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My intention in these notes is to give an introductory overview of sym-
plectic homology, including its historical origins, the main ideas behind it
and a very brief sampling of applications and recent developments. This
must necessarily begin with the disclaimer that the subject is almost as new
to me as it is to my intended reader, perhaps even more so—I am not an
expert, and you should not assume that everything I say is rooted in any
deep understanding. If there’s any advantage at all to this, perhaps it is
that my perspective is still relatively unbiased (cf. [Sei]).

The second disclaimer involves signs: one notices quickly in surveying the
literature that everyone has slightly different sign preferences on basic issues
such as the definition of the standard symplectic form on R2n, or of a Hamil-
tonian vector field. In symplectic homology, these differences propagate to
the point where one ends up often unsure whether one is talking about ho-
mology or cohomology, direct limits or inverse limits, arrows pointing to the
right or to the left. For this exposition I’ve chosen to adopt the conventions
used in [BO09] and attempted to maintain consistency throughout, but I
make no guarantees.

With that out of the way, let us first make the point that there is not a
single theory known as symplectic homology—there are several, which all
have certain features in common. To attempt a unified definition, symplectic
homology generally refers to the adaptation of Hamiltonian Floer homology
into symplectic manifolds that are not closed; in fact symplectic homology is
often referred to in the literature simply as “Floer (co)homology” in a specific
setting. While Floer homology admits a more or less canonical definition
in closed symplectic manifolds, this ceases to be true on open manifolds
or manifolds with boundary, so that the exact details of the definition are
highly dependent on the context and the intended applications. In practice,
the version of symplectic homology that has received the most attention in
recent years is a theory introduced by Viterbo in [Vit99], who simply called
it “Floer homology on symplectic manifolds with contact type boundary”.
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Viterbo’s theory is actually not an invariant of a compact manifold, but
rather of the noncompact completion obtained by attaching a cylindrical
end to a contact type boundary. In this sense it is considered qualitative: it
doesn’t detect any of the numerical parameters that can be defined e.g. for
compact convex domains in R2n but not for R2n itself, though it can be
applied to great effect for detecting symplectomorphism types or proving the
existence of periodic orbits. The original symplectic homology, introduced
some years beforehand in several papers by Floer, Hofer, Cieliebak and
Wysocki [FH94,CFH95,CFH95,CFHW96] was developed with specifically
quantitative applications in mind, such as classifying compact domains in
R2n up to symplectomorphism, and defining symplectic capacities.

In the following, we will begin by reviewing the main ideas of Hamiltonian
Floer homology in the closed case, with an attempt to highlight details that
will differ significantly in the generalization. We will then take a very brief
look at the quantitative version of symplectic homology, its motivations and
applications. In §3, we prepare the ground for more recent developments
by reviewing the basic facts about symplectic manifolds with contact type
boundary, so that we can describe the definition of Viterbo’s theory and a
smattering of its applications in §4.

A great deal of what follows is adapted from two excellent survey articles
on symplectic homology, namely by Alexandru Oancea [Oan04] and Paul
Seidel [Sei]. A nice introduction specifically to the quantitative theory can
also be found in [HZ94, §6.6]. Naturally, they all use different sign conven-
tions.

1. Review of Floer homology in the closed case

Both the following exposition and §4 are modeled largely on the summary
of symplectic homology presented in [BO09, §2], though we will also borrow
some details from [Sal99].

For this section, assume (W,ω) is a closed symplectic manifold of dimen-
sion 2n, satisfying whatever assumption is required to avoid troubles with
bubbling holomorphic spheres, e.g. at minimum (W,ω) should be semipos-
itive (cf. [MS04]). In many cases of interest one may assume that (W,ω)
is symplectically aspherical (ω|π2(W ) = 0), or even (in the non-closed case)
that ω is exact. Depending how comfortable you are with virtual cycle tech-
niques or abstract perturbations, you may or may not believe that these
restrictions are removable.

For a given free homotopy class of loops

h ∈ [S1,W ],

we will define the Floer homology generated by 1-periodic Hamiltonian or-
bits in the homotopy class h. Floer homology is of course based on the
symplectic action functional, which in the case of an exact symplectic form
ω = dλ, can be defined on the loop space C∞(S1,W ) by

AH(γ) = −

∫

S1

(
γ∗λ + H(t, γ(t)) dt

)
.

Since we cannot actually assume ω to be exact and would rather avoid
placing additional topological restrictions on (W,ω), the question of how to
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define AH more generally is a bit delicate and requires Novikov rings. We
shall abbreviate

H2(W ) := H2(W ; Z)/torsion,

and for any given subgroup

R ⊂ H2(W ),

define the group ring Z[H2(W )/R] to consist of all finite sums of the form
∑

i

cie
Ai

with ci ∈ Z and Ai ∈ H2(W )/R, where multiplication is defined via the
relation eAeB := eA+B .

For any A ∈ H2(W ), denote by

ω(A), c1(A) ∈ Z

the evaluation of the cohomology classes [ω] and c1(TW ) respectively on A,
where c1(TW ) is defined via any ω-compatible complex structure on TW .
In order to define a suitable generalization of AH that yields the required
energy bounds for Floer trajectories, it will be essential to assume

(1.1) R ⊂ ker ω,

so ω descends to a homomorphism on the quotient H2(W )/R → R. One
can then define the Novikov ring

Λω := Λω (Z[H2(W )/R])

as the completion of Z[H2(W )/R] obtained by including all infinite formal
sums of the form

∞∑

i=1

cie
Ai

such that ω(Ai) → +∞. Equivalently, Λω is the ring of all formal sums∑∞

i=1 cie
Ai such that for every C ∈ R, the set {i ∈ N | ci 6= 0, ω(Ai) ≤ C}

is finite.
Note that in general, there may be some freedom in choosing R: in the

best case scenario (which will only be relevant when W is not closed), ω is
exact, so we can choose R = ker ω = H2(W ), thus making H2(W )/R trivial
and forgetting the Novikov ring altogether. Alternatively, one can always
take R to be the trivial subgroup and thus define Λω as a completion of the
full group ring Z[H2(W )].

A less essential but convenient extra restriction to place on R is

(1.2) R ⊂ ker c1(TW ),

so that c1(TW ) also defines a homomorphism H2(W )/R → R. This condi-
tion will allow us to define an integer grading on Floer homology; without
it we would have to settle for a Z2N -grading for some N ∈ N. That is not
the end of the world, but for convenience we will always assume that both
(1.1) and (1.2) are satisfied.



4 CHRIS WENDL

Remark 1.1. Several variations on the above setup are possible. Many au-
thors impose the condition

∫

T 2

f∗ω = 0 for all f : T 2 → W ,

which implies symplectic asphericity since there exists a map T 2 → S2 of
positive degree. Whenever this condition holds, one can slightly modify the
definitions we will give (see Remark 1.2) so that the action functional is
well defined on the loop space (instead of a cover of the loop space), and
the energy of a Floer trajectory depends only on its end points. For the
case of contractible orbits h = 0, all this follows already from the weaker
condition ω|π2(W ) = 0. Then Floer homology can be defined without using
the Novikov ring, though it will not generally have an integer grading unless
the group ring is included. The latter is roughly the approach taken in
[BO09].

Note also that for the case h = 0, one can modify the definitions so as
to replace H2(W ) with the subgroup of spherical homology classes, i.e. the
image of π2(W ) under the Hurewicz homomorphism. This is done in [Sal99].

Given a smooth function H : S1 × W → R, we’ll denote Ht := H(t, ·) :
W → R for t ∈ S1, and define the corresponding time-dependent Hamilton-
ian vector field XHt on W by

(1.3) ω(XHt , ·) = dHt.

Fix a “reference loop”

ℓh : S1 → W

with [ℓh] = h, and denote by Ph(H) the set of all 1-periodic orbits of XHt

in the homotopy class h. For the important special case h = 0, we’ll use
P(H) to denote the set of all contractible orbits, and assume ℓ0 : S1 → W is
a constant map. Let J = {Jt}t∈S1 denote a smooth family of ω-compatible
almost complex structures on W , so gt := ω(·, Jt·) is a smooth family of
Riemannian metrics, and defining the gradient vector field ∇Ht at time t
with respect to this metric gives

XHt = −Jt∇Ht.

In the following we will always assume H is chosen so that all orbits in
Ph(H) are nondegenerate, and the family {Jt}t∈S1 is chosen generically.
We will refer to pairs (H,J) with these properties as generic pairs.

Denote by C̃∞(S1,W ) the set of all pairs

γ̃ = (γ, [σ]),

where γ ∈ C∞(S1,W ) and [σ] is an equivalence class of smooth maps

σ : Σ → W,

with Σ a compact oriented surface with two oriented boundary components
∂Σ = ∂1Σ ∪ (−∂0Σ), σ|∂1Σ = γ and σ|∂0Σ = ℓ[γ], and we define

σ ∼ σ′ ⇔ [σ] − [σ′] = 0 ∈ H2(W )/R.
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One can think of C̃∞(S1,W ) informally as an infinite dimensional manifold
that is a covering of the loop space C∞(S1,W ) and thus has tangent space
Γ(γ∗TW ) at γ̃ = (γ, [σ]). We now define the symplectic action functional

AH : C̃∞(S1,W ) → R : (γ, [σ]) 7→ −

∫

Σ
σ∗ω −

∫

S1

H(t, γ(t)) dt,

whose linearization at γ̃ = (γ, [σ]) is

dAH(γ̃)η =

∫

S1

ω(γ̇ − XHt(γ), η) dt.

