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For most of this chapter, we focus on a Riemannian manifold (M, g) and
its tangent bundle TM → M equipped with the Levi-Civita connection.
The curvature tensor defined in the previous chapter is now a type (1, 3)
tensor field R ∈ Γ(T 1

3M), defined most easily as a commutator of covariant
derivatives,

R(X, Y )Z = (∇X∇Y −∇Y∇X −∇[X,Y ])Z.

In this context R is called the Riemann tensor, and it carries all information
about the curvature of the Levi-Civita connection: in particular it follows
by combining Theorems 5.15 and 5.21 that the Levi-Civita connection is
flat if and only if R ≡ 0. As we saw in Exercise 5.20, the components
Ri

jkℓ with respect to a coordinate chart can be written in terms of first
derivatives of the Christoffel symbols Γi

jk; it follows that they depend on
second derivatives of the metric gij.
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6.1 Locally flat manifolds

Our first application of curvature is a characterization of Riemannian man-
ifolds that are locally isometric to Euclidean space (Rn, g0); here g0 is the
Riemannian metric defined by applying the standard Euclidean inner prod-
uct 〈 , 〉Rn to the tangent spaces TpR

n = Rn. Observe that the Levi-Civita
connection on (Rn, g0) is clearly flat: the metric has components gij ≡ δij in
the natural global coordinates, so their derivatives vanish and so therefore
does the Riemann tensor. This motivates the following terminology:

Definition 6.1. We call a Riemannian manifold (M, g) locally flat if for
every p ∈ M , there is a neighborhood p ∈ U ⊂ M and an embedding
ϕ : U → Rn such that ϕ∗g0 = g.

The embedding ϕ in this definition is called a local isometry from (M, g)
to (Rn, g0) near p. It is equivalent to say that every point p ∈ M is con-
tained in a coordinate chart in which the metric has constant components
δij . From this last remark, a necessary condition is clearly that the Rie-
mann tensor of (M, g) must vanish identically. The remarkable fact is that
this condition is also sufficient—and given the machinery that we’ve built
up by this point, it’s surprisingly easy to prove.

Theorem 6.2. A Riemannian manifold (M, g) is locally flat if and only if
its Riemann tensor vanishes identically.

Proof. Suppose R ≡ 0, so the Levi-Civita connection ∇ on TM → M is
flat. Then for every p ∈ M and X ∈ TpM , we can extend X to a covari-
antly constant vector field on a neighborhood of p. In particular, choose
any orthonormal basis (X1, . . . , Xn) of TpM and extend these accordingly
to covariantly constant vector fields. This defines a framing of TM on some
neighborhood p ∈ U ⊂ M , and since parallel transport preserves the met-
ric, the basis remains orthonormal at every point in U , so the components
of g with respect this frame are gij = δij .

It remains only to show that the vector fields X1, . . . , Xn can be con-
sidered coordinate vector fields ∂1, . . . , ∂n with respect to some coordinates
(x1, . . . , xn) defined near p. This is possible because it turns out that
[Xi, Xj] ≡ 0 for all i and j, which follows from the symmetry of the con-
nection:

[Xi, Xj] = ∇Xi
Xj −∇Xj

Xi = 0,

using the fact that each Xi is covariantly constant.

This is the fanciest “integrability theorem” we’ve yet encountered, and
in proving it we essentially used every other integrability result that we’ve
seen previously (notably Corollary 5.3 and Theorem 5.15). In the end, it
all comes down to one basic fact about vector fields: the flows of X and Y
commute if and only if [X, Y ] ≡ 0.
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According to Theorem 6.2, curvature provides an obstruction to finding
local coordinates in which the metric looks like the Euclidean metric. One
can ask: even if the curvature is nonzero at a point p, what is the “simplest”
form that the metric might take in coordinates near p? There are always,
for instance, coordinates in which gij = δij at p itself, though not necessarily
in a neighborhood. Actually one can do slightly better. Choose a basis
X1, . . . , Xn of TpM and use the exponential map to define an embedding

f(t1, . . . , tn) = expp(t
1X1 + . . .+ tnXn) (6.1)

for (t1, . . . , tn) in some neighborhood 0 ∈ U ⊂ Rn. The inverse of this map
defines a coordinate chart f−1 = x = (x1, . . . , xn) : f(U) → Rn.

Proposition 6.3. If ∇ is any symmetric connection (not necessarily com-
patible with a metric), then the inverse of (6.1) defines coordinates that
identify p with 0 ∈ Rn such that all Christoffel symbols Γi

jk vanish at 0.

Moreover if ∇ is the Levi-Civita connection with respect to a metric g
and X1, . . . , Xn ∈ TpM is an orthonormal basis, then these coordinates
have the property that

gij(0) = δij and ∂kgij(0) = 0.

Proof. If ∂1, . . . , ∂n are the coordinate vector fields, the Christoffel symbols
can be computed by Γi

jk = (∇j∂k)
i, so it suffices to show that ∇∂k = 0 at p

for all k. To see this, we observe that by construction, all radial paths in
these coordinates are geodesics, i.e. paths with coordinate expressions of
the form (x1(t), . . . , xn(t)) = (Y 1t, . . . , Y nt) for constants Y i ∈ R. Writing
down the geodesic equation at t = 0, it follows that any vector field Y =
Y i∂i with constant components Y i ∈ R satisfies ∇Y (p)Y = 0. In particular,
we then have

0 = ∇∂i+∂j (∂i + ∂j)
∣∣
p
= ∇i∂i|p +∇j∂j |p +∇i∂j |p +∇j∂i|p = 2∇i∂j |p,

where in the last step we’ve used the symmetry of the connection. This
proves that Γi

jk(0) = 0.

