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Curvature on Bundles
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5.1 Flat sections and connections

A connection on a fiber bundle π : E → M allows one to define when a
section is “constant” along smooth paths γ(t) ∈ M ; we call such sections
horizontal, or in the case of a vector bundle, parallel. Since by defini-
tion horizontal sections always exist along any given path, the nontrivial
implications of the following question may not be immediately obvious:

Given p ∈ M and a sufficiently small neighborhood p ∈ U ⊂ M , does

E admit any section s ∈ Γ(E|U) for which ∇s ≡ 0?

A section whose covariant derivative vanishes identically is called a flat or
covariantly constant section. It may seem counterintuitive that the an-
swer could possibly be no—after all, one of the most obvious facts about
smooth functions is that constant functions exist. This translates easily
into a statement about sections of trivial bundles. Of course, all bun-
dles are locally trivial, thus locally one can always find sections that are
constant with respect to a trivialization. These sections are covariantly
constant with respect to a connection determined by the trivialization. As
we will see however, connections of this type are rather special: for generic
connections, flat sections do not exist, even locally!
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Figure 5.1: Parallel transport along a closed path on S2.

Definition 5.1. A connection on the fiber bundle π : E → M is called flat

if for every x ∈ M and p ∈ Ex, there exists a neighborhood x ∈ U ⊂ M

and a flat section s : U → E with s(x) = p.

The flatness of a connection is closely related to the following question:

If E → M is a fiber bundle with a connection and γ : [0, 1] → M is a

smooth path with γ(0) = γ(1), does the parallel transport P t
γ : Eγ(0) →

Eγ(t) satisfy P 1
γ = Id?

In other words, does parallel transport around a closed path bring every
element of the fiber back to itself? Clearly this is the case if the path γ(t)
lies in an open set U ⊂ M on which flat sections s : U → E exist, for then
P t

γ(s(γ(0)) = s(γ(t)).

We can now easily see an example of a connection that is not flat. Let S2

be the unit sphere in R
3, with Riemannian metric and corresponding Levi-

Civita connection on TS2 → S2 inherited from the standard Euclidean
metric on R3. Construct a piecewise smooth closed path γ as follows:
beginning at the equator, travel 90 degrees of longitude along the equator,
then upward along a geodesic to the north pole, and down along a different
geodesic back to the starting point (Figure 5.1). Parallel transport of any
vector along this path has the effect of rotating the original vector by
90 degrees. This implies that the “triangle” bounded by this path does not
admit any covariantly constant vector field.
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5.2 Integrability and the Frobenius theorem

Our main goal in this chapter is to formulate precise conditions for identi-
fying whether a connection is flat. Along the way, we can solve a related
problem which is of independent interest and has nothing intrinsically to
do with bundles: it leads to the theorem of Frobenius on integrable distri-
butions.

The word integrability has a variety of meanings in different contexts:
generally it refers to questions in which one is given some data of a lin-
ear nature, and would like to find some nonlinear data which produce the
given linear data as a form of “derivative”. The problem of finding an-
tiderivatives of smooth functions on R is the simplest example: it is always
solvable (at least in principle) and therefore not very interesting for the
present discussion. A more interesting example is the generalization of
this question to higher dimensions, which can be stated as follows:

Given a 1-form λ on an n-manifold M , under what conditions is λ

locally the differential of a smooth function f : M → R?

Our use of the word “locally” means that for every p ∈ M , we seek a
neighborhood p ∈ U ⊂ M and smooth function f : U → R such that
df = λ|U . The answer to this question is well known: the right condition
is that λ must be a closed 1-form, dλ = 0. Indeed, the Poincaré lemma
generalizes this result by saying that every closed differential k-form locally
is the exterior derivative of some (k − 1)-form.

Here are two more (closely related) integrability results from the theory
of smooth manifolds which we shall find quite useful.

Theorem 5.2. For any vector fields X, Y ∈ Vec(M), the flows ϕs
X and

ϕt
Y commute for all s, t ∈ R if and only if [X, Y ] ≡ 0.