The critical points of AH are thus the pairs (γ, [σ]) for which γ is a 1-periodic
orbit; we shall denote these by

P̃h(H) = {(γ, [σ]) ∈ Crit(AH) | [γ] = h}.

Remark 1.2. It often makes sense to modify the definition of C̃∞(S1,W ) so
that the maps σ are simply homotopies [0, 1]×S1 → W between ℓ[γ] and γ, or
for the case of contractible loops, maps D → W with σ|∂D = γ. The latter in
particular would allow us to replace Z[H2(W )] with Z[π2(W )], where π2(W )
is identified with its image under the Hurewicz homomorphism.

Observe that there is a natural action of H2(W )/R on C̃∞(S1,W ) which

preserves Crit(AH): indeed, for A ∈ H2(W )/R and γ̃ = (γ, [σ]) ∈ C̃∞(S1,W ),
we define

A · γ̃ = (γ,A + [σ]),

with A + [σ] understood to mean any map in the correct relative homology
class. We then have

(1.4) AH(A · γ̃) = AH(γ̃) − ω(A).

The Floer chain complex can be defined using a similar finiteness con-
dition as with the Novikov ring: let FCh

∗ (H) denote the additive abelian
group consisting of all formal sums

∑
γ̃∈ ePh(H) cγ̃〈γ̃〉 with cγ̃ ∈ Z, such that

for every C ∈ R, the set

{γ̃ ∈ P̃h(H) | cγ̃ 6= 0, AH(γ̃) ≥ C}

is finite. Such sums are necessarily countable, and it will be convenient to
write them as ∑

i

cie
[σi]〈γi〉,

where ci ∈ Z and e[σ]〈γ〉 is alternative notation for 〈(γ, [σ])〉. The obvious
multiplication eAe[σ] := eA+[σ] now gives FCh

∗ (H) the structure of a Λω-
module, with the required finiteness condition satisfied due to (1.4).

To define a grading on FCh
∗ (H), we must choose a symplectic trivial-

ization of TW along the reference loop ℓh. Note that this choice is arbi-
trary and the grading will generally depend on it, except in the special case
h = 0 where it is natural to choose the constant trivialization. For any

γ̃ = (γ, [σ]) ∈ P̃h(H), the trivialization extends along σ to a unique (up to
homotopy) trivialization along γ, which we can use to define the Conley-
Zehnder index

µCZ(γ̃) ∈ Z.
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The action of H2(W )/R affects µCZ(γ̃) by

(1.5) µCZ(A · γ̃) = µCZ(γ̃) + 2c1(A).

Observe that here we’re making use of the assumption R ⊂ ker c1(TW ).
Now for any γ̃ = (γ, [σ]), we define the corresponding generator in FCh

∗ (H)
to have degree ∣∣∣e[σ]〈γ〉

∣∣∣ = −µCZ(γ̃),

and we also assign degrees to the generators of Λω by

|eA| = −2c1(A).

This notion of degree is then compatible with the action of Λω on FCh
∗ (H)

due to (1.5). We call elements of Λω or FCh
∗ (H) homogeneous if they are

(perhaps infinite) sums of generators of the same degree, and denote by
FCh

k (H) ⊂ FCh
∗ (H) the subgroup consisting of homogeneous elements of

degree k ∈ Z.

Remark 1.3. If we choose a fixed lift γ̃ = (γ, σγ) ∈ P̃h(H) for every orbit

γ ∈ Ph(H), then every generator e[σ]〈γ〉 can be written as eAe[σγ ]〈γ〉 for
some unique A ∈ H2(W )/R, thus FCh

∗ (H) can be described as the “free
Λω-module generated by elements of Ph(H)”, as is done in [BO09]. One
cannot however describe the grading quite so cleanly, as for instance it is
not true that every element of FCh

∗ (H) can be written as a finite sum of
homogenous elements, so FCh

∗ (H) is not technically the direct sum of the
subgroups FCh

k (H) for all k ∈ Z, but is rather a subgroup of its direct
product.

Defining an L2-product on the tangent spaces to C̃∞(S1,W ) via the met-
ric gt = ω(·, Jt·), the L2-gradient of AH is ∇AH(γ, [σ]) = Jt(γ̇ − XHt(γ)),
leading to the negative L2-gradient flow equation for maps u : R×S1 → W ,

(1.6) ∂su + Jt(u)(∂tu − XHt(u)) = 0,

also known as the Floer equation. For any elements γ̃ = (γ, [σ]), γ̃′ =

(γ′, [σ′]) ∈ P̃h(H) and A ∈ H2(W )/R, we define the moduli space of Floer
trajectories

MA(γ̃, γ̃′;H,J) = {u : R × S1 → W | u satisfies (1.6),

lim
s→−∞

u(s, ·) = γ, lim
s→+∞

u(s, ·) = γ′,

[u] + [σ] − [σ′] = A ∈ H2(W )/R},

where [u], [σ] and [σ′] should be understood as relative homology classes up
to addition with elements of R. Since {Jt} is generic, this space is a smooth
manifold of dimension

dimMA(γ̃, γ̃′;H,J) = µCZ(γ̃′) − µCZ(γ̃) + 2c1(A)

=
∣∣∣e[σ]〈γ〉

∣∣∣ −
∣∣∣eA+[σ′]〈γ′〉

∣∣∣ .

Assigning coherent orientations to these spaces as described in [FH93], the 1-
dimensional components divided by the natural R-translation can be counted
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with signs, leading to a Λω-module homomorphism ∂ : FCh
∗ (H) → FCh

∗−1(H)
of degree −1, defined via

∂
(
e[σ]〈γ〉

)
=

∑

γ̃′,A

dimMA(γ̃,γ̃;H,J)=1

#

(
MA(γ̃, γ̃′;H,J)

R

)
eA+[σ′]〈γ′〉.

Note that this definition depends on a compactness theorem: in order to
show that ∂

(
e[σ]〈γ〉

)
belongs to FCh

∗ (H), we need to know that for any C ∈

R, there are only finitely many 1-dimensional components MA(γ̃, γ̃′;H,J)
for which ω(A) ≤ C. The corresponding compactness result for 2-dimensional
components, together with a corresponding gluing theorem, then implies the
relation ∂2 = 0, and we define the Floer homology

FHh
∗ (H,J) = H∗

(
FCh

∗ (H), ∂
)

.

In the non-closed case, the formal elements of this construction will be
the same but the technical details will differ at a few crucial points, thus it’s
worth taking a moment to reflect on these technical issues. There are essen-
tially three ingredients that are crucial for proving the required compactness
theorem:

(1) Solutions u ∈ MA(γ̃, γ̃′;H,J) must satisfy an a priori C0-bound.
(2) Solutions u ∈ MA(γ̃, γ̃′;H,J) must satisfy a uniform bound on the

energy

(1.7) E(u) :=
1

2

∫

R×S1

(
|∂su|

2 + |∂tu − XHt(u)|2
)

ds ∧ dt,

where the norm at time t is always defined via the metric gt =
ω(·, Jt·).

(3) All possible holomorphic spheres that could bubble off must live in
spaces of dimension at most dimMA(γ̃, γ̃′;H,J) − 2.

The third condition is the reason we required (W,ω) to be semipositive from
the beginning, and it will be a complete non-issue when we later consider
exact symplectic forms, for which no holomorphic spheres exist at all. To
see why the energy is bounded, we can imagine u ∈ MA(γ̃, γ̃′;H,J) as a
smooth path

γ̃(s) := (u(s, ·), σs) ∈ C̃∞(S1,W )

from γ̃(−∞) = γ̃ = (γ, [σ]) to γ̃(+∞) = A · γ̃′ = (γ′, A + [σ′]), where σs

is defined by concatenating σ with the half-cylinder u|(−∞,s]×S1. Then by
interpreting the Floer equation as the negative gradient flow of AH , we find

AH(γ̃) −AH(A · γ̃′) = −

∫ ∞

−∞

d

ds
AH(γ̃(s)) ds

= −

∫

R

〈∇AH(γ̃(s)), ∂sγ̃(s)〉L2 ds

=

∫

R

|∂sγ̃(s)|2L2 ds =

∫

R×S1

|∂su|
2 ds ∧ dt

= E(u).

