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If linear algebra is the study of vector spaces and linear maps, then
multilinear algebra is the study of tensor products and the natural gener-
alizations of linear maps that arise from this construction. Such concepts
are extremely useful in differential geometry but are essentially algebraic
rather than geometric; we shall thus introduce them in this appendix us-
ing only algebraic notions. We’ll see finally in §A.10 how to apply them
to tangent spaces on manifolds and thus recover the usual formalism of
tensor fields and differential forms. Along the way, we will explain the
conventions of “upper” and “lower” index notation and the Einstein sum-
mation convention, which are standard among physicists but less familiar
in general to mathematicians.
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164 APPENDIX A. MULTILINEAR ALGEBRA

A.1 Vector spaces and linear maps

We assume the reader is somewhat familiar with linear algebra, so at least
most of this section should be review—its main purpose is to establish
notation that is used in the rest of the notes, as well as to clarify the
relationship between real and complex vector spaces.

Throughout this appendix, let F denote either of the fields R or C; we
will refer to elements of this field as scalars. Recall that a vector space
over F (or simply a real/complex vector space) is a set V together with two
algebraic operations:

• (vector addition) V × V → V : (v, w) 7→ v + w

• (scalar multiplication) F × V → V : (λ, v) 7→ λv

One should always keep in mind the standard examples Fn for n ≥ 0;
as we will recall in a moment, every finite dimensional vector space is
isomorphic to one of these. The operations are required to satisfy the
following properties:

• (associativity) (u + v) + w = u + (v + w).

• (commutativity) v + w = w + v.

• (additive identity) There exists a zero vector 0 ∈ V such that
0 + v = v for all v ∈ V .

• (additive inverse) For each v ∈ V there is an inverse element
−v ∈ V such that v + (−v) = 0. (This is of course abbreviated
v − v = 0.)

• (distributivity) For scalar multiplication, (λ + µ)v = λv + µv and
λ(v + w) = λv + λw.

• (scalar associativity) λ(µv) = (λµ)v.

• (scalar identity) 1v = v for all v ∈ V .

Observe that every complex vector space can also be considered a real
vector space, though the reverse is not true. That is, in a complex vector
space, there is automatically a well defined notion of multiplication by real
scalars, but in real vector spaces, one has no notion of “multiplication by
i”. As is also discussed in Chapter 2, such a notion can sometimes (though
not always) be defined as an extra piece of structure on a real vector space.

For two vector spaces V and W over the same field F, a map

A : V → W : v 7→ Av

is called linear if it respects both vector addition and scalar multiplication,
meaning it satisfies the relations A(v + w) = Av +Aw and A(λv) = λ(Av)
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for all v, w ∈ V and λ ∈ F. Linear maps are also sometimes called vector
space homomorphisms, and we therefore use the notation

Hom(V, W ) := {A : V → W | A is linear}.

The symbols L(V, W ) and L(V, W ) are also quite common but are not used
in these notes. When F = C, we may sometimes want to specify that we
mean the set of real or complex linear maps by defining:

HomR(V, W ) := {A : V → W | A is real linear}
HomC(V, W ) := Hom(V, W ).

The first definition treats both V and W as real vector spaces, reducing
the set of scalars from C to R. The distinction is that a real linear map on
a complex vector space need not satisfy A(λv) = λ(Av) for all λ ∈ C, but
rather for λ ∈ R. Thus every complex linear map is also real linear, but
the reverse is not true: there are many more real linear maps in general.
An example is the operation of complex conjugation

C → C : x + iy 7→ x + iy = x − iy.

Indeed, we can consider C as a real vector space via the one-to-one corre-
spondence

C → R
2 : x + iy 7→ (x, y).

Then the map z 7→ z̄ is equivalent to the linear map (x, y) 7→ (x,−y)
on R2; it is therefore real linear, but it does not respect multiplication by
complex scalars in general, e.g. iz 6= iz̄. It does however have another nice
property that deserves a name: for two complex vector spaces V and W ,
a map A : V → W is called antilinear (or complex antilinear) if it is real
linear and also satisfies

A(iv) = −i(Av).

Equivalently, such maps satisfy A(λv) = λ̄v for all λ ∈ C. The canonical
example is complex conjugation in n dimensions:

C
n → C

n : (z1, . . . , zn) 7→ (z̄1, . . . , z̄n),

and one obtains many more examples by composing this conjugation with
any complex linear map. We denote the set of complex antilinear maps
from V to W by

HomC(V, W ).

When the domain and target space are the same, a linear map V → V
is sometimes called a vector space endomorphism, and we therefore use the
notation

End(V ) := Hom(V, V ),
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with corresponding definitions for EndR(V ), EndC(V ) and EndC(V ).
Observe that all these sets of linear maps are themselves also vector

spaces in a natural way: simply define (A+B)v := Av +Bv and (λA)v :=
λ(Av).

Given a vector space V , a subspace V ′ ⊂ V is a subset which is closed
under both vector addition and scalar multiplication, i.e. v + w ∈ V ′ and
λv ∈ V ′ for all v, w ∈ V ′ and λ ∈ F. Every linear map A ∈ Hom(V, W )
gives rise to important subspaces of V and W : the kernel

ker A = {v ∈ V | Av = 0} ⊂ V

and image

im A = {w ∈ W | w = Av for some v ∈ V } ⊂ W.

We say that A ∈ Hom(V, W ) is injective (or one-to-one) if Av = Aw always
implies v = w, and surjective (or onto) if every w ∈ W can be written as
Av for some v ∈ V . It is useful to recall the basic algebraic fact that A is
injective if and only if its kernel is the trivial subspace {0} ⊂ V . (Prove
it!)

An isomorphism between V and W is a linear map A ∈ Hom(V, W )
that is both injective and surjective: in this case it is invertible, i.e. there is
another map A−1 ∈ Hom(W, V ) so that the compositions A−1A and AA−1

are the identity map on V and W respectively. Two vector spaces are
isomorphic if there exists an isomorphism between them. When V = W ,
isomorphisms V → V are also called automorphisms, and the space of
these is denoted by

Aut(V ) = {A ∈ End(V ) | A is invertible}.
This is not a vector space since the sum of two invertible maps need not
be invertible. It is however a group, with the natural “multiplication”
operation defined by composition of linear maps:

AB := A ◦ B.

As a special case, for V = Fn one has the general linear group GL(n, F) :=
Aut(Fn). This and its subgroups are discussed in some detail in Ap-
pendix B.

A.2 Bases, indices and the summation con-

vention

A basis of a vector space V is a set of vectors e(1), . . . , e(n) ∈ V such that
every v ∈ V can be expressed as

v =
n∑

j=1

cje(j)
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for some unique set of scalars c1, . . . , cn ∈ F. If a basis of n vectors exists,
then the vector space V is called n-dimensional. Observe that the map

F
n → V : (c1, . . . , cn) 7→

n∑

j=1

cje(j)

is then an isomorphism, so every n-dimensional vector space over F is
isomorphic to Fn. Not every vector space is n-dimensional for some n ≥ 0:
there are also infinite dimensional vector spaces, e.g. the set of continuous
functions f : [0, 1] → R, with addition and scalar multiplication defined by
(f+g)(x) := f(x)+g(x) and (λf)(x) := λf(x). Such spaces are interesting,
but beyond the scope of the present discussion: for the remainder of this
appendix, we restrict attention to finite dimensional vector spaces.

It is time now to begin explaining the index notation that is ubiq-
uitous in the physics literature and in more classical treatments of dif-
ferential geometry. Given an n-dimensional vector space V and a basis
e(1), . . . , e(n) ∈ V , any vector v ∈ V can be written as

v = vje(j), (A.1)

where the numbers vj ∈ F for j = 1, . . . , n are called the components of v,
and there is an implied summation: one would write (A.1) more literally
as

v =
n∑

j=1

vje(j).

The shorthand version we see in (A.1) makes use of the Einstein summation
convention, in which a summation is implied whenever one sees a pair of
matching upper and lower indices. Moreover, the choice of upper and
lower is not arbitrary: we intentionally assigned a lower index to the basis
vectors, so that the components could have an upper index. This is a
matter of well established convention.

