all times, except
that at finitely many times and critical points, a so-called birth-death bifurcation will
occur. Let us present the details.

Definition 2.88. A Weinstein homotopy on a cobordism or manifold is a smooth family
of Weinstein structures (ωt, Xt, φt)t∈[0,1], where we allow birth-death type degenerations,
such that the associated Liouville structures (ωt, Xt) form a Liouville homotopy.
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By the qualification “where we allow birth-death type degenerations”, we mean that the
functions φt are Morse except for finitely many t ∈ (0, 1) at which φt is generalised Morse
and a birth-death type critical point (see Definition 2.87) occurs.

Recall that for a manifold V , homotopies of Liouville structures had a condition on the
existence of a smooth family of exhaustions (see Definition 2.66), which prevents critical
points from escaping to infinity. It is useful to rephrase this using the functions φt.

Definition 2.89. Let (Xt, φt)t∈[0,1] be a smooth family of Lyapunov pairs on a manifold
V such that each φt is exhausting and Morse, except for finitely many t ∈ (0, 1) at which
a birth-death type critical point occurs instead. We call (Xt, φt) a simple Smale homotopy
if there is a family of smooth functions c1 ≤ c2 ≤ . . . on [0, 1] such that each ci(t) for
t ∈ [0, 1] is a regular value for φt and

⋃
k{φt ≤ ck(t)} = V . A Smale homotopy is a

composition of finitely many simple Smale homotopies.

Then, a Weinstein homotopy on V is a family of Weinstein structures (V, ωt, Xt, φt)t∈[0,1],
again allowing birth-death type degenerations, such that the associated Lyapunov pairs
(Xt, φt) form a Smale homotopy.

Since a Weinstein homotopy induces a Liouville homotopy, Proposition 2.70 implies that
Weinstein homotopic manifolds are exact symplectomorphic.

Corollary 2.90. If two Weinstein manifolds (W,ω1, X1, φ1) and (W,ω2, X2, φ2) are We-
instein homotopic, they are exact symplectomorphic.

Finally, we come to the announced example that not every Weinstein homotopy is simple.

Example 2.91. The composition of two simple Smale homotopies need not be simple!

On the right, we have the profile for a
composition of two simple Smale homo-
topies which is not simple: the sublevel
sets {φ ≤ ci} respectively {φ ≤ c′

i} provide
exhaustions for the restrictions of the ho-
motopy to the intervals [0, 1

2 ] resp. [1/2, 1].
The level set {φ = ci} and {φ = c′

i} are
drawn in blue, the exhaustions are drawn
in red. Is is straightforward, though a bit
tedious, to check that no such exhaustion
can exist over the whole interval [0, 1]. Pic-
ture reproduced from Figure 11.1 in [CE12]. 0 1

2
1

c1

c2

c3

c′
1

c′
2

c′
3

c′
4

t

Corollary 2.92. The composition of two simple Weinstein homotopies need not be sim-
ple.
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2.4. Loose Legendrians

As promised in the introduction, this thesis will feature an instance of the h-principle
for flexible Weinstein domains. Behind this is another h-principle for so-called loose
Legendrian submanifolds, which we will explain now. We already saw the definition of
Legendrian submanifolds (usually called Legendrians for short) in Definition 2.32. In
order to discuss them and their h-principle, we need to shift our point of view: isotropic
submanifolds are embedded, and this embedding is important.

Definition 2.93. Let (M, ξ = kerα) be a (2n − 1)-dimensional contact manifold and
Λ a smooth manifold. An immersion φ : Λ → M is called isotropic if and only if it is
tangent to ξ, i.e. im dφx ⊂ ξφ(x) for all x ∈ Λ. Isotropic immersions of the maximal
dimension n − 1 are called Legendrian. An isotropic immersion that is not Legendrian
is called subcritical.

Observation 2.94. The image of an isotropic resp. Legendrian immersion is an isotropic
resp. Legendrian immersed manifold (in the sense of Definition 2.32) of M ; the image
of an isotropic resp. Legendrian embedding is an embedded isotropic resp. Legendrian
submanifold of M . In particular, an isotropic immersion φ : Λ → M can only exist if
dim Λ ≤ n− 1.
Proof. If φ : Λ → (M, ξ = kerα) is an isotropic immersion, for all x ∈ Λ we have
dα|dφ(TxΛ) = d(α|φ(Λ))(x) = 0. Hence, each dφ(TxΛ) is an isotropic subspace of the
symplectic vector space (ξx, dα). The last sentence follows from Proposition 2.33.

For defining an h-principle, we need to weaken Definition 2.93 to a suitable topological
statement. It turns out that following notion of a formal isotropic immersion/embedding
is the correct one.
Definition 2.95. Let f : M → N be a smooth map and F : TM →
TN be a map on the tangent bundles. We say that F covers f if
and only if F and f commute with the canonical projections of the
tangent bundles TM and TN , i.e. if and only if the diagram on
the right commutes.

TΛ TM

Λ M

F

f

Definition 2.96. Let (M, ξ) be a (2n − 1)-dimensional contact manifold and Λ be a
smooth manifold of dimension k ≤ n−1. A formal isotropic embedding of Λ into (M, ξ)
is a pair (f, F s), where f : Λ → M is a smooth embedding and (F s : TΛ → TM)s∈[0,1]
is a smooth family of monomorphisms covering f , starting at F 0 = df and ending at an
isotropic monomorphism F 1 : TΛ → ξ. If k = n − 1, we call this a formal Legendrian
embedding.

Our back is covered: any (genuine) isotropic embedding f can be viewed as a formal
isotropic embedding (f, F s ≡ df).
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The h-principle for loose Legendrians will involve isotopies of isotropic embeddings
and their formal counterparts, hence we define those next. Let (M, ξ) be a (2n − 1)-
dimensional contact manifold and Λ a manifold of dimension k ≤ n− 1.

Definition 2.97. An isotropic isotopy between two isotropic embeddings f0, f1 : Λ →
(M, ξ) is an isotopy (ft)t∈[0,1] from f0 to f1 such that each embedding (ft) is isotropic.
If Λ has the maximal dimension n− 1, we call this a Legendrian isotopy (since it is an
isotopy through Legendrian embeddings). Two isotropic resp. Legendrians embeddings are
called isotropically isotopic resp. Legendrian isotopic if and only if there is an isotropic
resp. Legendrian isotopy between them.

This definition was straightforward. Its formal analogue is as straightforward from the
outside (but becomes more messy when expanding all details).

Definition 2.98. Two isotopic embeddings f0, f1 : Λ → (M, ξ) are called formally
isotropically isotopic if and only if they are isotopic as formal isotropic embeddings, i.e.
there exists a smooth 1-parameter family (ft, F

s
t )t∈[0,1] of formal isotropic embeddings

connecting (f0, F
s
0 ) and (f1, F

s
1 ).

Expanding this, a formal isotropic isotopy between two formal isotropic embeddings
(f0, F

s
0 ) and (f1, F

s
1 ) consists of an isotopy (ft : Λ → M)t∈[0,1] between f0 and f1 and

a family F s
t : TΛ → TM of monomorphisms, such that each F s

t covers ft, one has
(F s

t )t=0 ≡ F s
0 and (F s

t )t=1 ≡ F s
1 and, for all t, F 0

t = dft and F 1
t : TΛ→ ξ is isotropic.

It is apparent that any isotopic isotropic embeddings are necessarily formally isotopic.
The h-principle states that under certain circumstances, the converse result also holds.
For subcritical isotropic manifolds, this is much easier to prove and was already shown
by Gromov.

Theorem 2.99 (Gromov, [EM02; Gro86]). Let (M, ξ) be a (2n−1)-dimensional contact
manifold and Λ a smooth manifold of dimension k < n− 1.8

(a) For any formal isotropic embedding (f : Λ → M,F s), there is a genuine isotropic
embedding g : Λ→M such that (f : Λ→M,F s) and (g, dg) are formally isotropi-
cally isotopic.

(b) Suppose two isotropic embeddings f0, f1 : Λ→M are connected by a formal isotropic
isotopy (ft, F

s
t )s,t∈[0,1]. Then, there exists a genuine isotropic isotopy (gt) connect-

ing g0 = f0 and g1 = f1 which is homotopic to the formal isotropic isotopy (ft, F
s
t )

through formal isotropic isotopies.
8These statements also hold for smooth families in several parameters, e.g. parametrised by [0, 1]n for

any n; the conceptual statement behind this is that the natural inclusion

{isotropic embeddings f : Λ → M} ↪→ {formal isotropic embeddings Λ → M}

is a weak homotopy equivalence. There are also relative versions of the h-principle, i.e. for (formal)
embeddings with prescribed values in a neighbourhood of a given closed subset.
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For Legendrian submanifolds, this is not always true. However, in dimension three (so
that Legendrians are 1-dimensional), there is an h-principle for Legendrians in so-called
overtwisted contact manifolds [Dym01; EF09]. More strikingly, in any contact manifold
of dimension at least five, there is a class of so-called loose Legendrians which satisfy an
h-principle. A Legendrian is defined to be loose if and only if there is a chart around
each point in which the Legendrian has a precise standard form; such a chart is called
a loose chart. We omit the details since they are technical and not very enlightening
as to why the h-principle is true; the following statement is all we need to know for
the purpose of this thesis. In the theorem, a knot denotes a parametrised embedding
of a connected manifold, hence a Legendrian knot is a connected embedded Legendrian
submanifold.

Theorem 2.100 (Murphy, [Mur19, Theorem 1.2, 1.3]). Let (M, ξ) be a contact manifold
of dimension 2n− 1 ≥ 5 and Λ be a (n− 1)-dimensional smooth manifold.

(a) Any formal Legendrian embedding (f : Λ ↪→M,F s : TΛ→ TM) can be C0-approximated
by a loose Legendrian embedding f̃ : Λ→M which is formally Legendrian isotopic
to (f, F s).

(b) Any smooth isotopy (ft : Λ → M)t∈[0,1] which begins with a loose Legendrian em-
bedding f0 can be C0-approximated by a Legendrian isotopy starting at f0.

(c) Let (ft, F
s
t )s,t∈[0,1] be a formal Legendrian isotopy connecting two loose Legendrians

knots f0 and f1. There exists a Legendrian isotopy f̃t connecting f̃0 = f0 and
f̃1 = f1 which is C0-close to ft and is homotopic to the formal isotopy (ft, F

s
t )

through formal isotopies with fixed endpoints.

For completeness, let us also mention the following result, which underscores that the
notion of loose Legendrians is non-trivial.

Proposition 2.101 ([Che02; EES05]). For any n ≥ 1, there are pairs of Legendrian
knots in R2n+1 which are formally but not genuinely Legendrian isotopic.

2.5. Surgery and handle attachment

In this section, we explain the closely related operations of surgery and handle attach-
ment. Handle attachment is needed to state the handlebody decomposition (Proposi-
tion 2.125) of Weinstein domains, which provides some underpinning for a key step in
Zhou’s proof. In Section 5.2 we will see that flexible Weinstein domains (see Defini-
tion 2.131 below) and asymptototically dynamically convex contact manifolds (Defini-
tion 5.8) behave nicely under boundary connected sums (which is a particular form of
handle attachment).

Both surgery and handle attachment can be performed on a purely topological level, but
are also compatible with additional structure. Weinstein handle attachment involves
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attaching a handle to a Weinstein domain and extending the Weinstein structure to the
result. If M is a contact manifold, attaching a handle to a trivial symplectic cobordism
(Definition 2.110 below) [−1, 1]×M yields a cobordism between M and the manifold M ′

obtained by performing surgery on M . Hence, M ′ is also a contact manifold; we say M ′

is obtained from M via contact surgery. The foundational material in this section can
be found in Geiges’ book [Gei08, Chapter 6]. For some details about Weinstein domains,
Weinstein’s original paper [Wei91] is helpful.

Notation. As in the whole thesis, we use Dk+1 ⊂ Rk+1 to denote the (k+1)-dimensional
closed unit disc and Sk = ∂Dk+1 for its boundary, the k-dimensional unit sphere.

We begin with presenting the constructions on the level of smooth9 manifolds, and we
explain the idea of surgery first. The idea behind surgery is that the product manifolds
Sk ×Dn−k and Dk+1× Sn−k−1 both have the manifold Sk × Sn−k−1 as boundary. Hence,
one can replace an embedded copy of Sk × Dn−k by a copy of Dk+1 × Sn−k−1 (in an
appropriate way to preserve the smooth manifold structure). This replacement depends
on the orientation of the embedded discs and spheres, which is given by a choice of
framing.

Definition 2.102. A framing of an embedded submanifold L ⊂ M is a choice of trivi-
alisation of the normal bundle NM (L).

The following statement follows from the tubular neighbourhood theorem.

Lemma 2.103. Let M be an oriented n-dimensional manifold and L ⊂M be an oriented
k-dimensional submanifold. Each trivialisation of the normal bundle NM (L) induces an
embedding L× Dn−k →M .

Convention. In this section, we only consider orientable manifolds.

Lemma/Definition 2.104 ([Gei08, Definition 6.1.1]). Let M be an n-dimensional man-
ifold. Given an embedding φ : Sk × Dn−k →M , the space

M ′ := (M \ Sk × Int(Dn−k)) ∪Sk×Sn−k−1 (Dk+1 × Sn−k+1)

formed by identifying both factors along

Sk × Sn−k−1 = ∂(M \ (Sk × Int(Dn−k))) = ∂(Dk+1 × Sn−k+1).

is an n-dimensional manifold. One says that M ′ is obtained from M by performing
surgery along Sk ⊂M .

Remark 2.105. The definition of M ′ incurred various choices: for the embedding φ as
well as for the identification. As it turns out, M ′ is determined up to diffeomorphism
by the isotopy class of the embedding Sk × Dn−k → M : if φ, φ̃ : Sk × Dn−k → M are
isotopic, the resulting manifolds M ′ and M̃ ′ are diffeomorphic [Gei08, Remark 6.1.2].

9Unless stated otherwise, all manifolds, cobordisms and maps considered in this section are smooth.
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Example 2.106. Suppose M = M1 tM2 is the disjoint union of two connected com-
ponents and choose two points x ∈ M1, y ∈ M2. This yields an embedding S0 → M .
Performing surgery on M along S0 yields the connected sum M1#M2; equivalently, we
could take two discs (with opposite orientations) in the Mi and connect their boundaries
by a tube.

An important remark for later considerations is that surgery is reversible.

Observation 2.107 ([Gei08]). IfM ′ is obtained fromM by surgery along Sk, performing
surgery on M ′ along the sphere Sn−k−1 yields M again.

As indicated already, surgery can also be described via handle attachment. Let M be
an oriented n-dimensional manifold and consider the cylinder [−1, 1] ×M . Given an
embedding Sk × Dn−k →M ≡ {1} ×M , we form the n-dimensional manifold

W = ([−1, 1]×M) ∪Sk×Dn−k (Dk+1 × Dn−k).

We say that W is obtained from [−1, 1]×M by attaching a (k+ 1)-handle or handle of
index k+ 1 to the boundary component {1}×M ; we call Dk+1×Dn−k a (k+ 1)-handle.

This definition is not fully rigorous: W is not a smooth manifold since it has corners10 at
Sk×Sn−k−1. One can correct this by “smoothing the corners”; we will not explain this in
detail, but refer to the references in [Gei08, p. 289]. With that resolved, the boundary of
W is given as the disjoint union of M (i.e. the manifold M with its orientation reversed)
and the result M ′ of performing surgery on M via Sk × Dn−k ⊂M . In other words, we
have the following result.

Proposition 2.108 ([Gei08]). If M is an n-dimensional manifold and φ : Sk ×Dn−k →
M an embedding, the manifold W obtained by setting

W = ([−1, 1]×M) ∪Sk×Dn−k (Dk+1 × Dn−k)

and then smoothing the corners is a smooth cobordism between M and M ′, where M ′ is
the result of performing surgery on M with φ.

There is an alternative description for handle attachment which doesn’t require smooth-
ing of corners and makes it much easier to carry over additional structure. For 1 ≤ k ≤ n,
we model a (k + 1)-handle not by Dk+1 × Dn−k, but instead by the subset

H := {(x, y) ∈ Rk+1 × Rn−k : − 1 ≤ |y|2 − |x|2 ≤ 1 and |x| · |y| < sinh 1 · cosh 1}.

The manifold H is not diffeomorphic to Dk+1×Dn−k, but rather a copy of Dk+1×Dn−k

with the corners cut off. We call the subset

∂−H := {(x, y) ∈ H : |y|2 − |x|2 = −1}
10See e.g. [Lee02, Chapter 14] for a precise definition of manifolds with corners.
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the lower boundary of H; the upper boundary of H is the set

∂+H := {(x, y) ∈ H : |y|2 − |x|2 = 1}.

The (k + 1)-disc Dk+1 × {0} ⊂ H is called the core of the handle H, the (n − k)-disc
{0} × Dn−k is called the belt disc or co-core; the (n− k − 1)-sphere {0} × ∂Dn−k ⊂ ∂H
is called the belt sphere.

To inspire further confidence in our model handle, note that the lower boundary is
diffeomorphic to Sk × Int(Dn−k) via the map

∂−H 3 (u cosh r, v sinh r) 7→ (u, rv), where u ∈ Sk, v ∈ Sn−k−1, 0 ≤ r < 1.

Similarly, the upper boundary is diffeomorphic to Int(Dk+1)× Sn−k−1 via the map

∂+H 3 (u sinh r, v cosh r) 7→ (ru, v), where u ∈ Sk, v ∈ Sn−k−1, 0 ≤ r < 1.

This is slightly imprecise since for r = 0, the coordinate v resp. u is not unique any more
(as sinh(0) = 0). However, the maps are independent of the choice made in this case
(yielding (u, 0) 7→ (u, 0) for ∂−H and (0, v) 7→ (0, v) for ∂+H), hence still well-defined.
Smoothness at r = 0 is straightforward to check.

We can use H to describe the cobordism W above: let M be an n-dimensional manifold
and φ : Sk × Dn−k →M . Define W as the quotient

([−1, 1]× (M \ φ(Sk × {0})) tH)/∼,

via the following identification. For a given point (x0, y0) ∈ Rk+1 × Rn−k, consider the
curve γ : R+ 3 t 7→ (t−1x0, ty0). Note that |x||y| is constant along γ, and that γ is
an integral curve of the gradient to the function (x, y) 7→ |y|2 − |x|2. For each u ∈ Sk,
v ∈ Sn−k−1, 0 < r < 1 and c ∈ [−1, 1] we identify (c, φ(u, rv)) ∈ [−1, 1]×(M\φ(Sk×{0}))
with the unique point (x, y) ∈ H defined by the conditions

• |y|2 − |x|2 = c and

• (x, y) lies on the trajectory γ through the point (u cosh r, v sinh r).

This defines a diffeomorphism

[−1, 1]× φ(Sk × Int(Dn−k \ {0}))→ H ∩ (Rk+1 \ {0})× (Rn−k \ {0})

of open subsets; hence the resulting space W is a smooth (n+ 1)-dimensional manifold.
The sphere φ(Sk × {0}) ⊂M is called the attaching sphere for the handle H.

This construction works for general smooth manifolds. Let us now extend this construc-
tion to preserve additional symplectic or contact structure. The definition of framing
needs to be adapted accordingly.
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Recall (Section 2.1). If L ⊂M is an isotropic submanifold of a contact manifold (M, ξ)
and x ∈ L, we have TpL ⊂ (TpL)ω, where (TpL)ω is the symplectic complement of TpL
in the symplectic vector space ξp.

Lemma/Definition 2.109 ([Gei08, Definition 6.2.1]). Let L be an isotropic submani-
fold of a contact manifold (M, ξ = kerα). The quotient bundle

SNM (L) := (TL)ω/TL

is a symplectic vector bundle with symplectic structure induced by dα. We call SNM (L)
the symplectic normal bundle of L in M .

We begin by explaining how to perform contact surgery, which will require extending
a symplectic structure across handle attachment. The following definition generalises
Liouville cobordisms.

Definition 2.110 ([Gei08, Definition 5.2.1]). Let (M±, ξ± = kerα±) be closed contact
manifolds of dimension 2n − 1, oriented using the contact forms α±. A symplectic
cobordism from (M−, ξ−) to (M+, ξ+) is a compact 2n-dimensional symplectic manifold
(W,ω), oriented by the volume form ωn, with the following properties.

• The oriented boundary of W equals ∂W = M+ tM−, where M− stands for the
manifold M− with reversed orientation.

• In a neighbourhood of ∂W , there is a Liouville vector field X for ω which is pointing
outwards along M+ and inwards along M−.

• The 1-form α := ιXω restricts to TM± as a contact form for ξ±.

Given an isotropic sphere with trivial normal bundle, we need to identify a suitable
neighbourhood of the sphere with a corresponding neighbourhood in the model handle
H. The following enables us to do so.

Theorem 2.111 ([Gei08, Theorem 6.2.2]). Let (M1, kerα1) and (M2, kerα2) be contact
manifolds with closed isotropic submanifolds L1 ⊂M1 and L2 ⊂M2. Suppose there is an
isomorphism of symplectic normal bundles Φ: SNM1(L1) → SNM2(L2) which covers a
diffeomorphism φ : L1 → L2. Then the diffeomorphism φ extends to a contactomorphism
ψ : N (L1)→ N (L2) of suitable neighbourhoods N (Li) of Li such that dψ|SNM1 (L1) = Φ.

About the proof. The proof applies two classical results in contact geometry, namely
Darboux’ theorem for contact forms and the Moser deformation trick. We skip the
details since they would lead us too far.

For a contact manifold (M, ξ = kerα), the trivial cobordism [−1, 1]×M has a symplectic
structure via ω(r,p) = d(erαp); the cobordism is a subset of the symplectisation R×M of
M . Next, we describe the handle to attach to this cobordism. We consider the handle
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corresponding to an isotropic (k−1)-sphere L in a (2n−1)-dimensional contact manifold
M , with 1 ≤ k ≤ n.

The situation is similar to the topological surgery before, except that we work with
coordinates x = (q1, . . . , qk) ∈ Rk and y = (qk+1, . . . , qn, p1, . . . , pn) ∈ R2n−k. On
R2n = Rk ×R2n−k, we have the standard symplectic form ω0 =

∑n
j=1 dpj ∧ dqj . Instead

of the gradient of the function (x, y) 7→ |y|2−|x|2, we consider the flow of the Liouville11

vector field given by

Y :=
k∑

j=1
(−qj ∂qj + 2pj ∂pj ) + 1

2

n∑
j=k+1

(qj ∂qj + pj ∂pj ).

Note that Y is the gradient vector field of the function

g : (q, p) 7→
k∑

j=1
(−1

2
q2

j + p2
j ) + 1

4

n∑
j=k+1

(q2
j + p2

j ).

Let NH
∼= Sk−1 × Int(D2n−k) be an open neighbourhood in the hypersurface g−1(−1) ⊂

R2n of the (k − 1)-sphere

Sk−1
H :=

{ k∑
j=1

q2
j = 2, qk+1 = . . . = qn = p1 = . . . = pn = 0

}
.

This NH will play the role of the lower boundary. We define the symplectic handle H
as the set of points (q, p) ∈ R2n which satisfy the inequality −1 ≤ g(q, p) ≤ 1 and lie on
a gradient flow line of g through a point of NH . The computations above show that the
handle H has a Weinstein structure (ω0, Y, g). This generalises the standard Weinstein
structure in Example 2.77.