(1.8)

The first condition is automatic since W is closed, but here we will have to
be much more careful when we allow W to be noncompact.
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Next, we recall why FHh
∗ (H,J) is actually a symplectic invariant inde-

pendent of (H,J), a detail in which the non-closed case will differ quite
substantially from the closed case. Given two generic pairs (H−, J−) and
(H+, J+), one can make use of the fact that the space of ω-compatible almost
complex structures is contractible (see e.g. [MS98]) and thus find a generic
homotopy {(Hs, Js)}s∈R which satisfies (Hs, Js) = (H−, J−) for s ≤ −1
and (Hs, Js) = (H+, J+) for s ≥ 1. This gives rise to the s-dependent Floer
equation

(1.9) ∂su + Js
t (u)

(
∂tu − XHs

t
(u)

)
= 0,

and corresponding moduli spaces

MA(γ̃, γ̃′; {Hs}, {Js})

with γ̃ ∈ Ph(H−) and γ̃′ ∈ Ph(H+). Counting the solutions in 0-dimensional
components then yields a so-called continuation map, which is a Λω-module
homomorphism of degree 0,

(1.10) Φ(Hs,Js) : FCh
∗ (H−) → FCh

∗ (H+).

The appropriate compactness and gluing theorems for MA(γ̃, γ̃′; {Hs}, {Js})
imply that this is not only well defined but is also a chain map, and by a
“homotopy of homotopies” construction, one can similarly show that the
resulting map on homology

Φ(Hs,Js) : FHh
∗ (H−, J−) → FHh

∗ (H+, J+)

doesn’t depend on the choice of homotopy (Hs, Js). Moreover, composition
of homotopies gives rise to composition of maps on the homology, so for any
three generic pairs (H i, J i) for i = 0, 1, 2 and generic homotopies (H ik, J ik)
from (H i, J i) to (Hk, Jk), we have

(1.11) Φ(H02,J02) = Φ(H12,J12) ◦ Φ(H01,J01).

Choosing a “constant” homotopy for any given generic pair (H,J), it is
easy to see that the only 0-dimensional moduli spaces to count are the
constant solutions of (1.6) fixed at each orbit, thus the continuation map
from FHh

∗ (H,J) to itself is manifestly the identity, implying that all the
continuation maps are isomorphisms. This argument proves:

Theorem 1.4. For any two generic pairs (H0, J0) and (H1, J1), there is a
canonical Λω-module isomorphism of degree 0,

Φ01 : FHh(H0, J0) → FHh(H1, J1),

and given a third pair (H2, J2), the corresponding isomorphisms satisfy the
relation Φ02 = Φ12 ◦ Φ01.

For this reason one can sensibly write FHh
∗ (H,J) as FHh

∗ (W,ω) without
explicitly mentioning F and J .

Proving these results requires once again establishing suitable C0-bounds
and energy bounds for the solutions in MA(γ̃, γ̃′; {Hs}, {Js}), where energy
is now defined by the obvious analogue of (1.7) with both XHs

t
and the norm

depending on s (the latter via Js
t ). The computation of the energy bound
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(1.8) now acquires an extra term due to the s-dependence of H: writing
H(s, t, ·) = Hs

t , we find

(1.12) AH−(γ̃) −AH+(A · γ̃′) = E(u) +

∫

[−1,1]×S1

∂sH(s, t, γ(t)) ds ∧ dt.

The extra term is uniformly bounded since |∂sH| is bounded, but notice that
in saying this, we’re using the assumption that W is compact. We’ll later
find it important for various reasons to assume ∂sH ≥ 0, thus obtaining
continuation maps that go in one direction but not the other!

The well known main theorem about the computation of Floer homology
applies to the special case h = 0, i.e. we consider only contractible orbits, and
abbreviate FH∗(H,J) := FH0

∗ (H,J). Recall that the grading on FH∗(H,J)
is indepedent of choices in this case. The computation then follows by using
the continuation isomorphism FH∗(H,J) → FH∗(H

0, J0) for a very special
choice of pair (H0, J0): we assume namely that both are time-independent,
and H0 is a Morse function C2-close to zero. The only 1-periodic orbits
of XH0 are thus the constant orbits γx(t) = x located at critical points
x ∈ Crit(H0), and their Conley-Zehnder indices are related to the Morse
indices ind(x;H0) ∈ Z by

µΦ0
CZ(γx) = ind(x;H0) − n,

where the superscript Φ0 means we use the obvious constant trivialization
of TW along γx. The constant orbits γx have distinguished lifts γ̃x =

(γx, [σx]) ∈ P̃(H0) for which [σx] = 0 ∈ H2(W ), hence µCZ(γ̃x) = µΦ0
CZ(γx) =

ind(x;H0)−n. Then each solution v : R → W of the gradient flow equation
v̇ −∇H0(v) = 0, or equivalently the negative gradient flow equation for the
Morse function −H0 : W → R, gives rise to a time-independent solution to
the Floer equation in the form u(s, t) = v(s), and for generic J0 one can
show that all 1-dimensional moduli spaces MA(γ̃x, γ̃y;H

0, J0) contain only
these solutions, for which A = 0. Since

ind(x;−H0) = 2n − ind(x;H0) = n − µCZ(γ̃x) = n +
∣∣∣e[σx]〈γx〉

∣∣∣ ,

it follows that FH∗(H
0, J0) is simply the Morse homology of −H0 : W → R

with coefficients in Λω and with its grading adjusted by −n, so for every
generic (H,J) we have a natural isomorphism to singular homology,1

FH∗(H,J) = H∗+n(W ; Λω).

Observe now what happens if we apply the same argument for a nontrivial
free homotopy class h 6= 0: since H0 has no non-contractible 1-periodic
orbits at all, FCh

∗ (H0) = 0 and invariance implies that FHh
∗ (H,J) must

always vanish. We summarize these results as follows.

Theorem 1.5. For any generic pair (H,J), the Floer homology for con-
tractible 1-periodic orbits admits a canonical isomorphism

FH∗(H,J) → H∗+n(W ; Λω),

1There’s a somewhat subtle issue in understanding what H∗(W ; Λω) is, considering
that the coefficients Λω are also graded. It’s at least comparatively straightforward if
H2(W ) is replaced by π2(W ) (see Remark 1.2) and c1(TW )|π2(W ) = 0, e.g. (W, ω) is

Calabi-Yau.
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and for any nontrivial free homotopy class of loops h,

FHh
∗ (H,J) = 0.

Before leaving this discussion of the closed case, let us consider one more
refinement of FHh

∗ (H,J): one can introduce a filtration on the Floer chain
complex via the action. To simplify the following discussion, assume for
now that ω vanishes on π2(W ) and consider only contractible orbits: then
by Remark 1.2, one can write down a slight modification of AH that is well
defined on the space of contractible loops in C∞(S1,W ), so that FC∗(H)
can be defined simply as the free abelian group generated by elements of
P(H), with Z2N -grading

|〈γ〉| = −µCZ(γ) mod 2N,

where N is the minimal Chern number. Now for any a ∈ R, define

FC∗(H; a) ⊂ FC∗(H)

as the subgroup generated by all orbits γ ∈ P(H) with AH(γ) < a, and for
−∞ ≤ a < b ≤ ∞, define

FC∗(H; [a, b)) = FC∗(H; b)
/

FC∗(H; a).

Then since all solutions to the Floer equation have nonnegative energy,
we deduce from (1.8) that ∂ preserves FC∗(H; a) and hence descends to
FC∗(H; [a, b)), so that we can define the filtered Floer homology

FH∗(H,J ; [a, b)) = H∗ (FC∗(H; [a, b)), ∂) .

We must now reexamine the question of whether the homology defined in
this way is invariant: indeed, for any given (H−, J−) and (H+, J+) and
a homotopy (Hs, Js) between them, it is by no means clear that the map
FH∗(H

−, J−) → FH∗(H
+, J+) defined as in (1.10) can be made compatible

with the filtration, i.e. that it induces a map

Φ(Hs,Js) : FC∗(H
−, J−; [a, b)) → FC∗(H

+, J+; [a, b)).

The answer is provided by the energy bound (1.12): a map on the filtered
chain complex can be defined if the left hand side of this equation is always
nonnegative, which is not true in general, but is true whenever ∂sH ≥ 0.
Keeping H constant is therefore fine, and we conclude that FH∗(H,J ; [a, b))
is indeed independent of J , but in general one can define a map

FH∗(H
−, J−; [a, b)) → FH∗(H

+, J+; [a, b))

if and only if H− ≤ H+, and this map will not generally be invertible.
This foreshadows an issue that will arise repeatedly in our discussion of
symplectic homology: generic choices of Hamiltonians H will not generally
suffice to define a symplectic invariant, but an invariant can nonetheless be
defined as a direct limit for increasing sequences of Hamiltonians.
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2. Quantitative symplectic homology

The original motivation for defining Floer homology in non-closed settings
came from the direction of quantitative symplectic invariants, i.e. parameters
that measure the symplectic embedding properties of subdomains within
larger symplectic manifolds. One of the simplest and deepest results in this
area is the famous non-squeezing theorem: let us denote by B2n

r the open
ball of radius r in R2n with standard symplectic form ω0, and let B2n ⊂ R2n

denote the open unit ball.

Theorem (Gromov [Gro85]). There exists a symplectic embedding of (B2n
r , ω0)

into (B2
R × R2n−2, ω0) if and only if r ≤ R.