Corollary 5.3. Suppose X1, . . . , Xn ∈ Vec(M) are vector fields such that

[Xi, Xj] ≡ 0 for all i, j ∈ {1, . . . , n}. Then for every p ∈ M there exists a

neighborhood p ∈ U ⊂ M and a coordinate chart x = (x1, . . . , xn) : U → Rn

such that ∂
∂xj ≡ Xj|U for all j.

We refer to [Spi99] for the proofs, though it will be important to recall
why Corollary 5.3 follows from Theorem 5.2: the desired chart x : U → Rn

is constructed as the inverse of a map of the form

f(t1, . . . , tn) = ϕt1

X1
◦ . . . ◦ ϕtn

Xn
(p),

which works precisely because the flows all commute.
The main integrability problem that we wish to address in this chap-

ter concerns distributions: recall that if M is a smooth n-manifold, a k-
dimensional distribution ξ ⊂ TM is a smooth subbundle of rank k in the
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tangent bundle TM → M , in other words, it assigns smoothly to each
tangent space TpM a k-dimensional subspace ξp ⊂ TpM . We say that a
vector field X ∈ Vec(M) is tangent to ξ if X(p) ∈ ξp for all p ∈ M . In this
case X is also a section of the vector bundle ξ → M .

Definition 5.4. Given a distribution ξ ⊂ TM , a smooth submanifold
N ⊂ M is called an integral submanifold of ξ if for all p ∈ N , TpN ⊂ ξp.

Definition 5.5. A k-dimensional distribution ξ ⊂ TM is called inte-

grable if for every p ∈ M there exists a k-dimensional integral submanifold
through p.1

It follows from the basic theory of ordinary differential equations that
every 1-dimensional distribution is integrable: locally one can choose a
nonzero vector field that spans the distribution, and the orbits of this vec-
tor field trace out integral submanifolds. More generally, any distribution
admits 1-dimensional integral submanifolds, and one can further use the
theory of ordinary differential equations to show that k-dimensional inte-
gral submanifolds of a k-dimensional distribution are unique if they exist.
Existence is however not so clear when k ≥ 2. For instance, a 2-dimensional
distribution in R3 may “twist” in such a way as to make integral subman-
ifolds impossible (Figure 5.2).

A simple necessary condition for ξ ⊂ TM to be integrable comes from
considering brackets of vector fields tangent to ξ. Indeed, suppose ξ is inte-
grable, and for every p ∈ M , denote by Np ⊂ M the unique k-dimensional
integral submanifold containing p. The key observation now is that a vec-
tor field X ∈ Vec(M) is tangent to ξ if and only if it is tangent to all
the integral submanifolds, in which case it has well defined restrictions
X|Np

∈ Vec(Np). Thus if X, Y ∈ Vec(M) are both tangent to ξ, so is
[X, Y ], as it must also have well defined restrictions [X, Y ]|Np

∈ Vec(Np)
which match [X|Np

, Y |Np
]. We will see from examples that in general, the

bracket of two vector fields tangent to ξ is not also tangent to ξ, which is
clearly a necessary condition for integrability. The content of Theorem 5.16
below is that this condition is also sufficient.

We will approach the proof of this via a version that applies specifically
to connections on fiber bundles, and is also highly relevant to the flatness
question. Recalling the definition of the covariant derivative on a fiber
bundle E → M , we see that a section s : U → E is flat if and only if
the submanifold s(U) ⊂ E is everywhere tangent to the chosen horizontal

1Some authors give a different though equivalent definition for an integrable distri-
bution: they reverse the roles of Definition 5.5 and Theorem 5.16 so that a distribution
is said to be integrable if it satisfies the conditions stated in the theorem. Then their
version of the Frobenius theorem states that this definition is equivalent to ours. It
comes to the same thing in the end.
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Figure 5.2: A non-integrable 2-dimensional distribution on R3.

subbundle HE ⊂ TE. This means it is an n-dimensional integral subman-
ifold for an n-dimensional distribution on E, and allows us therefore to
reformulate the definition of a flat connection as follows.

Proposition 5.6. If E → M is a fiber bundle, then a connection is flat

if and only if the corresponding horizontal distribution HE ⊂ TE is inte-

grable.

Exercise 5.7. Show that if E is a fiber bundle over a 1-manifold M , then
every connection on E is flat.