In physicists’ terminology, a vector whose components are labelled with
upper indices is called a contravariant vector; there are also covariant
vectors, whose components have lower indices—these are in fact slightly
different objects, the dual vectors to be discussed in §A.3.

Now that bases have entered the discussion, it becomes convenient to
describe linear maps via matrices. In principle, this is the same thing
as using basis vectors and components for the vector space Hom(V, W ).
Indeed, given bases e(1), . . . , e(n) ∈ V and f(1), . . . , f(m) ∈ W , we obtain a
natural basis

{a (j)
(i) }j=1,...,n

i=1,...,m

of Hom(V, W ) by defining a
(j)

(i) (e(j)) = f(i) and a
(j)

(i) (e(k)) = 0 for k 6= j.

To see that this is a basis, note that for any A ∈ Hom(V, W ), the fact that
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f(1), . . . , f(m) is a basis of W implies there exist unique scalars Ai
j ∈ F such

that
Ae(j) = Ai

jf(i),

where again summation over i is implied on the right hand side. Then for
any v = vje(j) ∈ V , we exploit the properties of linearity and find1

(Ai
ja

(j)
(i) )v = (Ai

ja
(j)

(i) )vke(k) = Ai
jv

ka
(j)

(i) e(k)

= (Ai
jv

j)f(i) = vjAi
jf(i) = vjAe(j) = A(vje(j)) = Av.

(A.2)

Thus A = Ai
ja

(j)
(i) , and we’ve also derived the standard formula for

matrix-vector multiplication:

(Av)i = Ai
jv

j.

Exercise A.1. If you’re not yet comfortable with the summation conven-
tion, rewrite the derivation (A.2) including all the summation signs. Most
terms should contain two or three; two of them contain only one, and only
the last has none.

Exercise A.2. If B : V → X and A : X → W are linear maps and (AB)i
j

are the components of the composition AB : V → W , derive the standard
formula for matrix-matrix multiplication:

(AB)i
j = Ai

kB
k
j .

It should be emphasized at this point that our choice of upper and
lower indices in the symbol Ai

j is not arbitrary: the placement is selected
specifically so that the Einstein summation convention can be applied, and
it is tied up with the fact that A is a linear map from one vector space
to another. In the following we will see other matrices for which one uses
either two upper or two lower indices—the reason is that such matrices
play a different role algebraically, as something other than linear maps.

Exercise A.3 (Change of basis). If e(1), . . . , e(n) and ê(1), . . . , ê(n) are two
bases of V , we can write each of the vectors e(i) as linear combinations of

the ê(j): this means there are unique scalars Sj
i for i, j = 1, . . . , n such

that e(i) = ê(j)S
j
i . Use this to derive the formula

v̂i = Si
j v

j

relating the components vi of any vector v ∈ V with respect to {e(i)} to its
components v̂i with respect to {ê(i)}. Note that if we define vectors v =
(v1, . . . , vn) and v̂ = (v̂1, . . . , v̂n) ∈ Fn and regard Si

j as the components
of an n-by-n invertible matrix S, this relation simply says

v̂ = Sv.
1A reminder: any matching pair of upper and lower indices implies a summation, so

some terms in (A.2) have as many as three implied summations.
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A.3 Dual spaces

Any n-dimensiional vector space V has a corresponding dual space

V ∗ := Hom(V, F),

whose elements are called dual vectors, or sometimes covectors, or 1-forms;
physicists also favor the term covariant (as opposed to contravariant) vec-
tors. The spaces V and V ∗ are closely related and are in fact isomorphic,
though it’s important to observe that there is no canonical isomorphism
between them. Isomorphisms between V and V ∗ do arise naturally from
various types of extra structure we might add to V : the simplest of these
is a basis. Indeed, if e(1), . . . , e(n) is a basis of V , there is a corresponding
dual basis θ(1), . . . , θ(n) of V ∗, defined by the condition

θ(i)(e(j)) =

{
1 if i = j,

0 otherwise.

Extending the definition of θ(i) by linearity to a map V → F, we see that
for any v = vje(j) ∈ V ,

θ(i)(vje(j)) = vi.

Notice that we’ve chosen an upper index for the dual basis vectors, and we
will correspondingly use a lower index for components in V ∗:

α = αjθ
(j) ∈ V ∗.

This choice is motivated by the fact that dual vectors can naturally be
paired with vectors, giving rise to an implied summation:

α(v) = αjθ
(j)(vie(i)) = αjv

iθ(j)(e(i)) = αjv
j ∈ F. (A.3)

When working in a basis, it often makes sense to think of vectors as column
vectors in Fn, and dual vectors as row vectors, i.e.

v =




v1

...
vn


 α =

(
α1 · · ·αn

)
,

so that in terms of matrix multiplication, (A.3) becomes

α(v) = αv.

There are situations in which the choice to use lower indices for compo-
nents of dual vectors might not make sense. After all, V ∗ is itself a vector
space, and independently of its association with V , we could simply choose
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an arbitrary basis θ(1), . . . , θ(n) of V ∗ and write dual vectors as α = αjθ(j).
The difference is one of perspective rather than reality. Whenever we wish
to view elements of V ∗ specifically as linear maps V → F, it is customary
and appropriate to use lower indices for components.

While the isomorphism between V and V ∗ is generally dependent on
a choice, it should be noted that the dual space of V ∗ itself is naturally
isomorphic to V . Indeed, an isomorphism Φ : V → V ∗∗ is defined by
setting

Φ(v)(α) := α(v)

for any α ∈ V ∗. It is therefore often convenient to blur the distinction
between V and V ∗∗, using the same notation for elements of both.

Exercise A.4. Verify that the map Φ : V → V ∗∗ defined above is an
isomorphism. Note: this is not always true in infinite dimensional vector
spaces.

Exercise A.5. Referring to Exercise A.3, assume e(1), . . . , e(n) is a basis

of V and ê(1), . . . , ê(n) is another basis, related to the first by e(i) = ê(j)S
j
i

where Si
j ∈ F are the components of an invertible n-by-n matrix S. Denote

the components of S−1 by (S−1)i
j, and show that the corresponding dual

bases are related by
θ(i) = (S−1)i

j θ̂
(j),

while the components of a dual vector α = αiθ
(i) = α̂iθ̂

(i) transform as

α̂i = αj(S
−1)j

i.

In particular, putting these components together as row vectors, we have

α̂ = αS−1.

A.4 Inner products, raising and lowering in-

dices

On a real vector space V , an inner product is a pairing 〈 , 〉 : V × V → R

that has the following properties:

• (bilinear) For any fixed v0 ∈ V , the maps V → R : v 7→ 〈v0, v〉 and
v 7→ 〈v, v0〉 are both linear.

• (symmetric) 〈v, w〉 = 〈w, v〉.

• (positive) 〈v, v〉 ≥ 0, with equality if and only if v = 0.2

2As we’ll discuss at the end of this section, is is sometimes appropriate to relax
the positivity condition—this is particularly important in the geometric formulation of
relativity.
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In the complex case we instead consider a pairing 〈 , 〉 : V × V → C and
generalize the first two properties as follows:

• (sesquilinear) For any fixed v0 ∈ V , the maps V → C : v 7→ 〈v0, v〉
and v 7→ 〈v, v0〉 are linear and antilinear respectively.

• (symmetry) 〈v, w〉 = 〈w, v〉.

The standard models of inner products are the dot product for vectors
v = (v1, . . . , vn) in Euclidean n-space,

v · w =

n∑

j=1

vjwj, (A.4)

and its complex analogue in Cn,

v · w =
n∑

j=1

v̄jwj. (A.5)

In both cases, one interprets

|v| :=
√

v · v =

√∑

j

|vj|2

as the length of the vector v, and in the real case, one can also compute
the angle θ between vectors v and w via the formula v · w = |v||w| cos θ.
Inner products on real vector spaces are always understood to have this
geometric interpretation.