The Liouville vector field Y is transverse to the level sets of g, hence the 1-form α0 :=
ιY ω0 induces a contact form on the lower and upper boundary of H. With respect to
this contact form, Sk−1

H is an isotropic sphere in the lower boundary.

The second step is gluing the handle H symplectomorphically to [−1, 1]×M , so we obtain
a symplectic structure on the cobordism defining the contact surgery. The following
lemma allows us to do so.

Lemma 2.112 ([Gei08, Lemma 5.2.4]). For i = 1, 2, let Mi be a hypersurface in a
symplectic manifold (Wi, ωi) and Xi be a Liouville vector field defined in a neighbourhood
of Mi that transverse to Mi. Write ji for the inclusion of Mi into Wi; then αi := j∗

i (ιYiω)
is a contact form on Mi. Given a contactomorphism φ : (M1, kerα1) → (M2, kerα2),
extend it to a diffeomorphism φ̃ from a cylindrical neighbourhood of M1 in W1 to a
corresponding neighbourhood of M2 in W2 by sending the flow lines of X1 to X2. Then
φ̃ is a symplectomorphism.
11Y is a Liouville vector for ω0: a simple computation shows that α := ιY ω0 defines a primitive for ω0.
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One final issue concerns the framing of the surgery corresponding to the cobordism with
the symplectic handle attached. Regarding that, we have the following.

Lemma 2.113 ([Gei08, p. 298]). Let (M, ξ = kerα) be a contact manifold, R be the
Reeb vector field of α and J a compatible complex structure on (ξ, dα). For an isotropic
sphere Sk−1 ⊂ M , the natural trivialisation of 〈R〉 ⊕ J(TSk−1), and any choice of sym-
plectic trivialisation of SNM (Sk−1) determine a bundle isomorphism φ : SNM (Sk−1) →
SN∂H(Sk−1

H ).

We call this framing of Sk−1 the natural framing induced by the chosen trivialisation of
the symplectic normal bundle. Hence, we have outlined the proof of the following.

Theorem 2.114 ([Gei08, Theorem 6.2.5]). Let Sk−1 be an isotropic sphere in a con-
tact manifold (M, ξ = kerα) with a trivialisation of the symplectic normal bundle
SNM (Sk−1). There is a symplectic cobordism from (M, ξ) to the manifold M ′ obtained
from M by surgery along Sk−1 using the natural framing. In particular, the manifold
M ′ carries a contact structure that coincides with the one on M away from the surgery
region.

A natural question is when the hypotheses of Theorem 2.114 are satisfied.

Remark 2.115. For k = 1, the assumptions of the theorem are trivial. Hence, one can
always form the connected sum of equidimensional contact manifolds (see below).
If dimM = 2n−1, the rank of SNM (Sk−1) is 2(n−k). Hence, contact surgery is always
possible along a Legendrian sphere Sn−1, and the framing for the contact surgery is
completely determined by the embedding of the sphere.

Moreover, in the theorem above, the framing for a contact surgery is determined by a
choice of trivialisation of the symplectic normal bundle, hence one may wonder if this
trivialisation depends on the embedding Sk−1 ⊂ M , say up to isotopy. This is where
another h-principle (for isotropic immersions, generalising Theorem 2.99) comes in; in
the end we obtain the following.

Theorem 2.116 ([Gei08, Theorem 6.3.1]). Let (M, ξ) be a (2n−1)-dimensional contact
manifold with n > 2. Assume M contains a (k − 1)-dimensional embedded sphere with
trivial (topological) normal bundle, 1 ≤ k ≤ n, i.e. there is an embedding

f : Sk−1 × D2n−k →M.

Let (W,ω) = ([−1, 1] ×M,d(erα))12. Let W ′ = W ∪f H be the manifold obtained from
W by attaching a k-handle H along its lower boundary ∂−H = Sk−1 × D2n−k using f ,
and call M ′ the new boundary (i.e. the result of surgery of M).

12for the experts: (W, ω) could be any symplectic manifold which has (M, ξ) as a convex boundary
component.
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Let J be any compatible almost complex structure on (W,ω). If J extends over H to
an almost complex structure on all of W ′, then W ′ carries a symplectic form ω′ and
a ω′-compatible almost complex structure homotopic to J such that M ′ is the convex
boundary of (W,ω′). The induced contact structure ξ′ on M ′ is the result of performing
contact surgery along an isotropic sphere topologically isotopic to f(Sk−1 × {0}).

An important special case of the above construction are the boundary and contact con-
nected sum.

Definition 2.117. Let M and M ′ be two contact manifolds of the same dimension and
consider an embedding S0 → M tM ′ with one point in each component. We call the
result of performing contact surgery along S0 the contact connected sum M#M ′ of M
and M ′. Note that M#M ′ is a contact manifold, which topologically is just the connected
sum of M and M ′.

Definition 2.118. Let W and W ′ be two n-dimensional Liouville or Weinstein mani-
folds. Fix two points p ∈ ∂W and q ∈ ∂W ′, attach a 1-handle to W tW ′ (so that the
map {a, b} = S0 ×Dn → ∂(W tW ′) maps {a} ×Dn to p and {b} ×Dn to q) and extend
the Liouville or Weinstein structure to the handle. The resulting Liouville or Weinstein
manifold is called the boundary connected sum W\W ′ of W and W ′.

Proposition 2.119. If W and W ′ are two n-dimensional manifolds with boundary M
and M ′ respectively, we have ∂(W\W ′) = M#M ′: the boundary of the boundary con-
nected sum is the contact connected sum of the boundaries. Moreover, if W and W ′ are
Liouville or Weinstein fillings of M and M ′, respectively, then W\W ′ is a Liouville or
Weinstein filling of the contact connected sum M#M ′.

Remark 2.120. For the boundary connected sum, the attaching spheres are just points
in each manifold, hence clearly isotopic to each other. (For general subcritical isotropic
submanifolds, Gromov’s h-principle, Theorem 2.99, shows that any two attaching spheres
are smoothly isotopic.) This isotopy can be turned into a symplectic deformation by
performing the isotopy via the flow of a suitable Hamiltonian vector field. Then, one has
to argue that this deformation also preserves a given Liouville or Weinstein structure
(i.e. yields a Liouville resp. Weinstein homotopy); for that the Moser deformation trick
is useful again.

We already saw that the symplectic handle carries a natural Weinstein structure. It
is possible to preserve the Weinstein structure under the handle attachment; we refer
the reader to Weinstein’s paper [Wei91], where Theorem 4.2 contains the details for
extending the Liouville structure. In the end, the following result holds.

Proposition 2.121. Let W be a Liouville or Weinstein cobordism, M a component of
∂W (hence M is a contact manifold) and L ⊂M an isotropic sphere with a trivialisation
of SNL(M). Then the cobordism W ′ obtained from W by attaching a symplectic (dimL+
1)-handle along a neighbourhood of L carries a Liouville or Weinstein structure, and W ′

connects M with the result M ′ of performing contact surgery to M along L.
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We speak of contact surgery along a subcritical isotropic submanifold as subcritical
surgery, and refer to contact surgery along a loose Legendrian submanifold as flexi-
ble surgery. As a consequence, Weinstein fillable contact manifolds are closed under
subcritical and flexible surgery. In particular, the boundary connected sum of Weinstein
domains is a Weinstein domain.

2.6. Weinstein handle decomposition and flexible Weinstein
domains

The presence of the Morse function φ endows Weinstein domains with a special structure
of a handle decomposition. The basic idea is that any Weinstein domain of dimension
2n can be obtained from the 2n-dimensional standard ball D2n by a finite or count-
able sequence of handle attachments. At a topological level, the existence of a handle
decomposition follows from classical Morse theory, with results like the following.

Proposition 2.122 ([Mil63, Theorems 3.1, 3.2, 3.5]). Let M be a smooth manifold and
φ : M → R be an exhausting Morse function. If a < b and φ has no critical value between
a and b, then the sublevel sets Ma := {φ ≤ a} and M b := {φ ≤ b} are homeomorphic.13

Suppose there is a critical point p with critical value c ∈ (a, b). Let k be the Morse index
of p. Then we have M b ∼= Ma ∪ H: the sublevel set M b is homotopy equivalent to the
set Ma with a handle H of index k attached. In general, M has the homotopy type of a
CW complex with one k-cell for each critical point of Morse index k.

While the above is the kind of statement we are looking for, it does not involve the sym-
plectic structure. Since we want to study Weinstein domains up to symplectomorphism,
we need a stronger statement, where the handles are attached in accordance with the
symplectic and Weinstein structure. To make this precise, we need one further concept
from Morse theory: the stable manifold of a critical point.

Lemma/Definition 2.123 ([CE12, p. 190 and Lemma 9.9; AD14, p. 28]). Let M be a
smooth manifold, φ : M → R a Morse function and X a gradient-like vector field for φ.
Denote the flow of X by Xs. Let p be a critical point of φ. Then the set

Mp := {x ∈M : lim
s→∞

Xs(x) = p}

is a smooth submanifold of M whose dimension equals the Morse index of p.
The submanifold Mp is called the stable manifold of p.

In our case, the Morse function φ is defined on a Liouville domain. This implies an even
stronger statement about the stable manifolds of critical points.

13In fact, they are (smoothly) deformation equivalent, hence diffeomorphic.
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Proposition 2.124 ([CE12, Proposition 11.9(b)]). Let (W,ω,X, φ) be a Weinstein do-
main and p ∈ Crit(φ) a critical point. Then the stable manifold of p is an isotropic
submanifold of W .

While the statement of the handle decomposition of Weinstein domains is implicit in
the literature (e.g. in [CE12, p. 244]), the author knows of no place where the following
precise phrasing can be found.

Proposition 2.125. Let (W,ω,X, φ) be a 2n-dimensional Weinstein domain. Let c1 <
c2 < . . . < cN be the critical values of φ. Let ε1, . . . , εN > 0 be chosen such that
ci−1 < ci−εi < ci < ci+εi < ci+1 for i = 2, . . . , N−1 and c1+ε1 < c2 and cN−1 < cN−εN .
For each ci, let pi1, . . . , piki

be the sequence of critical points corresponding to that value.
Then there is a sequence of 2n-dimensional Weinstein domains W1,W2, . . .WN such that

• W1 is the disjoint union of k0 discs D2n with the standard Weinstein structure (see
Example 2.77),

• each Wi is Weinstein homotopic to {φ ≤ ci + εi} ⊂W , yielding an exact symplec-
tomorphism φi : Wi → {φ ≤ ci + εi} ⊂W ,

• each Wi is obtained from Wi−1 by attaching a handle of index ind(pij) for each
j to Wi−1, and extending the Weinstein structures to each handle. The attaching
spheres are contained in the image of a sublevel set of φ (hence (contact) isotropic
submanifolds), whereas the core discs of the handles are contained in φi(Wpij ), the
image of the stable manifold of pij.

Combining Proposition 2.125 with Proposition 2.124 and Proposition 2.17, we deduce
the following result.

Corollary 2.126. A 2n-dimensional Weinstein domain has a handlebody decomposition
with handles of index at most n.

In particular, the topology of a Weinstein domain is rather restricted.

Corollary 2.127. Let W be a 2n-dimensional Weinstein manifold of finite type. The
singular homology Hk(W ;Z) is finitely generated, and Hk(W ;Z) = 0 for k > n.

We have now encountered the necessary concepts to introduce flexible Weinstein domains.
Similar to embedded isotropic submanifolds in Section 2.4, critical points on Weinstein
domains come in two kinds.

Definition 2.128. Let (W,ω,X, φ) be a 2n-dimensional Weinstein domain. A critical
point p of φ is called critical if and only if it has Morse index n and subcritical otherwise.

Definition 2.129. A Weinstein domain W is called subcritical if and only if all its
critical points are subcritical.
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Remark 2.130. A subcritical Weinstein domain has a handlebody decomposition whose
attaching spheres are subcritical isotropic manifolds: the dimension of each handle at-
taching sphere equals the Morse index of the corresponding critical point, and by defini-
tion a 2n-dimensional subcritical domain has no critical points of Morse index n.

We will see again that subcritical Weinstein domains satisfy an h-principle (which might
not be too surprising, taking into account Remark 2.130 and their h-principle, Theo-
rem 2.99). However, this result also extends beyond subcritical Weinstein domains. In
light of Murphy’s h-principle (Theorem 2.100), one could guess that loose Legendrians
are involved. More precisely, the attaching sphere of each critical handle should be a
loose Legendrian submanifold.

The correct definition of a flexible Weinstein domain is somewhat subtle. Morally, it
is indeed that “each critical handle in the handlebody description is attached along a
loose Legendrian”, but there are two subtleties in making this precise. The first issue
is that one wants to allow Weinstein manifolds of infinite type. Hence, one cannot just
say “the attaching spheres of all critical handles form a loose Legendrian link”, since a
Legendrian link (see below) has only finitely many connected components.

The more fundamental issue is that flexible Weinstein domains should be invariant under
Weinstein homotopy, since that is the natural equivalence for Weinstein domains. The
first definition of flexibility (what we call explicitly flexible below) was made by Cieliebak
and Eliashberg [CE12, Definition 11.28]. They did not know whether their definition was
invariant under Weinstein homotopy; Murphy and Siegel showed that it was not [MS].
Hence, the correct definition of flexibility goes in two steps. Recall that a Legendrian
knot is a connected Legendrian submanifold; a Legendrian link is the union of finitely
many disjoint Legendrian knots.

Definition 2.131. A Weinstein domain (W,ω,X, φ) is called explicitly flexible if and
only if there is a sequence c1 < min(φ) < c2 < . . . < max(φ) < cN of regular values of φ
such that

• each Weinstein cobordism Wi := {ci ≤ φ ≤ ci+1} for i = 1, . . . , k − 1 contains
exactly one critical point of φ, and

• in each Wi, the attaching sphere of the critical point is either subcritical or a loose
Legendrian knot in φ−1(ci).

A Weinstein domain is called flexible if and only if it is Weinstein homotopic to an
explicitly flexible domain.

This definition adapts naturally to Weinstein manifolds (of finite or infinite type). Note
that flexible Weinstein domains are invariant under Weinstein homotopies by definition.
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Remark 2.132. The literature also contains an alternative definition, which Lazarev
is using: a Weinstein domain is called explicitly flexible if and only if there exists an
increasing sequence (ck) of regular values of φ such that each Weinstein cobordism Wi :=
{ci ≤ φ ≤ ci+1} is elementary (meaning that there is no X-trajectory connecting two
critical points of φ) and the attaching spheres of all critical handles in Wi form a loose
Legendrian link in φ−1(ci).

This notion of flexibility is equivalent to Definition 2.131: any loose Legendrian knot is a
loose Legendrian link, hence a flexible Weinstein domain (in the sense of Definition 2.131)
is also flexible in this new sense. Conversely, up to Weinstein homotopy, one can assume
that all critical values of φ are distinct [CE12, Lemma 12.20]. Since the components of
a loose Legendrian link are also loose, such a Weinstein domain is explicitly flexible.

Remark 2.133. Let us stress that while a loose Legendrian link is the union of loose Leg-
endrian knots, the converse is not true in general: the union of disjoint loose Legendrian
knots need not be loose, since their loose charts could intersect.

In particular, every subcritical Weinstein domain is flexible. In dimension 2n = 4, the
converse is also true since there are no loose Legendrians in dimension 3.

Remark 2.134. The property of being subcritical is not preserved under Weinstein
homotopy: one can perform, for example, a Weinstein homotopy which creates two
additional critical points with indices n−1 and n, respectively [CE12, Proposition 12.21].

The definition of a flexible Weinstein filling is analogous to Definition 2.83.

Definition 2.135. A flexible Weinstein filling of a contact manifold (M, ξ = kerα) is
a Weinstein filling (W,ω,X, φ) such that W is a flexible Weinstein domain.

Finally, we come to the much-announced h-principle of flexible Weinstein structures.

Theorem 2.136 ([CE12, Theorem 14.5]). Two flexible Weinstein structures in dimen-
sion 2n > 4 on the same manifold whose symplectic forms are homotopic as non-
degenerate 2-forms are Weinstein homotopic.

For the second theorem, recall that a diffeotopy is a smooth homotopy of diffeomorphisms,
i.e. a diffeotopy between two diffeomorphisms f, g : M → M on a smooth manifold M
is a smooth map h : M × [0, 1] → M such that h(·, 0) = f , h(·, 1) = g and each map
h(·, t) : M →M is a diffeomorphism.

Theorem 2.137 ([CE12, Theorem 14.7]). Every diffeomorphism f : W1 →W2 between
two flexible Weinstein manifolds (Wi, ωi, Xi, φi) of dimension 2n > 4 for i = 1, 2 such
that f∗ω2 is homotopic to ω1 through non-degenerate 2-forms is diffeotopic to an exact
symplectomorphism.

Let us stress the remarkable nature of these results: a purely topological condition (a
homotopy of non-degenerate 2-forms) implies a statement about symplectic structures.
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3. Symplectic and positive symplectic
homology

In this chapter, we introduce symplectic homology which is an invariant of Liouville
domains, its variant of positive symplectic homology and explain a few of its key proper-
ties. Symplectic homology for Liouville domains generalises Hamiltonian Floer homology;
since some technical details for symplectic homology are motivated by technical issues
when generalising the definition of Hamiltonian Floer homology, we begin by presenting
the definition of Hamiltonian Floer homology.

3.1. Review of Hamiltonian Floer homology

Hamiltonian Floer homology was introduced in a breakthrough by Andreas Floer to
prove a special case of the Arnold conjecture [Flo86; Flo89]; all further progress on the
conjecture was essentially obtained by lifting technical restrictions in his methods. The
key object in all further considerations are Hamiltonian vector fields: to any family of
smooth functions on a symplectic manifold, one associates a time-dependent vector field.

Lemma/Definition 3.1. Let (M,ω) be a symplectic manifold and H : R × M → R
be a 1-parameter family of smooth functions such that H(t, x) = H(t + 1, x) for all t, x
and denote Ht := H(t, ·) for all t ∈ R. There is unique smooth time-dependent vector
field XHt which satisfies the condition ω(XHt , ·) = −dHt for all t.1 The vector field
XHt is called the (time-dependent) Hamiltonian vector field for the (time-dependent)
Hamiltonian H = (Ht).

Since (Ht) is 1-periodic in t, we will often consider H = (Ht)t∈R as a smooth map
H : S1×M → R. The following definition makes sense whenever the Hamiltonian vector
field XHt is complete. This is automatically true for closed manifolds.

Definition 3.2. If (Ht : M → R) is a time-dependent Hamiltonian on (M,ω), and XHt

is complete, a Hamiltonian orbit of Ht is a smooth curve γ : R→M which satisfies the
equation

γ′(t) = XHt(γ(t)).
1This is one of the places where there are mutually inconsistent sign conventions in the literature.

While the author believes that this convention is the correct one (see [Wen15] for justification), not
all papers we reference use the same convention. See Appendix A.1 for details.
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Since the map H 7→ XH is a linear map, we observe that

Observation 3.3. The space of all time-independent Hamiltonian vector fields on a
given symplectic manifold is linear and in particular contractible.

The Arnold conjecture is a statement about the number of 1-periodic orbits of a time-
dependent Hamiltonian. This problem can be attacked using methods similar to Morse
theory. We briefly encountered the classical approach to Morse theory in Section 2.3;
see Milnor’s book [Mil63] for a taste. This approach cannot work for this problem, since
we will encounter infinite-dimensional spaces. However, a modern approach to Morse
theory generalises formally: one can use a Morse function on a smooth manifold to
define homology groups, using the critical points of the Morse function to define the
chain groups and define the differential using the flow of a suitable gradient-like vector
field (more precisely, a Morse-Smale system [AD14, p. 38]). The stable manifold of a
gradient-like vector field (Definition 2.123) belongs to this modern approach.

Conley and Zehnder [CZ83] proved the Arnold conjecture for the standard torus T2n by
using ideas similar to modern Morse theory. They showed that the 1-periodic Hamilto-
nian orbits are the critical points of a suitable function on an infinite-dimensional space.
For the torus, this problem can be reduced to finding critical points of a function on
a finite-dimensional space, which Conley and Zehnder could attack by using the usual
gradient flow. While this strategy works for some examples, their approach of reducing
to finite dimensions is not feasible for general symplectic manifolds.

Floer found a proof strategy which was applicable to much wider classes of symplectic
manifolds. Floer approach does not require a dimensional reduction like Conley and
Zehnder did. This goes in line with a more versatile interpretation of the term “gradient
flow”, which considers solutions of a suitable partial differential equation (the Floer
equation, (F) below) instead of gradient trajectories. Implementing this approach brings
significant technical obstacles, whose resolution requires a large amount of analytical
machinery, and significant technical assumptions. The extent to which these additional
assumptions can be removed is one of the major problems in symplectic topology.

We will only present the big picture, and refer the reader to Jean Gutt’s thesis [Gut14,
Section 1.1] for a crisp overview and to Audin and Damian’s textbook [AD14] for a
very detailed account. For a more detailed history of the problem and a better account
of Conley and Zehnder’s proof, we refer both to Hofer and Zehnder’s textbook [HZ11,
Chapter 6] and to Zehnder’s own account [Zeh19].

Let us outline the construction of Hamiltonian Floer homology. To ease notation, we
will fix a few assumptions/conventions for the remainder of this section.

Definition 3.4. A symplectic manifold (M,ω) is called symplectically aspherical if and
only if for any smooth map f : S2 →M , one has the relation

∫
S2 f∗ω = 0.

Convention. Let (M,ω) be a closed symplectic manifold which is symplectically as-
pherical and whose first Chern class (see Definition 2.42) vanishes.
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These assumptions are present for technical reasons and can (to some degree) be lifted,
at the expense of additional effort. See Remark 3.24 for details.

The first step for the construction was known long before Floer.2 1-periodic Hamiltonian
orbits are precisely the critical points of a suitable functional, called Hamiltonian action
functional. (In the literature, one can find the term symplectic action functional also.)
We begin with describing its domain.

Definition 3.5. Consider the space C∞([0, 1],M) of smooth maps [0, 1]→M , endowed
with the C∞

loc-topology. The contractible loop space of M is the space

Ω0(M) := {γ ∈ C∞([0, 1],M) | γ(0) = γ(1), γ is contractible in M},

which inherits a natural topology as a subspace of C∞([0, 1],M).

The space C∞([0, 1],M) is not a finite-dimensional manifold, but can be shown to be
an infinite-dimensional Fréchet manifold.3 One can show that Ω0(M) is an open subset
of the closed subspace {γ ∈ C∞([0, 1],M) : γ(0) = γ(1)}; in particular it is also infinite-
dimensional.

Definition 3.6. The Hamiltonian action functional AH : Ω0(M)→ R is defined by

AH(γ) := +
∫
D2
u∗ω −

∫
S1
H(t, γ(t)) dt,

where u : D2 →M is a smooth extension of γ, i.e. we have γ(t) = u(e2πit) for all t ∈ [0, 1].
The map u is called a spanning disc for γ.