Exercise 5.8. Show that the trivial connection on a trivial bundle E =
M × F is flat.

Let π : E → M be a fiber bundle with connection HE ⊂ TE and
denote by

K : TE → V E, H : TE → HE

the two projections defined by the splitting TE = HE ⊕ V E. A vector
field on E is called horizontal or vertical if it is everywhere tangent to HE

or V E respectively. For X ∈ Vec(M), define the horizontal lift of X to be
the unique horizontal vector field Xh ∈ Vec(E) such that Tπ ◦Xh = X ◦π,
or equivalently,

Xh(p) = Horp(X(x))

for each x ∈ M , p ∈ Ex.
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Exercise 5.9. Show that for any X ∈ Vec(M) and f ∈ C∞(M), LXh
(f ◦

π) = (LXf) ◦ π.

Lemma 5.10. Suppose ξ, η ∈ Vec(E) are both horizontal and satisfy Lξf ≡
Lηf for every function f ∈ C∞(E) such that df |V E ≡ 0. Then ξ ≡ η.

Proof. If ξ(p) 6= η(p) for some p ∈ E, assume without loss of generality
that ξ(p) 6= 0. Since ξ(p) ∈ HpE, we can then find a smooth real-valued
function f defined near p which is constant in the vertical directions but
satisfies df(ξ(p)) 6= 0 and df(η(p)) = 0, so Lξf(p) 6= Lηf(p).

Lemma 5.11. For any X, Y ∈ Vec(M), [X, Y ]h = H ◦ [Xh, Yh].

Proof. Observe first that for any ξ ∈ Vec(E) and f ∈ C∞(M),

Lξ(f ◦ π) = LH◦ξ(f ◦ π) + LK◦ξ(f ◦ π) = LH◦ξ(f ◦ π)

since d(f ◦ π)|V E ≡ 0. Then for X, Y ∈ Vec(M), using Exercise 5.9,

LH◦[Xh,Yh](f ◦ π) = L[Xh,Yh](f ◦ π)

= LXh
LYh

(f ◦ π) − LYh
LXh

(f ◦ π)

= LXh
((LY f) ◦ π) − LYh

((LXf) ◦ π)

= (LXLY f) ◦ π − (LY LXf) ◦ π = (L[X,Y ]f) ◦ π.

Likewise, again applying Exercise 5.9,

L[X,Y ]h(f ◦ π) = (L[X,Y ]f) ◦ π = LH◦[Xh,Yh](f ◦ π),

so the result follows from Lemma 5.10

Proposition 5.12. The distribution HE ⊂ TE is integrable if and only if

for every pair of vector fields X, Y ∈ Vec(M), [Xh, Yh] is horizontal.

Proof. If HE is integrable, then the lifts Xh, Yh ∈ Vec(E) are tangent to
the integral submanifolds, implying that [Xh, Yh] is as well. To prove the
converse, for any x ∈ M , pick pointwise linearly independent vector fields
X1, . . . , Xn on a neighborhood x ∈ U ⊂ M such that [Xi, Xj] = 0 for each
pair, and denote ξj := (Xj)h. By assumption [ξi, ξj] is horizontal, thus by
Lemma 5.11,

[ξi, ξj] = H ◦ [ξi, ξj] = [Xi, Xj]h = 0.

Therefore for any p ∈ Ex, we can construct an integral submanifold through
p via the commuting flows of ξi: it is parametrized by the map

f(t1, . . . , tn) = ϕt1

ξ1
◦ . . . ◦ ϕtn

ξn
(p) (5.1)

for real numbers t1, . . . , tn sufficiently close to 0.
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Exercise 5.13. Verify that the map (5.1) parametrizes an embedded in-
tegral submanifold of HE.

Exercise 5.14. Show that the bilinear map ΩK : Vec(E) × Vec(E) →
Vec(E) defined by

ΩK(ξ, η) = −K ([H(ξ), H(η)]) (5.2)

is C∞-linear in both variables.