In some sense, (A.4) and (A.5) describe all possible inner products.
Certainly, choosing a basis e(1), . . . , e(n) of any vector space V , one can
write vectors in components v = vje(j) and use (A.4) or (A.5) to define an
inner product. In this case the chosen basis turns out to be an orthonormal
basis, meaning

〈e(i), e(j)〉 =

{
1 if i = j,

0 otherwise.

Conversely, one can show that any inner product 〈 , 〉 admits an orthonor-
mal basis,3 in which case a quick computation gives (A.4) or (A.5) as the
formula for 〈 , 〉 in components.

Given any basis e(1), . . . , e(n) of V , not necessarily orthonormal, 〈 , 〉 is
fully determined by the set of scalars

gij := 〈e(i), e(j)〉 ∈ F,

3Such a basis is constructed by the Gram-Schidt orthogonalization procedure, see for
instance [Str80].
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for i, j ∈ {1, . . . , n}. Indeed, we compute

〈v, w〉 = 〈vie(i), w
je(j)〉 = v̄iwj〈e(i), e(j)〉 = gijv̄

iwj. (A.6)

(This is the complex case; the real case is the same except we can ignore
complex conjugation.) Notice how the choice of two lower indices in gij

makes sense in light of the summation convention. The n-by-n matrix g

with entries gij is symmetric in the real case, and Hermitian in the complex
case, i.e. it satisfies g† := gT = g. Then in matrix notation, treating vi

and wj as the entries of column vectors v and w, we have

〈v, w〉 = vTgw = v†gw,

or simply vTgw in the real case.
An inner product can be used to “raise” or “lower” indices, which is an

alternative way to say that it determines a natural isomorphism between V
and its dual space. For simplicity, assume for the remainder of this section
that V is a real vector space (most of what we will say can be generalized
to the complex case with a little care). Given an inner product on V , there
is a homomorphism

V → V ∗ : v 7→ v[

defined by setting v[(w) = 〈v, w〉.4 The positivity of 〈 , 〉 implies that
v 7→ v[ is an injective map, and it is therefore also surjective since V and
V ∗ have the same dimension. The inverse map is denoted by

V ∗ → V : α 7→ α],

and the resulting identification of V with V ∗ is called a musical isomor-
phism. We can now write the pairing 〈v, w〉 alternatively as either v[(w) or
w[(v). In index notation, the convention is that given a vector v = vje(j) ∈
V , we denote the corresponding dual vector

v[ = vjθ
(j),

i.e. the components of v[ are labelled with the same letter but a lowered
index. It is important to remember that the objects labelled by components
vj and vj are not the same, but they are closely related: the danger of
confusion is outweighed by the convenience of being able to express the
inner product in shorthand form as

〈v, w〉 = v[(w) = vjw
j.

Comparing with (A.6), we find

vi = gijv
j, (A.7)

4In the complex case the map v 7→ v[ is not linear, but antilinear.
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or in matrix notation,
v[ = vTg.

It’s clear from this discussion that g must be an invertible matrix; its
inverse will make an appearance shortly.

One can similarly “raise” the index of a dual vector α = αjθ
(j), writing

α] = αje(j). To write αj in terms of αj, it’s useful first to observe that
there is an induced inner product on V ∗, defined by

〈α, β〉 := 〈α], β]〉

for any dual vectors α, β ∈ V ∗. Define gij = 〈θ(i), θ(j)〉, so the same argu-
ment as in (A.6) gives

〈α, β〉 = gijαiβj.

This is of course the same thing as β(α]) = βjα
j, thus

αi = gijαj. (A.8)

In light of (A.7), we see now that gij are precisely the entries of the inverse
matrix g−1. This fact can be expressed in the form

gijg
jk = δ k

i ,

where the right hand side is the Kronecker delta,

δ j
i :=

{
1 if i = j,

0 otherwise.

In some situations, notably in Lorentzian geometry (the mathematical
setting for General Relativity), one prefers to use inner products that are
not necessarily positive but satisfy a weaker requirement:

• (nondegenerate) There is no v0 ∈ V such that 〈v0, v〉 = 0 for all
v ∈ V .

An example is the Minkowski inner product, defined for four-vectors v =
vµe(µ) ∈ R4, µ = 0, . . . , 3 by

〈v, w〉 = v0w0 −
3∑

j=1

vjwj.

This plays a crucial role in relativity: though one can no longer interpret√
〈v, v〉 as a length, the product contains information about the geometry

of three-dimensional space while treating time (the “zeroth” dimension)
somewhat differently.
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All of the discussion above is valid for this weaker notion of inner prod-
ucts as well. The crucial observation is that nondegeneracy guarantees that
the homomorphism V → V ∗ : v 7→ v[ be injective, and therefore still an
isomorphism—then the same prescription for raising and lowering indices
still makes sense. So for instance, using the summation convention we can
write the Minkowski inner product as 〈v, w〉 = vµwµ = ηµνv

µwν, where ηµν

are the entries of the matrix

η :=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

Exercise A.6. If 〈 , 〉 is the standard inner product on Rn and X =
(X1, . . . , Xn) ∈ Rn is a vector, show that the components Xj of X [ ∈ (Rn)∗

satisfy Xj = Xj. Show however that this is not true if 〈 , 〉 is the Minkowski
inner product on R4.

A.5 Direct sums

The direct sum of two vector spaces V and W is the vector space V ⊕
W consisting of pairs (v, w) ∈ V × W , with vector addition and scalar
multiplication defined by

(v, w) + (v′, w′) = (v + v′, w + w′),

λ(v, w) = (λv, λw).

As a set, V ⊕ W is the same as the Cartesian product V × W , but the
“sum” notation is more appropriate from a linear algebra perspective since
dim(V ⊕ W ) = dim V + dim W .

One can easily extend the definition of a direct sum to more than two
vector spaces: in particular the direct sum of k copies of V itself is some-
times denoted by

V k = V ⊕ . . . ⊕ V.

Both V and W are naturally subspaces of V ⊕ W by identifying v ∈
V with (v, 0) ∈ V ⊕ W and so forth; in particular then, V and W are
transverse subspaces with trivial intersection. Given bases e(1), . . . , e(m) ∈
V and f(1), . . . , f(n) ∈ W , we naturally obtain a basis of V ⊕W in the form

e(1), . . . , e(m), f(1), . . . , f(n) ∈ V ⊕ W.

Moreover if both spaces have inner products, denoted 〈 , 〉V and 〈 , 〉W
respectively, an inner product on the direct sum is naturally defined by

〈(v, w), (v′, w′)〉V ⊕W = 〈v, v′〉V + 〈w, w′〉W .
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In terms of components, if 〈 , 〉V and 〈 , 〉W are described by matrices gV
ij

and gW
ij respectively, then the matrix gV ⊕W

ij for 〈 , 〉V ⊕W has the form

gV ⊕W =

(
gV

gW

)
.

Exercise A.7. Show that the spaces (V ⊕W )∗ and V ∗⊕W ∗ are naturally
isomorphic.

A.6 Tensors and multilinear maps

We now begin the generalization from linear to multi linear algebra. We’ve
already seen one important example of a multilinear map, namely the inner
product on a real vector space V , which gives a bilinear transformation
V × V → R. More generally, given vector spaces V1, . . . , Vk and W , a map

T : V1 × . . . × Vk → W

is called multilinear if it is separately linear on each factor, i.e. for each
m = 1, . . . , k, fixing vj ∈ Vj for j = 1, . . . , m − 1, m + 1, . . . , k, the map

Vm → W : v 7→ T (v1, . . . , vm−1, v, vm+1, . . . , vk)

is linear.

Definition A.8. For an n-dimensional vector space V and nonnegative
integers k and `, define the vector space V k

` to consist of all multilinear
maps

T : V × . . . × V︸ ︷︷ ︸
`

×V ∗ × . . . × V ∗

︸ ︷︷ ︸
k

→ F.

These are called tensors of type (k, `) over V .