Gromov’s proof used J-holomorphic curves, but soon afterwards, alter-
native proofs appeared that seem at first glance to have nothing to do with
holomorphic curves. One such proof comes from the existence of a symplec-
tic capacity on R2n. This notion, defined originally by Ekeland and Hofer
[EH89], associates to every open subset U ⊂ R2n a number c(U) ∈ [0,∞]
satisfying the following properties:

• (Monotonicity) If (U , ω0) admits a symplectic embedding into
(U ′, ω0), then c(U) ≤ c(U ′).

• (Conformality) For all α > 0, c(αU) = α2c(U).
• (Normalization) c(B2n) = π = c(B2 × R2n−2).

The non-squeezing theorem itself implies the existence of a symplectic ca-
pacity, namely the Gromov width (see [HZ94]), but Ekeland and Hofer con-
structed another capacity that was defined in terms of a variational principle
for periodic orbits of Hamiltonian systems; of course the existence of such
an object implies the non-squeezing theorem.

It may seem surprising at first that periodic orbits of Hamiltonian systems
have anything to do with symplectic embedding obstructions, but Floer and
Hofer [FH94] give the following heuristic explanation for this phenomenon.
Imagine ϕ : B2n

r →֒ B2
r × R2n−2 is an “optimal” symplectic embedding of

the ball into the cylinder; indeed, the non-squeezing theorem tells us that
we cannot squeeze the image ϕ(B2n

r ) into any smaller cylinder B2
r′ × R2n−2

for r′ < r. But let’s try to do this anyway and see what can go wrong. For
simplicity, since B2n

r is maximally squeezed into the cylinder, it seems not
altogether unreasonable to assume that the set

Σ := ϕ(B2n
r ) ∩ (∂B

2
r × R2n−2)

is an open subset of ∂B
2
r × R2n−2, and hence a smooth hypersurface in

R2n. Then one way to squeeze ϕ(B2n
r ) symplectically into an even smaller

cylinder would require finding a Hamiltonian vector field XF which points
transversely into the cylinder everywhere along Σ. This is not possible in
general, and in fact there’s one very simple obstruction one can imagine:
suppose Σ itself has a closed characteristic, meaning Σ ⊂ H−1(0) for some
Hamiltonian H : R2n → R such that XH has a periodic orbit γ : [0, T ] → R2n

contained in Σ. Then since XF is transverse to Σ, we have dH(XF ) 6= 0
everywhere along Σ, so

dF (γ̇(t)) = dF (XH ) = {H,F} = −dH(XF ) 6= 0,
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implying F must always increase or decrease along the periodic orbit γ,
which is clearly impossible.

The above discussion is rather simplistic, but regardless of whether you’re
now convinced that periodic orbits give obstructions to symplectic embed-
dings, you already know what periodic orbits have to do with holomorphic
curves: an elegant relationship between them is provided by Floer homology.
Since the Ekeland-Hofer capacity was defined by measuring the symplectic
actions of 1-periodic orbits, Floer and Hofer [FH94] were motivated to de-
fine a more refined invariant using the action filtration on Floer homology.
We shall now describe the basic idea of this construction. The following is
actually a somewhat simplified version of the theory defined in [FH94], with
a few details borrowed from [CFH95] and [HZ94, §6.6].

We identify R2n with Cn and write the standard symplectic form as

ω0 =

n∑

j=1

dxj ∧ dyj,

where zj = xj + iyj are the standard coordinates on Cn. The standard
complex structure i is then compatible with ω0. For any open subset U ⊂ Cn,
define the set of admissible Hamiltonians H(U) to consist of all smooth
H : S1 × Cn → R with the following properties:2

• H ≥ 0,
• supp(Ht) is compact and contained in U for all t ∈ S1,
• All contractible 1-periodic orbits γ ∈ P(H) with AH(γ) < 0 are

nondegenerate.

We define also a special class of time-dependent almost complex structures
J on Cn by saying {Jt} ∈ J if and only if the following properties are
satisfied for all t ∈ S1:

• Jt is compatible with ω0,
• Jt = i outside of a compact subset.

We claim that for any H ∈ H(U), J ∈ J and −∞ ≤ a < b ≤ 0, the
filtered Floer chain complex (FC∗(H,J ; [a, b)), ∂) and corresponding ho-
mology FH∗(H,J ; [a, b)) can be defined exactly as in §1. Note that since
H2(C

n) = 0, the generators of FC∗(H,J ; [a, b)) are simply orbits γ ∈ P(H),
there is no Novikov ring, and ∂ is defined by counting the 1-dimensional
moduli spaces M(γ, γ′;H,J) of Floer trajectories connecting two nonde-
generate orbits γ, γ′ with negative action. To show that FH∗(H,J ; [a, b))
is well defined, we must check that solutions in M(γ, γ′;H,J) satisfy the
required C0 and energy bounds (there is no danger of bubbling since ω0

is exact). Energy bounds follow by the same argument as before, but C0-
bounds now require an extra ingredient: we must take advantage of the
convexity of (Cn, J) at infinity.

2The exposition in [HZ94] requires the opposite sign for Hamiltonians H ∈ H(U).
This can probably be attritubed to the fact that they write down the definition of the
Hamiltonian vector field (1.3) with an extra minus sign. That is, of course, the right

way—perhaps I am slightly biased.
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Proposition 2.1. If (Σ, j) is a Riemann surface and u : (Σ, j) → (Cn, i) is
a holomorphic map, then the function

Σ → [0,∞) : z 7→ |u(z)|2

has no local maximum.

One can prove this by showing that the Cauchy-Riemann equation for u
implies that the function log

(
|u(z)|2

)
is subharmonic and thus satisfies a

maximum principle. It also follows from a more general result that we’ll
discuss in the next section; see Prop. 3.4.

Given Prop. 2.1 we conclude that Floer trajectories u ∈ M(γ, γ′;H,J)
can never escape from some large ball B2n

R ⊂ Cn, outside of which J = i
and H = 0, as they would then become holomorphic and force the function
z 7→ |u(z)|2 to attain a maximum. This implies the required C0-bound,
and the rest of the compactness argument for M(γ, γ′;H,J) is the same as
usual, so that FH∗(H,J ; [a, b)) is well defined.

As we already saw at the end of §1, we can expect FH∗(H,J ; [a, b)) to be
invariant under changes in J , but not H: the energy relation (1.12) implies
that a continuation map compatible with the filtration

(2.1) FH∗(H
−, J−; [a, b)) → FH∗(H

+, J+; [a, b))

can only be defined in general for monotone homotopies, i.e. we must assume
the homotopy {Hs}s∈[−1,1] from H− to H+ satisfies ∂sH

s ≥ 0. Such maps
therefore exist (and are independent of the chosen homotopy, by the usual
chain homotopy argument) whenever H+ ≥ H−, and they also satisfy the
composition relation (1.11), but they cannot in general be inverted. Thus
instead of defining a symplectic invariant simply as FH∗(H,J ; [a, b)) for a
suitable choice of H and J , we are led naturally to a direct limit : defining a
partial order ≺ on H(U) × J by

(H−, J−) ≺ (H+, J+) ⇐⇒ H− ≤ H+,

the existence of the maps (2.1) and their compatibility under compositions
allows us to define the direct limit

SH
[a,b)
∗ (U) = lim

−→
(H,J)∈H(U)×J

FH∗(H,J ; [a, b)).

This is a simplified version of the symplectic homology first defined by Floer
and Hofer.

For an intuitive notion of what SH
[a,b)
∗ (U) measures, consider for example

the irrational ellipsoid

E(r1, r2) = {F (z1, z2) < 1} ⊂ C2

where

F (z1, z2) :=
|z1|

2

r2
1

+
|z2|

2

r2
2

for r1, r2 > 0, r1/r2 6∈ Q. Let us attempt a rough guess at the computation

of SH
[a,b)
∗ (E(r1, r2)). We claim in fact that the direct limit can be computed

as the filtered Floer homology for a particular “infinitely large” Hamiltonian,
which we can approximate using an increasing sequence of cutoff functions.
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To define the divergent Hamiltonian, choose a smooth function h∞ : (0, 1] →
[0,∞) such that for some ǫ > 0,

(1) h∞(s) = 0 for all s ∈ [1 − ǫ, 1],
(2) h′

∞(s) < 0 and h′′
∞(s) > 0 for all s ∈ (0, 1 − ǫ),

(3) lims→0 h∞(s) = ∞.

Now for any τ > 0, we can “smooth the divergence” of h∞ to define a
smooth function hτ : [0, 1] → [0,∞) such that

(1) hτ = τ on a closed neighborhood of 0,
(2) hτ = h∞ on h−1

∞ [0, τ − 1],
(3) h′

τ < 0 everywhere else.

This gives rise to a family of nonnegative Hamiltonians Hτ : C2 → R with
support in E(r1, r2), namely

Hτ (z1, z2) = hτ (F (z1, z2)),

which match the singular Hamiltonian H∞ := h∞ ◦ F on increasingly large
subsets that exhaust C2 \{0} as τ → +∞. We can also assume without loss
of generality that

Hτ ≥ Hτ ′

⇐⇒ τ ≥ τ ′.