By the result of this exercise, (5.2) defines an antisymmetric bundle
map ΩK : TE ⊕ TE → V E, called the curvature 2-form associated to the
connection. Combining this with Prop. 5.12, we find that the vanishing of
this 2-form characterizes flat connections:

Theorem 5.15. A connection on the fiber bundle π : E → M is flat if

and only if its curvature 2-form vanishes identically.

Proof. If HE is integrable then the bracket of the two horizontal vector
fields H(ξ) and H(η) is also horizontal, thus ΩK(ξ, η) = 0. Conversely
if this is true for every ξ, η ∈ Vec(E), then it holds in particular for the
horizontal lifts Xh and Yh of X, Y ∈ Vec(M), implying that [Xh, Yh] is
horizontal, and by Prop. 5.12, HE is integrable.

We conclude this section with the promised integrability theorem for
distributions in general—the result has nothing intrinsically to do with
fiber bundles, but our proof rests on the fact that locally, both situations
are the same.

Theorem 5.16 (Frobenius). A distribution ξ ⊂ TM is integrable if and

only if for every pair of vector fields X, Y ∈ Vec(M) tangent to ξ, [X, Y ]
is also tangent to ξ.

Proof. The question is fundamentally local, so we can assume without
loss of generality that M is an open subset U ⊂ Rn, and arrange the
k-dimensional distribution ξ ⊂ TRn|U so that for each x ∈ U , ξp ⊂ Rn

is transverse to a fixed subspace R
n−k ⊂ R

n. We can then view ξ as a
connection on a fiber bundle which has U as its total space and U × Rn−k

as the vertical subbundle, and the result follows from Theorem 5.15.

Exercise 5.17. Using cylindrical polar coordinates (ρ, φ, z) on R3, define
the 1-form

λ = f(ρ) dz + g(ρ) dφ, (5.3)

where f and g are smooth real-valued functions such that (f(ρ), g(ρ)) 6=
(0, 0) for all ρ, and define a 2-dimensional distribution by ξ = ker λ ⊂ TR3,
i.e. for p ∈ R3, ξp = ker(λp). An example of such a distribution is shown in
Figure 5.2. In this problem we develop a general scheme for determining
whether distributions of this type are integrable. Indeed, if λ is any 1-form
on R

3 that is nowhere zero, show that the following are equivalent:
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1. λ ∧ dλ ≡ 0.

2. The restriction of dλ to a bilinear form on the bundle ξ is everywhere
degenerate, i.e. at every p ∈ R3, there is a vector X ∈ ξp such that
dλ(X, Y ) = 0 for all Y ∈ ξp.

3. ξ is integrable.

Conclude that the distribution defined as the kernel of (5.3) is integrable
if and only if f ′(ρ)g(ρ) − f(ρ)g′(ρ) = 0 for all ρ.

5.3 Curvature on a vector bundle

If E → M is a vector bundle and ∇ is a linear connection, it is natural
to ask whether covariant derivative operators ∇X and ∇Y in different di-
rections commute. Of course this is not even true in general for the Lie
derivatives LX and LY on C∞(M), which one can view as the trivial con-
nection on a trivial line bundle. Their lack of commutativity can however
be measured via the identity

LXLY − LY LX = L[X,Y ],

and one might wonder whether it is true more generally that ∇X∇Y −
∇Y ∇X = ∇[X,Y ] as operators on Γ(E). The answer turns out to be no in
general, but the failure of this identity can be measured precisely in terms
of curvature.

Definition 5.18. Given a linear connection ∇ on a vector bundle E → M ,
the curvature tensor 2 is the unique multilinear bundle map

R : TM ⊕ TM ⊕ E → E : (X, Y, v) 7→ R(X, Y )v

such that for all X, Y ∈ Vec(M) and v ∈ Γ(E),

R(X, Y )v = (∇X∇Y −∇Y ∇X −∇[X,Y ])v.

Exercise 5.19. Show that R(X, Y )v is C∞-linear with respect to each of
the three variables.

Exercise 5.20. Choosing coordinates x = (x1, . . . , xn) : U → Rn and
a frame (e(1), . . . , e(m)) for E over some open subset U ⊂ M , define the

components of R by Ri
jk` so that (R(X, Y )v)i = Ri

jk`X
jY kv`. Show that

Ri
jk` = ∂jΓ

i
k` − ∂kΓ

i
j` + Γi

jmΓm
k` − Γi

kmΓm
j`.