A few remarks are in order. Firstly, any element γ ∈ Ω0(M) is contractible by definition,
hence admits an extension u as in the definition. Secondly, the action functional is well-
defined because M is symplectically aspherical: given two spanning discs u, v : D2 →M ,
gluing u with the map v obtained by giving the disc the opposite orientation yields a
smooth map w : S2 →M which describes the difference of actions, hence one obtains∫

D2
u∗ω −

∫
D2
v∗ω =

∫
D2
u∗ω +

∫
D2
v∗ω =

∫
S2
w∗ω = 0

since M is symplectically aspherical by hypothesis. Finally, we alert the reader that
there are different sign conventions in use in the literature, and point to Appendix A.1
for details.

The action functional turns out to be a smooth map on the Fréchet manifold Ω0(M).
There is a well-defined notion of differential and critical points of AH ; the first surprise
is that critical points of the Hamiltonian action functional correspond to 1-periodic
Hamiltonian orbits.

2In Hamiltonian mechanics, a theory in physics which motivated the creation of symplectic geometry,
this is known as the principle of least action.

3The precise definition of a Fréchet manifold will not be used in the sequel.
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Lemma 3.7 (e.g. [AD14, Proposition 6.3.3]). A loop γ ∈ Ω0(M) is a critical point of
AH if and only if γ is a 1-periodic Hamiltonian orbit.

If γ is a 1-periodic orbit of XHt and φt denotes the (time-dependent) flow of XHt , then
x = γ(0) is a fixed point of the flow after time 1, and the differential (dφ1)x of φ1 at x
yields an endomorphism of TxM which is called the Poincaré return map.

Definition 3.8. A 1-periodic Hamiltonian orbit γ of XHt is called non-degenerate if and
only if 1 is not an eigenvalue of the Poincaré return map. A time-dependent Hamiltonian
(Ht) is called non-degenerate if and only if all of its 1-periodic Hamiltonian orbits are
non-degenerate.

The following result is important; we will encounter a similar result in the context of
Proposition 3.67.

Proposition 3.9 ([AD14, p. 516, Exercise 6]). If (Ht) is a non-degenerate Hamiltonian
on (M,ω), the 1-periodic orbits of (Ht) are isolated. In particular, since M is compact
there are only finitely many of them.

Going forward, we will only consider non-degenerate Hamiltonians. Denote the set of
contractible 1-periodic orbits of H = (Ht) by P(H).

Convention. In addition to the convention above, let (Ht) = H : S1 ×M → R be a
non-degenerate time-dependent Hamiltonian on (M,ω).

The next step is to define an analogue of the Morse index. This is subtle: while the
Hamiltonian action functional has a well-defined Hessian at each critical point, there are
infinite-dimensional subspaces on which the Hessian is negative definite (and the same
is true for positive definite subspaces)—hence using the same definition as for Morse
theory would yield an infinite index (and coindex4), which is of no use. Floer, however,
realised that one can still assign a useful index to each critical point. This index is
relative, meaning that the precise value of each index is unimportant (and depends on
some auxiliary choices), whereas the index difference of two critical points is a finite
number that has a precise meaning. This index is called the Conley-Zehnder index of
the critical point and is defined as follows:

Given a non-degenerate 1-periodic Hamiltonian orbit γ, one extends γ to a spanning
disc u : D2 → M and chooses a symplectic trivialisation of the pullback bundle u∗TM .
Then, for each t ∈ R, the differential dφt : Tγ(0)M → Tγ(t)M is a symplectic linear
map, and composing with the trivialisation yields a smooth path of symplectic matrices
A(t) ∈ Sp(2n). Because γ is non-degenerate, the endpoint A(1) of the path has no
eigenvalue 1, i.e. satisfies det(A(1)− id) 6= 0. To any such path of symplectic matrices,

4The Morse coindex of a critical point p of a Morse function φ is the Morse index of p for −φ, i.e. the
maximal dimension of linear subspace on which the Hessian Hessp φ at p is positive definite.
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one can assign an integer called the Conley-Zehnder index ; one then defines the Conley-
Zehnder index µCZ(γ) of the orbit γ as the Conley-Zehnder index of the path A(t). See
Gutt [Gut14, Section 6.2] or Audin-Damian [AD14, Chapter 7] for the details.5

One can show (see e.g. [AD14, Theorem 7.1.1]) that the choice of trivialisation doesn’t
matter, since all trivialisations are homotopic and the index defined in the second step
depends only on the homotopy class of the path A(t). The choice of the extension u,
however, does matter in general: in effect, this amounts to choosing a trivialisation of
the bundle γ∗TM ; two such choices differ by what is called a relative Chern number.
This is treated in e.g. [Wen16, Exercise 5.3]. Since we assumed that c1(M) = 0, this
choice is immaterial in our context and µCZ(γ) ∈ Z is a well-defined integer.

Proposition 3.10 ([Flo89, Proposition 2b; Wen16, Exercise 5.3]). Let u and u′ be two
spanning discs for x, and f : S2 →M be the map obtained by glueing u and u′ together.
Then the Conley-Zehnder indices obtained via u and u′, respectively, differ by the number
2 〈c1(M), f〉 ∈ Z.

The chain groups for defining Floer homology are just the free abelian groups generated
by the contractible 1-periodic Hamiltonian orbits P(H), with a Z-grading by the Conley-
Zehnder index; see Definition 3.22 below.

Next, we want to define the corresponding differential. In Morse homology, one defines
the differential by counting trajectories connecting critical points given by the gradient-
like vector field. To define a gradient flow for the action functional, one needs to choose
a metric on the loop space Ω0(M). Let J = (Jt)t∈S1 be a smooth time-dependent family
of compatible almost complex structures on (M,ω), so gt := ω(·, Jt·) is a smooth family
of Riemannian metrics. Using the gt, one defines an L2-product on the tangent space at
any loop γ ∈ Ω0(M). With this inner product, a map u : R× S1 →M is a trajectory of
the formal positive6 gradient flow of AH if and only if it satisfies the Floer equation,

∂u

∂s
(s, t) + Jt(u(s, t))

(∂u
∂t
u(s, t)−XHt(u(s, t))

)
= 0. (F)

We call a map u satisfying (F) a Floer trajectory. The next important question is whether
a Floer trajectory needs to converge to critical points of the action functional as s→ ±∞.
Unlike in Morse theory, the answer is not always yes, but is still manageable.

Definition 3.11. The energy of a Floer trajectory u : R× S1 →M is defined as

E(u) := 1
2

∫
R×S1

(|∂su|2 + |∂tu−XH ◦ u|2) dsdt =
∫
R×S1
|∂su|2 dsdt.

5In the literature, there is also a sign choice in the definition of the Conley-Zehnder index. We follow
Lazarev’s conventions, which agrees with Gutt [Gut14], but has the opposite sign of Audin and
Damian [AD14]. See Appendex A.1 for details.

6This is again a particular sign convention; see Appendix A.1.
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Observe that the energy of a Floer trajectory is non-negative; it is zero if and only if
u(s, t) = γ(t) is independent of s and a 1-periodic Hamiltonian orbit. Whether a Floer
trajectory converges to a periodic orbit at each end depends on its energy.

Proposition 3.12 ([Flo89] or [AD14, Theorem 6.5.6]). For a Floer trajectory u, we
have E(u) < ∞ if and only if there exist 1-periodic orbits x, y ∈ P(H) such that
lims→−∞ u(s, t) = x(t) and lims→∞ u(s, t) = y(t) uniformly in t.
The energy of a converging Floer trajectory is determined by its asymptotic behaviour.

Proposition 3.13 (e.g. [AD14, Remark 6.2.2]). If u is a Floer trajectory which converges
to x ∈ P(H) resp. y ∈ P(H) at ±∞, then E(u) = AH(y)−AH(x).
We note that since we consider positive gradient flow, the action is increasing along a
Floer trajectory, and we get opposite signs compared to e.g. [AD14].

Since we are only interested in contractible periodic orbits, we restrict our attention to
contractible Floer trajectories: a Floer trajectory is called contractible if and only if the
map u(s, ·) : S1 → M is contractible for one, hence all, s ∈ R. To summarise, we are
interested in the space

M := {u ∈ C∞(R× S1,M) : u solves (F), u is contractible and E(u) <∞}.

The moduli space M admits a natural topology in which a sequence converges if and
only if it converges in the C∞

loc-topology. Using elliptic regularity, one can show that
for Floer cylinders asymptotic to isolated periodic orbits, C∞

loc-convergence also implies
uniform convergence near infinity. We will not explain the details since they require
significant technical effort.

To define the differential for the Floer chain complex, we want to count Floer trajectories
connecting two given periodic orbits, i.e. we want to “count” the number of elements in
spaces of the form

M(x, y,H, J) := {u ∈M : lim
s→∞

u(s, t) = x(t) and lim
s→∞

u(s, t) = y(t)}

for 1-periodic Hamiltonian orbits x, y ∈ P(H). We certainly know how to count elements
of a compact 0-dimensional manifold. More generally, one might hope that the space
M(x, y,H, J) were a finite-dimensional manifold (w.r.t. its natural topology)..

Whether this is true depends on the data (H, J)—there are examples (of a closed man-
ifold (M,ω) with data (H, J)) when this is not true! However, the this condition does
hold if one changes the almost complex structure J slightly.7 Let us make that precise.

Definition 3.14. Let X be a topological space. A subset A ⊂ X is called comeagre if and
only if A contains the intersection of a countable family of open and dense subsets, i.e. if
and only if there exist An ⊂ X, n ∈ N which are open and dense such that

⋂
n∈NAi ⊂ A.

7Equivalently, one can perturb the Hamiltonian H; this is the approach historically taken by Floer.
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In contrast to merely dense sets, the finite or countable intersection of comeagre sets is
comeagre again. Observe that comeagre sets are “large”, since they are dense.

Theorem 3.15 (Baire Category Theorem, e.g. [Gen, Theorem 1.2]). Let X be a locally
compact topological space or a complete metric space. Then any comeagre subset of X
is dense.

Theorem 3.16 ([Flo89; AD14]). For every non-degenerate time-dependent Hamiltonian
H : S1 × M → R, there is a comeagre set J reg(H) ⊂ J (M,ω) of compatible almost
complex structures such that for all contractible 1-periodic Hamiltonian orbits x, y ∈
P(H) and all J ∈ J reg(H), the space M(x, y,H, J) is a smooth manifold of dimension
µCZ(y)− µCZ(x).

Results of this kind are often referred to as “transversality” results, since their proof uses
the implicit function theorem (in the infinite-dimensional version, i.e. for a smooth map
between Banach manifolds) and the necessary condition amounts to a smooth section of
a Banach space bundle being transverse to the zero section. For space reasons, we will
not explain what this means, let alone the proof.

We will call a pair (H, J) of a non-degenerate Hamiltonian H and an almost complex
structure J ∈ J reg(H) a regular pair, and from now on we consider only regular pairs.

Note that the space M has a natural free R-action by shifting the s-coordinate, which
yields an action on each space M(x, y,H, J)—in particular, M(x, y,H, J) cannot be
compact and we will never obtain a finite set of points. However, for a regular pair (H, J),
this action is proper, hence the quotientM(x, y,H, J)/R by this action is a manifold of
dimension µCZ(y)−µCZ(x)− 1. This quotient is compact for µCZ(y)−µCZ(x) = 1; we
will outline the proof now. To show compactness, we study the limiting behaviour of a
sequence (uk) in M. At first sight, the story seems clear.

Theorem 3.17 (e.g. [AD14, Theorem 6.5.4]). The space M is compact (in the C∞
loc-

topology).

However, upon a closer look this statement is not very strong, since the C∞
loc-topology

only governs the behaviour on any compact set. Phenomena which “stretch out to infin-
ity” cannot be observed under this topology. Indeed, if we allow shifts of the sequence
(uk), we can observe another phenomenon called breaking: every sequence of Floer cylin-
ders has a subsequence which converges to a broken Floer cylinder.

Definition 3.18. A broken Floer cylinder is a k-tuple v = (v(0), . . . , v(k)) of Floer
trajectories v(i) ∈ M(xi−1, xi,H, J) for i = 1, . . . , k, where x0, . . . , xk are critical points
of AH . Note that a broken Floer cylinder with k = 1 is just a Floer trajectory.

Theorem 3.19 ([Flo89] or e.g. [AD14, Theorem 9.1.6]). Let (un) be a sequence in
M(x, y,H, J). There exist a broken Floer cylinder v = (v(0), . . . , v(k)) with v(i) ∈
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M(xi−1, xi,H, J) and x0 = x, xk = y, a subsequence (unl
) of (un), and sequences

(si
n)i=1,...,k such that for all i, we have

unl
(si

nl
+ ·, ·)→ v(i) in C∞

loc.

For critical points of index difference 1, this breaking cannot occur: since the quotient
M(x, y,H, J)/R is a smooth manifold of dimension µCZ(y)−µCZ(x)−1, there is a Floer
trajectory connecting two critical points x and y if and only if µCZ(y) − µCZ(x) ≥ 1.
Hence, we obtain the following result.

Corollary 3.20. If (H, J) is a regular pair and µCZ(y) − µCZ(x) = 1, the space
M(x, y,H, J)/R is a finite set of points.

Each point comes with a sign induced by a system of coherent orientations [FH93].
We omit the details; Gutt’s thesis [Gut14, Section 1.1.1] contains a high-level overview.
Without these orientations, one still has a well-defined theory with Z2-coefficients.

Hence, we can define a differential ∂ on the chain groups by counting these points with
signs; see Definition 3.23 below. To show that this defines a chain complex, we must
prove ∂2 = 0. This follows from a converse to Theorem 3.19—showing that every broken
Floer cylinder occurs as the limit of a sequence in M(x, y,H, J). This is called gluing.
We will skip the details and just note the following.

Proposition 3.21. Let (H, J) be a regular pair and x, y ∈ P(H) with µ(y)− µ(x) = 2.
Then the quotient space M(x, y,H, J)/R is a 1-dimensional smooth manifold, and its
boundary is given by

∂M(x, y,H, J)/R =
⋃

z∈P(H), µCZ(y)−µCZ(z)=1
M(x, z,H, J)/R×M(z, y,H, J)/R.

Plugging this into the formula for the differential (as given below), the coefficient of 〈x〉
in ∂2(〈y〉) is given by ∑

z∈P(H), µCZ(y)−µCZ(z)=1
#M(x, z,H, J)/R #M(z, y,H, J)/R,

where # denotes a count of points with signs as determined by a system of coherent
orientations. The theory of coherent orientations implies that the coefficient vanishes
[Gut14, Section 1.1.1]. For Z2-coefficients, the vanishing follows directly from the gluing
theorem and the fact that a compact 1-dimensional manifold has an even number of
boundary points; the argument for integer coefficients is similar in spirit to the fact that
counting the boundary points with signs gives 0 [Mil97, Chapter 5, Lemma 1].

To summarise, the following definition yields a chain complex.
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Definition 3.22. The Floer chain complex associated to a regular pair (H, J) is the
chain complex (FC∗(H, J), ∂) defined as follows. The chain groups are free abelian groups
generated by the contractible 1-periodic orbits of XHt, graded by the Conley-Zehnder
index:

FCk(H, J) =
⊕

γ∈P(H)
µ(γ)=k

Z〈γ〉.

The differential ∂ : FC∗(H, J)→ FC∗−1(H, J) defined on the generators by

∂(〈y〉) =
∑

x∈P(H)
dim M(x,y,H,J)=1

#M(x, y,H, J)/R 〈x〉

and extended by linearity; here # denotes a count of points with signs as determined by
a system of coherent orientations.

Hamiltonian Floer homology is defined as the homology of that complex.

Definition 3.23. The Hamiltonian Floer homology associated to a regular pair (H, J)
on a closed symplectic manifold (M,ω) is the homology of its Floer chain complex:
FH∗(H, J) := H∗(FC∗(H, J), ∂).

Remark 3.24. We can now comment about the significance of the assumptions made
in this section. If the closed symplectic manifold (M,ω) is not symplectically aspherical,
the symplectic action functional depends on the chosen spanning disc, hence one needs
to define the action functional on the universal cover of the contractible loop space, i.e.
for a pair of a loop and a spanning surface. We also need symplectic asphericality (or
some weaker assumption) to prevent bubbling, see Discussion 3.33 below.

If one relaxes the assumption on the first Chern class, the Conley-Zehnder index is not a
well-defined integer any more, but only defined up to some integer 2N , where N is called
the minimal Chern number. In particular, one needs to deal with the different possible
choices of trivialisations; the nicest way of doing so is to consider a so-called Novikov ring
which captures these possible choices; the Hamiltonian Floer homology then becomes a
module over that ring.

Finally, one can also consider non-contractible loops: for any free homotopy class of
loops S1 → M , one can define Hamiltonian Floer homology for loops in that homotopy
class. In that case, one fixes a reference loop in that class, and considers pairs of a loop
and a spanning surface, i.e. of maps σ : Σ→M , where Σ is a compact surface with two
oriented boundary components and σ coincides with the reference loop resp. γ on the
boundary components. (For contractible loops, the reference loop was the constant loop,
hence one could consider D2 as spanning surface.)

Finally, we investigate whether the Hamiltonian Floer homology FH(H, J) of (M,ω)
depends on the choice of H or J . We would like FH(H, J) to be independent of J
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(since we chose any regular J , there was no geometric meaning to our choice) and also
independent of H (to obtain an invariant of (M,ω)).

Let (H1, J1) and (H2, J2) be regular pairs. We will construct a map FH(H1, J1) →
FH(H2, J2). The first step is to choose a “homotopy” (Hs, Js) from (H1, J1) to (H2, J2),
more precisely a smooth family (Hs, Js)s∈R of (still time-dependent!) Hamiltonians Hs

and compatible almost complex structures Js ∈ J (M,ω) such that for some C > 0, we
have

Hs ≡ H1 and Js ≡ J1 for s < −C, Hs ≡ H2 and Js ≡ J2 for s > C. (3.1)

We will sometimes write these conditions as Hs ≡ H1 for s� 0; similarly for the others.

Such a homotopy always exists: since R is contractible, there is a smooth path of Hamilto-
nians Hs from H1 to H2. By Proposition 2.11, there is also a smooth path of compatible
almost complex structures from J1 to J2.

The first key insight is to consider solutions u : R × S1 → M to the s-dependent Floer
equation

∂su+ (Js,t ◦ u)
(
∂tu−XHs,t(u)

)
= 0. (Fs)

Energy is defined just as for s-independent Floer trajectories (see Definition 3.11). It
turns out that a finite energy solution to the s-dependent Floer equation converges to
1-periodic Hamiltonian orbits at either end: to an orbit of H1 at the negative and to an
orbit of H2 at the positive end. Hence, we can use these solutions to define a chain map.

Proposition 3.25 (e.g. [AD14, Theorem 11.1.1]8). Suppose (H1, J1) and (H2, J2) are
regular pairs and {Hs, Js} is a smooth family of Hamiltonians resp. compatible almost
complex structures which satisfy the conditions (3.1). If u is a solution of (Fs) and
E(u) < ∞, there exist x ∈ P(H1) and y ∈ P(H2) such that lims→−∞ u(s, t) = x(t) and
lims→∞ u(s, t) = y(t) uniformly in t.

The converse also holds; we will use the following energy bound.

Proposition 3.26 (e.g. [AD14, Proposition 11.1.2]). Let u be a smooth solution to (Fs),
let C > 0 be chosen so the conditions (3.1) hold and suppose lims→−∞ u(s, t) = x(t) and
lims→∞ u(s, t) = y(t) uniformly in t for some x ∈ P(H1) and y ∈ P(H2). Then the
energy of u is given as

E(u) = AH(y)−AH(x)−
∫

[−C,C]×S1
∂sH(s, t, u(s, t)) dsdt. (3.2)

8There is a minor difference in that Audin and Damian vary the Hamiltonian instead of the almost
complex structure. Still, the details for the transversality, compactness and gluing theorems are
essentially the same.
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Hence, for a smooth family {Hs, Js} which satisfies the conditions (3.1), for x ∈ P (H1)
and y ∈ P(H2), we consider the moduli space

M(x, y, {Hs}, {Js}) :=
{
u ∈ C∞(R× S1,M) : u solves (Fs), u is contractible,

lim
s→−∞

u(s, t) = x(t) and lim
s→∞

u(s, t) = y(t)
}
.

Inspired by Proposition 3.25, we would like to define a chain map φ : FC(H1, J1) →
FC(H2, J2) by the formula

〈x〉 7→
∑

y∈P(H2); M(x,y,{Hs},{Js})
is a 0-dimensional manifold

#M(x, y, {Hs}, {Js}) 〈y〉,

and go through the same steps as before to make this well-defined. The map φ would
induce a map on the graded homology groups φ∗ : FH(H1, J1)→ FH(H2, J2). If every-
thing goes well, these maps will be isomorphisms, which would show independence of
the data (H, J).

Let us put this plan to action. For time-dependent compatible almost complex structures
J1, J2 ∈ J (M,ω), consider the space

J C(M,ω, J1, J2) :=
{
J : R× [0, 1]→ J (M,ω)

∣∣∣ J(s, t) ≡ J1(t) for s ≤ −C,

J(s, t) ≡ J2(t) for s ≥ C
}
,

for some C > 0, endowed again with the C∞
loc-topology. Note the choice of a uniform

constant C: in order to apply the Baire Category theorem (Theorem 3.15) later, it is
necessary that the space J C(M,ω, J1, J2) be a complete metrizable space. Fixing the
sizes of both cylindrical ends on which J matches J1 or J2 by choosing C uniformly
makes sure this holds.

Theorem 3.27 (e.g. [AD14, Theorem 11.1.7]). Let (H1, J1) and (H2, J2) be regular
pairs, C > 0 be a constant and {Hs} be a smooth path of Hamiltonians with Hs ≡ H1
for s ≤ −C and Hs ≡ H2 for s ≥ C. There exists a comeagre set J reg ⊂ J C(M,ω, J1, J2)
such that for J ∈ J reg, the moduli space M(x, y, {Hs}, {Js}) is a smooth manifold of
dimension µCZ(y)− µCZ(x).

Such homotopies {Hs, Js} with {Js} ∈ J reg are called regular homotopies. The next
step is a compactness theorem for regular homotopies.

Theorem 3.28 (e.g. [AD14, Corollary 11.1.13]). If ({Hs}, {Js}) is a regular homotopy
and µCZ(y)− µCZ(x) = 0, the space M(x, y, {Hs}, {Js}) is compact.
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Hence, for a regular homotopy {Hs, Js}, the map

φ : FC(H1, J1)→ FC(H2, J2), 〈x〉 7→
∑

y∈P (H2)
µCZ(x)=µCZ(y)

#M(x, y, {Hs}, {Js}) 〈y〉

is well-defined. Again, each point in the moduli space M(x, y, {Hs}, {Js}) is counted
with a sign determined by a system of coherent orientations.

One can show that φ is a chain map; this requires an analogue of the gluing theorem.
Consequently, we obtain a well-defined morphism φ∗ : FH(H1, J1)→ FH(H2, J2).

Remark 3.29. While the formulas for the Floer differential and these chains maps look
very similar, there is an important difference: the Floer equation (F) and hence the
moduli spacesM(x, y,H, J) are invariant under shifts of the s-coordinate, hence we had
to quotient by this R-action to obtain a 0-dimensional manifold. As a consequence, the
Floer differential has degree −1. In contrast, the s-dependent Floer equation (Fs) and
the spaces M(x, y, {Hs}, {Js}) are not invariant under shifts of the s-coordinate, hence
there is no R-action and the chain maps yield a degree-preserving continuation map.