We are now going to cheat a bit and pretend Hτ ∈ H(E(r1, r2)), which is
not true because Hτ is time-independent; in particular every nonconstant
1-periodic orbit of XHτ comes in a degenerate S1-parametrized family re-
lated by time translation. However, there is a standard way to perturb
autonomous Hamiltonians so that degenerate S1-families of this sort are re-
placed by pairs of nondegenerate orbits of almost the same period, whose
Conley-Zehnder indices differ by 1, thus one can still deduce properties of

SH
[a,b)
∗ (E(r1, r2)) by examining the orbits of Hτ . In fact, the interesting

orbits will be the orbits of XH∞ , since all of these are also orbits of XHτ

when τ is sufficiently large. The Hamiltonian vector field determined by
H∞ on C2 \ {0} is

XH∞(z1, z2) = −2h′
∞(F (z1, z2))

(
iz1

r2
1

,
iz2

r2
2

)
,

thus since r1/r2 6∈ Q, its 1-periodic orbits come in two types:

• For every k ∈ N, there is a unique ρk ∈ (0, r1) such that −2h′
∞(ρ2

k/r
2
1) =

2πr2
1k, producing orbits γ1

k(t) = (e2πiktρk, 0) and their S1-translations,
all of which have action

AH∞(γ1
k) = −πρ2

k − h∞(ρ2
k/r

2
1).

• For every k ∈ N, there is a unique σk ∈ (0, r2) such that −2h′
∞(σ2

k/r
2
2) =

2πr2
2k, producing orbits γ2

k(t) = (0, e2πiktσk) and their S1-translations,
with action

AH∞(γ2
k) = −πσ2

k − h∞(σ2
k/r

2
2).

Notice that in both lists of orbits, ρk and σk must approach zero as k → ∞,
so that the action diverges to −∞. Thus for any given finite a < b ≤ 0,
only a finite subset of these orbits have action in [a, b), and we can choose
τ > 0 large enough so that all of them are also 1-periodic orbits of XHτ with

the same action. From this we infer that SH
[a,b)
∗ (E(r1, r2)) will always be
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generated by finite subsets of the orbits listed above, whose actions depend

on r1 and r2, so that the rank of SH
[a,b)
∗ (E(r1, r2)) is a function of r1 and r2.

A complete computation of the symplectic homology of E(r1, r2) was car-
ried out by Floer-Hofer-Wysocki [FHW94], in fact in any dimension and
without assuming irrationality. It leads to a complete symplectic classifica-
tion of ellipsoids in Cn, which can be stated for the n = 2 case as follows:

Theorem 2.2 ([FHW94]). Suppose r1 ≤ r2 and r′1 ≤ r′2. Then (E(r1, r2), ω0)
and (E(r′1, r

′
2), ω0) are symplectomorphic if and only if r1 = r′1 and r2 = r′2.

The same paper [FHW94] explains how symplectic homology can be used
to define a new symplectic capacity for open subsets of Cn. In a related
pair of papers [CFH95,CFHW96] together with Cieliebak, the same authors
define a related symplectic homology theory for open sets of compact sym-
plectic manifolds with contact type boundary, and use it to show that the
symplectomorphism type of the interior “sees the boundary” in some sense:
namely, one can define an invariant of the interior that detects the periods
of orbits on the boundary.

3. Convexity and contact type boundaries

The fact that the theory in the previous section can be defined on the non-
compact manifold Cn depends on a certain convexity property (Prop. 2.1)
in order to prove C0-bounds for the space of Floer trajectories. We will now
consider a generalization of the crucial convexity property, which leads nat-
urally into the setting of symplectic manifolds with contact type boundary.

For this and the next section, assume (W,ω) is a compact 2n-dimensional
symplectic manifold with boundary ∂W = M . We say that the boundary is
(symplectically) convex, or of contact type, if near ∂W there exists a vector
field η that points transversely outward at ∂W and is a so-called Liouville
vector field, meaning

Lηω = ω.

There are several equivalent ways to state this condition: for instance,
given η as above, define the 1-form λ = ιηω. Then Lηω = ω implies dλ = ω,
and it is an easy exercise to show that η points transversely outward at the
boundary M = ∂W if and only if the restriction α := λ|TM satisfies

(3.1) α ∧ (dα)n−1 > 0,

with M understood to carry the natural boundary orientation. The condi-
tion (3.1) means that α is a positive contact form on M . Its contact structure
is the co-oriented hyperplane field ξ = ker α ⊂ TM , and the pair (M, ξ) is
then called a contact manifold. The relation (3.1) is equivalent to requiring
that dα|ξ be nondegenerate, hence giving the bundle ξ → M a symplectic
structure whose induced orientation is compatible with the co-orientation de-
termined by α. It can also be interpreted as a “maximal non-integrability”
condition for ξ, e.g. it implies that ξ has no integral submanifolds of dimen-
sion greater than n − 1. In contact geometric language, the boundary of
(W,ω) is convex if and only if ω admits a primitive λ near ∂W that restricts
to a positive contact form on the boundary.
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Notice that Liouville vector fields transverse to the boundary are far from
unique: if any such vector field exists, then one can obtain more by adding
any sufficiently small Hamiltonian vector field. Thus the contact form in-
duced on M = ∂W is not unique, but it turns out that up to a natural
notion of equivalence, the contact structure is.

Proposition 3.1. If (W,ω) has contact type boundary and ξ is the con-
tact structure induced on M = ∂W by a choice of Liouville vector field as
described above, then ξ is uniquely determined up to isotopy.

This follows easily from a basic result of contact geometry. Notice that the
space of Liouville vector fields pointing transversely outward at the bound-
ary is a convex set, thus by interpolating between any two choices, we obtain
a smooth family of contact structures. This reduces Prop. 3.1 to the fol-
lowing result, which can be proved by a Moser deformation argument (see
e.g. [Gei08]).

Theorem (Gray’s stability theorem). If ξ0 and ξ1 are contact structures
on M that are homotopic through a smooth family of contact structures,
then they are also isotopic.

In light of Prop. 3.1, we regard the contact structure ξ (but not the contact
form α) as the natural structure induced on the boundary of a symplectic
manifold (W,ω) satisfying the convexity condition. In contact geometry, one
then says that (W,ω) is a strong symplectic filling of the contact manifold
(M, ξ).

For the rest of this section we assume (W,ω) has convex boundary M =
∂W and fix the notation η, λ = ιηω, α = λ|TM and ξ = ker α as described
above. A neighborhood of ∂W then admits a convenient normal form: let
ϕt

η denote the flow of η, and choose ǫ > 0 small enough so that there is an
embedding

Φ : (−ǫ, 0] × M →֒ W : (a,m) 7→ ϕa
η(m).

It is now easy to check that Φ∗λ = eaα, hence Φ∗ω = d(eaα). The open
symplectic manifold

(R × M,d(eaα))

is called the symplectization of (M, ξ). We thus see that a neighborhood of
∂W in W can be identified symplectically with the subset (−ǫ, 0]×M in the
symplectization, so that one can smoothly attach a cylindrical end to define
a larger, open symplectic manifold

(Ŵ , ω̂) = (W,ω) ∪∂W ([0,∞) × M,d(eaα)).

This is called the completion of (W,ω).

Remark 3.2. Contrary to appearances in the above presentation, the sym-
plectization (R × M,d(eaα)) does not actually depend (up to symplecto-
morphism) on the choice of contact form α with ker α = ξ, and the com-

pletion (Ŵ , ω̂) can be regarded as containing a cylindrical end of the form
([T,∞)×M,d(eaα)) for any choice of α if T ∈ R is taken sufficiently large.
Indeed, given α as above, suppose α′ is a different contact form related to
α by α = efα′ for some smooth function f : M → R. Then by a minor
generalization of the above construction, one can identify a neighborhood
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of ∂W in (W,ω) with a slightly different subset of (R×M,d(eaα′)), namely
with a neighborhood of the boundary of the domain

{(a,m) ∈ R × M | f(m) ≤ a}.

Then the completion can instead be defined by attaching the complement
of this domain in (R × M,d(eaα′)).

Definition 3.3. For any contact manifold (M, ξ) with contact form α, we
define the Reeb vector field Xα to be the unique vector field satisfying

dα(Xα, ·) ≡ 0 and α(Xα) ≡ 1.

The condition dα(Xα, ·) determines the direction of Xα uniquely: it must
be transverse to ξ since dα|ξ is symplectic, so we can then use α for nor-
malization. Notice that the Reeb vector field Xα on the convex boundary of
our symplectic manifold (W,ω) spans the characteristic line bundle of ∂W ,
i.e. the kernel of ω|TM . Thus for any Hamiltonian H : W → R that has ∂W
as a regular energy level, the closed orbits of XH in ∂W are precisely the
closed orbits of Xα on M .