2This choice of terminology foreshadows Theorem 5.21, which relates the curvature
tensor to the curvature 2-form for fiber bundles described in the previous section.
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It may be surprising at first sight that R(X, Y )v doesn’t depend on any
derivatives of v: indeed, it seems to tell us less about v than about the
connection itself. Our main goal in this section is to establish a precise
relationship between the new curvature tensor R and the curvature 2-form
ΩK defined in the previous section. In particular, this next result implies
that “covariant mixed partials” commute if and only if the connection is
flat.

Theorem 5.21. For any vector bundle E → M with connection ∇, the

curvature tensor R satisfies

R(X, Y )v = −K ([Xh, Yh](v))

for any vector fields X, Y ∈ Vec(M) and v ∈ E.

Note that K on the right hand side of this formula is not quite the same
projection as in the previous section: as is standard for linear connections,
K is now the connection map K : TE → E obtained from the vertical
projection via the identification VvE = Ep for v ∈ Ep. In light of this, it is
natural to give a slightly new (but equivalent) definition of the curvature
2-form when the connection is linear. We define an antisymmetric bilinear
bundle map ΩK : TM ⊕ TM → End(E) by the formula

ΩK(X, Y )v = −K([Xh, Yh](v)), (5.4)

for any p ∈ M , X, Y ∈ TpM and v ∈ Ep, where on the right hand side
we choose arbitrary extensions of X and Y to vector fields near p. It’s
straightforward to check that this expression is C∞-linear in both X and
Y ; what’s less obvious is that it is also linear with respect to v. This is
true because the connection map K : TE → E satisfies K ◦Tmλ = mλ ◦K

(see Definition 3.9), where mλ : E → E is the map v 7→ λv for any scalar
λ ∈ F. Indeed, since mλ is a diffeomorphism on E whenever λ 6= 0, we
have (mλ)∗[ξ, η] ≡ [(mλ)∗ξ, (mλ)∗η] for any ξ, η ∈ Vec(E), thus

ΩK(X, Y )(λv) = −K([Xh, Yh](λv)) = −K([Xh, Yh] ◦ mλ(v))

= −K(Tmλ ◦ [Xh, Yh](v)) = −mλ ◦ K([Xh, Yh](v))

= λ · ΩK(X, Y )v.

It follows from this and Lemma 3.10 that v 7→ ΩK(X, Y )v is linear.
With our new definition of the curvature 2-form, Theorem 5.21 can be

restated succinctly as

R(X, Y )v = ΩK(X, Y )v.

It follows that ∇X∇Y v −∇Y ∇Xv − ∇[X,Y ]v ≡ 0 for all vector fields X, Y

and sections v if and only if the connection is flat. As an important special
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case, if α(s, t) ∈ M is a smooth map parametrized by two real variables
and v(s, t) ∈ Eα(s,t) defines a smooth section of E along α, we have

∇s∇tv ≡ ∇t∇sv

if and only if ∇ is flat; more generally

∇s∇tv −∇t∇sv = R(∂sα, ∂tα)v.

We shall prove Theorem 5.21 by relating the bracket to an exterior
derivative using a generalization of the standard formula

dα(X, Y ) = LX (α(Y )) − LY (α(X)) − α([X, Y ])

for 1-forms α ∈ Ω1(M). In particular, the definitions of ΩK, K and R

can all be expressed in terms of bundle-valued differential forms. For any
vector bundle π : E → M , define

Ωk(M, E)

to be the vector space of smooth real multilinear bundle maps

ω : TM ⊕ . . . ⊕ TM
︸ ︷︷ ︸

k

→ E

which are antisymmetric in the k variables. By this definition, Ωk(M) is
simply Ωk(M, M ×R), i.e. the space of k-forms taking values in the trivial
real line bundle. Similarly, what we referred to in §3.3.3 as Ωk(M, g) (the
space of g-valued k-forms for a Lie algebra g) is actually Ωk(M, M × g),
though we’ll preserve the old notation when there’s no danger of confusion.
From this perspective, we have

K ∈ Ω1(E, π∗E) and ΩK ∈ Ω2(M, End(E)).