A priori, the chain map φ depends on the homotopy (Hs, Js). However, one can show
that interpolating between two choices of regular homotopies (a “homotopy of homo-
topies”) yields a chain homotopy [AD14, Proposition 11.2.8], in a similar way as for
the continuation maps. Thus, different homotopies induce the same map φ∗. Next, one
shows that the continuation maps respect composition.

Theorem 3.30 (e.g. [AD14, Proposition 11.2.9]). Let (H1, J1), (H2, J2) and (H3, J3)
be regular pairs. Making any choice of regular homotopies between (H1, J1), (H2, J2)
and (H3, J3), the corresponding maps in homology φ12

∗ : FH(H1, J1) → FH(H2, J2),
φ23

∗ : FH(H2, J2) → FH(H3, J3) and φ13
∗ : FH(H1, J1) → FH(H3, J3) satisfy the re-

lation
φ23

∗ ◦ φ12
∗ = φ13

∗ .

Finally, one shows that the constant homotopy yields the identity map [AD14, Proposi-
tion 11.1.14].

Remark. To those readers who are well-versed in category theory, we remark that this
construction can be seen as a functor between suitable categories. See Section 3.2 for
details.

Hence, all the continuation maps are isomorphisms, and we obtain our desired indepen-
dence of the regular pair (H, J).

Theorem 3.31 ([Flo89]). Let (M,ω) be a 2n-dimensional closed symplectic manifold
which is symplectically aspherical and has c1(M) = 0. The Hamiltonian Floer homology
FH(M,ω) := FH(H, J) is independent of the regular pair (H, J).
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One can even compute the Hamiltonian Floer homology: up to a shift in grading, it is
isomorphic to Morse homology and singular homology.

Theorem 3.32 ([Flo89]). If (M,ω) is a 2n-dimensional closed symplectic manifold
which is symplectically aspherical and satisfies c1(M) = 0, we have FH∗(M,ω) =
Hn−∗(M,ω).

For transferring these arguments to Liouville domains, let us recapitulate the key steps
for proving this result. If we assume the transversality theorems to follow, the key results
were compactness and gluing results: to define Hamiltonian Floer homology, we needed
a compactness result for Floer trajectories between critical points of index difference 1,
and a gluing result for trajectories with index difference 2. Showing independence of the
regular pair used requires similar results for s-dependent Floer trajectories.

Discussion 3.33. All compactness results were based on the same three ingredients.

(1) Solutions u ∈M(x, y,H, J) must satisfy an a priori C0-bound.

(2) Solutions u ∈M(x, y,H, J) satisfy a uniform bound on their energy E(u).

(3) All possible holomorphic spheres that could bubble off live in spaces of dimension
at most dimM(x, y,H, J)− 2.

Ingredient (1) makes sense—otherwise, curves might “run away” in the target manifold.
We already encountered ingredient (2) implicitly: the energy E(u) is clearly continuous
in u, hence a sequence (uk) must have bounded energy E(uk) if it is to converge to
a (possibly broken) Floer cylinder.▷ I don’t find this second argument too convincing
any more. . . ◁ Explaining ingredient (3) goes a bit further. When discussing the
compactification of a moduli space M(x, y,H, J), another phenomenon called bubbling
can occur. For a sequence (uk) of Floer cylinders, there may be a point ζ ∈ R× S1 such
that |duk(ζ)| diverges. By rescaling the uk near ζ in a clever way, one can show that the
uk near ζ converge to a map on a surface which has an additional component S2; one
says that a sphere has bubbled off. If one assumes that M is symplectically aspherical,
this already gives a contradiction. For defining the Floer complex, the weaker statement
above is sufficient since it shows that bubbling does not influence the Floer complex.

In our case, ingredient (2) follows from energy bounds, as equation (3.2) guarantees a
uniform bound on the energy: since M is compact, the Hamiltonians Hs are uniformly
bounded. Ingredient (1) is automatic since M is compact. When considering Liouville
domains, ensuring these conditions will require a much more careful analysis. However,
item (3) will follow directly from the exactness of the symplectic form.

3.2. Direct limits

In the next section we will encounter the concept of a direct limit, hence we present its
definition here. We refer to Eilenberg and Steenrod’s textbook [ES52, Section 8.4] for

53



details. Almost all concepts and results can be defined in greater generality, using the
language of category theory. We have phrased the definitions without recourse to this
framework as much as possible, but indicate the general phrasing when helpful.

Direct limits involve a collection of objects with an ordering and maps between these
objects which are compatible with the ordering. The correct notion of ordering is called
a directed set.

Recall. A preorder on a set A is a transitive and reflexive relation. A partial order on
A is a preorder which is in addition anti-symmetric.

Example 3.34. On any set A, the trivial relation ≤ defined by a ≤ b for all a, b ∈ A is
a preorder (since it is trivially transitive and reflexive), but not a partial order (since it
is not anti-symmetric).

Definition 3.35. A directed set is a pair (I,≤) of a set I and a preorder ≤ on I with
the property that any pair of elements of I has a common upper bound: for all a, b ∈ I,
there exists an element c ∈ I such that a ≤ c and b ≤ c.

Example 3.36. The standard example is (N,≤), the set of natural numbers ordered
by height. More generally, any totally ordered set is directed since for every pair of
elements, the larger element of the two is an upper bound.

Next, we define the objects we want to take direct limits of.

Definition 3.37. Let (I,≤) be a directed set. A directed system of abelian groups
over (I,≤) is a collection (Ai)i∈I of abelian groups indexed by the set I together with a
collection (φij)i,j∈I of group homomorphisms φij : Ai → Aj for all i, j ∈ I with i ≤ j
which satisfy the properties

φik = φjk ◦ φij and φii = idAi for all i, j, k ∈ I with i ≤ j ≤ k.

More generally, for any category A, a directed system in the category A over (I,≤) is
a pair ((Ai), (fij)), where (Ai)i∈I is a collection of objects indexed by I and (fij) is a
collection of morphism fij : Ai → Aj for all i ≤ j with the properties that

fik = fjk ◦ fij and fii = idAi for all i, j, k ∈ I with i ≤ j ≤ k.

Remark. To those readers who like category theory, we remark that a directed system
in the category A over a directed set (I,≤) is precisely a covariant functor I → A,
where the directed set (I,≤) is regarded as a category I by taking Ob(I) = I and

Mor(i, j) =
{
{iij} if i ≤ j
∅ otherwise

and imposing the obvious composition rules.

Example 3.38. We already encountered a directed system in Section 3.1: the directed
set is the set of all regular pairs (H, J), with the trivial preorder from Example 3.34.
The objects (Ai) are the graded abelian groups FH(H, J), the morphisms are the con-
tinuation maps FH(H1, J1)→ FH(H2, J2), which indeed behaved functorially.
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Now we come to the definition of direct limits. The general categorical definition is
a bit involved, but there is a much more elementary construction for modules over a
commutative ring R. We present this construction since it is sufficient for our purposes.
In the following, let R be a commutative ring with unit.

Definition 3.39 ([ES52, Section 8.4]). Let (Ai, fij) be a directed system of R-modules
over a directed set (I,≤). Let Q ⊂

⊕
i∈I Ai be the submodule generated by all elements

fij(xi)− xi for i, j ∈ I with i ≤ j and xi ∈ Ai. The direct limit of (Ai, fij) is defined as
the quotient module

lim−→Ai :=
⊕
i∈I

Ai/Q.

Note that for each i ∈ I, the inclusion Ai ⊂
⊕

i∈I Ai induces an R-module homomorphism
ιi : Ai → lim−→i∈I

Ai, x 7→ [x]. These maps (fi)i∈I satisfy fi = fj ◦ fij for all i ≤ j.

Remark. Hence, in Section 3.1 we could have taken the direct limit of the complexes
FH(H, J)—the result just wouldn’t have been interesting. The situation will be different
in Section 3.3.

For computing a direct limit, it can be useful to restrict to a smaller directed set.

Definition 3.40. A subset A ⊂ I of a directed set (I,≤) is called a directed subset if
and only if restricting the preorder on I to A makes A a directed subset. A subset A ⊂ I
is called cofinal if and only if any element x ∈ I has an upper bound in A, i.e. for all
x ∈ I, there is an element a ∈ A with x ≤ a.

Observation 3.41. A cofinal subset A ⊂ I of a directed set (I,≤) is a directed subset.

Lemma 3.42 ([ES52]). If (I,≤) is a directed set, A ⊂ I a cofinal subset and (Ai, fij)
is a directed system over (I,≤), the objects and maps which correspond to elements in
A form a directed system over A.

The crucial property is that direct limits can be computed just via any cofinal subset.

Proposition 3.43 ([ES52, Chapter 8, Theorem 4.13]). Let (Ai, fij)i∈I be a directed
system of R-modules over a directed set (I,≤) and A ⊂ I a cofinal subset. Denote the
restricted system by (Bi, gij), i.e. Bi = Ai and gij = fij for all i, j ∈ A. Then the direct
limits coincide: there is an R-module isomorphism lim−→Bi → lim−→Ai.

In Section 3.3 we will use a suitable cofinal subset to compute a direct limit.

As it turns out, a map between two directed systems induces a map between the direct
limits. In categorical language, forming the direct limit is a functor. We refer the reader
to [ES52, Chapter 4, Section 2] for the definition of a category and functor.

Definition 3.44. Let (M,≤) and (N,≤) be directed sets. A function f : M → N is
called order-preserving if and only if α ≤ β in M implies f(α) ≤ f(β) in N .
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Definition 3.45. Given two directed systems (Ai, fij) and
(Bi, gij) of R-modules over directed sets (I,≤) and (J,≤),
a morphism φ : (Ai, fij) → (Bk, gkl) consists of an order-
preserving map φ : I → J and for each i ∈ I, an R-module
homomorphism φi : Ai → Bφ(i) such that for all i ≤ j, we
have gij ◦ φi = φj ◦ fij. In other words, the diagram on the
right commutes.

Ai Aj

Bφ(i) Bφ(j)

fij

φi φj

gφ(i)φ(j)

One can easily check that directed systems (of R-modules, and more generally over any
category) form a category D. We have the following result.

Theorem 3.46 ([ES52, Chapter 8, Theorem 4.12]). Taking the direct limit is a covariant
functor D → Mod(R), from the category of directed systems of R-modules to the category
of R-modules.

Moreover, the direct limit is an exact functor, meaning that it preserves exact sequences.

Theorem 3.47 ([ES52, Chapter 8, Theorem 5.4]). Let A→ B → C be an exact sequence
of directed systems of R-modules. The corresponding sequence of direct limits is also
exact.

In Chapter 6, we also need that the direct limit commutes with tensor products. This
is a standard exercise in commutative algebra.

Lemma 3.48 ([AM69, Exercise 2.20]). Let R be a commutative unital ring, N an R-
module and (Mi)i∈I a directed system of R-modules. There is a natural isomorphism
lim−→(Mi ⊗R N) ∼= lim−→(Mi)⊗N .

Remark 3.49. Lest the reader think that all these constructions generalise right away
to general categories, a word of caution. Firstly, while the concept of direct limit can be
defined in any category, not every directed system needs to have a direct limit. (When
the direct limit exists, however, it is unique in a precise sense and again defines a functor.)
Secondly, exactness of the direct limit functor for R-modules is a particular property. For
example, a dual construction called inverse limit is not exact in general.

3.3. Symplectic homology

Having reviewed Hamiltonian Floer homology, we want to transfer the same ideas to non-
closed symplectic manifolds. This can be done in various settings, including compact
symplectic manifolds whose boundary is “of contact type”. We will restrict to Liouville
domains (which are a special case), since the general case demands attention to addi-
tional technical details which we prefer to not worry about. Since Liouville domains are
compact, they have some invariants (such as their volume) which are not interesting for
our purpose. Hence, we define symplectic homology in terms of the completion (recall
Definition 2.61) of a Liouville domain.
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Convention. Let (W, ω = dλ,X) be a Liouville domain with c1(W ) = 0. Denote
M := ∂W and let α := λ|∂W be the corresponding contact form on M . Let (Ŵ , ω̂) be
the completion of (W, ω) with respect to the contact form α.

This different setting brings about a few changes when trying to define an analogue of
Hamiltonian Floer homology. One such change concerns the ingredients for the necessary
compactness results: while the exactness of the symplectic form elegantly resolves any
concerns about bubbling, ensuring the necessary a priori bounds for the energy and norm
of Floer trajectories becomes an issue and requires a new idea. In the wake of this, the
use of a direct limit will become necessary.

However, there is also a beneficial difference compared to closed manifolds: finite type
Liouville manifolds always contain a cylindrical end of a symplectisation, and one can
even tweak the associated contact form. This provides extra structure to the Hamiltonian
orbits and allows us to define an additional invariant called positive symplectic homology.

Let us begin by analysing the changes through the presence of cylindrical ends. It turns
out that under suitable conditions on the Hamiltonian, the Hamiltonian orbits in a
cylindrical end correspond to Reeb orbits on the contact boundary ∂W . The starting
point to this result is the following observation.

Lemma 3.50. Let (M, ξ = kerα) be a contact manifold, (R×M,d(erα)) its symplecti-
sation and H : R×M → R a Hamiltonian of the form H(r, p) = h(er) for some smooth
function h : R → R. Then the Reeb vector field Rα on each level {r} × M and the
Hamiltonian vector field XH are related by

XH(r, p) = h′(er)Rα(p).

Proof. Observing that we have ω = er(dt ∧ α+ dα), we directly compute

ω(h′(er)Rα, ·) = er(dt ∧ α)(h′(er)Rα, ·) + dα(h′(er)Rα, ·)

= erh′(er)
[
dt(Rα)α(·)− α(Rα)dt(·) + dα(Rα, ·)

]
= −erh′(er)dt(·)

using the properties α(Rα) = 1 and dα(Rα, ·) = 0 of a Reeb vector field. Since H has
the form H = h(er), we have −dH(·) = −erh′(er)dt, hence the claim follows right from
Definition 3.1.

Hence, if we restrict to Hamiltonians of the form H(r, p) = h(er), the Reeb and Hamil-
tonian vector fields are parallel. We would like to deduce a statement about their orbits.
This is possible in much greater generality, for general integral curves of vector fields on
compact manifolds.9

9We will see that even though Ŵ is not compact, the following results can still be applied in our setting.
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Proposition 3.51. Let M be a compact manifold, let X and Y be vector fields on M
such that Y = fX for some smooth function f ∈ C∞(M). Then any integral curve of
X has a reparametrisation, unique up to translation, which is an integral curve of Y .

Proof. Since M is compact, both X and Y are complete vector fields. Let γ : R → M
be an integral curve for X. We wish to find a smooth function φ : R → R such that
γ̃ := γ ◦ φ : R→M is an integral curve of Y . By translation, we may assume φ(0) = 0.

Claim. γ̃ is an integral curve of Y starting at γ(0) if φ solves the ordinary differential
equation

φ(0) = 0, φ′(t) = (f ◦ γ)(φ(t)). (3.3)
If X 6= 0, the converse also holds.

Proof of Claim. Indeed, for any t ∈ R, we compute that

γ̃′(t) = γ′(φ(t))φ′(t) = Xγ(φ(t)) φ
′(t) = φ′(t)Xγ̃(t).

By definition, γ̃ is an integral curve of Y if and only if γ̃′(t) = Yγ̃(t)) = f(γ̃(t)Xγ̃(t). If
X 6= 0, γ̃ being an integral curve also implies that φ′(t) = f(γ̃(t)). 4

By the existence and uniqueness theorem for ordinary differential equations (see e.g.
[Lee02, Theorem 17.9]), such a reparametrisation is unique wherever it exists, and always
exists locally. In this case, a solution must even exist globally; one way of proving this
is the following. Equation (3.3) defines a smooth vector field on R. Since M is compact,
the function f ◦γ is bounded, hence φ is a bounded vector field on R. Since R is complete,
the result follows from Lemma 3.52.

Lemma 3.52. Let M be a complete Riemannian manifold and X be a smooth vector
field on M . Suppose there exists a constant C > 0 such that |X(p)| < C for all p ∈ M .
Then X is complete.

The idea of proof is similar to showing that any vector field on a compact manifold is
complete: for any integral curve γ of the vector field, one uses completeness of M to
exhibit a limit point, and concludes that γ can always be extended. We skip the details.

Combining Lemma 3.50 with Proposition 3.51, we obtain a result for Reeb and Hamil-
tonian orbits in a symplectisation.

Proposition 3.53. If γ is a Reeb orbit of M of period T > 0, and T ∈ R satisfies
h′(er) = T , then x(t) := (r, γ(T t)) is a 1-periodic Hamiltonian orbit in R ×M . Con-
versely, all non-constant 1-periodic Hamiltonian orbits of R×M are of this form.
Proof. Each Reeb orbit (by definition) is contained in a level set {r}×M . The same holds
for a non-constant Hamiltonian orbit γ: if h′(er) 6= 0, this is automatic as Hamiltonian
orbits are contained in a level set of the Hamiltonian. If we have h′(er) = 0 for some
point γ(t0) = (r, p), then γ must be constant.

In particular, each Hamiltonian or Reeb orbit is contained in some compact subset
[−T, T ]×M and we can apply Proposition 3.51 in combination with Lemma 3.50.
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Stationary Hamiltonian orbits occur precisely at the points (r, p) for which h′(er) = 0
holds. In particular, such orbits cannot be isolated; they will be excluded when defining
symplectic homology.

Let us emphasize that while correct, the discussion above was somewhat misleading: if
Ht ≡ H is time-independent, all its orbits come in families parametrised by S1 and will
not be non-degenerate. However, one can show that a suitable small time-dependent
perturbation of H turns each S1-family of orbits of index k into two non-degenerate
orbits of almost the same period, with indices k and k − 1. We will not explain this in
detail since the details are rather involved and technical. With this caveat understood,
we will mostly suppress the time-dependence from the notation.

Let us now study how to obtain compactness theorems in our setting. In Discussion 3.33,
we saw that three ingredients were required to set up a Floer theory. In our setting, there
can be no bubbling since the symplectic form is exact. A slightly more conceptual result
is the following.

Proposition 3.54. For an exact symplectic manifold (W, ω = dλ) and a closed surface
Σ, any smooth map u : Σ→W satisfies

∫
Σ u

∗ω = 0.
Proof. By Stokes’ theorem, we have

∫
Σ u

∗ω =
∫

Σ d(u∗λ) =
∫

∂Σ u
∗λ = 0.

Corollary 3.55. Every Liouville manifold is symplectically aspherical.

The first two ingredients from Discussion 3.33, having a priori bounds for the energy
and the C0 norm of Floer trajectories u ∈ M(x, y,H, J), as not as automatic as in
Section 3.1. However, one can still deduce these if one imposes some slight assumptions
on the Hamiltonian and almost complex structure.

The key statement is a general result known as the maximum principle. The statement
below is not the most general case, but is sufficient for our purposes. We refer to Gilbarg
and Trudinger’s book [GT01, Chapter 3.1] for further background.

Definition 3.56. Let Ω ⊂ Rn be open and connected, n ≥ 2. Consider a differential
operator L of the form

Lu =
n∑

i,j=1
aij(x)Diju+

n∑
i=1

bi(x)Diu+ c(x)u, with aij = aji

for x = (x1, . . . , xn) ∈ Ω and u ∈ C2(Ω). The operator L is called elliptic if and only if
for each x ∈ Ω, the coefficient matrix (aij(x)) satisfies the inequality

0 < λ(x)|ξ|2 ≤
n∑

i,j=1
aij(x)ξiξj ≤ Λ(x)|ξ|2 (∗)

for all non-zero vectors ξ = (ξ1, . . . , ξn) ∈ Rn\{0}, where λ(x) and Λ(x) are the minimum
and maximum eigenvalue of the matrix aij(x), respectively. In particular, the matrix
(aij(x)) must be positive definite for all x.
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Example 3.57. For all n ≥ 2 and Ω ⊂ Rn open and connected, the Laplace operator
L =

∑n
i=1

∂2f
∂x2

i
is an elliptic operator on Ω. The coefficient matrix (aij(x)) is the identity

matrix, hence all terms in (∗) are equal to |ξ|2.

Definition 3.58. Let U ⊂ Rn be open. A smooth function f : U → R is called subhar-
monic if and only if its Laplacian is non-negative.

Proposition 3.59 ([GT01, Theorem 3.1]). Let Ω ⊂ Rn be a bounded open connected set
and L an elliptic operator on Ω with c = 0. Suppose that Lu ≥ 0 for u ∈ C2(Ω)∩C0(Ω).
Then the maximum of u in Ω is achieved on ∂Ω, i.e. supΩ u = sup∂Ω. In particular, u
has no local maximum.
Corollary 3.60 ([GT01, Theorem 2.2]). Let Ω ⊂ Rn be bounded, open and connected
and u : Ω→ R be subharmonic. Then u has no local maximum.

It turns out that if we impose some mild restrictions on the Hamiltonian H and the
almost complex structure J , we can apply the maximum principle to our setting. The
first restriction will be on the almost complex structures.

Definition 3.61. Let (M, ξ = kerα) be a contact manifold and (R × M, d(erα)) be
its symplectisation. A compatible almost complex structure J ∈ J (R × M) is called
cylindrical if and only if it satisfies the following properties.

• J is invariant under R-translation, i.e. J(t,p) = J(t′,p) for all p ∈M and t, t′ ∈ R.

• J(ξ) = ξ and J |ξ restricts to a compatible almost complex structure on the sym-
plectic vector bundle (ξ, dα)→M .

• J(∂r) = Rα and J(Rα) = −∂r, where ∂r denotes the unit vector in R-direction.

Denote J (M,α) := {J ∈ J (R×M, d(erα))
∣∣ J is cylindrical}.

Definition 3.62. A time-dependent almost complex structure J = (Jt)t∈S1 on Ŵ is
called admissible if and only if

• Jt ∈ J (Ŵ , ω̂) for all t, i.e. each Jt is everywhere compatible with ω̂

• Every Jt matches a common time-independent almost complex structure J ∈ J (M,α)
on [T,∞)×M for some T ≥ T0.

We denote the space of all admissible almost complex structures on (Ŵ , ω̂) by J (W,ω, α).

Since the application of the maximum principle is somewhat technical, we first present
a special case to illustrate the idea. Consider Floer trajectories in the symplectisation
R×M and a time-independent Hamiltonian H = 0 which vanishes globally. In this case,
also XH = 0 and the Floer equation simplifies to ∂tu = J(u) ∂s.

Proposition 3.63. Let J ∈ J (M,α) and suppose u = (f, v) : R× S1 → R×M satisfies
Floer’s equation with Jt ≡ J and H ≡ 0. Then the function f : R× S1 → R has no local
maximum.
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Proof. We will show that f is subharmonic, i.e. that its Laplacian is non-negative, and
apply the maximum principle. (We can apply Corollary 3.60 since R×S1 is biholomorphic
to C\{0}; an explicit biholormorphic map is given by R×S1 3 (s, t) 7→ es+2πit ∈ C\{0}.)

By hypothesis, u satisfies the equation ∂tu = J(u) ∂su. We want to write this in a more
useful form, comparing the derivatives of f with those of v. To that end, observe that
the tangent spaces of the symplectisation have a natural splitting

T(t,p)(R×M) = R ∂r ⊕ RRα(p)⊕ ξp.