Thus tensors T ∈ V k
` act on sets of ` vectors and k dual vectors, and

by convention V 0
0 = F. A choice of basis e(1), . . . , e(n) for V , together with

the induced dual basis θ(1), . . . , θ(n) for V ∗, determines a natural basis for
V k

` defined by setting

a
(j1)...(j`)

(i1)...(ik) (e(j1), . . . , e(j`), θ
(i1), . . . , θ(ik)) = 1

and requiring that a
(j1)...(j`)

(i1)...(ik) vanish on any other combination of basis
vectors and basis dual vectors. Here the indices ik and jk each vary from
1 to n, thus dim V k

` = nk+`.
To any T ∈ V k

` , we assign k upper indices and ` lower indices T i1...ik
j1...j`

∈
F, so that

T = T i1...ik
j1...j`

a
(j1)...(j`)

(i1)...(ik) .
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As one can easily check, it is equivalent to define the components by eval-
uating T on the relevant basis vectors:

T i1...ik
j1...j`

= T
(
e(j1), . . . , e(j`), θ

(i1), . . . , θ(ik)
)
.

The evaluation of T on a general set of vectors v(i) = vj
(i)e(j) and dual

vectors α(i) = α
(i)
j θ(j) now takes the form

T
(
v(1), . . . , v(`), α

(1), . . . , α(k)
)

= T i1...ik
j1...j`

vj1
(1) . . . vj`

(`)α
(1)
i1

. . . α
(k)
ik

.

We’ve seen several examples of tensors so far. Obviously

V 0
1 = Hom(V, F) = V ∗,

so tensors of type (0, 1) are simply dual vectors. Similarly, we have V 1
0 =

Hom(V ∗, F) = V ∗∗, which, as was observed in §A.3, is naturally isomorphic
to V . Thus we can think of tensors of type (1, 0) as vectors in V . An
inner product on a real vector space V is a tensor of type (0, 2), and the
corresponding inner product on V ∗ is a tensor of type (2, 0).5 Note that our
conventions on upper and lower indices for inner products are consistent
with the more general definition above for tensors.

Here is a slightly less obvious example of a tensor that we’ve already
seen: it turns out that tensors of type (1, 1) can be thought of simply as
linear maps V → V . This is suggested already by the observation that
both objects have the same pattern of indices: one upper and one lower,
each running from 1 to n.

Proposition A.9. There is a natural isomorphism Φ : End(V ) → V 1
1

defined by
Φ(A)(v, α) = α(Av),

and the components with respect to any basis of V satisfy Ai
j = [Φ(A)]ij.

Proof. One easily checks that Φ is a linear map and both spaces have
dimension n2, thus we only need to show that Φ is injective. Indeed, if
Φ(A) = 0 then α(Av) = 0 for all v ∈ V and α ∈ V ∗, implying A = 0, so
Φ is in fact an isomorphism. The identification of the components follows
now by observing

Φ(A)(v, α) = [Φ(A)]ijv
jαi = α(Av) = αiA

i
jv

j.

5The complex case is slightly more complicated because bilinear does not mean quite
the same thing as sesquilinear. To treat this properly we would have to generalize our
definition of tensors to allow antilinearity on some factors. Since we’re more interested
in the real case in general, we leave further details on the complex case as an exercise
to the reader.
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Exercise A.10. Generalize Prop. A.9 to find a natural isomorphism be-
tween V 1

k and the space of multilinear maps V × . . . × V︸ ︷︷ ︸
k

→ V .6

Exercise A.11. You should do the following exercise exactly once in your
life. Given distinct bases {e(i)} and {ê(j)} related by e(i) = ê(j)S

j
i as in

Exercises A.3 and A.5, show that the components T i1...ik
j1...j`

and T̂ i1...ik
j1...j`

of a tensor T ∈ V k
` with respect to these two bases are related by

T̂ i1...ik
j1...j`

= Si1
p1

. . . Sik
pk

T p1...pk
q1...q`

(S−1)q1

j1
. . . (S−1)q`

j`
. (A.9)

For the case of a type (1, 1) tensor A ∈ End(V ), whose components Ai
j

and Âi
j form square matrices A and Â respectively, the transformation

formula (A.9) reduces to

Â = SAS−1. (A.10)

Formula (A.9) is important for historical reasons: in classical texts on
differential geometry, tensors were often defined not directly as multilinear
maps but rather as indexed sets of scalars that transform precisely as in
(A.9) under a change of basis. In fact, this is still the most common
definition in the physics literature. Mathematicians today much prefer the
manifestly basis-independent definition via multilinear maps, but (A.9) and
(A.10) are nevertheless occasionally useful, as we see in the next result.

Proposition A.12. If A ∈ V 1
1 has components Ai

j with respect to any basis
of V , the scalar Ai

i ∈ F (note the implied summation!) is independent of
the choice of basis.

Proof. In linear algebra terms, Ai
i is the trace trA, so we appeal to the

well known fact that traces are unchanged under change of basis. The
proof of this is quite simple: it begins with the observation that for any
two n-by-n matrices B and C,

tr(BC) = (BC)i
i = Bi

jC
j
i = Ci

j B
j
i = (CB)i

i = tr(CB).

Thus we can rearrange ordering and compute

tr Â = tr(SAS−1) = tr[(SA)S−1] = tr[S−1(SA)] = trA.

6An important example in the case k = 3 appears in Riemannian geometry: the
Riemann tensor, which carries all information about curvature on a Riemannian man-
ifold M , is a tensor field of type (1, 3), best interpreted as a trilinear bundle map
TM ⊕ TM ⊕ TM → TM .
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This result implies that there is a well defined operation

tr : V 1
1 → F

which associates to A ∈ V 1
1 the trace trA = Ai

i ∈ F computed with respect
to any basis (and independent of the choice). This operation on the tensor
A is called a contraction. One can generalize Prop. A.12 to define more
general contractions

V k+1
`+1 → V k

` : T 7→ tr T

by choosing any p ∈ 1, . . . , k + 1 and q ∈ 1, . . . , ` + 1, then computing the
corresponding trace of the components T

i1...i`+1

j1...jk+1
to define tr T with

components

(trT )i1...i`
j1...jk

= T
i1...iq−1miq ...i`

j1...jp−1mjp...jk
.

An important example is the Ricci curvature on a Riemannian manifold:
it is a tensor field of type (0, 2) defined as a contraction of a tensor field of
type (1, 3), namely the Riemann curvature tensor. (See [GHL04] or [Car]).

If V is a real vector space with inner product 〈 , 〉, the musical iso-
morphisms V → V ∗ : v 7→ v[ and V ∗ → V : α 7→ α] give rise to various
isomorphisms

V k
` → V k+1

`−1 and V k
` → V k−1

`+1 .

For instance, if T ∈ V k
` with k ≥ 1, then for any m = 1, . . . , k, we can

define a new multlinear map

T [ : V × . . . × V︸ ︷︷ ︸
`

×V ∗ × . . . × V ∗

︸ ︷︷ ︸
m−1

×V × V ∗ × . . . × V ∗

︸ ︷︷ ︸
k−m

→ R

by

T [(v(1), . . . , v(`), α
(1), . . . , α(m−1), v, α(m+1), . . . , α(k))

= T (v(1), . . . , v(`), α
(1), . . . , α(m−1), v[, α(m+1), . . . , α(k)).

Choosing a basis, we denote the components of the inner product by gij

and recall the relation vi = gijv
j between the components of v[ and v

respectively. Then we find that T [ has components

T
i1...im−1 im+1...ik

r j1...j`
= grsT

i1...im−1sim+1...ik
j1...j`

.

By reordering the factors slightly, we can regard T [ naturally as a tensor
in V k−1

`+1 . This operation T 7→ T [ is often referred to as using the inner
product to lower an index of T . Indices can similarly be raised, giving
isomorphisms V k

` → V k+1
`−1 : T 7→ T ]. Observe that by definition, the inner

product gij on V ∗ is itself a tensor of type (2, 0) that we obtain from the
inner product gij on V by raising both indices:

gij = gikgj`gk`.

This implies again the fact that gij and gij are inverse matrices.
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A.7 The tensor product

The nk+`-dimensional vector space V k
` can be thought of in a natural way

as a “product” of k + ` vector spaces of dimension n, namely k copies
of V and ` copies of V ∗. To make this precise, we must define the tensor
product V ⊗W of two vector spaces V and W . This is a vector space whose
dimension is the product of dim V and dim W , and it comes with a natural
bilinear “product” operation ⊗ : V × W → V ⊗ W : (v, w) 7→ v ⊗ w.