Defining Ω0(M, E) := Γ(E), the covariant derivative gives a linear map
∇ : Ω0(M, E) → Ω1(M, E) = Γ(HomR(TM, E)), and by analogy with the
differential d : Ω0(M) → Ω1(M), it’s natural to extend this to a covariant

exterior derivative

d∇ : Ωk(M, E) → Ωk+1(M, E),

defined as follows. Every ω ∈ Ωk(M, E) can be expressed in local coordi-
nates x = (x1, . . . , xn) : U → Rn as

ω =
∑

1≤ii<...<ik≤n

ωi1...ik dxi1 ∧ . . . ∧ dxik
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for some component sections ωi1...ik ∈ Γ(E|U). Then d∇ω is defined locally
as

d∇ω =
∑

1≤ii<...<ik≤n

∇ωi1...ik ∧ dxi1 ∧ . . . ∧ dxik

=
∑

1≤ii<...<ik≤n

∇jωi1...ik dxj ∧ dxi1 ∧ . . . ∧ dxik .

This is well defined by the same argument as for ordinary differential forms.
Note that one can naturally define wedge products α ∧ β or β ∧ α ∈
Ωk+`(M, E) for α ∈ Ωk(M) and β ∈ Ω`(M, E), but it makes no sense
if both forms are bundle-valued.

Exercise 5.22. Show that d∇ : Ωk(M, E) → Ωk+1(M, E) can equivalently
be defined as the unique linear operator which matches ∇ on Ω0(M, E)
and satisfies the graded Leibnitz rule

d∇(α ∧ β) = d∇α ∧ β + (−1)kα ∧ dβ

for all α ∈ Ωk(M, E) and β ∈ Ω`(M).

Exercise 5.23. Show that for λ ∈ Ω1(M, E) written in local coordinates
over U ⊂ M as λ = λi dxi, the component sections for d∇λ over U are
given by

(d∇λ)ij = ∇iλj −∇jλi.

Use this to prove the coordinate free formula

d∇λ(X, Y ) = ∇X (λ(Y )) −∇Y (λ(X)) − λ([X, Y ]). (5.5)

Hint: for the last step, the main task is to show that the right hand side
of (5.5) gives a well defined bundle-valued 2-form; the rest follows easily
from the coordinate formula.

Proof of Theorem 5.21. We will show that both R(X, Y )v and ΩK(X, Y )v
can be expressed in terms of a covariant exterior derivative of the connec-
tion map K : TE → E. In this context, we regard K as a bundle-valued
1-form K ∈ Ω1(E, π∗E), and use the connection ∇ on π : E → M to
induce a natural connection on the pullback bundle π∗E → E: this is the
unique connection such that for any smooth path γ(t) ∈ E and section
v(t) ∈ (π∗E)γ(t) = Eπ◦γ(t) along γ, ∇tv matches the covariant derivative of
v as a section of E along the path π ◦ γ(t) ∈ M .

We claim first that for any p ∈ M , v ∈ Ep and X, Y ∈ TpM ,

d∇K(Horv(X), Horv(Y )) = ΩK(X, Y )v.

Indeed, extend X and Y to vector fields on M and use the corresponding
horizontal lifts Xh, Yh ∈ Vec(E) as extensions of Horv(X) and Horv(Y ) ∈
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TvE respectively. Then using (5.5) and the fact that K vanishes on hori-
zontal vectors,

d∇K(Xh(v), Yh(v)) = ∇Xh(v) (K(Yh)) −∇Yh(v) (K(Xh)) − K([Xh, Yh](v))

= ΩK(X, Y )v.

We now show that R(X, Y )v can also be expressed in this way. Choose a
smooth map α(s, t) ∈ M for (s, t) ∈ R2 near (0, 0) such that ∂sα(0, 0) = X

and ∂tα(0, 0) = Y , and extend v ∈ Ep to a section v(s, t) ∈ Eα(s,t) along α

such that ∇sv(0, 0) = ∇tv(0, 0) = 0. Then expressing covariant derivatives
via the connection map (e.g. ∇sv = K(∂sv)) and applying (5.5) once more,
we find

R(X, Y )v = ∇s∇tv(0, 0) −∇t∇sv(0, 0)

= ∇s (K(∂sv(s, t))) −∇t (K(∂tv(s, t)))|(s,t)=(0,0)

= d∇K(∂sv, ∂tv) = d∇K(Horv(X), Horv(Y )),

where in the last step we used the assumption that v(s, t) has vanishing
covariant derivatives at (0, 0).