We consider the canonical projections

π1 : T (R×M)→ R ∂r, π2 : T (R×M)→ RRα, πα : T (R×M)→ ξ.

We claim that the Floer equation is equivalent to the three equations

∂sf − α(∂tv) = 0, ∂tf + α(∂sv) = 0, and πα(∂su) + J(u)πα(∂tu) = 0.

We show this by considering the projections π1, π2 and πα separately. Since the almost
complex structure J is cylindrical, we have

J(∂tf ∂r) = ∂tf Rα, J(Rα) = −∂r and J(ξ) = ξ.

Hence, π1(J(u) ∂tu)) = −∂tṽ ∂r, thus ξ = kerα implies

0 = dr(π1(0)) = dr
(
π1(∂su)

)
+ dr

(
π1(J(u)∂tu)

)
= dr(∂sf ∂r) + dr(∂tṽ Rα) = dr(∂sf ∂r)− α(∂tv)
= ∂sf − α(∂tv),

where ṽ is the Rα-component of v. Observe that ∂tṽ = α(∂tv) since ξ = kerα.
For the projection π2, we have

π2(J(u) ∂tu) = ∂tf Rα and π2(∂su) = ∂tṽ Rα = α(∂tv)Rα,

hence we deduce
0 = α(π2(0)) = ∂tf + α(∂tv).

For the third equation, we just observe πα(J(u) ∂tu) = J(u)(πα∂tu) since is cylindrical,
hence preserves ξ. This shows the desired equivalence.

Now we observe that since dα vanishes on Rα and dα(·, J(·)) defines a bundle metric on
ξ, the third equation implies

dα(∂su, ∂tu) = dα(πα∂su, πα∂tu) = dα(πα∂su, J(u)πα∂su) ≥ 0,

with equality if and only if πα∂su = 0. Thus, we compute

0 ≤ dα(∂su, ∂tu) = (∂sv)
(
α(∂tv)

)
− (∂tv)

(
α(∂sv)

)
= ∂s(∂sf) + ∂t(∂tf) = (∂2

s + ∂2
t )f,
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and f is indeed subharmonic. In the second step, we used the Lichnerowicz rule

dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ]);

the Lie bracket vanishes since ∂s and ∂t are coordinate tangent vectors. The third step
uses the first two equations and a short computation along the lines of (∂t)p(∂tf) =
(∂tv)v(p)(α(∂tv)) for p ∈ R× S1.

This result will imply a uniform C0-bound for Floer trajectories u ∈M(x, y,H, J). Note
that there is no lower bound on the R-component of u in the symplectisation. Such a
bound is not needed since the negative end of the symplectisation will be replaced by a
Liouville domain.

Let us now turn to the general case. We want to ensure suitable energy and C0-bounds
for Floer trajectories on Ŵ . In view of Proposition 3.63, the correct condition on J
is to be admissible (see Definition 3.62). Let us see which conditions we need for the
Hamiltonians. At the end of the day, we need to obtain C0-bounds for the s-dependent
Floer equation

∂su+ (Js,t ◦ u)
(
∂tu−XHs,t(u)

)
= 0.

Here, {Js,t}s,t∈R×S1 is a smooth family of almost complex structures in J (W,ω, α) that
are s-independent for |s| ≥ C for some given10 constant C > 0, so for T1 ≥ T0 sufficiently
large we can assume all of them to be in J (M,α) on [T1,∞) ×M . Likewise, suppose
{Hs,t}s,t∈R×S1 : Ŵ → R is a smooth family of Hamiltonians which are s-independent for
|s| ≥ C. In light of Proposition 3.53, we assume them to take the form H(s, t, r, p) =
h(s, t, er) for (r, p) ∈ [T1,∞)×M , with h being a smooth function on R× S1 × [T1,∞).
For T ≥ T0, denote the complement of (T,∞)×M by ŴT , so that Ŵ = ŴT t(T,∞)×M .

Proposition 3.64. Given the data above, assume ∂s∂rh is everywhere non-negative.
Let x, y ∈ P(H) be Hamiltonian orbits and u be a solution of the s-dependent Floer
equation (Fs) which is asymptotic to x resp. y. For T ≥ T1, if x and y are contained in
ŴT , then also im(u) ⊂ ŴT .

Proof. Suppose u : R × S1 → Ŵ satisfies the s-dependent Floer equation (Fs) and U ⊂
R × S1 is an open subset with u(U) ⊂ [T1,∞) ×M . Hence, for (s, t) ∈ U we can write
u(s, t) = (f(s, t), v(s, t)) ∈ R×M .

Again, we will show that f satisfies a maximum principle. Proposition 3.63 showed
this for the case Hs,t ≡ 0 and Js,t being independent of s and t. We perform the
same argument again. A simple computation analogous to Lemma 3.50 shows that
XHs,t(r, p) = (∂rh)(s, t, er)Rα(p) for all r ≥ T1. Using that, we compute that u =
(f, v) : U → Ŵ satisfies the equations

∂sf − α(∂tv)− ∂rh(s, t, ef ) = 0, ∂tf + α(∂sv) = 0, and πα(∂su) + Js,t(u)πα(∂tu) = 0.
10The s-dependent Floer equation will come in when considering moduli spaces M(x, y, {Hs}, {Js}) for

a given homotopy {Hs,t, Js,t} between regular pairs. The constant C depends on the homotopy,
hence is global within each moduli space.
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Just as before, we have 0 ≤ dα(πα∂su, Js,tπα∂su) = dα(∂su, ∂tu), hence repeating the
same calculation yields

0 ≤ dα(∂su, ∂tu) = (∂sv)
(
α(∂tv)

)
− (∂tv)

(
α(∂sv)

)
= ∂s(∂sf) + ∂t(∂tf)− ∂s

[
∂rh(s, t, ef(s,t))

]
= (∂2

s + ∂2
t )f − ∂s ∂rh(s, t, ef )− ef∂2

rh(s, t, ef ) ∂sf.

Since ∂s ∂rh(s, t, ef ) ≥ 0 by hypothesis, f satisfies the partial differential inequality

(∂2
s + ∂2

t )f − ef∂2
rh(s, t, ef ) ∂sf ≥ 0.

The left hand side defines an elliptic differential operator, hence we can apply Proposi-
tion 3.59 locally.

This argument shows that f has no local maximum. If x and y are not contained in
[T0,∞)×M , since u is asymptotic to x and y we obtain that U must be compact, and
empty by the above. Hence, im(u) is even contained in ŴT1 . If x and y are contained in
[T0,∞)×M , for the R-coordinate rx resp. ry of x resp. y, we have limt→−∞ f(s, t) = rx

and limt→∞ f(s, t) = ry. Since f has no local maximum, we obtain f(s, t) ≤ max(rx, ry)
for all s, t.

This reveals another property which is needed to define continuation maps in this set-
ting: if the Hamiltonians Hs,t satisfy11 H(s, t, r, p) = H(s, t, er) on some cylindrical end
[T,∞)×M , the condition ∂s∂rh(s, t, er) ≥ 0 must hold, i.e. their slopes ∂rh(s, t, er) on
this end should get steeper under the homotopy. With this assumption, C0-bounds are
ensured by Proposition 3.64, and energy bounds follow from Equation (3.2), which is
still valid in this setting.

This maximum principle clears the biggest obstacle towards defining a Floer homology
in this setting. We now turn towards the definition of the homology. In analogy to
Hamiltonian Floer homology, we would like there to be only finitely many Hamiltonian
orbits, i.e. we need a suitable non-degeneracy condition on the Hamiltonians.

In light of Proposition 3.53, this can only be true if the slope ∂rh(er) of the Hamiltonian
H(r, p) ≈ h(er) on the cylindrical end [T0,∞)×M is not a period of a Reeb orbit of α. A
priori, it is not clear whether this is possible. Luckily, if one allows a small perturbation
of the contact form, the set of periods of Reeb orbits is discrete (see below).

Recalling Proposition 3.9, we should strive for a non-degeneracy condition of the Reeb
vector field. Since the Reeb vector field is time-independent, every Reeb orbit γ comes in
a family parametrised by S1: any orbit γ(·+t0) is also an orbit of Rα. In particular, Reeb
orbits are never non-degenerate in the sense of Definition 3.8. The next best condition
is the following.

11Again, this condition should hold only up to a suitable small perturbation.
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Definition 3.65. Let X be a smooth vector field on a smooth manifold M . Denote the
set of periodic orbits of X by P. Recall that a T -periodic orbit x ∈ P of X is called
non-degenerate if and only if the flow φt of X satisfies det(dφT (x(0))− id) 6= 0.
It is called transversely non-degenerate if and only if near x, the set N := {y(0) : y ∈ P}
is a 1-dimensional submanifold of M such that ker(dφT (y(0))−id) = Ty(0)N for all y ∈ P
near x.

Remark 3.66. The literature usually contains a different definition, that the linearisa-
tion dφT |ξx(0) : ξx(0) → Tx(T )M = Tx(0)M has no eigenvalue 1. Since the tangent space
Ty(0)N is the kernel of dφT , this is equivalent to our definition if the submanifold N is
1-dimensional. We chose the definition above since it generalises to higher-dimensional
submanifolds N .

Being transversely non-degenerate is a generic property: every contact form for ξ admits
a small perturbation which makes it transversely non-degenerate.

Proposition 3.67 ([ABW10, Theorem A.1]). Let (M, ξ = kerα) be a contact manifold
with contact form α. There exists a comeagre subset Λreg ⊂ {f ∈ C∞(M) | f > 0} such
that for each f ∈ Λreg, every periodic orbit of Rfα is transversely non-degenerate.
Hence, using Remark 2.62, we may assume that α is transversely non-degenerate. This
will suffice for our purposes.

Definition 3.68. If α is a smooth contact form on a smooth manifold M , the set
Spec(M,α) ⊂ (0,∞) of periods of the orbits of Rα is called the action spectrum.

Non-degeneracy of the contact form is extremely helpful.

Proposition 3.69. If α is transversely non-degenerate contact form on a compact
smooth manifold M , then Spec(M,α) is discrete and bounded away from 0.
Proof outline. Since the Reeb vector field is non-zero and M is compact, there is a global
lower bound for the periods of Reeb orbits. This follows from compactness of M and
the local normal form for Rα (see e.g. [Lee02, Theorem 17.12]).

Discreteness of the spectrum is an application of the Arzelà-Ascoli theorem: consider
an infinite sequence (γn) of Reeb orbits of periods Tn ≤ T , reparametrised to yield
maps γn : S1 → M . Since their periods are bounded, there is a uniform C∞-bound
for the maps γn. (The C0-bound follows from compactness of M , the C1-bound holds
since γ′

n(t) = TnRα(γ(t)) and the periods Tn are bounded; higher derivatives follow
easily.) Since M is compact, the Arzelà-Ascoli theorem yields a subsequence (γnk

) which
converges to a limiting map γ : S1 →M . The lower bound above excludes the case that
γ is constant; hence γ is a Reeb orbit of period at most T . The convergence γnk

→ γ
implies that γ is not transversely non-degenerate, contradiction.
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Remark 3.70. The spectrum of M is generally unbounded: if γ is a Reeb orbit, going
through γ multiple times is also one, hence M has Reeb orbits of unbounded periods.
In general, one should also expect distinct orbits of unbounded periods. Note however,
that the existence of a Reeb orbit is non-trivial: the Weinstein conjecture states that
any contact manifold (M, ξ = kerα) has at least one Reeb orbit for Rα; this conjecture
is still open in general.

Now, we are ready to formulate the full conditions necessary to define a theory of sym-
plectic homology. By a small perturbation if necessary, assume that α is a transversely
non-degenerate contact form for (M, ξ = kerα). Let T0 > 0 be such that Ŵ contains
the cylindrical end ([T0,∞)×M,d(erα)).

Definition 3.71. Let τ > 0 with τ /∈ Spec(M,α). A smooth Hamiltonian H : S1×Ŵ →
R is called τ -admissible if and only if

• for some T ≥ T0 and some c ∈ R, we have Ht(r, p) = τ er + c on [T,∞)×M (up
to a small perturbation), and

• every 1-periodic orbit of XHt is non-degenerate.

H is called admissible if and only if it is τ -admissible for some τ /∈ Spec(M,α). We
denote the space of all admissible Hamiltonians by H(W,ω).

Since τ /∈ Spec(M,α) and an admissible Hamiltonian H has constant slope at infinity, H
has no 1-periodic orbits on [T,∞)×M , hence there are only finitely many Hamiltonians
orbits in total.

Remark 3.72. In fact, we could consider a larger set of Hamiltonians, where the first
condition would be weakened to assuming that for some T ≥ T0, we have H(t, r, p) =
h(er) on [T,∞) × M (up to perturbation) such that the set {r ∈ R : ∂r(h(er)) ∈
Spec(M,α)} is discrete. For such a Hamiltonian H and a regular J ∈ J (W,ω, α) (see
Theorem 3.75 below), one will still obtain a well-defined Floer homology SH(H, J).

We still have to think about an additional technical detail, namely the completeness of
the Hamiltonian vector field. However, this is automatic for admissible Hamiltonians.

Observation 3.73. For H ∈ H(W,ω), the Hamiltonian vector field XHt is complete.
Proof sketch. For Hamiltonians H with H = h(er) on some cylindrical end, orbits in
the cylindrical end are contained in level sets {r} × M , which are compact. Since a
Liouville domain is compact, orbits within it are also complete. Hence XH is complete
for such Hamiltonians. Since any sufficiently small perturbation of a complete vector
field is complete, the same holds for any admissible Hamiltonian H ∈ H(W,ω).
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For a pair of an admissible almost complex structure and admissible Hamiltonian, we
can perform the construction in Section 3.1 mutatis mutandis. The contractible loop
space can be defined just as before. Since ω = dλ is exact, one can define the symplectic
action function without recourse to a spanning disc.

Definition 3.74. For an exact symplectic manifold (M, ω = dλ) and a Hamiltonian
H : S1 ×M → R, the symplectic action functional AH : Ω0(M)→ R is given by

AH(γ) := +
∫
S1
γ∗λ−

∫
S1
H(t, γ(t)) dt.

Again, we consider the formal positive gradient flow of AH , which yields the familiar
Floer equation. Any critical point still has a well-defined Conley-Zehnder index (since
c1(W,ω) = 0 by hypothesis); we define the Floer complex in the same way as before.
The corresponding transversality theorem in our setting is the following.

Theorem 3.75 ([Oan08; FHS95]). For an admissible Hamiltonian H ∈ H(W,ω), there
is a comeagre subset J reg ⊂ J (W,ω, α) such that for all J ∈ J reg, the moduli space

M(x, y,H, J) :=
{
u ∈ C∞(R× S1,M) : u solves (F), u is contractible,

lim
s→∞

u(s, t) = x(t) and lim
s→∞

u(s, t) = y(t)
}

is a smooth manifold of dimension µCZ(y)−µCZ(x). The natural R-action s·u = u(·+s, ·)
acts freely and properly on the space M(x, y,H, J), hence the quotient M(x, y;H, J)/R
is a smooth manifold of dimension µCZ(y)− µCZ(x)− 1.

Again, we will call such a pair (H, J) a regular pair and from now on only consider
regular pairs. By virtue of the assumptions we placed, we again obtain a compactness
and gluing theorem. In the end, we obtain the following.

Proposition 3.76 ([Oan08; FHS95]). For every regular pair (H, J) with H ∈ H(W,ω)
and J ∈ J (W,ω, α), there is a well-defined chain complex (SC(H, J), ∂) defined by

SCk(H, J) =
⊕

γ∈P(H)
µ(γ)=k

Z〈γ〉

whose differential ∂ : SC∗(H, J)→ SC∗−1(H, J) satisfies

∂(〈y〉) =
∑

x∈P(H)
dim M(x,y,H,J)=1

#M(x, y,H, J)/R 〈x〉,

where # denotes a count of points with signs as determined by a system of coherent
orientations. Its homology is denoted by SH(H, J) := H∗(SC(H, J), ∂).

Remark 3.77. We can also define symplectic homology over any coefficient ring R. We
denote the symplectic homology with R-coefficients by SH(H, J ;R). Most of the time,
we will suppress the ring R from the notation.
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Note that the chain complex SC(H, J) only depends on the Hamiltonian H, while the
differential depends on both H and J . The homology SH(H, J) will not be independent
of the data (H, J), nor should we expect it to be, since the Hamiltonian orbits of a τ -
admissible Hamiltonian detect only Reeb orbits of period up to τ . (The homology will,
however, be independent of the almost complex structure J .) Fortunately, the maximum
principle (Proposition 3.64) allows us to define continuation maps between regular pairs.
Generally, they will only go in one direction (and not both), since the maximum principle
required an additional condition on the slopes of the Hamiltonians at infinity. Yet, we
can still take the direct limit over these pairs, which will be an invariant. This is the
symplectic homology we wanted to define.

Let us make this precise. To define the direct limit, we first need a preorder on the set
of regular pairs. We do this via the admissible Hamiltonians.

Lemma/Definition 3.78. We define a preorder ≤ on H(W,ω) as follows: we define
H ≤ H ′ if and only if there exist a constant C ∈ R and a compact set K such that
H(t, x) ≤ H ′(t, x) + C for all x ∈ Ŵ \K. For two regular pairs (H1, J1) and (H2, J2),
we define (H1, J1) ≤ (H2, J2) :⇔ H1 ≤ H2.

Remark 3.79. Equivalently, if H1 and H2 are τ -admissible and τ ′-admissible, respec-
tively, we have H1 ≤ H2 ⇔ τ ≤ τ ′. Hence, H(W,ω) with this preorder is a directed set.
Note that the preorder is not antisymmetric, hence not a total order.

This definition is useful: if H1 ≤ H2, there exists a continuation map for the associated
Floer homologies. To prove this, one constructs a homotopy from H1 to H2 with increas-
ing slope at the cylindrical ends and applies the maximum principle (Proposition 3.64)
to obtain C0 bounds. From that point, the same machinery as in Section 3.1 applies.

Proposition 3.80 (e.g. [Gut14, Definition 1.2.6]). Let (H1, J1) and (H2, J2) be two
regular pairs of admissible data, and suppose H1 ≤ H2. Then there is a well-defined map
φ : SH(H1, J1)→ SH(H2, J2).

We call these maps continuation maps again. In the same way as in Section 3.1, one
shows that the maps φ are independent of the chosen homotopy. Moreover, they also
satisfy the analogous composition laws.

Proposition 3.81 (e.g. [Gut14, Theorem 1.2.9]). Given three regular pairs (H1, J1),
(H2, J2) and (H3, J3) of admissible data with H1 ≤ H2 and H2 ≤ H3, the induced
continuation maps φ12 : SH(H1, J1) → SH(H2, J2), φ23 : SH(H2, J2) → SH(H3, J3)
and φ13 : SH(H1, J1)→ SH(H3, J3) satisfy the relation

φ23 ◦ φ12 = φ13,

and the maps φii : SH(Hi, Ji)→ SH(Hi, Ji) are the identity map for i = 1, 2, 3.

Corollary 3.82. If H ∈ H(W,ω) and J, J ′ ∈ J (W,ω, α) such that (H, J) and (H, J ′)
are regular pairs, then SH(H, J) and SH(H, J ′) are isomorphic.
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Proof. Since H ≤ H, there are continuation maps φ : SH(H, J) → SH(H, J ′) and
ψ : SH(H, J ′)→ SH(H, J) which are mutually inverse.

The continuation maps define a directed system, and we can take the direct limit.

Definition 3.83. If R is any commutative ring, the symplectic homology of the Liouville
domain (W,ω) is defined as the direct limit

SH(W,ω,X;R) := lim−→SH(H, J ;R),

over all regular pairs (H, J), with the partial order and continuation maps from above.

Remark 3.84. This discussion extends extends to the larger class of Hamiltonians
considered in Remark 3.72: for a regular pair (H, J), the Floer homology SH(H, J)
is well-defined, Definition 3.78 applies verbatim and we obtain continuation maps the
same way. The symplectic homology is again defined as the direct limit of the system of
continuation maps.

Remark 3.85. The attentive reader will remember that this definition incurred a choice
of the contact form α on M = ∂W ; the question is whether SH(W,ω;R) depends on
this choice. While the space J (W,ω, α) of admissible almost complex structures clearly
depends on this choice, the completion (Ŵ , ω̂) does not (up to symplectomorphism),
hence such a dependence would be surprising. Indeed, one can show that the choice does
not matter, by constructing continuation maps for homotopies of J between J (W,ω, α)
and J (W,ω, α′) for any two contact forms α and α′ [Sei08, Section 3e].

The symplectic homology of a Liouville domain W is an invariant under exact symplecto-
morphism of its completion. This is almost obvious: all data used to define the complex
SC(H, J) depends only on the symplectic form ω, the Hamiltonian H and almost com-
plex structure J . (While the symplectic actional functional technically depends on the
primitive, by Stokes’ theorem using spanning discs as in Definition 3.6 is equivalent. The
latter definition involves only ω and is well-defined since exact symplectic manifolds are
symplectically aspherical. The key part is that the symplectic forms are exact, and this
exactness is preserved by exact symplectomorphisms.) The differential, partial order
and continuation maps only depend on ω, hence SH(W,ω) is invariant under exact sym-
plectomorphisms. However, this argument misses the subtle point that Definition 3.83
also depends on the domain W .

More generally, it is natural to ask whether symplectic homology is invariant under
Liouville homotopies. By Lemma 2.67 and Proposition 2.70, a homotopy of Liouville
domains induces an exact symplectomorphism of the completions. Hence, this reduces
to the question above, and a rigorous proof would be doubly useful. Fortunately, there
is one; we refer the reader to Seidel’s paper [Sei08, Section 3e].

Theorem 3.86 ([Sei08, p. 13]). If W and W ′ are Liouville isomorphic Liouville domains,
their symplectic homologies SH(W ) and SH(W ′) are isomorphic.
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While Definition 3.83 involves a finite type Liouville manifold, it does depend on the
Liouville domain that is completed, hence is an invariant of that domain. However, we
can extend the definition to a finite type Liouville domain M : if W is any Liouville
domain whose completion is exact symplectomorphic to a M , we define SH(M) :=
SH(W ). This is well-defined since Liouville isomorphic Liouville domains have invariant
symplectic homology, and is invariant under exact symplectomorphism by definition.

One can even extend the definition to general Liouville manifolds, by using an exhaustion
by Liouville domains, verifying that the Viterbo transfer map yields maps SH(V ) →
SH(Vk) and taking the direct limit; this will be an invariant under Liouville homotopies
and exact symplectomorphisms as well. We refer the reader to either Seidel’s paper
[Sei08, Section 7] or [CE12, Section 17.1] for the details.

The reader may wonder whether the use of a direct limit is necessary to compute the
symplectic homology. In our setting, it is not. Consider a non-degenerate Hamiltonian
H∞ : S1 × Ŵ → R such that on [T0,∞) ×M , one has H∞(t, r, p) = h(er) up to pertur-
bation, where h is a smooth function such that ∂rh(er) is strictly increasing and which
satisfies

0 < τ = ∂rh(eT0) < inf{τ > 0: τ ∈ Spec(M,α)}, and lim
t→∞

∂rh(et) =∞.