There are multiple ways to define the tensor product, with a varying
balance between concreteness and abstract simplicity: we shall begin on
the more concrete end of the spectrum by defining the bilinear operation

⊗ : V k
` × V p

q → V k+p
`+q : (S, T ) 7→ S ⊗ T,

(S ⊗ T )(v(1), . . . , v(`), w(1), . . . , w(q), α
(1), . . . , α(k), β(1), . . . , β(p))

:= S(v(1), . . . , v(`), α
(1), . . . , α(k)) · T (w(1), . . . , w(q), β

(1), . . . , β(p)).

This extends naturally to an associative multilinear product for any number
of tensors on V . In particular, choosing a basis e(1), . . . , e(n) of V = V ∗∗

and corresponding dual basis θ(1), . . . , θ(n) of V ∗, one checks easily that the
naturally induced basis of V k

` described in the previous section consists of
the tensor products

a
(j1)...(j`)

(i1)...(ik) = θ(j1) ⊗ . . . ⊗ θ(j`) ⊗ e(i1) ⊗ . . . ⊗ e(ik).

The infinite direct sum
T (V ) =

⊕

k,`

V k
` ,

with its bilinear product operation ⊗ : T (V )×T (V ) → T (V ) is called the
tensor algebra over V .

The above suggests the following more general definition of a tensor
product. Recall that any finite dimensional vector space V is naturally
isomorphic to V ∗∗, the dual of its dual space, and thus every vector v ∈ V
can be identified with the linear map V ∗ → R : α 7→ α(v). Now for any two
finite dimensional vector spaces V and W , define V ⊗ W to be the vector
space of bilinear maps V ∗ × W ∗ → R; we then have a natural product
operation ⊗ : V × W → V ⊗ W such that

(v ⊗ w)(α, β) = α(v)β(w)

for any α ∈ V ∗, β ∈ W ∗. Extending the product operation in the obvious
way to more than two factors, one can then define the k-fold tensor product
of V with itself,

⊗kV =

k⊗

j=1

V = V ⊗ . . . ⊗ V︸ ︷︷ ︸
k

.
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There is now a natural isomorphism

V k
` =

(
⊗kV ∗

)
⊗

(
⊗`V

)
.

Exercise A.13. If e(1), . . . , e(m) is a basis of V and f(1), . . . , f(n) is a basis
of W , show that the set of all products of the form e(i) ⊗ f(j) gives a basis
of V ⊗ W . In particular, dim(V ⊗ W ) = mn.

We now give an equivalent definition which is more abstract but has
the virtue of not relying on the identification of V with V ∗∗. If X is any
set, denote by F(X) the free vector space generated by X, defined as the
set of all formal sums ∑

x∈X

axx

with ax ∈ F and only finitely many of the coefficients ax nonzero. Addition
and scalar multiplication on F(X) are defined by

∑

x∈X

axx +
∑

x∈X

bxx =
∑

x∈X

(ax + bx)x,

c
∑

x∈X

axx =
∑

x∈X

caxx.

Note that each element of X can be considered a vector in F(X), and
unless X is a finite set, F(X) is infinite dimensional.

Setting X = V × W , there is an equivalence relation ∼ on F(V × W )
generated by the relations

(v + v′, w) ∼ (v, w) + (v′, w), (v, w + w′) ∼ (v, w) + (v, w′),

(cv, w) ∼ c(v, w) ∼ (v, cw)

for all v, v′ ∈ V , w, w′ ∈ W and c ∈ F. We then define

V ⊗ W = F(V × W )/ ∼,

and denoting by [x] the equivalence class represented by x ∈ V × W ,

v ⊗ w := [(v, w)].

The definition of our equivalence relation is designed precisely so that this
tensor product operation should be bilinear. It follows from Exercises A.17
and A.18 below that our two definitions of V ⊗ W are equivalent.

Exercise A.14. Show that V ⊗ W as defined above has a well defined
vector space structure induced from that of F(V ×W ), and that ⊗ is then
a bilinear map V × W → V ⊗ W .
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Exercise A.15. Show that if e(1), . . . , e(m) is a basis of V and f(1), . . . , f(n)

a basis of W , a basis of V ⊗ W (according to the new definition) is given
by

{e(i) ⊗ f(j)}i=1,...,m, j=1,...,n.

Moreover if v = vie(i) ∈ V and w = wif(i) ∈ W then v⊗w = (v⊗w)ije(i)⊗
f(j) where the components of the product are given by

(v ⊗ w)ij = viwj.

Observe that elements of V ⊗W can often be written in many different
ways, for example 2(v ⊗ w) = 2v ⊗ w = v ⊗ 2w, and 0 = 0 ⊗ w = v ⊗ 0
for any v ∈ V , w ∈ W . It is also important to recognize that (in contrast
to the direct sum V ⊕ W ) not every vector in V ⊗ W can be written as a
product v⊗w, though everything is a sum of such products. The following
exercise gives an illustrative example.

Exercise A.16. Denote by e(j) the standard basis vectors of Rn, regarded
as column vectors. Show that there is an isomorphism R

m ⊗ R
n ∼= R

m×n

that maps e(i) ⊗e(j) to the m-by-n matrix e(i)e(j)
T. The latter has 1 in the

ith row and jth column, and zero everywhere else.

Exercise A.17. For any vector spaces V1, . . . , Vk, find a natural isomor-
phism (V1 ⊗ . . . ⊗ Vk)

∗ = V ∗
1 ⊗ . . . ⊗ V ∗

k .

Exercise A.18. For any vector spaces V1, . . . , Vk and W , show that there
is a natural isomorphism between Hom(V1 ⊗ . . .⊗ Vk, W ) and the space of
multilinear maps V1 × . . . × Vk → W .

Exercise A.19. Use the second definition of the tensor product to show
that the following spaces are all naturally isomorphic:

(i) V k
`

(ii)
(
⊗`V ∗

)
⊗

(
⊗kV

)

(iii) Hom
(
⊗`V,⊗kV

)

If V and W are spaces of dimension m and n equipped with inner
products 〈 , 〉V and 〈 , 〉W respectively, then there is a natural inner
product 〈 , 〉V ⊗W on V ⊗ W such that

〈v ⊗ w, v′ ⊗ w′〉V ⊗W = 〈v, v′〉V · 〈w, w′〉W .

This product is extended uniquely to all pairs in V ⊗ W by bilinearity,
though the reader should take a moment to check that the resulting con-
struction is well defined. Recall from §A.4 that an inner product on V also
gives rise naturally to an inner product on V ∗. In this way, one also obtains
natural inner products on the tensor spaces V k

` . For example on ⊗kV , the
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product 〈 , 〉⊗kV has the property that if e(1), . . . , e(n) is an orthonormal
basis of V , then the basis of ⊗kV defined by all products of the form

e(i1) ⊗ . . . ⊗ e(ik)

is also orthonormal.

A.8 Symmetric and exterior algebras

For an n-dimensional vector space V , we now single out some special sub-
spaces of the k-fold tensor product ⊗kV . These are simplest to understand
when V is given as a dual space, since ⊗kV ∗ is equivalent to the space of
k-multilinear maps V × . . . × V → F. We examine this case first.

Recall that a permutation of k elements is by definition a bijective
map σ of the set {1, . . . , k} to itself. There are k! distinct permutations,
which form the symmetric group Sk. It is generated by a set of simple
permutations σij for which σ(i) = j, σ(j) = i and σ maps every other
number to itself. We call such a permutation a flip. In general, any σ ∈ Sk

is called odd (even) if it can be written as a composition of an odd (even)
number of flips. We define the parity of σ by

|σ| =

{
0 if σ is even,

1 if σ is odd.

The parity usually appears in the form of a sign (−1)|σ|, thus one sometimes
also refers to odd or even permutations as negative or positive respectively.