We now define a special class of compatible almost complex structures on
the symplectization (R×M,d(eaα)). Define J (M,α) to be the (contractible)
space of all almost complex structures J on R×M with the following prop-
erties:

• J is invariant under the natural action by R-translation,
• J∂a = Xα and JXα = −∂a, where ∂a denotes the unit vector in the

R-direction,
• J(ξ) = ξ, and J |ξ restricts to a compatible complex structure on the

symplectic vector bundle (ξ, dα) → M .

We can now prove a useful generalization of Prop. 2.1:

Proposition 3.4. Suppose (Σ, j) is a Riemann surface, J ∈ J (M,α) and
u = (f, v) : (Σ, j) → (R × M,J) is J-holomorphic. Then the function
f : Σ → R has no local maximum.

Proof. The point is to prove that f : Σ → R is subharmonic, so that the
result follows from the maximum principle. It suffices to prove this in local
conformal coordinates (s, t) on any small open subset of Σ, so the nonlinear
Cauchy-Riemann equation takes the local form ∂su + J(u)∂tu = 0. Writing
πα : TM → ξ for the projection along Xα, this is equivalent to the three
equations

∂sf − α(∂tv) = 0,

∂tf + α(∂sv) = 0,

πα∂sv + Jπα∂tv = 0.

Now observe that since dα vanishes on Xα and dα(·, J ·) defines a bundle
metric on ξ,

dα(∂sv, ∂tv) = dα(πα∂sv, πα∂tv) = dα(πα∂sv, Jπα∂sv) ≥ 0,

with equality if and only if πα∂sv = 0. Thus we compute

0 ≤ dα(∂sv, ∂tv) = ∂s [α(∂tv)] − ∂t [α(∂sv)] = (∂2
s + ∂2

t )f,

as claimed. �
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Remark 3.5. This result implies Prop. 2.1 for the following reason: one must
first observe that the standard symplectic (Cn, ω0) admits a global radial

Liouville vector field η0, so that the balls B
2n
r all have symplectically convex

boundaries. The 1-form λ0 = ιη0ω0 then restricts to S2n−1 = ∂B
2n

as the
so-called standard contact form on the sphere, α0 = λ0|TS2n−1 . By flowing

along the Liouville field from ∂B
2n

, one can then construct a diffeomorphism

Φ : R × S2n−1 → Cn \ {0}

which takes each of the sets (−∞, T ] × S2n−1 to a punctured ball, and it is
easy to show that Φ∗i ∈ J (S2n−1, α0).

We now list a few of the most important special cases of symplectic man-
ifolds with contact type boundaries, progressing from more to less general.

Example 3.6. If in addition to the conditions stated above, the Liouville
field η (or equivalently the primitive λ) exists globally on W , then we call
(W,ω) a Liouville domain, or an exact symplectic filling of (M, ξ), and say
that the boundary is of restricted contact type. Observe that the completion

(Ŵ , ω̂) is also an exact symplectic manifold, as the primitive can be extended
to the cylindrical end as eaα.

Example 3.7. A Weinstein domain (W,ω, η, ϕ) is a Liouville domain (W,ω)
with a global Liouville field η and a smooth Morse function ϕ : W → R for
which ∂W is a regular level set and dϕ(η) > 0 except at the critical points.

Example 3.8. A Stein domain is a compact complex manifold (W,J) with
boundary which admits a smooth Morse function ϕ : W → R such that ∂W
is a regular level set and

ωϕ := −d(dϕ ◦ J)

is a symplectic form compatible with J . One can use the resulting metric
ωϕ(·, J ·) to define a gradient vector field ∇ϕ, which makes (W,ωϕ,∇ϕ,ϕ)
into a Weinstein domain. The contact structure ξ induced on M = ∂W can
also be described as the maximal complex-linear subbundle of TM .

Observe that the topology of Weinstein domains is quite restricted, as
one can show that ϕ : W → R may only have critical points of index
k ≤ n. Thus by Morse theory, a manifold diffeomorphic to W can be

constructed from the ball B
2n

by attaching finitely many 2n-dimensional
k-handles for k = 0, . . . , n; the absence of k-handles for k > n implies for
instance that ∂W must be connected. (This is not true for every Liouville
domain, as shown by McDuff [McD91] and Geiges [Gei95,Gei94].) Relatedly,
Eliashberg proved [Eli90b] quite surprisingly that in complex dimensions
greater than 2, any compact almost complex manifold with boundary that
satisfies this topological condition can be deformed to a Stein domain; there
are also results of this nature that hold in complex dimension 2 but are
more complicated to state. Full details on these topics may be found in
the monograph [CE12]. Since it often arises in discussions of symplectic
homology, we now mention one more special case, whose topology is even
more strongly restricted:
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Definition 3.9. A subcritical Weinstein (or Stein) domain is a Weinstein
domain (W,ω, η, ϕ) such that ϕ only has critical points of index strictly less
than n.

4. Viterbo’s theory and its applications

We now adapt the presentation from §1 to define Viterbo’s version of
symplectic homology for a compact symplectic manifold (W,ω) with contact
type boundary

∂(W,ω) = (M, ξ).

We will again assume (W,ω) is semipositive, choose a subgroup

R ⊂ ker ω ∩ ker c1(TW ) ⊂ H2(W )

for which to define the Novikov completion Λω of Z[H2(W )/R], and a free
homotopy class of loops h ∈ [S1,W ]. An important class of examples is
provided by Liouville domains, for which ω is exact.

A large part of the motivation for this theory comes from the following
well known contact counterpart to the Arnold conjecture:

Conjecture (Weinstein). For any contact manifold (M, ξ) with contact
form α, the Reeb vector field Xα admits a periodic orbit.

For contact structures that are strongly symplectically fillable, this amounts
to the conjecture that every compact symplectic manifold with contact type
boundary has a closed characteristic on its boundary. The goal is thus to
define a Floer theory for (W,ω) generated by two types of periodic orbits:

(1) All 1-periodic orbits of a suitable Hamiltonian H : W → R,
(2) All closed characteristics of the characteristic line field on ∂W .

By analogy with the closed case, we intuitively expect the 1-periodic orbits of
XH to give us essentially topological information about W , i.e. something
analogous to Morse homology. What turns out to be true in fact is that
if there are no closed characteristics on ∂W , then the theory we define will
indeed be isomorphic to some version of Morse homology and hence singular
homology on W , as in the closed case. More generally, we will find that there
is a map between symplectic homology and singular homology, but it need
not be an isomorphism—and whenever it is not, this implies the Weinstein
conjecture for ∂W .

To see why defining a theory generated by the two types of orbits men-
tioned above might be a reasonable thing to do, we consider a special class of

Hamiltonians on the symplectic completion (Ŵ , ω̂). Recall from Remark 3.2

that for any contact form α with ker α = ξ, (Ŵ , ω̂) contains a cylindrical
end of the form

([T0,∞) × M,d(eaα))

for sufficiently large T0 > 0. Thus we can change α if necessary and assume
without loss of generality that all closed orbits of Xα are nondegenerate,3

3Since Xα is time-independent, we mean “nondegenerate” in the transversal sense,
i.e. the linearized Reeb flow has no eigenvectors with eigenvalue 1 in directions transverse
to the orbit.
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a generic condition. Now consider a time-dependent Hamiltonian H : S1 ×

Ŵ → R which takes the form

H(t, a,m) = H̄(t, ea)

for (a,m) ∈ [T0,∞)×M , where H̄(t, a) is a smooth function on S1×[eT0 ,∞).
It is instructive to see what the periodic orbits XHt look like in [T0,∞)×M :
by an easy computation, we find

(4.1) XHt(a,m) = −∂aH̄(t, ea)Xα(m).

Thus a τ -periodic orbit of Xα gives rise to a 1-periodic orbit of XHt in
{a0} × M if and only if

τ =

∣∣∣∣
∫ 1

0
∂aH̄(t, ea0) dt

∣∣∣∣ ,

and conversely every 1-periodic orbit in {a0}×M for a0 ≥ T0 is of this form.
Note that the set of all periods of orbits of Xα, the so-called action spectrum

Spec(M,α) ⊂ (0,∞),

is discrete if α is nondegenerate. Thus if we choose H̄ with |∂aH̄(t, eT0)|
sufficiently small for all t ∈ S1 and allow |∂aH̄(t, ea)| to grow to infinity
as a → ∞, we find that all periodic orbits of Xα, of all periods, appear
as 1-periodic orbits of XHt . This is therefore the type of Hamiltonian for
which we’d like to define our Floer homology—though as we’ll see below,
the technical details are a bit more complicated.

We will of course have to be careful about our choices of H and J to
ensure suitable C0-bounds and energy bounds for Floer trajectories in the

noncompact manifold Ŵ . In light of Prop. 3.4, it is now at least easy to
guess what conditions should be placed on J : recalling the space J (M,α)
that was defined in the previous section, let J (W,ω,α) denote the space of

all almost complex structures J on Ŵ satisfying the following conditions:

• J is everywhere compatible with ω̂
• J matches an almost complex structure in J (M,α) on [T,∞) × M

for some T ≥ T0.