The Hamiltonian H∞ belongs to the class in Remark 3.72, hence one can choose J ∈
J (W,ω, α) such that (H∞, J) is a regular pair; hence SH(H∞, J) is well-defined (and
independent of J by the same argument as for Corollary 3.82). For each admissible
Hamiltonian H ∈ H(W,ω), we have H ≤ H∞, hence there is a well-defined continuation
map φH : SH(H, J)→ SH(H∞, J). The maps φH commute with the continuation maps
for the admissible Hamiltonians, hence yield a map φ∞ : SH(W,ω) → SH(H∞, J). In
our setting, the map φ∞ is an isomorphism [Sei08]. This does not mean, however, that we
can easily dispense with the direct limit construction: the easiest proof that SH(H∞, J)
is independent of the choice of H∞ works by using the direct limit.

Even computing with a single Hamiltonian can be difficult, since we have no control over
the Hamiltonian orbits below the cylindrical end [T0,∞) ×M . This can be improved
by considering a smaller class of Hamiltonians. Since the Hamiltonian H∞ is just a
singleton set which is cofinal, the appropriate generalisation is to consider a cofinal set.
Eventually, whether to compute the symplectic homology via a single Hamiltonian H∞
or a direct limit over a suitable cofinal set is a matter of taste.

Definition 3.87. Let ε = 1
2 inf{τ > 0: τ ∈ Spec(M,α)} be half the smallest period of a

Reeb orbit in (M,α).12 A smooth non-degenerate Hamiltonian H : S1× Ŵ → R is called
good if and only if there exist some T ≥ T0 and a convex increasing smooth function
h : [0, eT ]→ R such that the following three properties are satisfied.

(1) H is admissible (w.r.t. the choice of T above): for some c ∈ R and some τ /∈
Spec(M,α), we have Ht(r, p) = τ er + c on [T,∞)×M .

12It is possible to choose ε differently; we make this choice in this document.
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(2) H is C2-small on S1 ×W : for (t, x) ∈ S1 ×W , we have |H(t, x)| < ε.

(3) H(t, r, p) is C2-close to h(er) on S1×[0, T ]×M : we have h(er) < ε/2 for r ∈ [0, T ],
and |AH(γ)−Ah(er)(γ)| < ε/2 holds for any loop γ in S1 × [0, T ]×M .

Perhaps first off, we should convince ourselves that these Hamiltonians can actually be
used to compute the symplectic homology. By Proposition 3.43, it suffices to show that
they form a cofinal subset with respect to the order in Definition 3.78.

Proposition 3.88. The subset of good Hamiltonians forms a cofinal subset of H(W,ω).
Proof sketch. It suffices to show that for each τ /∈ Spec(M,α), there is a good Hamil-
tonian which is τ -admissible; this implies the statement by Remark 3.79. For each τ ,
it is easy to write down a time-independent Hamiltonian H0 which satisfies items (1)
through (3). A generic perturbation of H0 will be non-degenerate; and every sufficiently
small perturbation supported on (S1 ×W ) ∪ (S1 × [0, T ]×M) preserves the properties
(1)–(3).

In Section 3.4, we will explain that these conditions drastically simplify the description
of the Hamiltonian orbits, and see that they allow us to define a further invariant called
positive symplectic homology.

3.4. Positive symplectic homology

In this section, we will understand how the class of good Hamiltonians (see Defini-
tion 3.87) naturally gives rise to an invariant called positive symplectic homology. We
keep the same setup as in Section 3.3.

The first insight is that for good Hamiltonians, 1-periodic Hamiltonian orbits come in
precisely two kinds which can be distinguished by their action. We will need the following
simple computation.

Lemma 3.89. Let M be a smooth manifold, λ a smooth 1-form on M and X a smooth
vector field on M . Let γ : [0, T ]→M be a periodic orbit of X. Then∫

[0,T ]
γ∗λ =

∫ T

0
λ(X) =

∫ T

0
λ(Xγ(t)) dt.

Proposition 3.90. Let ε = 1
2 inf{τ > 0: τ ∈ Spec(M,α)}. The 1-periodic orbits of a

good admissible Hamiltonian H ∈ H(W,ω) fall into two kinds:

(A) constant orbits at critical points in W , with action less than ε

(B) non-constant orbits in Ŵ \W , with action greater than ε
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Proof. Condition (1) in Definition 3.87 implies that the only 1-periodic orbits of XH in
W are constant orbits at a critical point of H. By condition (1), their symplectic action
is −

∫ 1
0 Ht(x) dt < ε.

Since H is admissible, there is no Hamiltonian orbit in some cylindrical end [T,∞)×M .
Hence, all non-constant Hamiltonian orbits run in [0, T )×M ⊂ Ŵ \W . Let us estimate
their action. Let τ be the slope of H at infinity, i.e. H is τ -admissible, and consider a
non-constant orbit x of XH in [0, T ) ×M . By condition (3) in Definition 3.87, there
exists a closed Reeb orbit of period T < τ such that x is close to this orbit located in
the level set {r} ×M with T = h′(er). Hence, the action of x is close to the action of
the orbit γ of h′(er)Rα. We want to compute the latter, which by definition is

AH(γ) = +
∫
S1
γ∗λ−

∫
S1
H(t, γ(t)) dt.

For the first term, we have λ = erα on {r} ×M ; since γ is an orbit of h′(er)Rα, by
Lemma 3.89 above we have∫

S1
γ∗λ =

∫
S1
erα(h′(er)Rα) dt =

∫
S1
erh′(er) dt = erh′(er) = erT.

For the second term, since the Reeb orbit γ is contained in a level set {r} ×M and
approximately H(r, p) = h(er), we have H(t, γ(t)) ≈ h(er), hence we have∫

S1
H(t, γ(t)) dt ≈

∫
S1
h(er) dt = h(er).

Hence, we compute AH(γ) ≈ erh′(r)−h(er). By condition (2) in Definition 3.87, we have
h(er) < ε/2; by our choice for ε we have T ≥ 2ε. Hence, the action Ah(γ) = erT − h(er)
is greater than 3/2ε. Thus, by condition (3) in Definition 3.87, the action AH(γH) of
γH is greater than ε.

Note that in the second case, we have ∂r(erh′(r)−h(er)) = erh′′(r) > 0 since h is convex,
hence the action is increasing with r. In other words, every level in the symplectisation
corresponds to a specific period of Reeb orbits.

For the rest of this section, we only consider good admissible Hamiltonians H. In light
of Proposition 3.90, it is natural to define an invariant by quotienting out one kind of
orbits. In order to still have a well-defined subcomplex, the differential should descend
to the quotient, and we have to pay attention to the direction of the action.

From Section 3.1, we recall that the symplectic action increases along Floer trajecto-
ries: if u : R × S1 → Ŵ solves Floer’s equation (F) such that lims→−∞ u(s, t) = x(t),
lims→∞ u(s, t) = y(t), then AH(x) ≤ AH(y). However, in the definition of the chain
complex (see Proposition 3.76), such a trajectory contributes a summand mapping 〈y〉
to (plus or minus) 〈x〉, hence maps the orbit y to another orbit x of smaller action.
Hence, we make the following definition. Again, let R be a commutative ring with unit.
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Definition 3.91. Let SC≤ε(H, J ;R) be the chain complex generated by the 1-periodic
orbits of H whose action is at most ε. Since the differential decreases the action of the
Hamiltonian orbits, the differential descends to this complex, hence this is a well-defined
subcomplex of SC(H, J ;R). By Proposition 3.90, it is built of critical points of H.

Theorem 3.92 ([Vit99, Proposition 1.3]). H∗(SC≤ε(H, J ;R) ∼= Hn−∗(W,∂W ;R).

Definition 3.93. The positive Floer complex of (W,ω) is defined by quotienting out
the subcomplex of critical points: SC+(H, J ;R) := SC(H, J ;R)/SC≤ε(H, J ;R). Since
the differential ∂ decreases the action of the critical points, the differential descends to
SC+(H, J ;R), hence the homology SH+(H, J ;R) := H∗(SC+(H, J ;R), ∂) is a well-
defined R-module.

The continuation maps for the complexes SH(H, J ;R) descend to continuation maps
for the SH+(H, J ;R), since continuation maps also decrease the action. Hence, we can
take the direct limit of the SH+(H, J ;R) over the set of good admissible Hamiltonians.

Definition 3.94. The positive symplectic homology of (W,ω) is defined as

SH+(W,ω,X;R) := lim−→H∗(SC+(H, J ;R), ∂).

When R is understood, we will often suppress it from notation; similarly for ω and X.

Remark 3.95. The heuristic argument before Theorem 3.86 applies here just as well and
suggests that positive symplectic homology is invariant under exact symplectomorphisms
(the action functional is preserved by exact symplectomorphisms, as argued there). To
the contrary, whether positive symplectic homology is invariant under Liouville homo-
topies is much less apparent, since a Liouville homotopy could vary the action functional
and hence the subcomplexes SC≤ε(H, J) used to define positive symplectic homology.

Remark 3.96. By Proposition 3.90, SH+(W,ω,X;R) is generated by the Reeb orbits
on (M = ∂W, ξ = kerα). In view of Remark 3.70, we see that SH+(W,ω,X;R) is
infinitely generated in general. This is a pronounced difference to singular homology,
compare Proposition 6.3.

Remark 3.97. Similar to Remark 3.85, the positive symplectic homology is indepen-
dent of the choice of contact form α. Note that as an R-module, each chain complex
SC+(H, J ;R) depends only on (M, ξ = kerα) since it is generated by non-constant
Hamiltonian orbits in the cylindrical end Ŵ \W which correspond to Reeb orbits in
(M, ξ = kerα). On the other hand, the differential for SC+(H, J ;R) may depend on
the filling W of (M, ξ) since a Floer trajectory between non-constant Hamiltonian orbits
might go into the filling. Thus, different Liouville fillings of (M, ξ) may have different
positive symplectic homology.

Let us give an example where this happens.
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Example 3.98 ([Laz17, Example 2.8]). We consider two different Liouville fillings of
(S1, ξstd). Observe that for all g ≥ 0, the once-punctured genus g surface Σg (i.e. a closed
surface of genus g with a small disc removed) is a Weinstein filling of S1.

Since Σ0 = C is subcritical (with the standard Weinstein structure, there is precisely
one critical point, of index 0), we have SH(Σ0) = 0, hence the long exact sequence
(Proposition 3.99 below) will imply SH+(Σ0) ∼= H(Σ0,Z) ∼= Z. On the other hand,
for g ≥ 1, the homology SH(Σg) is infinite-dimensional [Sei08, Example 3.3], hence
SH+(Σg) is infinite-dimensional for g ≥ 1 by the long exact sequence. (By Corol-
lary 2.127, the singular homology is always finite-dimensional, hence cannot compensate
for the infinite-dimensional SH+(Σg).) Thus, SH+(Σg) is different for g = 0 and g = 1.

In Section 5.1, we will discuss a class of contact manifolds (M, ξ) for which SH+(W ) is
independent of the filling W of (M, ξ).

3.5. Properties of symplectic homology

We can now elaborate on a few key properties of symplectic homology which we will
need later. Let R be a commutative ring with unit. In our thesis, the most important
property will be a long exact sequence.

Proposition 3.99. Let (W,ω,X) be a Liouville domain with c1(W ) = 0, let (Ŵ , ω̂) be
its completion and R a commutative ring with unit. There is a long exact sequence

· · · → SH+
∗+1(W,ω,X;R)→ Hn−∗(W,∂W ;R)→ SH∗(W,ω,X;R)→ SH+

∗ (W,ω,X;R)→ · · · ,

where H∗ denotes singular homology.
Proof. By definition, we have a short exact sequence of chain complexes

0→ SC≤ε(H, J ;R)→ SC(H, J ;R)→ SC+(H, J ;R)→ 0,

which induces a long exact sequence of the graded homology R-modules

· · · → Hn−∗(W,∂W ;R)→ SH∗(H, J ;R)→ SH+
∗ (H, J ;R)→ Hn−∗+1(W,∂W ;R)→ SH∗−1(H, J ;R) · · ·

By Theorem 3.47, taking the direct limit of each term in the sequence still yields a long
exact sequence. Hence, we obtain a long exact sequence.

· · · → SH+
∗+1(W,ω,X;R)→ Hn−∗(W,∂W ;R)→ SH∗(W,ω,X;R)→ SH+

∗ (W,ω,X;R)→ · · ·

This is exactly the sequence we were looking for.
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Secondly, the symplectic homology is not only a graded abelian group or R-module, but
also admits a ring structure, with the multiplication given by the pair-of-pants product.
We just outline the high-level idea. Instead of counting cylindrical solutions to the
Floer equation (as one does for Hamiltonian Floer theory or symplectic homology), one
counts solutions to a similar partial differential equation, defined on a sphere with three
punctures (a “pair of pants”). More precisely, one considers a thrice punctured sphere
Σ and maps u : Σ → Ŵ which are asymptotic to Hamiltonian orbits in Ŵ near the
punctures and satisfy a suitable partial differential equation. This equation is not as
easy to state as Floer’s equation; we just say that in a neighbourhood of each puncture,
the equation looks like a Floer equation—but potentially with different Hamiltonians
and almost complex structures around each puncture. Given two Hamiltonian orbits
α, β ∈ P(H) in Ŵ , one defines their product as

〈α〉 · 〈β〉 :=
∑

γ∈P(H)
µ(α, β; γ)〈γ〉,

where µ(α, β, γ) is a signed count of the number of “pair-of-pants maps” which are
asymptotic to the orbits α, β and γ. Again, one has to study the possible compactness
phenomena and analyse the corresponding moduli spaces to show that this is well-defined.
In the end, one obtains a compatibility condition with the boundary map on the chain
complexes: µ(∂α, β)± µ(α, ∂β) = ∂µ(α, β) for a suitable sign in the middle; hence this
defines a well-defined product map on the product of the homologies. Finally, note that
unlike the Floer equation (but similar to its continuation maps), the equation considered
here is not invariant under an R-action, hence the product is grading-preserving: the
only non-zero summands are for orbits γ with |α|+ |β| = |γ|.

We refer the reader to either Matthias Schwarz’ PhD thesis [Sch95] or Ritter’s paper
[Rit13] for details. For this document, the following result is sufficient.

Proposition 3.100 ([Rit13]). Let (W,ω,X) be a Liouville domain with c1(W ) = 0,
(Ŵ , ω̂) its completion and R a commutative ring with unit. The pair-of-pants product
SH∗(W ;R)⊗SH∗(W ;R)→ SH∗+∗−n(W ;R) makes SH∗(W ;R) into a unital ring, with
the unit in SHn(W ;R).

The singular homology has a ring structure: by Poincaré-Lefschetz duality, there is
an isomorphism Hn−∗(W,∂W ;R) → H∗(W ;R) to singular cohomology; the latter has
a ring structure with unit via the cup product. Thus, the map Hn−∗(W,∂W ;R) →
SH∗(W,ω,X;R) from the exact sequence is a well-defined map between rings. In fact,
it is also a unital ring homomorphism.

Proposition 3.101 ([Rit13, Theorem 6.6]). Let R be a commutative unital ring. The
morphism Hn−∗(W,∂W ;R) → SH∗(W ;R) in Proposition 3.99 is a unital ring homo-
morphism.

The third important property is the existence of the so-called Viterbo transfer map: if
V ⊂W is a Liouville subdomain (see below), there is a natural map SH(W )→ SH(V )
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[Vit99], which is compatible with the ring structure given by the pair-of-pants product.
The precise definition of Liouville subdomains is the following.

Definition 3.102. Let (W,ω,X) be a Liouville domain. A compact submanifold V ⊂W
of codimension zero is called a Liouville subdomain of W if and only if the vector field
X is pointing outwards along the boundary ∂V .

Remark 3.103. Hence, a subset V ⊂W of a Liouville domain (W,ω,X) is a Liouville
subdomain if and only if the induced exact symplectic structure yields a Liouville domain
(V, ω|V , X|V ) with dimV = dimW .

The precise statement of the Viterbo transfer map is the following.

Proposition 3.104 ([Vit99], [Rit13, Theorem 9.5]). Let R be a unital commutative
ring. Let W be a Liouville domain and V ⊂ W a subdomain. There is a natural
map SH(W ;R) → SH(V ;R), called Viterbo transfer map, which is both an R-module
homomorphism and a unital ring homomorphism.

The transfer map is non-trivial because it is a unital ring homomorphism and the natu-
rality property. More precisely, it satisfies the following.

Proposition 3.105 ([Vit99; CO18, Proposition 5.4]). Let W be a Liouville domain,
then the Viterbo transfer map SH(W ) → SH(W ) is the identity map. If U ⊂ V ⊂
W are Liouville subdomains, the corresponding transfer maps fUV : SH(V ) → SH(U),
fV W : SH(W )→ SH(V ) and fUW : SH(W )→ SH(U) satisfy fUW = fUV ◦ fV W .

Gutt extended this construction to positive symplectic homology [Gut14; Gut17]. The
transfer map is again natural.

Proposition 3.106 ([Gut17]). Let W be a Liouville domain and V ⊂W a subdomain.
For each unital commutative ring R, there is a well-defined R-module homomorphism
SH+(W ;R)→ SH+(V ;R).

Proposition 3.107 ([Gut14, Theorem 3.1.12; CO18, Proposition 5.4]).
Let W be a Liouville domain. The transfer map SH+(W ) → SH+(W ) is the iden-
tity map. If U ⊂ V ⊂ W are Liouville subdomains, the corresponding transfer maps
fUV : SH+(V )→ SH+(U), fV W : SH+(W )→ SH+(V ) and fUW : SH+(W )→ SH+(U)
satisfy fUW = fUV ◦ fV W .

Let us explicitly note the following consequence.

Corollary 3.108. If V ⊂ W is a Liouville subdomain, then SH(W ) = 0 implies
SH(V ) = 0.
Proof. Consider the Viterbo transfer map φ : SH(W ) → SH(V ). Since φ is a unital
ring homomorphism, SH(W ) = 0 implies SH(V ) = 0.
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sV εV
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sW
h

Figure 3.1.: Sketch of a function h as used for the construction of the Viterbo transfer
map. Manually reproduced based on [Laz17, Figure 2].

We omit proofs for the ring homomorphism and naturality statements. Yet, let us
outline the construction of the Viterbo transfer maps; details can be found e.g. in [Laz17,
Section 2.5]. Let V ⊂ (W,λW ) be a Liouville subdomain. Hence, there is a collar U of
(Z,αZ) = (∂V, λV |∂V ) in W \ V such that (U, ω|W ) is symplectomorphic to (Z × [1, 1 +
εV ], d(erαZ)). Let (M,αM ) = (∂W, λW |∂W ). The first step is to establish a suitable
version of the maximum principle. With the same proof as for Proposition 3.64, one can
show the following.

Proposition 3.109 ([Laz17, Lemma 2.5]). Let V ⊂ (W,λW ) be a Liouville subdomain,
let (Z,αZ) = (∂V, λV |∂V ), U be a collar as above and Ŵ be the completion of W . Con-
sider H : Ŵ → R such that H = h(er) is increasing near Z. Let J ∈ J (W,ω, α) be ad-
missible and also cylindrical in U , i.e. J |U preserves ξZ = kerαZ , J |ξZ

is independent of
t and J(∂t) = RαZ . If both asymptotic orbits of a (H, J)-Floer trajectory u : R×S1 → Ŵ
are contained in V , then u is contained in V .

Then, the proof considers a suitable cofinal subset of Hamiltonians, those which are a
small perturbation of Hamiltonians H(t, r, p) = h(er) for a smooth function h : (0,∞)→
R with the following properties.

• h ≡ 0 on V

• h is linear on U with slope sV

• h ≡ sV εV in W \ (V ∪ U)

• h is linear with slope sW on Ŵ \W = [0,∞)×M , where sV , sW /∈ Spec(Z,αZ) ∪
Spec(M,αM )

One shows that Hamiltonian orbits for such H fall into several classes, similar to Propo-
sition 3.90. The set of orbits in U , and those which remain in W \ (V ∪U) are invariant
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under the differential, hence form a subcomplex of each chain complex SH(V,H, J) resp.
SH(W,H, J). Quotienting by these and taking the direct limit, one obtains the desired
transfer maps SH(W )→ SH(V ) and SH+(W )→ SH+(V ).

We close this chapter with the following observation. With Corollary 5.17 in Section 5.2,
we will follow up on this result.

Observation 3.110. If W and W ′ are Liouville domains with c1(W ) = 0 = c1(W ′),
and Ŵ , Ŵ ′ their completions, the disjoint union W tW ′ is again a Liouville domain
with completion Ŵ t Ŵ ′. For any commutative unital ring R, there is an isomorphism
SH∗(W tW ;R)→ SH∗(W ;R)⊕ SH∗(W ′;R).
Proof. Since there are no Floer trajectories between orbits in W and W ′, the chain
complex for W tW ′ is the direct sum of the chain complexes for W and W ′.
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4. Main result, related work and strategy of
the proof

In this chapter, we state Zhou’s main theorem, give an overview of previous research on
the topic and outline Zhou’s strategy of proof.

Research towards uniqueness of symplectic fillings goes back to the end of the 80s. The
first result (by combining work of Gromov [Gro85] and Eliashberg [Eli90]) shows that a
Liouville filling of the standard contact 3-sphere (S3, ξstd) is unique up to symplectic (or
even Weinstein) deformation. There have been a number of further results in dimension
four since then. However, in higher dimensions such results up to symplectic deformation
are notably missing. The main reason is that dimension four allows to apply intersection
theory: in a four-dimensional manifold, two generic complex curves intersect in finitely
many points; their intersection number is a signed count of these intersection points
with multiplicities. Conditions on the intersection number give useful information about
the behaviour of such curves; this makes it possible to control the symplectic fillings via
such curves.

The first result valid for all dimensions was by Eliashberg, Floer and McDuff [McD91,
Theorem 1.5]. However, their result governs only the diffeomorphism type of the filling.

Theorem 4.1 (Eliashberg-Floer-McDuff [McD91]). Let (W,ω) be a symplectically as-
pherical strong symplectic filling of (S2n−1, ξstd), n ≥ 3. Then W is diffeomorphic to the
ball D2n.

We will not define strong fillings, but note that any Liouville filling is a strong symplectic
filling. Recall that Liouville fillings are symplectically aspherical (Corollary 3.55). Their
result was generalised by Barth, Geiges and Zehmisch [BGZ16, Theorem 1.5].

Theorem 4.2 (Barth-Geiges-Zehmisch [BGZ16]). If (M, ξ) is a simply connected con-
tact manifold which has a subcritical Stein filling, all symplectically aspherical strong
fillings of (M, ξ) are diffeomorphic.

Again, this result only concerns the diffeomorphism type of fillings.1 Regarding the
hypotheses, we remark that Stein fillings are equivalent to Weinstein fillings.

1While [BGZ16] also have a result about symplectomorphism type, this is merely an immediate corollary
of the flexibility properties of Weinstein domains.
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The first result in higher dimensions about the symplectomorphism type of fillings was
in a paper of Seidel, attributed to Smith [Sei08, Corollary 6.5]. In our terminology, they
show the following.2

Theorem 4.3 (Smith, [Sei08]). Any Liouville filling W of the standard contact sphere
(S2n−1, ξstd) with n ≥ 2 has SH(W ) = 0.