Regarding ⊗kV ∗ as a space of multilinear maps on V , an element T ∈
⊗kV ∗ is called symmetric if T (v1, . . . , vk) is always unchanged under ex-
change of any two of the vectors vi and vj. Similarly we call T antisymmet-
ric (or sometimes skew-symmetric or alternating) if T (v1, . . . , vk) changes
sign under every such exchange. Both definitions can be rephrased in terms
of permutations by saying that T is symmetric if for all v1, . . . , vk ∈ V and
any σ ∈ Sk,

T (v1, . . . , vk) = T (vσ(1), . . . , vσ(k)),

while T is antisymmetric if

T (v1, . . . , vk) = (−1)|σ|T (vσ(1), . . . , vσ(k)).

The sets of symmetric and antisymmetric tensors are clearly linear sub-
spaces of ⊗kV ∗, which we denote by

SkV ∗ and ΛkV ∗

respectively.
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Define the symmetric projection Sym : ⊗kV ∗ → ⊗kV ∗ by

(Sym T )(v1, . . . , vk) =
1

k!

∑

σ∈Sk

T (vσ(1), . . . , vσ(k)),

and the antisymmetric (or alternating) projection Alt : ⊗kV ∗ → ⊗kV ∗,

(Alt T )(v1, . . . , vk) =
1

k!

∑

σ∈Sk

(−1)|σ|T (vσ(1), . . . , vσ(k)).

Both are linear maps.

Exercise A.20. Show that

(i) Sym ◦ Sym = Sym and Alt ◦Alt = Alt.

(ii) A tensor T ∈ ⊗kV ∗ is in SkV ∗ if and only if Sym(T ) = T , and
T ∈ ΛkV ∗ if and only if Alt(T ) = T .

The subspaces SkV, ΛkV ⊂ ⊗kV can be defined via the recipe above
if we treat V as the dual space of V ∗, but of course this is not the most
elegant approach. Instead we generalize the above constructions as follows.
Define Sym : ⊗kV → ⊗kV as the unique linear map which acts on products
v1 ⊗ . . . ⊗ vk by

Sym(v1 ⊗ . . . ⊗ vk) =
1

k!

∑

σ∈Sk

vσ(1) ⊗ . . . ⊗ vσ(k).

Note that this definition is somewhat indirect since not every element of
⊗kV can be written as such a product; but since every element is a sum of
such products, the map Sym is clearly unique if it is well defined. We leave
the proof of the latter as an exercise to the reader, with the hint that, for
instance in the case k = 2, it suffices to prove relations of the form

Sym((v + v′) ⊗ w) = Sym(v ⊗ w) + Sym(v′ ⊗ w).

We define Alt : ⊗kV → ⊗kV similarly via

Alt(v1 ⊗ . . . ⊗ vk) =
1

k!

∑

σ∈Sk

(−1)|σ|vσ(1) ⊗ . . . ⊗ vσ(k).

Exercise A.21. Show that the above definitions of Sym and Alt on ⊗kV
are equivalent to our original definitions if V is regarded as the dual space
of V ∗.
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It is a straightforward matter to generalize Exercise A.20 and show that
Sym and Alt are both projection operators on ⊗kV , that is Sym ◦ Sym =
Sym and Alt ◦Alt = Alt. We now define the symmetric and antisymmetric
subspaces to be the images of these projections:

SkV = Sym(⊗kV ), ΛkV = Alt(⊗kV ).

Equivalently, T ∈ ΛkV if and only if Alt(T ) = T , and similarly for SkV .
The elements of ΛkV are sometimes called k-vectors.

One can combine the tensor product with the projections above to
define product operations that preserve symmetric and antisymmetric ten-
sors. We focus here on the antisymmetric case, since it is of greatest use
in differential geometry. The seemingly obvious definition for a product of
α ∈ ΛkV and β ∈ Λ`V would be

Alt(α ⊗ β) ∈ Λk+`V,

but this is not quite right. The reason why not is most easily seen in
the special case of the dual space V ∗, where alternating forms in ΛkV ∗

can be interpreted as computing the signed volumes of parallelopipeds. In
particular, assume V and W are real vector spaces of dimension m and
n respectively, and α ∈ ΛmV and β ∈ ΛnW are both nonzero. We can
interpret both geometrically by saying for instance that α(v1, . . . , vm) ∈ R

is the signed volume of the parallelopiped in V spanned by v1, . . . , vm, with
the sign corresponding to a choice of orientation on V . Now extend α and
β to define forms on V ⊕ W via the natural projections πV : V ⊕ W → V
and πW : V ⊕ W → W , e.g.

α(v1, . . . , vm) := α(π(v1), . . . , π(vm))

for v1, . . . , vm ∈ V ⊕ W . Geometrically, one now obtains a natural notion
for the signed volume of (m+n)-dimensional parallelopipeds in V ⊕W , and
we wish to define the wedge product α∧β ∈ Λm+n((V ⊕W )∗) to reflect this.
In particular, for any set of vectors v1, . . . , vm ∈ V and w1, . . . , wn ∈ W we
must have

(α ∧ β)(v1, . . . , vm, w1, . . . , wn) = α(v1, . . . , vm) · β(w1, . . . , wn)

= (α ⊗ β)(v1, . . . , vm, w1, . . . , wn).
(A.11)

Let us now compute Alt(α ⊗ β)(X1, . . . , Xm+n) where Xj = vj ∈ V for
j = 1, . . . , m and Xm+j = wj ∈ W for j = 1, . . . , n. The crucial observation
is that only a special subset of the permutations σ ∈ Sm+n will matter in
this computation: namely,

(α ⊗ β)(Xσ(1), . . . , Xσ(m+n)) = 0
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unless σ preserves the subsets {1, . . . , m} and {m + 1, . . . , m + n}. This
means that σ must have the form

σ(j) =

{
σV (j) if j ∈ {1, . . . , m},
σW (j − m) + m if j ∈ {m + 1, . . . , m + n}

for some pair of permutations σV ∈ Sm and σW ∈ Sn, and in this case
(−1)|σ| = (−1)|σV |+|σW | = (−1)|σV |(−1)|σW |. Thus we compute:

Alt(α ⊗ β)(v1, . . . , vm, w1, . . . , wn)

=
1

(m + n)!

∑

σ∈Sm+n

(−1)|σ|(α ⊗ β)(Xσ(1), . . . , Xσ(m+n))

=
1

(m + n)!

∑

σV ∈Sm

∑

σW ∈Sn

(−1)|σV |α(vσV (1), . . . , vσV (m))

· (−1)|σW |β(wσW (1), . . . , wσW (n))

=
m!n!

(m + n)!
α(v1, . . . , vm) · β(w1, . . . , wn),

where in the last line we use the fact that α and β are both alternat-
ing. Comparing this with (A.11), we see that in this special case the only
geometrically sensible definition of α ∧ β satisfies the formula

α ∧ β =
(m + n)!

m!n!
Alt(α ⊗ β).

These considerations motivate the following general definition.

Definition A.22. For any α ∈ ΛkV and β ∈ Λ`W , the wedge product
α ∧ β ∈ Λk+`V is defined by

α ∧ β =
(k + `)!

k!`!
Alt(α ⊗ β).

Exercise A.23. Show that the wedge product is bilinear and graded sym-
metric; the latter means that for α ∈ ΛkV and β ∈ Λ`V ,

α ∧ β = (−1)k`β ∧ α.

We’ve taken the geometric argument above as motivation for the com-
binatorial factor (k+`)!

k!`!
, and further justification is provided by the following

result, which depends crucially on this factor:

Exercise A.24. Show that the wedge product is associative, i.e. for any
α ∈ ΛkV , β ∈ Λ`V and γ ∈ ΛpV ,

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).
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The direct sum

Λ∗V :=

∞⊕

k=0

ΛkV

with bilinear operation ∧ : Λ∗V ×Λ∗V → Λ∗V is called the exterior algebra
of V , with the wedge product also sometimes referred to as the exterior
product. Note that we include k = 0 in this sum: by convention Λ0V = F,
and the wedge product of any c ∈ Λ0V with α ∈ ΛkV is simply c ∧ α =
α ∧ c := cα.