Now let’s see what kinds of Hamiltonians we can get away with using

to define Floer homology on (Ŵ , ω̂) with J ∈ J (W,ω,α). We will need

C0-bounds for solutions u : R×S1 → Ŵ to the s-dependent Floer equation

(4.2) ∂su + Js
t (u)

(
∂tu − XHs

t
(u)

)
= 0.

Here {Js
t }(s,t)∈R×S1 is a smooth family of almost complex structures in

J (W,ω,α) that are s-independent for |s| ≥ 1, so for T1 ≥ T0 large enough
we can assume all of them are in J (M,α) on [T1,∞) × M . Likewise,

Hs
t = H(s, t, ·) : Ŵ → R is a smooth family of Hamiltonians, s-independent

for |s| ≥ 1, which in light of the above discussion we shall assume to take
the form

H(s, t, a,m) = H̄(s, t, ea)

for (a,m) ∈ [T1,∞) × M , with H̄(s, t, a) a smooth function on R × S1 ×

[T1,∞). For any T ≥ T0, denote by ŴT the complement of (T,∞) × M in
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Ŵ , so

Ŵ = ŴT ∪
∂cWT

([T,∞) × M).

Proposition 4.1. Given the data described above, assume ∂s∂aH̄ is every-
where nonnegative. Then for any T ≥ T1, every bounded solution to (4.2)

whose image intersects ŴT is contained in ŴT .

Proof. Suppose u : R× S1 → Ŵ is a solution to (4.2) and U ⊂ R × S1 is an
open set on which u(U) ⊂ [T1,∞) × M , thus for (s, t) ∈ U we can write

u(s, t) = (f(s, t), v(s, t)) ∈ R × M.

The result will again follow by showing that f : U → R satisfies a max-
imum principle. Proposition 3.4 showed this for the case where u is a J-
holomorphic curve, i.e. Hs

t = 0 and Js
t is independent of s and t. More

generally, plugging in the formula (4.1) for XHs
t

in [T1,∞) × M , we find
that u = (f, v) : U → R × M now satisfies the equations

∂sf − α(∂tv) − ∂aH̄(s, t, ef ) = 0,

∂tf + α(∂sv) = 0,

πα∂sv + Js
t πα∂tv = 0.

We have 0 ≤ dα(πα∂sv, Js
t πα∂sv) = dα(∂sv, ∂tv) just as before, so repeating

the same calculation gives

0 ≤ dα(∂sv, ∂tv) = ∂s [α(∂tv)] − ∂t [α(∂sv)]

= (∂2
s + ∂2

t )f − ∂s

[
∂aH̄

(
s, t, ef(s,t)

)]

= (∂2
s + ∂2

t )f − ef∂2
aH̄(s, t, ef )∂sf − ∂s∂aH̄(s, t, ef ).

Then since ∂s∂aH̄ ≥ 0, f satisfies the second order elliptic partial differential
inequality

(∂2
s + ∂2

t )f − ef∂2
aH̄(s, t, ef )∂sf ≥ 0,

which implies the maximum principle. �

This result reveals another monotonicity property that will be needed
to define maps between Floer homologies for different Hamiltonians: if
H(s, t, a,m) = H̄(s, t, ea) near infinity, then we must assume

(4.3) ∂s∂aH̄ ≥ 0,

i.e. the slopes will need to get steeper under homotopies. With this assump-
tion in place, C0-bounds are assured, and the required energy bounds are
then provided again by (1.12).

We are now ready to proceed with the construction of the invariant. For
any number τ > 0 that is not a period of any orbit of Xα, define the class

Hτ of τ -admissible Hamiltonians H : S1 × Ŵ → R to have the following
properties:

(1) Ht < 0 on W ,
(2) Ht(a,m) = τea + c on [T,∞) × M for some large T ≥ T0 and any

constant c ∈ R,
(3) Every 1-periodic orbit of XHt is nondegenerate.
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Observe that since τ 6∈ Spec(M,α), the linear behavior of Ht near infinity
means that there are no 1-periodic orbits in [T,∞) × M , hence there are
finitely many in total. Then for a generic pair (Hτ , J) ∈ Hτ×J (W,ω,α), the
Floer homology FHh

∗ (Hτ , J) for periodic orbits of XHτ
t

in the free homotopy
class h is well defined. It is not an invariant, nor should we expect it to
be since it clearly doesn’t see all the Reeb orbits we’re interested in at
the boundary, but only those up to a bounded period determined by τ .
Fortunately, the condition (4.3) allows us to define continuation maps

FHh
∗ (Hτ , J) → FHh

∗ (Hτ ′

, J ′)

for any pairs (Hτ , J) ∈ Hτ × J (W,ω,α) and (Hτ ′

, J ′) ∈ Hτ ′ × J (W,ω,α)
such that τ ′ ≥ τ . The usual arguments show that these maps are indepen-
dent of the choice of (asymptotically monotone) homotopy and compatible
under composition, so that we can define symplectic homology as the obvious
direct limit

SHh
∗ (W,ω) = lim

−→
τ→∞

FHh
∗ (Hτ , J).

Remark 4.2. As we’ve defined it, it’s still not obvious whether SHh
∗ (W,ω)

depends on the choice of contact form α at the boundary, as our space of
admissible almost complex structures J (W,ω,α) clearly depends on this
choice. In light of Remark 3.2 however, such dependence would be sur-

prising, as the construction of the completion (Ŵ , ω̂) does not really depend
on α. Indeed, SHh

∗ (W,ω) is in fact independent of α, and one can prove it via
continuation maps for homotopies of J between J (W,ω,α) and J (W,ω,α′)
for any two contact forms α,α′. This just requires a slightly more careful
convexity argument to obtain C0-bounds, details of which may be found
in [Sei]. Another proof that SHh

∗ (W,ω) doesn’t depend on α follows from
the fact that it is invariant under symplectic deformations, see Theorem 4.6
below.

Remark 4.3. One might wonder whether SHh
∗ (W,ω) could have been defined

without a direct limit, just by a sufficiently intelligent choice of Hamilton-
ian. Whatever “sufficiently intelligent” means, it clearly must be one that
includes all the orbits of Xα as 1-periodic orbits, which can be achieved by
choosing H∞

t to satisfy

H∞(t, a,m) = H̄∞(t, ea)

for (a,m) ∈ [T0,∞)×M , where ∂aH̄
∞(t, a) is always increasing and satisfies

0 < ∂aH̄
∞

(
t, eT0

)
< inf{τ > 0 | τ ∈ Spec(M,α)},

lim
a→∞

∂aH̄
∞(t, ea) = ∞.

Then for any J ∈ J (M,ω,α), Prop. 4.1 allows us to define the Floer ho-
mology FHh

∗ (H∞, J), as well as a continuation map

(4.4) FHh
∗ (Hτ , J) → FHh

∗ (H∞, J)

for every Hτ ∈ Hτ . After taking the direct limit we thus obtain a map

(4.5) SHh
∗ (W,ω) → FHh

∗ (H∞, J).
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Is it an isomorphism? As explained in [Sei], this is not too hard to see in at
least one important case: assume for simplicity

[ω] = c1(TW ) = 0,

which is true for instance if (W,ω) is the unit disk bundle D∗Q ⊂ T ∗Q in a
cotangent bundle with its standard symplectic structure. Then we can take
R = H2(W ), drop the Novikov ring and define FCh

∗ (H∞) simply as the
free group generated by all 1-periodic orbits; in particular, infinite formal
sums are not allowed. Now by a clever choice of a sequence Hτ ∈ Hτ as
τ → ∞, one can arrange for all generators of FCh

∗ (Hτ ) to be generators
of FCh

∗ (H∞) as well, and for the maps (4.4) to be induced by the natural
inclusions of the chain complexes. Then since FCh

∗ (Hτ ) eventually exhausts
FCh

∗ (H∞), (4.5) is an isomorphism.
One trouble with defining SHh

∗ (W,ω) := FHh
∗ (H∞, J) right from the

beginning is that in the absence of continuation maps between arbitrary
choices of Hamiltonians, it’s quite hard to see why FHh

∗ (H∞, J) should be
independent of the choice of H∞. In fact, the easiest proof of this fact is
the one we just outlined, for which one needs the alternative definition of
SHh

∗ (W,ω) as a direct limit. It is nonetheless common in the literature to
define SHh

∗ (W,ω) for certain special cases as the Floer homology of a Hamil-
tonian with specified growth conditions at infinity, e.g. this is typically done
for the case of cotangent bundles. Invariance is then proved by computing

the invariant, which for Ŵ = T ∗Q means constructing an isomorphism to
the homology of the loop space (see [AS06,SW06,Vit]).

Consider now the special case h = 0, so we take only contractible 1-
periodic orbits and write

SH∗(W,ω) := SH0
∗ (W,ω).