Essential progress towards generalising this theorem was made in a preprint by Lazarev
[Laz17, Corollary 4.2]. Zhou’s paper [Zho18] improves his result: in Lazarev, the state-
ment that the filling W has vanishing symplectic homology is a part of the hypothesis;
Zhou makes this a part of the conclusion. A prototypical version of Zhou’s result is the
following. (We will state and prove the full version in Chapter 6.)

Theorem 4.4 ([Zho18, Corollary 1.3]). Let (M, ξ) be a contact manifold with dimM ≥ 5
and c1(ξ) = 0 that has a flexible Weinstein filling W . Then any topologically simple
Liouville filling W ′ of (M, ξ) satisfies SH∗(W ′;Z) = 0 and H∗(W ;Z) ∼= H∗(W ′;Z).

As Zhou explains in his introduction, the Eliashberg-Floer-McDuff theorem implies that
any Liouville filling of (S2n−1, ξstd) is topologically simple, hence Zhou’s theorem gener-
alises Smith’s result.

Since both proofs share several common features, we will elaborate on the strategy of
proof. We will see that while Smith-Seidel’s approach generalises, their methods do not.

The case n = 2 in Smith’ proof is answered by a theorem by Gromov, that any Liou-
ville filling of the standard contact sphere S3 is Liouville isomorphic to the standard
symplectic ball D4 [Gro85]. For n ≥ 3, the proof strategy consists of three elements:

(1) Firstly, they show that for any Liouville filling M , each symplectic homology group
SHk(M) has rank at most one.

(2) Secondly, they observe that for any Liouville filling M , the boundary connected
sum M#M (see Definition 2.118) is another topologically simple Liouville filling
of (S2n−1, ξstd). Hence, its symplectic homology also satisfies these rank bounds.

(3) The final step is a grading-preserving isomorphism SH(M#M) → SH(M) ⊕
SH(M) provided by the Viterbo transfer map (see Corollary 5.17). Hence, if
some SHk(M) had rank 1, then SHk(M#M) had rank 2, which is a contradiction.
Consequently, the symplectic homology must be trivial, which completes the proof.

In the first step, Smith-Seidel use the Eliashberg-Floer-McDuff theorem to conclude
that M is diffeomorphic to D2n. Hence, both the cohomology of the filling M and its
boundary S2n−1 are standard computations; there are two generators for S2n−1 and one
for M .

2Strictly speaking, their result is about symplectic cohomology, not homology. However, these are
related via SH∗(W ) = SHn−∗(W ) [Zho18, Remark 2.11], hence one vanishes if and only if the other
does.
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Next, they define a Morse-Bott spectral sequence approximating the symplectic homol-
ogy of M . Smith-Seidel are very short on details here; the interested reader is recom-
mended to read Kwon and von Koert’s paper [Kv16, Section 5.2] to learn about the
construction. The spectral sequence’s first page contains vanishing terms and the coho-
mologies of M and the sphere [Sei08, Equation (3.2)]. The cohomology of the sphere has
just two generators and the filling has one, which happen to be positioned so that each
diagonal in the first page contains at most one term. The theory of spectral sequences
then implies that the subsequent pages will have the same property, hence the rank
bound follows and the first step is complete.

For the second step, they use that the boundary connected sum of two fillings is a
filling of the contact connected sum (see Proposition 2.119) and the general fact that
the contact connected sum of (S3, ξstd) with itself yields the standard contact 3-sphere
again.

Zhou’s proof uses the same three-step strategy as Smith-Seidel. However, their methods
cannot be used directly in this context. The spectral sequence argument requires precise
topological information about the filling as input, but one could use the result by Barth,
Geiges and Zehmisch in analogy to the Eliashberg-Floer-McDuff theorem. This applies
in a more restrictive setting that Zhou’s methods, but could work in principle.

To the contrary, defining a Morse-Bott spectral sequence is an issue. In general, this
sequence can be defined only in a Morse-Bott setting (in which the problem has extra
symmetries)—this is true for the sphere since it has a free S1-action given by rotation,
but not for arbitrary contact manifolds. Moreover, one cannot expect the topology
of a general contact manifold or Liouville filling to be as simple as for the standard
sphere: one can construct Weinstein domains by successive handle attachment, hence
the topology in the subcritical dimensions can get rather complicated. Consequently, a
different strategy is needed.

Instead, Zhou uses the exact sequence and ring structure of symplectic homology. The
first ingredient is that a flexible Weinstein filling necessarily has vanishing symplectic
homology (Theorem 6.1). The second key ingredient is the insight that for a suitable
class of contact manifolds, the positive symplectic homology SH+(W ) is independent
of the choice of topologically simple Liouville filling W . Combining these insights with
the exact sequence shows that the (n+ 1)-st symplectic homology has rank at most one,
and applying the connected sum argument above shows vanishing in that level. The
vanishing of all symplectic homology groups can be deduced using the ring structure
and the exact sequence again. The details will be presented in Chapter 6.

Hence, Zhou’s proof relies on two crucial ingredients: it works for a class of contact
manifolds for which (1) the positive symplectic homology is independent of the choice
of topologically simple Liouville filling, and (2) which is invariant under boundary con-
nected sums. Statements for property (1) are not new in the literature; this property
was already known for all dynamically convex contact manifolds (see Definition 5.3) by
results of Bourgeois and Oancea [BO16]. However, this class of manifolds is not invariant
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under boundary connected sums [Laz17, p. 40]. Lazarev [Laz17] managed to find a more
general class of contact manifolds which satisfy both conditions, namely asymptotically
dynamically convex contact manifolds (see Definition 5.8), of which flexible Weinstein
fillable contact manifolds are an example (see Proposition 5.15). With this class of
manifolds, the strategy above can be carried out and yields a proof of the main theorem.

In Chapter 5, we explain and motivate the definition of asymptotically dynamically
convex manifolds, sketch how the first property is proven and make the second one
precise. The result proof of Zhou’s theorem is described in Chapter 6.
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5. Asymptotically dynamically convex
manifolds and their key properties

As we already mentioned, the key technical concept to making Zhou’s proof work is the
class of asymptotically dynamically convex contact manifolds. In this chapter, we explain
their definition and outline two of their key properties. In fact, the definition becomes
more transparent through the context of the first property: the positive symplectic
homology of Liouville fillings of a given contact manifold is not unique in general, but
being asymptotically dynamically convex is a sufficient condition to ensure that. The
second property is that ADC contact manifolds are invariant under boundary connected
sums. We will not explain the general proof, but sketch an argument in the special case
of flexible Weinstein domains.

5.1. Positive symplectic homology independent of filling

Let us look at contact manifolds for which all topologically simple Liouville fillings have
the same positive symplectic homology. This chapter essentially parallels Lazarev [Laz17,
Sections 3.1 and 3.2]. We will work in the following setting.

Convention. Let (M, ξ = kerα) be a (2n − 1)-dimensional contact manifold with
c1(M, ξ) = 0.

For each contractible Reeb orbit γ w.r.t. α, one can define a Conley-Zehnder index
similarly to Section 3.1: instead of the tangent bundle TM , one uses the symplectic
vector bundle (ξ, dα) → M . One begins by choosing a trivialisation of TM along γ
(which exists since M is orientable). In this trivialisation, the contact planes ξγ(t) along γ
define a path of symplectic matrices. The Conley-Zehnder index µCZ(γ) ∈ Z of the Reeb
orbit γ is obtained from this path in the same was in Section 3.1. We define the degree
|γ| of a Reeb orbit γ of Rα by the reduced Conley-Zehnder index |γ| := µCZ(γ) + n− 3.
We hint at the reason for this grading below.

The assumptions of contractibility and vanishing first Chern class are needed to make
the Conley-Zehnder index well-defined. In order to define the Conley-Zehnder index,
we need to assume that γ is non-degenerate; we can achieve this by perturbing the
contact form α (see Proposition 3.67). For a general Reeb orbit γ, the index depends
on the choice of trivialisation. For contractible orbits, any orbit extends to a map on an
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embedded disc D2 ⊂M , and any choice of trivialisation of TM |D2 = (D2)∗TM restricts
to a trivialisation of γ∗TM . This choice does not matter: two different trivialisations
of TM |D2 induce homotopic trivialisations of γ∗TM . For two different embeddings, the
resulting indices are equal by an argument similar to Proposition 3.10; this is where the
assumption c1(M, ξ) = 0 appears.

Finally, we note that if (M, ξ) has a Liouville filling (W,ω), we have ι∗c1(W,ω) = c1(M, ξ)
for the inclusion map ι : M →W . (This follows by applying Property 2.41(i) of the first
Chern class to ι; i.e. ι∗ : H2(W ) → H2(M) is the map in cohomology induced by ι.)
Hence, c1(W,ω) = 0 implies c1(M, ξ) = 0.

Next, we describe how the positive symplectic homology can be independent of the
choice of Liouville filling. The first results for our purposes were shown by Bourgeois
and Oancea [BO09; BO16]. We begin with outlining their argument. To simplify the
discussion, let us pretend at first that all desired transversality results hold.

Proposition 5.1. Let W be a Liouville filling of (M, ξ). If all Reeb orbits that are
contractible in W have positive degree, the positive symplectic homology SH+(W ) is
independent of the filling W .

Outline of proof. Recall from Section 3.4 that the chain modules SC+
k (H, J) depend

only on (M, ξ), but the differential may depend on W , since it counts Floer trajectories
which could go into W . Hence, proving invariance of SH+(W ) requires some control
over these Floer trajectories.

Bourgeois and Oancea use a procedure called stretching the neck, which we will explain
on page 86, to change the almost complex structure J . For the resulting almost complex
structure, they show that the Floer trajectories which enter W are in bijection with
punctured Floer trajectories in the cylindrical end (0,∞) ×M , capped off by “rigid J-
holomorphic finite-energy planes” in Ŵ . Since the Floer trajectories in (0,∞)×M are
independent of W , the differential depends on W precisely through these J-holomorphic
planes in Ŵ .

By their construction, these planes are asymptotic to Reeb orbits of (M, ξ = kerα).
Those orbits are contractible since they bound planes in W , hence have well-defined
degree. If one assumes appropriate transversality results, the rigid J-holomorphic planes
in Ŵ have index1 zero, and the orbits must have degree zero. (This is where the precise
grading of the Reeb orbits comes in: it is chosen to match the “virtual dimension”
of a suitable moduli space, meaning that—under suitable transversality results—a J-
holomorphic disc is asymptotic to an orbit whose degree equals the disc’s index. We
don’t have space to explain this in detail.)

1This index is not a Conley-Zehnder index, but a more general quantity called a Fredholm index. It
occurs naturally in the setup of transversality results (including the cases mentioned in Chapter 3); if
transversality results hold, the dimension of an appropriate moduli space is given by an appropriate
Fredholm index.
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However, by hypothesis, all orbits that are contractible in W have positive degree, hence
there are no such J-holomorphic planes and all Floer trajectories stay in Ŵ \ W =
(0,∞) ×M . Hence, in this case the differential does not depend on the filling W and
SH+(W ) is an invariant of (M, ξ = kerα).

However, the criterion in this proposition depends on the filling, hence is not very helpful
without knowing the filling. The solution is to consider π1-injective fillings W of M , i.e.
fillings for which the induced map ι∗ : π1(M) → π1(W ) on the fundamental groups is
injective. Hence, the following definition is natural.

Definition 5.2. A Liouville domain W is called topologically simple if and only if
c1(W ) = 0 and the map π1(∂W ) → π1(W ) is injective. A Liouville filling W of a
contact manifold M is called topologically simple if and only if W is a topologically
simple Liouville domain.

If W is π1-injective, all Reeb orbits that are contractible in W are contractible in M ,
hence their degrees can also be computed in M . The same holds for all Hamiltonian
orbits that are contractible in W (since they have the same trace by an analogue of
Proposition 3.53), thus the grading of SH+(W ) can also be determined from M directly.
Hence, the necessary conditions for π1-injective fillings are exactly described by the
following definition.

Definition 5.3. A contact manifold (M, ξ) is called dynamically convex if and only if
there is a contact form α for ξ such that all contractible Reeb orbits of α have positive
degree.

Hence, one arrives at the following result. Let us note that the first result of this type
is due to Eliashberg, Givental and Hofer [EGH00]. They considered contact structures
which had no Reeb orbits of degree −1, 0 and 1, and showed a similar invariance result
in the context of an invariant called “cylindrical contact homology”.

Proposition 5.4 ([BO16; EGH00]). If (M, ξ) is dynamically convex, all π1-injective
Liouville fillings W of (M, ξ) have isomorphic SH+(W ).

Discussion 5.5. The attentive reader may wonder why we assume that all orbits have
positive (instead of just non-zero) degree. This is related to the transversality results: if
all desired transversality results hold, the rigid J-holomorphic planes in W have index
zero, hence should be asymptotic to a Reeb orbit of degree zero, and the absence of such
degree zero orbits suffices to show independence of SH+(W ) of the filling W .

However, transversality results for J-holomorphic planes do not hold in general. Luckily,
they do hold for Floer trajectories in the cylindrical end (0,∞)×M . If all Reeb orbits
have positive degree, transversality of these Floer trajectories can be used to exclude
the formation of J-holomorphic finite energy planes planes in W from Floer trajectories.
The argument does not seem to work if all orbits have non-zero (rather than positive)
degree.
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The condition of dynamically convex contact structures is too restrictive for our pur-
poses, since it requires precise control over the degrees of all Reeb orbits. For example,
contact surgery (see Section 2.5) creates many orbits with arbitrarily large action, hence
dynamically convex contact structures are e.g. not invariant under boundary connected
sums [Laz17, p. 40]. In particular, we don’t have complete control over all orbits in the
contact boundary of a flexible Weinstein domain. However, it turns out that full con-
trol is not needed. The insight (first put forward by Bourgeois, Ekholm and Eliashberg
[BEE12]) is that restricting to orbits with bounded action yields much better behaviour.
They compute invariants in terms of orbits of action less than some bound, and let the
bound go to infinity. Lazarev [Laz17] found an appropriate generalisation of dynamically
convex manifolds, taking a similar approach.

Giving this generalised definition requires a few definitions.

Definition 5.6. The action of a T -periodic Reeb orbit γ in M is defined as

A(γ) :=
∫

[0,T ]
γ∗α.

Note that A(γ) is always positive and equals the period of γ. Hence, we could equiva-
lently define the action spectrum of (M,α) as Spec(M,α) = {A(γ) : γ Reeb orbit of α}.
For any real number D, consider the set

P≤D(M,α) := {γ : γ contractible Reeb orbit of Rα with action AH(γ) < D}.

Since α was non-degenerate, each such set is finite for D fixed (see Proposition 3.69).

Observe that a strict contactomorphism preserves the contact forms, the Reeb vector
field, the Reeb orbits and even preserves their action. Hence, the following holds.

Observation 5.7. If φ : (M, ξ = kerα)→ (M ′, ξ′ = kerα′) is a strict contactmorphism,
the sets P≤D(M,α) and P≤D(M ′, α′) are in grading-preserving bijection.

Notation. If α, α′ are positively oriented contact forms for (M, ξ), there exists a unique
f : M → R+ such that α′ = efα. We write α′ ≥ α (resp. α′ > α) if and only if f ≥ 0
(resp. f > 0). Note that if α′ ≥ α (resp. α′ > α), for any diffeomorphism φ : M ′ → M ,
we have φ∗α′ ≥ φ∗α resp. φ∗α′ > φ∗α.
Now we state the proper relaxation of dynamical convexity.

Definition 5.8 ([Laz17, Definition 3.6]). A contact manifold (M, ξ) is called asymptot-
ically dynamically convex if and only if there exist a sequence of non-increasing contact
forms α1 ≥ α2 ≥ α3 ≥ . . . for ξ and increasing positive numbers D1 < D2 < D3 < . . .
going to infinity such that all elements of P≤Dk(M,αk) have positive degree.

We will occasionally abbreviate asymptotically dynamically convex by ADC.

Even though asymptotically dynamically convex contact structures are more general
than dynamically convex ones, Proposition 5.4 still holds for ADC contact structures.
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Proposition 5.9 ([Laz17, Proposition 3.8]). Let (M, ξ) be an asymptotically dynami-
cally convex contact manifold. If W and W ′ are two topologically simple Liouville fillings
of (M, ξ), then SH+(W ;R) ∼= SH+(W ′;R) for any commutative unital ring R.

The full proof of this statement is rather technical; hence we will only outline the main
ideas. The first ingredient is “stretching the neck”, which is a method of deforming an
almost complex structure on Ŵ along a hypersurface. The next step generalises and
formalises the argument that after sufficient neck-stretching, all Floer trajectories used
in the construction of SH+ (i.e. Floer trajectories for the chain complexes SC(H, J), for
continuation maps and for homotopies of homotopies) will be contained in Ŵ \W , hence
are independent of W and of the filling. In the final step, Lazarev shows that this neck-
stretching does not change SH+. With some analytical effort and invoking the ADC
property, he constructs a commutative grid involving suitable continuation resp. Viterbo
transfer maps. He then shows that this grid encodes SH+(W ) and is independent of the
neck-stretching. We will omit the details.

Let us close this discussion by explaining the neck-stretching in some detail. Let V ⊂ Ŵ
be a Liouville subdomain with contact boundary (Z,αZ). Consider a collar of Z in V
which is symplectomorphic to ([−δ, 0] × Z, d(erαZ)) for some small δ > 0. Let J ∈
J(W,ω, α) be an admissible almost complex structure on Ŵ which is also cylindrical
on [−δ, 0] × Z, set J ′ := J |[−δ,0]×Z . For each R ∈ (−∞,−δ), we can extend J ′ to a
cylindrical almost complex structure on [R, 0]× Z, which we still denote by J ′.

Let φR : [R, 0] → [−δ, 0] be any diffeomorphism whose derivative equals 1 near the
boundary. We define a compatible almost complex structure JR by

JR =
{

(φR × id)∗J
′ on [−δ, 0]× Z

J outside [−δ, 0]× Z.

This is smooth since φR has derivative 1 near the boundary; it is still admissible (for a
different symplectic form ωR) since JR = J on [0,∞)×M , hence is still cylindrical, and
compatibility follows since φ is orientation-preserving. Observe that JR admits a larger
collar, hence we say the “neck (of J) was stretched” (from δ to R).

In formal language, the second step of the proof looks like the following. This is the
simplest version (for the differential on SC(H, J)); the versions for continuation maps
and homotopies of homotopies are more technical, but not more difficult.

Proposition 5.10 ([Laz17, Proposition 3.10]). Let H ∈ H(W,ω) and J ∈ J (W,ω, α)
be admissible. Furthermore, assume that on [−δ, 0] × Z ⊂ V , we have H ≡ 0 and J is
cylindrical. Suppose ι∗ : π1(Z)→ π1(W ) is injective and all elements of P≤D(Z,α) have
positive degree. Let y and x be Hamiltonian orbits of H in Ŵ . If AH(y) − AH(x) <
D, there exists an R0 ∈ (−∞,−δ) such that for any R ≤ R0, all rigid (H, JR)-Floer
trajectories are contained in Ŵ \ V .
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The proof of Proposition 5.10 proceeds by contradiction, assuming that there exist a
sequence Rk → −∞ and (H, JRk)-Floer cylinders uk ∈ M(x, y;H, JRk) such that each
uk is not contained in Ŵ \ V . Using a general compactness result for such Floer cylin-
ders (the SFT compactness theorem, which generalises Theorem 3.19 from Section 3.1),
Lazarev shows that the uk must converge to a “broken Floer building” (which is the nat-
ural limiting object in the SFT compactness theorem). Since transversality results hold
in that setting, the dimension of the associated moduli space is related to the degrees
above; the degree assumption implies that the dimension is negative, contradiction.

5.2. Surgery invariance properties

Asymptotically dynamically convex manifolds also have special properties with respect
to surgery. One special case that is easier to grasp concerns flexible Weinstein domains.
In Section 2.5, we saw that the boundary connected sum of two Weinstein domains is
again a Weinstein domain. It turns out that the boundary connected sum of flexible
Weinstein domains is also flexible. This requires a stronger argument. The following
argument was explained to me by Oleg Lazarev.

Proposition 5.11. The boundary connected sum of two flexible Weinstein domains in
dimension at least five is again a flexible Weinstein domain.

Proof sketch. Consider two flexible Weinstein domains W1,W2 and Weinstein homo-
topies to explicitly flexible domains W flex

1 and W flex
2 . Then the boundary connected

sum W flex
1 \W flex

2 is still explicitly flexible: we can attach the 1-handle away from a loose
chart for the loose Legendrians along which the critical critical points are attached. By
Remark 2.120 the choice of 1-handle does not matter. The Weinstein homotopies from
W1 to W flex

1 and W2 to W flex
2 yield a Weinstein homotopy from W1\W2 to the explicitly

flexible domain W flex
1 \W flex

2 as the 1-handle was attached away from the loose charts.

Remark 5.12. This statement implicitly uses the invariance of flexible Weinstein do-
mains under Weinstein homotopy, since we didn’t specify how to perform the boundary
connected sum.

This result extends to asymptotically dynamically convex contact manifolds. We will
use the following result.

Proposition 5.13 ([Laz17, Theorem 3.15]). If (M, ξ) and (M ′, ξ′) are asymptotically
dynamically convex contact manifolds of dimension at least five, their contact connected
sum M#M ′ is asymptotically dynamically convex.

This is a special case of the following more general result.
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Proposition 5.14 (Lazarev, [Laz17, Theorems 3.15, 3.17 and 3.18]). If (M, ξ) is an
ADC contact manifold of dimension at least five and (M ′, ξ′) is obtained by performing
subcritical2 or flexible surgery on (M, ξ), then (M ′, ξ′) is also ADC.

The proof relies on the h-principles for loose Legendrians and flexible Weinstein domains.
Since it is somewhat involved, we skip the details.

As a consequence, Lazarev shows the following.

Proposition 5.15 ([Laz17, Corollary 4.1]). Every flexible Weinstein fillable contact
manifold of dimension at least five is asymptotically dynamically convex.
Proof idea. This statement follows from handlebody decomposition (Proposition 2.125)
of Weinstein domains and the result above. Some care must be taken about the attach-
ment of 2-handles; the details can be found in Lazarev’s proof.

The closing result of this chapter concerns the change of symplectic homology under these
operations. Cieliebak has shown that symplectic homology is invariant under subcritical
handle attachment. In particular, this applies to boundary connected sums.

Proposition 5.16 ([Cie02, Theorem 1.11; Fau19, Theorem 9]). Let W be a Liouville
domain with c1(W ) = 0, and W ′ be the result of applying subcritical surgery to W along
∂W . Then SH(W ′) ∼= SH(W ).

Corollary 5.17. Let W and W ′ be Liouville domains with c1(W ) = c1(W ′) = 0. Let
ι : W tW ′ →W\W ′ denote the inclusion. Then, for any commutative unital ring R, the
Viterbo transfer map ι∗ : SH∗(W\W ′;R)→ SH∗(W )⊕ SH∗(W ′) arising from the map ι
is an isomorphism.
Proof. Combine Proposition 5.16 with Observation 3.110.

2Some extra conditions need to be satisfied for surgery along 2-handles, see [Laz17, Theorem 3.17].
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6. Proof of the main theorem

In this chapter, we finally present the proof of Zhou’s theorem. Let us recall its proto-
typical version that we encountered in Chapter 4.