In light of Exercise A.24, it makes sense to consider wedge products
of more than two elements in Λ∗V , and one verifies by a simple induction
argument that for any v1, . . . , vk ∈ V ,

v1 ∧ . . . ∧ vk =
∑

σ∈Sk

(−1)|σ|vσ(1) ⊗ . . . ⊗ vσ(k). (A.12)

This provides a simple way to write down a basis of ΛkV in terms of
a given basis e(1), . . . , e(n) of V . Indeed, recall that any ω ∈ ⊗kV can be
written uniquely in terms of components ωi1...ik ∈ F as ω = ωi1...ike(i1) ⊗
. . . ⊗ e(ik). A formula for these components is obtained by interpreting ω
as a k-multilinear map on V ∗: plugging in the corresponding dual basis
vectors θ(1), . . . , θ(n), we have

ω(θ(i1), . . . , θ(ik)) = ωj1...jk(e(j1) ⊗ . . . ⊗ e(jk))(θ
(i1), . . . , θ(ik))

= ωj1...jkθ(i1)(e(j1)) . . . θ(ik)(e(jk))

= ωi1...ik .

It follows that if ω ∈ ΛkV , the components ωi1...ik are antisymmetric with
respect to permutations of the indices. Then applying (A.12), we have

ω = Alt(ω) = Alt
(
ωi1...ike(i1) ⊗ . . . ⊗ e(ik)

)

= ωi1...ik Alt
(
e(i1) ⊗ . . . ⊗ e(ik)

)
=

1

k!
ωi1...ike(i1) ∧ . . . ∧ e(ik)

=
∑

i1<...<ik

ωi1...ike(i1) ∧ . . . ∧ e(ik),

where we must point out that in the last expression we are not using the
summation convention. This proves:

Proposition A.25. If V is a vector space with basis e(1), . . . , e(n), then for
k ∈ {1, . . . , n}, dim ΛkV =

(
n
k

)
= n!

k!(n−k)!
, and a basis of ΛkV is given by

all products of the form
e(i1) ∧ . . . ∧ e(ik)

with 1 ≤ i1 < . . . < ik ≤ n.
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An important corollary to the discussion above is that ΛkV = {0}
whenever k > n, thus in contrast to the full tensor algebra T (V ), Λ∗V is
finite dimensional. We also see that dim ΛnV = 1: in particular, for any
basis e(1), . . . , e(n), every ω ∈ ΛnV is a multiple of e(1) ∧ . . . ∧ e(n).

Exercise A.26. Given a basis e(1), . . . , e(n) of V and a set of n vectors
v(j) = vi

(j)e(i), show that

v(1) ∧ . . . ∧ v(n) = det(V) e(1) ∧ . . . ∧ e(n),

where V is the n-by-n matrix whose entry in the ith row and jth column is
vi
(j). Hint: the basis defines an isomorphism Fn → V , so that forming the

n-fold wedge product above leads to an antisymmetric n-form on Fn. The
determinant, regarded as a multilinear map on the columns of a matrix, is
such an n-form. How many others are there?

A volume form on the n-dimensional vector space V is any nonzero ele-
ment µ of the 1-dimensional vector space ΛnV . As explained in Chapter 2,
if V is a real vector space then such a choice defines a notion of signed
volume for n-dimensional parallelopipeds in V . Suppose now that V is
equipped with an inner product 〈 , 〉 and e(1), . . . , e(n) is an orthonormal
basis. This basis then defines a volume form e(1) ∧ . . . ∧ e(n), and for any
other basis f(1), . . . , f(n) there is a number c ∈ F such that

f(1) ∧ . . . ∧ f(n) = c e(1) ∧ . . . ∧ e(n). (A.13)

We claim that if f(1), . . . , f(n) is also orthonormal, then |c| = 1. Indeed,
this follows from Exercise A.26 and the observation that the matrix V with
entries f j

(i) is in this case orthogonal (or unitary, in the complex case), so

| det(V)| = 1. (See Appendix B for the relevant details on orthogonal and
unitary matrices.) This observation is most interesting in the real case, for
it says that the two volume forms in (A.13) are equal up to a sign. The sign
can be fixed if V is also equipped with an orientation, which means every
basis of V is labelled positive or negative, two bases always having the same
sign if they can be deformed into one another. Indeed, the constant c ∈ R

in (A.13) is positive if and only if the basis f(1), . . . , f(n) can be deformed
through a continuous family of bases to e(1), . . . , e(n). This proves:

Proposition A.27. Suppose V is an oriented vector space equipped with
an inner product 〈 , 〉. Then there is a unique volume form µ ∈ ΛnV such
that

µ = e(1) ∧ . . . ∧ e(n)

for every positively oriented orthonormal basis e(1), . . . , e(n).
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An inner product on V also defines inner products on each of the spaces
ΛkV in a natural way. The most obvious definition would arise from the
observation that ΛkV is a subspace of ⊗kV , so one could simply restrict
〈 , 〉⊗kV . This turns out to be almost but not quite the most desirable
definition.

Proposition A.28. If V has an inner product 〈 , 〉 then there is a unique
inner product 〈 , 〉ΛkV on ΛkV such that for every orthonormal basis
e(1), . . . , e(n) of V , the basis of ΛkV consisting of all products of the form

e(i1) ∧ . . . ∧ e(ik)

is also orthonormal.

Proof. If e(1), . . . , e(n) is an orthonormal basis of V , then recalling from the
end of §A.7 the inner product 〈 , 〉⊗kV on ⊗kV , it is easy to check that

〈e(i1) ∧ . . . ∧ e(ik), e(j1) ∧ . . . ∧ e(jk)〉⊗kV = 0

unless e(i1) ∧ . . . ∧ e(ik) = ±e(j1) ∧ . . . ∧ e(jk). Now from (A.12), we find

〈e(i1) ∧ e(ik), e(i1) ∧ e(ik)〉⊗kV = k!,

thus the new product

〈 , 〉ΛkV :=
1

k!
〈 , 〉⊗kV

has the desired properties.

Observe that by the above construction, the special volume form µ =
e(1) ∧ . . . ∧ e(n) on an oriented inner product space satisfies 〈µ, µ〉ΛnV = 1.
Since ΛnV inherits both an inner product and a natural orientation from
V , we could thus have defined µ as the one element of the unique positively
oriented orthonormal basis of ΛnV . Isn’t that nice?

A.9 Duality and the Hodge star

One notices immediately from the formula dim ΛkV = n!
k!(n−k)!

that ΛkV

and Λn−kV have the same dimension, and are therefore isomorphic. This
raises the question of whether there is a canonical isomorphism ΛkV →
Λn−kV . The answer is no without some additional choices, but we will
show that such an isomorphism does arise naturally if V is equipped with
an orientation and an inner product. Throughout this section we assume
F = R.
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Lemma A.29. The map Φ : Λn−kV → Hom(ΛkV, ΛnV ) defined by

Φ(β)α = α ∧ β

is an isomorphism.

Proof. Since dim ΛnV = 1, we have dim Λn−kV = dim Hom(ΛkV, ΛnV ) =
n!

k!(n−k)!
, thus it suffices to check that Φ is injective. This amounts to the

statement that the bilinear pairing ∧ : ΛkV × Λn−kV → ΛnV is nonde-
generate, i.e. for any nonzero α ∈ ΛkV , there exists β ∈ Λn−kV such that
α ∧ β 6= 0.

We can construct such a β explicitly using a basis e(1), . . . , e(n) of V . A
basis of ΛkV is then given by products of the form e(i1) ∧ . . . ∧ e(ik) with
i1 < . . . < ik, and for each of these there is a unique “dual” product

∗(e(i1) ∧ . . . ∧ e(ik)) := e(j1) ∧ . . . ∧ e(jn−k) ∈ Λn−kV

such that

e(i1) ∧ . . . ∧ e(ik) ∧ e(j1) ∧ . . . ∧ e(jn−k) = e(1) ∧ . . . ∧ e(n).

Extending this by linearity to an isomorphism ∗ : ΛkV → Λn−kV , we can
now write α =

∑
i1<...<ik

αi1...ike(i1) ∧ . . . ∧ e(ik) and compute

α ∧ ∗α =
∑

i1<...<ik

(
αi1...ik

)2
e(1) ∧ . . . ∧ e(n),

so α ∧ ∗α = 0 only if α = 0.