One of the fundamental properties of symplectic homology is an analog of the
isomorphism between the Floer homology of a closed symplectic manifold
and its singular homology. It is not hard to see from the above construction:
choose τ > 0 less than the smallest number in Spec(M,α) and a Hamiltonian
Hτ ∈ Hτ that is a time-independent Morse function that takes the form
Hτ (a,m) = τea + c on [T0,∞) × M and is C2-small everywhere else, with
all critical points in the interior of W . Then just as in the closed case,
the only 1-periodic orbits are the constant orbits at critical points, and for
a generic time-independent J ∈ J (W,ω,α), the 1-dimensional spaces of
Floer trajectories consist only of negative gradient flow lines for the Morse

function −Hτ : Ŵ → R. Since the gradient flow in question flows outward
through the boundary, the corresponding Morse homology is isomorphic to
H∗(W,∂W ). Then using the natural map from FH∗(H

τ , J) to the direct
limit, we obtain a natural map

H∗+n(W,∂W ; Λω) → SH∗(W,ω).

Moreover, if ∂W has no closed characteristics contractible in W , then FC∗(H
τ )

already contains all the generators of SH∗(W,ω), and one can find a sequence
Hτk ∈ Hτk

with τk → ∞ such that all the natural maps FH∗(H
τ
k , J) →

FH∗(H
τℓ , J) for ℓ > k are isomorphisms, implying that the above map is
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an isomorphism as well. This is the idea behind the following result proved
in [Vit99]:

Theorem 4.4. There is a natural Λω-module homomorphism

(4.6) H∗+n(W,∂W ; Λω) → SH∗(W,ω),

and it is an isomorphism if ∂W has no closed characteristics that are con-
tractible in W .

In light of this result, one says that (W,ω) satsifies the algebraic Weinstein
conjecture if the map (4.6) is not an isomorphism.

Example 4.5. The algebraic Weinstein conjecture is not really a conjecture,
as it is easy to show that it doesn’t always hold: consider for instance the unit
disk bundle D∗Σ ⊂ T ∗Σ over a closed oriented surface Σ with a Riemannian
metric. For the natural choice of contact form on ∂(D∗Σ), the Reeb orbits
are lifts of geodesics on Σ, and thus cannot be contractible in D∗Σ unless the
corresponding geodesics are contractible. But clearly contractible geodesics
do not always exist; take for instance the flat metric on T 2. It follows that
(4.6) is an isomorphism when W = D∗T 2. Note that this algebraic fact
never disproves the existence of contractible Reeb orbits: e.g. if (M, ξ) is a
contact 3-manifold, then for any contractible knot K ⊂ M transverse to ξ
(these always exist), one can choose a contact form for ξ that makes K a
Reeb orbit. For the case of ∂(D∗T 2) = T 3, that is a different contact form
from the canonical one.

We conclude this introduction with a quick survey of the properties of
SH∗(W,ω) and a few of its applications.

Deformation invariance. It turns out that SH∗(W,ω) is invariant under
not only symplectomorphisms, but also symplectic deformations.

Theorem 4.6. Suppose {ωτ}τ∈[0,1] is a smooth family of cohomologous4

symplectic forms on W such that ∂W has convex boundary for all ωτ . Then

SH∗(W,ω0) ∼= SH∗(W,ω1).

One consequence of this is the fact that SH∗(W,ω) doesn’t depend on the
choice of Liouville vector field at ∂W (and hence the choice of contact form
on M), since one can always deform the boundary of the neighborhood

((−ǫ, 0] × M,d(eaα))

to a graph in R×M to produce some multiple of any desired contact form (for
the same contact structure) on the boundary. Put another way, this means

that SH∗(W,ω) really only depends on the completion (Ŵ , ω̂), not on (W,ω)
itself. In this way it is radically different from the quantitative invariant

4The condition that the forms ωτ all be cohomologous can sometimes be weakened, but
one must be careful since the definition of the Novikov ring we use for coefficients generally
depends on [ω] ∈ H2

dR(W ). Recall that on closed manifolds, cohomologous deformations
of symplectic forms always arise from isotopies due to the Moser stability theorem, but
this is not generally true on manifolds with boundary. For an example of what can be
proved about non-cohomologous deformations, see [Rit10, §6].
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discussed in §2.5 As Seidel [Sei, §7] explains, this hints at the fact that
symplectic homology can be extended over a larger category that includes
certain types of noncompact symplectic manifolds: examples include the
completions of Liouville domains as well as Stein manifolds with infinitely
many critical points.

Viterbo functoriality. One of the main results proved by Viterbo in
[Vit99] was that a codimension 0 embedding

(W0, ω0) →֒ (W,ω)

of one symplectic manifold with boundary into a larger one induces a so-
called transfer map on the symplectic homologies between them. For techni-
cal reasons, this only works under some extra assumptions, the most natural
of which is to suppose that both are Liouville domains, and one is a Liouville
subdomain of the other.

Theorem 4.7. Suppose (W,dλ) is a Liouville domain with λ|T (∂W ) a pos-
itive contact form, and W0 ⊂ W is a compact codimension 0 submanifold
such that λ|T (∂W0) is also a positive contact form. Then there exists a natural
homomorphism

SH∗(W,dλ) → SH∗(W0, dλ).

Moreover, this map fits together with the map from Theorem 4.4 and the
natural map on relative singular homology H∗(W,∂W ) → H∗(W0, ∂W0) to
form the following commutative diagram:

H∗+n(W,∂W ) −−−−→ H∗+n(W0, ∂W0)y
y

SH∗(W,dλ) −−−−→ SH∗(W0, dλ)

Some computations and applications. The simplest computation of
symplectic homology is for the standard symplectic ball: the answer is

(4.7) SH∗(B
2n

, ω0) = 0.

This result should not be mistaken for a lack of information: considering

that H∗(B
2n

, ∂B
2n

) does not vanish, this computation together with Theo-
rem 4.4 implies the Weinstein conjecture for the standard contact structure
on S2n−1. Various methods for carrying out the computation are described
in [Oan04] and [Sei].

A substantial generalization of this computation follows from the work
of Oancea [Oan03] and Cieliebak [Cie], strengthening a previous result of
Viterbo [Vit99]:

Theorem 4.8. If (W,ω) is any subcritical Stein domain, then SH∗(W,ω) =
0.

This of course implies the Weinstein conjecture for all contact manifolds
that admit subcritical Stein fillings. Cieliebak [Cie02] proved in fact that

5This is not to say that one cannot also extract more quantitative information from
SH∗(W,ω), which does admit an action filtration similar to the discussion in §2.
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attaching subcritical handles to Stein domains does not change their sym-
plectic homology, so Theorem 4.8 may be seen as a corollary of this result
together with the computation (4.7) for the ball.

Lest one should get the impression that symplectic homology always van-
ishes, we should mention the computation [Vit,AS06,SW06] for the cotan-
gent bundle T ∗Q of a smooth manifold Q, or rather for the unit disk bundle
D∗Q ⊂ T ∗Q with its canonical exact symplectic structure dλcan. The result
provides an isomorphism to the singular homology of the free loop space
of Q:

Theorem 4.9. SH∗(D
∗Q, dλcan) = H∗(ΛQ).

This yields an especially interesting result when combined with Theo-
rems 4.7 and 4.8. Suppose (W,dλ) is a subcritical Stein domain and

L ⊂ W

is an exact Lagrangian submanifold, i.e. λ|TL is exact. In this case, a neigh-
borhood of L can be identified with D∗L, embedded into (W,dλ) as a Liou-
ville subdomain, so Theorem 4.7 provides a transfer map

0 = SH∗(W,dλ) → SH∗(D
∗L, dλcan) = H∗(ΛL).

When combined with the maps of Theorem 4.4 and the resulting commuta-
tive diagram, one can derive a contradiction and thus the following general-
ization of a theorem of Gromov [Gro85]:

Theorem 4.10. If (W,ω) is a subcritical Stein domain, then it does not
admit any exact Lagrangian embeddings.

Finally, we mention a pair of results due to Seidel and Smith (see [Sei])
that concern the existence of exotic symplectic and contact structures.

Theorem 4.11. If (W,ω) is a 2n-dimensional Liouville domain whose bound-
ary is a standard contact sphere, then SH∗(W,ω) = 0.

This fits in with a pattern of classification results for symplectic fillings
of the sphere: in fact it’s obvious for n = 2 due to a result of Gromov
[Gro85] and Eliashberg [Eli90a], that the standard contact S3 has only one
Stein filling up to symplectic deformation. No such precise result is known
in higher dimensions, though a theorem usually attributed to Eliashberg-
Floer-McDuff (see [McD91]) states that every Stein filling of the standard
S2n−1 must at least be diffeomorphic to the ball, and this fact is used in the
proof of the above result. Using results from [SS05], Seidel and Smith con-

structed a Liouville domain that is diffeomorphic to B
8

but has nonvanishing
symplectic homology, hence:

Corollary. There exists a symplectic structure on B
8

with restricted contact
type boundary that is not contactomorphic to the standard S7.

More results along these lines have been produced recently by Mark
McLean [McL09], using symplectic homology to distinguish the symplec-
tic structures on diffeomorphic Stein manifolds constructed via Lefschetz
fibrations.
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symplectiques compactes à bord de type contact, Ph.D. Thesis, Université Paris
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