We close the discussion of curvature on general vector bundles by ex-
hibiting two further ways that it can be framed in terms of exterior deriva-
tives. The first of these follows immediately from Equation (5.5): replacing
λ with ∇v for any section v ∈ Γ(E), we have

d2
∇v(X, Y ) = R(X, Y )v. (5.6)

This elegant (though admittedly somewhat mysterious) expression shows
that the covariant exterior derivative does not satisfy d2

∇ = 0 in general.
In fact:

Exercise 5.24. Show that d2
∇ = 0 on Ωk(M, E) for all k if and only if the

connection is flat.

Finally, if π : E → M has structure group G, we can also express
curvature in terms of the local connection 1-form Aα ∈ Ω1(Uα, g) associated
to a G-compatible trivialization Φα : E|Uα

→ Uα × Fm. Recall that this is
defined so that

(∇Xv)α = dvα(X) + Aα(X)vα(p)

for X ∈ TpM and v ∈ Γ(E), where vα : Uα → Fm expresses v|Uα
with

respect to the trivialization. We define a local curvature 2-form Fα ∈
Ω2(Uα, g) by

Fα(X, Y ) = dAα(X, Y ) + [Aα(X), Aα(Y )].
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Exercise 5.25. Show that for any p ∈ Uα, v ∈ Ep and X, Y ∈ TpM ,

(R(X, Y )v)α = Fα(X, Y )vα.

Exercise 5.26. If Φβ : E|Uβ
→ Uβ × Fm is a second trivialization related

to Φα by the transition map g = gβα : Uα ∩ Uβ → G, show that

Fβ(X, Y ) = gFα(X, Y )g−1.

In general the g-valued curvature 2-form Fα is only defined locally and
depends on the choice of trivialization, though Exercise 5.26 brings to light
a certain important case in which there is no dependence: if G is abelian,
then Fβ ≡ Fα for any two trivializations Φα and Φβ, wherever they overlap.
It follows that in this case one can define a global g-valued curvature 2-form

F ∈ Ω2(M, g)

such that F (X, Y )|Uα
= Fα(X, Y ) for any choice of trivialization Φα on Uα.

Exercise 5.27. Show that if G is abelian, there is a natural G-action on
each of the fibers of E, and therefore also a g-action. In this case, F (X, Y )
is simply ΩK(X, Y ) reexpressed in terms of this action.

Here is an example that will be especially important in the next chap-
ter: if (M, g) is an oriented Riemannian 2-manifold, then TM → M has
structure group SO(2), which is abelian, and thus there is a globally de-
fined curvature 2-form F ∈ Ω2(M, so(2)). Observe now that so(2) is the
1-dimensional vector space of real antisymmetric 2-by-2 matrices, thus all
of them are multiples of

J0 :=

(
0 −1
1 0

)

,

and there is a real-valued 2-form ω ∈ Ω2(M) such that F (X, Y ) = ω(X, Y )J0.
We can simplify things still further by recalling that the metric g defines a
natural volume form dA ∈ Ω2(M) (not necessarily an exact form, despite
the notation), such that

dA(X, Y ) = 1

whenever (X, Y ) is a positively oriented orthonormal basis. Since dim Λ2T ∗M =
1, there is then a unique smooth function

K : M → R

such that for any p ∈ M and X, Y ∈ TpM , F (X, Y ) = −K(p) dA(X, Y )J0.
We see from this that all information about curvature on a 2-manifold can
be encoded in this one smooth function: e.g. the curvature tensor can be
reconstructed by

R(X, Y )Z = −K(p) dA(X, Y )J0Z.

We call K the Gaussian curvature of (M, g). We will have more to say in
the next chapter on the meaning of this function, which plays a starring
role in the Gauss-Bonnet theorem.
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