The notation ∗ : ΛkV → Λn−kV used in the proof is a preview of
things to come: this isomorphism as we defined it depends on the choice
of basis e(1), . . . , e(n), but we will see that is no longer the case if the basis
is assumed to be orthonormal and positively oriented. Indeed, if V has
an inner product and orientation, there is then a natural volume form
µ ∈ ΛnV and an induced inner product 〈 , 〉 on ΛkV (see Prop. A.28),
giving rise to an isomorphism

Ψ : ΛkV → Hom(ΛkV, ΛnV )

Ψ(β)α = 〈α, β〉µ.

We now define the Hodge star operator

∗ : ΛkV → Λn−kV

as ∗ = Φ−1 ◦ Ψ, which is equivalent to saying that for any β ∈ ΛkV , ∗β is
the unique element of Λn−kV such that

〈α, β〉 µ = α ∧ ∗β. (A.14)

for all α ∈ ΛkV .
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Exercise A.30. Suppose V is an oriented inner product space with posi-
tive orthonormal basis e(1), . . . , e(n).

(i) Show that for any set of indices 1 ≤ i1 < . . . < ik ≤ n,

∗(e(i1) ∧ . . . ∧ e(ik)) = e(j1) ∧ . . . ∧ e(jn−k)

with j1, . . . , jn−k ∈ {1, . . . , n} chosen so that (i1, . . . , ik, j1, . . . , jn−k)
is any even permutation of (1, . . . , n).

(ii) Show that ∗ : ΛkV → Λn−kV is an isometry, i.e. 〈α, β〉 = 〈∗α, ∗β〉
for any α, β ∈ ΛkV .

(iii) Show that as an operator on ΛkV , ∗2 = (−1)k(n−k).

A.10 Tensor fields and forms on manifolds

Most of the concepts above can be generalized wholesale from a single
vector space V to a smooth vector bundle E → M . Instead of a basis
e(1), . . . , e(n) ∈ V , one then considers a local frame e(1), . . . , e(n) ∈ Γ(E|U),
i.e. a set of sections over some subset U ⊂ M which give bases of the fibers
Ep for p ∈ U . (Note that frames over the entirety of M do not exist unless
E is globally trivializable.) Any section v ∈ Γ(E) can then be written
locally over U in terms of its component functions vi : U → F as

v(p) = vi(p)e(i)(p),

and the same remarks apply to sections of the dual bundle E∗ → M ,
other tensor bundles Ek

` → M , direct sums, tensor products and so forth.
In particular, tensors now become tensor fields, assigning to each p ∈ M
a tensor on the fiber Ep in a manner that varies smoothly with p. As
important examples, introducing smoothly varying inner products on the
fibers gives rise to a bundle metric (these always exist), and if E has rank m,
a volume form is now a smooth nowhere zero section of ΛmE (these exist if
and only if E → M is orientable). Operations such as the tensor product,
wedge product, tensor contractions, musical isomorphisms and the Hodge
star are defined on bundles exactly the same way as on an individual vector
space; note that the last two require first fixing a bundle metric, and the
last also requires an orientation.

For the tangent bundle TM → M , there is a special class of local
frames defined by local coordinate charts. Recall that if M is a smooth
n-manifold, a chart is a diffeomorphism x : U → x(U) ⊂ Rn of some open
subset U ⊂ M to some open subset of Rn, and can be thought of as a set
of real-valued functions x1, . . . , xn : U → R, the coordinates. These define
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a set of differential operators for smooth functions U → R, namely the
partial derivatives

∂j =
∂

∂xj
: C∞(U) → C∞(U).

These are linear operators that satisfy the Leibnitz rule L(fg) = Lf ·g+f ·
Lg and are thus derivations. Now using the natural identification between
vector fields and derivations (see [Spi99]), one can regard ∂1, . . . , ∂n as
smooth vector fields over U , i.e. sections of TM |U , which provide a basis of
each tangent space TpM for p ∈ U . Note that one can also understand these
vector fields as the partial derivatives of the inverse map x−1 : x(U) ↪→ M ,
regarded as a smooth function of the n variables x1, . . . , xn on an open
subset of Rn. Indeed, for p ∈ U one has

∂j|p =
∂x−1

∂xj
(x(p)).

In any case, (∂1, . . . , ∂n) defines a frame for TM over U . The corresponding
dual basis at each point p ∈ U gives a frame for the cotangent bundle T ∗M
over U , and it’s easy to check that this frame consists precisely of the
differentials of the coordinate functions:

dx1, . . . , dxj ∈ Γ(T ∗M |U).

Any tensor field T of type (k, `) over U can then be written via its compo-
nent functions T i1...ik

j1...j`
∈ C∞(U) as

T = T i1...ik
j1...j`

dxj1 ⊗ . . . ⊗ dxj` ⊗ ∂i1 ⊗ . . . ⊗ ∂ik ,

and differential k-forms ω ∈ Ωk(U) = Γ(ΛkT ∗M |U) take the form

ω =
∑

i1<...<ik

ωi1...ik dxi1 ∧ . . . ∧ dxik ,

with smooth component functions ωi1...ik ∈ C∞(U) that are antisymmetric
with respect to exchange of indices.

If M has a Riemannian metric g (i.e. a bundle metric on TM) and an
orientation, then there is a natural volume form µ ∈ Ωn(M) = Γ(ΛnT ∗M)
and a Hodge star operator

∗ : ΛkT ∗M → Λn−kT ∗M

such that using the natural bundle metric on ΛkT ∗M induced by g, α∧∗β =
g(α, β) µ. One can combine this construction with Stokes’ theorem to
define a formal adjoint of the exterior derivative d : Ωk(M) → Ωk+1(M).
This starts from the observation that if α ∈ Ωk(M) and β ∈ Ωn−k−1(M)



192 APPENDIX A. MULTILINEAR ALGEBRA

are any two forms with compact support, then one can choose a compact
n-dimensional submanifold U → M with boundary such that α and β have
support in U and both vanish on ∂U , thus

0 =

∫

∂U

α ∧ β =

∫

U

d(α ∧ β) =

∫

M

d(α ∧ β)

=

∫

M

dα ∧ β + (−1)k

∫

M

α ∧ dβ.

(A.15)

This is essentially the n-dimensional manifold version of integration by
parts.

Exercise A.31. Suppose M is an oriented Riemannian manifold with
metric g and induced volume form µ. Defining the operator δ : Ωk(M) →
Ωk−1(M) by

δ = (−1)n(k+1)+1 ∗ d∗,

use (A.14) and (A.15) to show that for any α ∈ Ωk(M) and β ∈ Ωk−1(M),
both with compact support,

∫

M

g(α, dβ) µ =

∫

M

g(δα, β) µ.

Remark A.32. Even though the two bundles ΛkT ∗M and Λn−kT ∗M have
the same rank, it was by no means obvious that they are isomorphic as
bundles; rather we’ve proved this by constructing the Hodge star operator.
In fact, it’s easy to see that there generally is no such isomorphism if
M is not orientable—in particular Λ0T ∗M is always a trivial line bundle
by definition, while the line bundle ΛnT ∗M is trivial if and only if M
is orientable, so if not there can be no bundle isomorphism Λ0T ∗M →
ΛnT ∗M . This is a major difference between the theories of vector spaces
and vector bundles, and the reason why it’s often important to observe that
certain vector space isomorphisms are “canonical” or “natural” and others
are not. As a rule, any given prescription for defining an isomorphism
of vector spaces will give a similar isomorphism of vector bundles if and
only if the prescription is canonical: that means it can be defined without
reference to objects such as local frames, which do not necessarily exist
globally on a bundle. So for instance, the existence of bundle metrics,
together with our definition of the musical isomorphism V → V ∗ : v 7→ v[

on a vector space, gives rise to a bundle isomorphism E → E∗ for any
real vector bundle. Note that this does not generally work for complex
bundles (because the musical isomorphism is not linear but antilinear),
and in general complex vector bundles are not isomorphic to their dual
bundles.
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