Recall (Theorem 4.4). Let (M, ξ) be a contact manifold with dimM ≥ 5 and c1(ξ) = 0
that has a flexible Weinstein filling W . Then any topologically simple Liouville filling
W ′ of (M, ξ) satisfies SH∗(W ′;Z) = 0 and H∗(W ;Z) ∼= H∗(W ′;Z).

We will outline the proof of this prototypical version first, and then indicate how it can
be generalised. The first instrumental result is the following.

Theorem 6.1 ([BEE12; MS]). A flexible Weinstein domain W satisfies SH(W ) = 0.
Proof approaches. The first proof would follow from a result by Bourgeois, Ekholm and
Eliashberg [BEE12]. Their paper gives only heuristic proofs; the necessary technical
details are supposedly provided in a recent preprint by Ekholm [Ekh19]. Hence, there is
no consensus yet as to whether this is sufficient.

The proof relies on the handlebody decomposition 2.125 of the Weinstein domain W : one
can obtainW from the unit disc Dn by attaching finitely many handles. One can compute
SH(Dn) = 0 explicitly (see e.g. [Gut14, p. 42]1); by Cieliebak’s result the symplectic
homology stays invariant under attaching subcritical handles (Proposition 5.16). For
critical surgery, Bourgeois-Ekholm-Eliashberg suggest an exact sequence

· · · → SH∗(W ′)→ SH∗(W )→ LHH0
∗ (Λ)→ SH∗−1(W ′)→ · · · ,

where W and W ′ are the Weinstein domain before and after a critical handle was at-
tached, and the term LHH0

∗ (Λ) is a version of the Legendrian contact homology of the
attaching sphere Λ of the critical handle. We will not define Legendrian contact homol-
ogy here, partially because there is no rigorous general definition yet.
For explicitly flexible domains, each critical handle is attached along loose Legendrians,
for which the Legendrian contact homology (heuristically) vanishes. Hence, vanishing
of the symplectic homology is preserved by each handle attachment. For flexible do-
mains, SH(W ) = 0 follows since the symplectic homology is invariant under Weinstein
homotopy (by Theorem 3.86).

An alternative proof was given by Murphy and Siegel [MS, Theorem 3.2]. They use
an h-principle for symplectic embeddings of flexible Weinstein domains to show that a
flexible Weinstein domain symplectically embeds into a Liouville domain V for which
SH(V ) = 0 is known, and apply Corollary 3.108.

1Note that in Gutt’s conventions, the Hamiltonian vector field has the opposite sign.

89



Recall that every flexible Weinstein fillable contact manifold is asymptotically dynami-
cally convex (by Proposition 5.15). In order to apply Proposition 5.9 about invariance
of SH+ of the filling, we furthermore must show that flexible Weinstein domains are
topologically simple. We begin with two straightforward topological results.

Proposition 6.2. Let W and W ′ be two topologically simple Liouville domains. Their
boundary connected sum W\W ′ is also topologically simple.
Proof. By definition, W\W ′ is obtained by adding a 1-handle to the disjoint union
W t W ′. Let ι : W t W ′ → W\W ′ denote the inclusion. Since the disc D2n−1 and
the 1-handle D1 × D2n−1 both have trivial second cohomology group, the induced map
i∗ : H2(W\W ′;Z) → H2(W ;Z) ⊕ H2(W ′;Z) is an isomorphism. Since the first Chern
class is compatible with direct sums, we have c1(W tW ′) = c1(W ) + c1(W ′) = 0. Since
ι∗c1(W\W ′) = c1(W tW ′), we have c1(W\W ′) = 0.

To compute π1(W\W ′), we apply van Kampen’s theorem. Since the 1-handle that is
attached to W and W ′ is contractible, we just obtain a free product of groups, i.e.
π1(W\W ′) ∼= π1(W )∗π1(W ′). Similarly, we compute π1(∂W#∂W ′) ∼= π1(∂W )∗π1(∂W ′).
Since both maps π1(∂W )→ π1(W ) and π1(∂W ′)→ π1(W ′) are injective by hypothesis,
so is the induced map on the free product. Hence, W\W ′ is also topologically simple.

Proposition 6.3. If W is a Liouville domain, the singular homology H∗(W ;Z) is finitely
generated.
Proof. This is the same idea as Corollary 2.127. Choose any Morse function φ : W → R
(there always exists one [Mil63, Corollary 6.7]); since W is compact, φ has only finitely
many critical points. Then use Proposition 2.122.

Now we can prove that all Weinstein fillings are topologically simple. In the proof,
we employ the relative homotopy groups and their long exact sequence. See Hatcher’s
textbook [Hat02, Chapter 4] for their definition and properties.

Proposition 6.4. Assume (W,λ,X) is a Weinstein filling of a contact manifold (M, ξ)
with dimM = 2n− 1 ≥ 5 and c1(ξ) = 0. Then W is topologically simple.
Proof. By Corollary 2.126, the filling W can be constructed from the standard ball by
attaching handles of index at most n. Equivalently, W can be constructed from M by
attaching handles of index at least n. This implies π2(W,M) = 0, where π2(W,M) is
the relative second fundamental group of (W,M). By the homotopy long exact sequence
of the pair (W,M), there is an exact sequence

· · · → π2(W,M)→ π1(M)→ π1(W )→ · · · ,

thus π2(W,M) = 0 implies that the map π1(M)→ π1(W ) is injective.

Let ι : M →W denote the canonical inclusion and let J be an almost complex structure
on W . By Property 2.41(i) we have c1(W,J) = ι∗c1(M, ξ). Consider the long exact
sequence in cohomology for the pair (W,M): H2(W,M ;Z) → H2(W ;Z) ι∗

→ H2(M ;Z).
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By Poincaré-Lefschetz duality, we have H2(W,M) ∼= H2n−2(W ); the latter term vanishes
by Corollary 2.127 since 2n− 2 ≥ n+ 1 as n ≥ 3. Hence, ι∗ : H2(W ;Z)→ H2(M ;Z) is
injective and c1(W ) = 0 follows.

Now we can prove the prototypical form of Zhou’s result.

Proof of Theorem 4.4. We first show SH(W ; k) = 0 for any field k. Recall that the chain
complex defining SH∗(W ;Z) is a free abelian group generated by periodic Hamiltonian
orbits. Applying the universal coefficient theorem [ES52, p. 161, G3] to the free chain
complexes SC∗(H, J ;Z) and taking the direct limit, we obtain an exact sequence

0→ SH∗(W ;Z)⊗ k → SH∗(W ; k)→ Tor(SH∗−1(W ;Z); k)→ 0. (6.1)

This uses the exactness of the direct limit functor (Theorem 3.47), and also the fact that
direct limits commute with the tensor functor (Lemma 3.48). By Theorem 6.1, we have
SH∗(W ;Z) = 0. Hence, all terms but the middle one vanish and SH∗(W ; k) = 0 follows
for any field k.

The long exact sequence Proposition 3.99 yields an isomorphism SH+
∗ (W ; k) ∼= Hn−∗+1(W ; k).2

Since (M, ξ) is asymptotically dynamically convex (by Proposition 5.15) and both W
and W ′ are topologically simple, Proposition 5.9 and the previous relation yield an
isomorphism

SH+
∗ (W ′; k) ∼= SH+

∗ (W ; k) ∼= Hn−∗+1(W ; k). (6.2)

Applying Proposition 3.99 to W ′, we obtain a long exact sequence

· · · → H−1(W ′; k)→ SHn+1(W ′; k)→ SH+
n+1(W ′; k)→ H0(W ′; k)→ SHn(W ′; k)→ · · · .

(6.3)
Since H−1(W ′; k) = 0, we have SHn+1(W ′; k) ∼= ker(SH+

n+1(W ′; k) → H0(W ′; k)). By
relation (6.2), SH+

n+1(W ′; k) is isomorphic to H0(W ; k) ∼= k. Since k is a field, there are
only two possibilities for the subring SHn+1(W ′; k) ⊂ k, hence we have

SHn+1(W ′; k) ∼= 0 or SHn+1(W ′; k) ∼= k. (6.4)

This completes the first step of the proof outline: we have a bound on the rank of
SHn+1(W ′; k). Next, we rule out the case SHn+1(W ′; k) ∼= k using the connected sum.

By Proposition 2.119 and Proposition 5.11, the boundary connected sum W\W is a
flexible Weinstein filling of the contact connected sum M#M . By Proposition 6.2, the
boundary connected sum W ′\W ′ is still a topologically simple Liouville filling of M#M ,
hence the argument for Equation (6.4) also applies to W ′\W ′, and we conclude that

SHn+1(W ′\W ′; k) ∼= 0 or SHn+1(W ′\W ′; k) ∼= k.

2Since we are working with coefficients in a field, we can drop the boundary term: over a field, the
singular homology and cohomology of the same rank are isomorphic.
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On the other hand, by Corollary 5.17 there is an isomorphism of SH(W ′\W ′; k) to
SH(W ′; k)⊕SH(W ′; k), thus SHn+1(W ′; k) ∼= k would imply SHn+1(W ′\W ′; k) ∼= k⊕k,
a contradiction. Therefore, the only possibility is SHn+1(W ′; k) = 0.

Applying this to the long exact sequence (6.3), we see that the map SH+
n+1(W ′; k) →

H0(W ′; k) is injective. Since H0(W ′; k) ∼= k is a field, the map is an isomorphism. Hence,
(6.3) yields that H0(W ′; k) → SHn(W ′; k) is the zero map. By Proposition 3.101, the
map H0(W ′) → SHn(W ′, k) sends the unit in H∗(W ′; k) to the unit in SH∗(W ′; k),
hence the unit in SH∗(W ′; k) is zero. This shows SH∗(W ′; k) = 0 for any field k.

Assume now that the integral symplectic homology SH(W ′;Z) does not vanish. By
Proposition 6.3, Hn−∗(W ′;Z) is a finitely generated abelian group. Hence, SH+

∗ (W ;Z) ∼=
SH+

∗ (W ′;Z) is also finitely generated by Proposition 3.99. Since both SH+
∗ (W ′;Z) and

Hn−∗(W ′;Z) are finitely generated, so is SH∗(W ′;Z) by Proposition 3.99. Thus, by the
classification of finitely generated abelian groups, SH∗(W ′;Z) contains either a summand
Z or a summand Zm for some integer m. In either case, there exists a prime p such that
SH(W ′;Z) ⊗ Zp 6= 0. But by (6.1), this implies that SH(W ′;Zp) 6= 0, in contradiction
to SH(W ′; k) = 0 for the field k = Zp.

Finally, combining Proposition 5.9 with SH(W ;Z) = SH(W ′;Z) = 0 and the exact
sequence, Proposition 3.99, yields an isomorphism

H∗(W ;Z) ∼= Hn−∗(W,∂W ;Z) ∼= SH+
∗+1(W ;Z) ∼= SH+

∗+1(W ′;Z) ∼= H∗(W ′;Z).

Inspecting the proof in detail, we observe that we didn’t use the full power of W being
flexible: we used Theorem 6.1, Proposition 5.15 and the fact that flexible Weinstein
domains are closed under boundary connected sums. Since ADC contact manifolds are
also closed under boundary connected sums, the argument also applies to them. More
precisely, Zhou’s full result is the following.

Theorem 6.5 ([Zho18, Theorem 1.1]). Let (M, ξ) be an asymptotically dynamically
convex contact manifold of dimension 2n− 1 ≥ 5. Suppose M has a topologically simple
Liouville filling W with SH∗(W ) = 0. Then every topologically simple Liouville filling
W ′ of M satisfies SH∗(W ′;Z) = 0 and H∗(W ;Z) ∼= H∗(W ′;Z).
Proof. Let k be any field. Since SH(W ) = 0 by hypothesis, as in the proof above we have
SH(W ; k) = 0. The proof of SHn+1(W ′; k) ∼= 0 or k follows in the same way, except
that M being ADC and W being topologically simple are now part of the hypotheses
(as opposed to a consequence of W being flexible Weinstein).

By Proposition 5.13, the contact connected sums M#M ′ is ADC with Liouville fillings
W\W and W ′\W ′. The boundary connected sum W\W is topologically simple with
vanishing symplectic homology by Proposition 6.2 combined with Corollary 5.17. Hence,
the first paragraph applies again and shows SHn+1(W ′\W ′; k) ∼= 0 or k.

The remaining argument works exactly like for Theorem 4.4: we deduce SHn+1(W ′; k) ∼=
0, use the ring property to show SH(W ′; k) = 0 and then infer SH(W ′;Z) = 0.
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In the proof, we have seen a curious interplay between flexibility and rigidity: Zhou’s
theorem is essentially a result that topologically simple Liouville fillings behave rigidly,
but the objects involved are inherently flexible and the proof depends on this in an
essential way: the first key result specific to this setting was that a flexible Weinstein
filling has trivial symplectic homology, which holds because flexible Weinstein domains
involve loose Legendrians which satisfy an h-principle. The second core insight was
that flexible Weinstein domains are invariant under certain surgery operations. The
actual proof connecting these insights was then algebraic, but of course depended on the
analytical and topological machinery behind it.
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7. Conclusion and outlook

We just saw the proof of Zhou’s result, that for a flexible Weinstein fillable asymptotically
dynamically convex (ADC) contact manifold of dimension at least five, any topologically
simple Liouville filling has vanishing symplectic homology. This proof generalised almost
verbatim to all ADC contact manifolds which admit a topologically simple Liouville
filling W with SH(W ) = 0. A key ingredient was that for ADC contact manifolds, all
topologically simple Liouville fillings have the same SH+. In a recent preprint, Zhou
showed that this invariance of SH+ for ADC manifolds is part of a larger picture [Zho19].
In addition to the positive symplectic homology, there are two “structure maps” which
are invariant of the choice of topologically simple Liouville filling: in first structure map
reads δ∂ : SH+

∗ (W ) → Hn−∗+1(Y ) (in our grading conventions), the second structure
map is more complicated to state, but is defined in terms of the first. This provides an
alternative proof of his result which does not rely on the connected sum argument (but
still depends on Lazarev’s result that ADC manifolds are invariant under surgery).

Looking ahead in a different direction, one would like to strengthen the results towards
uniqueness of the filling. Some natural stepping stones towards this are the following.

Question 1. Is every topologically simple Liouville filling of an ADC contact manifold
of dimension at least five a Weinstein filling?

For flexible Weinstein fillable manifolds, establishing this is a necessary part of proving
uniqueness. Yet, two related results indicate that the answer might be negative. There
are contact manifolds which are Liouville, but not Weinstein fillable [Bow12; BCS14]—
which happens for topological reasons. Recently, Zhou found that there are also sym-
plectic obstructions, since there exist manifolds which are Liouville fillable and almost
Weinstein fillable (this is the necessary topological condition for a Weinstein filling), but
not Weinstein fillable [Zho19]. It is not clear to the author whether and how these results
apply to this question. In any case, the question can be bypassed by considering only
Weinstein fillings.

If the previous question has an affirmative answer (or one restricts to Weinstein fillings),
the next question is whether any filling must be flexible. We know a positive partial
result: Cieliebak and Eliashberg showed that every Weinstein fillable contact manifold
carries a flexibly fillable contact structure [CE12, Theorem 1.8; Laz18, Theorem 3.1].

Question 2. If (M, ξ) is an ADC contact manifold of dimension at least five, is every
Weinstein filling of (M, ξ) flexible?
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Vanishing of the symplectic homology is a necessary condition for flexibility, as Bour-
geois, Eliashberg and Ekholm [BEE12; Ekh19] and also Murphy and Siegel [MS] showed.
However, Murphy and Siegel showed that it is not sufficient: every flexible Weinstein
domain W has a subdomain VW which is not flexible. But SH(W ) = 0 implies that
SH(VW ) = 0 also (by Corollary 3.108).

Murphy and Siegel show that the subdomain VW is not flexible by computing a modified
version of symplectic homology (which they call twisted symplectic homology), showing
that it doesn’t vanish for VW , but vanishes for all flexible domains. Yet, this only shifts
the question: is a Weinstein domain flexible if and only if its symplectic homology,
twisted symplectic homology (and other similar invariants) all vanish?

Finally, one arrives at a uniqueness question for flexible Weinstein fillings.

Question 3. Is every flexible Weinstein filling of an asymptotically dynamically convex
contact manifold of dimension at least five unique up to Weinstein homotopy?

In terms of uniqueness, we see that applying a Liouville homotopy to a topologically
simple filling still gives a topologically simple Liouville filling, so uniqueness of Liouville
would hold up to Liouville homotopies. For Weinstein fillings, one could hope for a
classification of fillings up to Weinstein homotopy.

In particular, Question 2 depends on the definition of flexible Weinstein domains: there
is only a chance of an affirmative answer if flexible Weinstein domains are invariant under
Weinstein homotopy—hence choosing the correct definition was important.

The recurring assumption of M being asymptotically dynamically convex of dimension
at least five raises two follow-up questions.

Question 4. Do these results generalise to contact manifolds which are not asymptoti-
cally dynamically convex?

In greater generality, Lazarev’s methods certainly do not apply any more, so this question
seems more open to the author. Since there are contact manifolds with infinitely many
Liouville fillings, there will be some limit for the results.
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A. Appendix

A.1. Sign conventions used

An unfortunate fact in symplectic geometry is the proliferation of different incompatible
sign conventions. Since several papers cited in this thesis use different conventions,
we had to make a choice regarding them. We have chosen to mostly follow the sign
conventions in Lazarev’s and Zhou’s papers [Laz17; Zho18] since these are the main works
which we aim to explain—with the exception of the definition of the symplectisation.
We have corrected the order of factors [Wen15], and also adopted the form d(erα) since
that makes the definition of the completion more natural. (In turn, our calculations
in Section 3.3 have to carry along a factor er. With sign conventions, there is no free
lunch.)

object defining equation

Hamiltonian vector field ω(XHt , ·) = −dHt

Reeb vector field Rα dα(Rα, ·) = 0, α(Rα) = 1

symplectisation (R×M,d(erα))

XH and Rα on symplectisation XH(r, p) = +h′(er)Rα(p)

symplectic action functional AH(γ) = +
∫
S1 γ∗ω −

∫
S1 H(t, γ(t))dt

gradient flow positive

Floer equation ∂su+ Jt(u)(∂tu−XHt(u)) = 0

Conley-Zehnder and Morse index µCZ(γp) = n− ind(p)

In these equations, (W,ω) is an exact 2n-dimensional symplectic manifold and (M, ξ =
kerα) is a contact manifold. The symplectisation has R-coordinate denoted by r and a
Hamiltonian H which depends only on the R-coordinate: H(p, r) = h(r).

Signs which are unusual compared to personal taste or the literature are marked in red:
we note that Lazarev and Zhou use the opposite sign for the symplectic action functional,
in order to match the action of Reeb orbit (Definition 5.6) up to a constant term: since
Reeb orbits shall have non-negative action, the first term must have a positive sign. To
compensate (and still obtain the version of Floer’s equation that one wants), one needs
to consider the positive gradient flow instead, hence the action is increasing along Floer
orbits.
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In the literature, there is also a choice for the sign of the Conley-Zehnder index. The
best way to make this visible is by comparing with the Morse index: the Conley-Zehnder
index µCZ(γp) of a constant orbit γp at a critical point p is related to the Morse index
ind(p) of p. With our conventions, we have µCZ(γp) = n − ind(p). This gives precisely
the grading relation in Theorem 3.32.

A.2. Different definitions of Weinstein domains

Unfortunately, there are several different definitions of Weinstein domains in the liter-
ature, and all definitions overlooked the same subtle issue. Fortunately, the issue was
easy to correct (the definition we gave in Definition 2.75 was the correct one) and all
definitions in the literature are equivalent. Since the equivalence is not obvious at first
sight, we will explain it here.

First, we investigate the definitions we found in the literature. All definitions have in
common that a Weinstein domain (W,ω,X, φ) is a Liouville domain, φ : W → R is a
Morse function and X is gradient-like for φ. They all add one further assumption; we
show that all of these assumptions are equivalent if ∂W is connected. More precisely,
we have the following.

Proposition A.1. Let (W,ω,X) be a Liouville domain, φ : W → R a Morse function
and suppose X is gradient-like for φ. Suppose that ∂W is connected.1 Then, the following
are equivalent:

(0) φ is constant on the boundary ∂W .

(1) ∂W is a regular level set of φ: that is, we have ∂W = φ−1(c) for some c ∈ R and
c is a regular value of φ.

(2) ∂W = φ−1(c), where c is the maximal value of φ on W .

(3) ∂W = φ−1(c) is a regular level set of φ, and c is the maximal value of φ on W .

We summarise these conditions as “∂W is a maximal regular level set of φ”.

Among the papers we are dealing with, Lazarev [Laz17] and Zhou [Zho18] both assume
that ∂W is “a maximal level set”, presumably referring to the last assumption (2). In
contrast, Cieliebak and Eliashberg [CE12] refer to assumption (1) in the introduction,
and to assumption (0) as the actual definition.

For general Weinstein cobordisms or if ∂W is not connected, the same ideas will hold
true, but the result needs natural adaptions. For example, every component of ∂±W
will be contained in a regular level set. Let us now prove Proposition A.1.

1Morally, we mean to say “let (W, ω, X, φ) be Weinstein domain with ∂W connected”, but the point of
this result is exactly to investigate the final assumption in the definition of a Weinstein domain.
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Proof. Clearly, all conditions imply condition (0). Since condition (3) is just the con-
junction of conditions (1) and (2), we only need to prove the equivalence between (0)
and (1) and (2). We show that (0) implies both (1) and (2).

The key argument is the following, which implies “(0)⇒ (2)”.

Claim. If φ is constant on the boundary ∂W , the value c = φ(∂W ) is the maximum
value of φ on W , and we have φ−1(c) = ∂W .

Proof of Claim. Since φ is continuous and W is compact, by Weierstraß’ theorem φ
assumes a maximum c̃ on W . Suppose there is an interior point p at which φ attains
this maximum. Since φ is Morse, this implies that p is a critical point of φ, which has
Morse index 2n. However, since W is Weinstein, φ has no critical point of index 2n,
contradiction! Hence, we obtain φ−1(c̃) ⊂ ∂W . Moreover, the maximum value c̃ is
attained on the boundary and we deduce c = c̃.2 4

We are left with proving that (0) implies (1). The claim shows that φ−1(c) = ∂W . If
c were a critical value, the corresponding critical point had to lie in the interior: since
X is transverse to the boundary, φ has no critical point on or near ∂W . However, the
value c is attained only at the boundary, contradiction! Hence, c is a regular value and
∂W is a regular level set.

As we indicated after Definition 2.75, all definitions we found are slightly incorrect,
since the boundary of a Weinstein domain need not be connected. However, this issue is
subtle to overlook, since Weinstein domains in dimension at least four do have connected
boundary:

Proposition A.2. If (W,ω,X, φ) is a Weinstein domain of dimension 2n ≥ 4, the
boundary ∂W is connected.
Idea of proof. To prove this result, one uses the handlebody decomposition (see Proposi-
tion 2.125) of W , combined with the fact that all handles have index at most n: one can
inductively construct W by starting with the ball and successively attaching handles of
index at most n. At each step, if the boundary ∂W is connected, attaching a k-handle
can only separate ∂W if k ≥ 2n− 1; this can only happen for n = 1.

Remark A.3. There is a 2-dimensional Weinstein domain with disconnected boundary.

2In contrast to the interior, the place where c̃ is attained need not be a critical point.
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