The second statement follows immediately since ∂igjk = gℓkΓ
ℓ
ij + gℓjΓ

ℓ
ik.

The coordinates constructed above are called Riemannian normal co-
ordinates : they place the metric in a standard form up to first order at
any point. One cannot do any better than this in general since the second
derivatives of gij depend on the curvature, which is an invariant.

132 CHAPTER 6. CURVATURE IN RIEMANNIAN GEOMETRY

6.2 Hypersurfaces and Gaussian curvature

In this section we consider a Riemannian manifold (Σ, j∗g) which is em-
bedded via a map j : Σ →֒ M into a Riemannian manifold (M, g) of one
dimension higher, i.e. Σ ⊂ M is a hypersurface. We will be most interested
in the case where (M, g) = (R3, g0) and dimΣ = 2, though some of what
we have to say will make sense more generally than this. Denote by 〈 , 〉
the bundle metric on TM (and therefore also on TΣ) defined by g. Its
restriction to Σ is sometimes referred to as the first fundamental form on
Σ. (A second fundamental form will be defined shortly.)

We begin by defining the Gaussian curvature of a surface Σ embedded
in Euclidean R3. The definition is quite simple and intuitive, but it will
not at all be obvious at first that it is an invariant of the metric. Indeed, if
Σ ⊂ R3 is oriented, there is a natural choice of unit normal vector ν(p) ∈ R3

for each p ∈ Σ, which defines a map

ν : Σ → S2.

This is called the Gauss map on Σ. Observe that since Tν(p)S
2 is the

orthogonal complement of ν(p) in R3, there is a natural identification of
TpΣ with Tν(p)S

2 as subspaces of R3. Thus we can regard

dν(p) : TpΣ → Tν(p)S
2

as a linear endomorphism on a particular 2-dimensional subspace of R3.
As such, it has a well defined determinant

KG(p) := det dν(p) ∈ R, (6.2)

defined by choosing any basis of TpΣ and expressing dν(p) as a 2-by-2
matrix; the determinant computed in this way does not depend on the
basis. In fact, it also doesn’t change if we switch the sign of ν(p), thus we
can drop the assumption that Σ is oriented and merely define ν locally in
order to facillitate the definition of KG. Thinking more geometrically, one
can choose an arbitrary area form on TpΣ and define KG(p) as the ratio of
the signed areas of dν(p)(P ) and P for any parallelopiped P ⊂ TpΣ. The
sign of KG(p) therefore depends on whether dν(p) preserves or reverses
orientation. The function KG : Σ → R is called the Gaussian curvature,
and despite appearances to the contrary, we will find that it does not
depend on the embedding Σ →֒ R3 but rather on the Riemannian metric
induced on Σ; indeed, we will show that it is the same function that was
defined at the end of §5.3 in terms of the curvature 2-form.

Example 6.4. For the unit sphere S2 ⊂ R3, the Gauss map is simply the
identity so KG ≡ 1.
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Example 6.5. Consider the cylinder Z = {(x, y, z) ∈ R3 | x2 + y2 = 1}.
The Gauss map on Z is independent of z, thus dν(p) only has rank 1 at
every p ∈ Z, implying K(p) = 0. This reflects the fact Z is locally flat:
unlike a sphere, a small piece of a cylinder can easily be unfolded into a
piece of a flat plane without changing lengths or angles on the surface. The
same is true of the cone

C = {(x, y, z) ∈ R
3 | x2 + y2 = z2, z > 0}.

Example 6.6. The hyperboloid H = {(x, y, z) ∈ R3 | x2+y2−z2 = 1} has
everywhere negative curvature. This is true of any surface that exhibits a
“saddle” shape, for which the Gauss map is orientation reversing.

To understand the relation of KG to our previous definitions of cur-
vature, let us generalize and assume (M, g) is an arbitrary Riemannian
manifold with an embedded hypersurface j : Σ →֒ M and induced metric
j∗g. Denote by ∇ the Levi-Civita connection on (M, g), while ∇̃ denotes
the Levi-Civita connection on (Σ, j∗g). Assume that Σ ⊂ M admits a nor-
mal vector field ν ∈ Γ(TM |Σ), such that |ν(p)| = 1 and ν(p) is orthogonal
to TpΣ for all p ∈ Σ. In general this is uniquely determined up to a sign
and may be well defined only locally, but this will pose no problem in the
end—since our aim is to define a notion of curvature which depends only
on local properties of the embedding Σ →֒ M , we may as well shrink Σ if
necessary and assume that ν is globally defined.

Lemma 6.7. For any p ∈ Σ and X ∈ TpΣ, ∇Xν ∈ TpΣ.

Proof. Differentiating the equation 〈ν, ν〉 ≡ 1 yields

0 = LX〈ν, ν〉 = 2〈∇Xν, ν〉,

thus ∇Xν belongs to the orthogonal complement of ν(p), which is precisely
TpΣ.

In light of this, the transformation X 7→ ∇Xν defines a linear map

∇νp : TpΣ → TpΣ,

called the Weingarten map. Observe that for the case M = R
3 with the

trivial metric, ∇νp is precisely the derivative of the Gauss map. It is often
expressed in the form of a bilinear map on TpΣ as follows:

Definition 6.8. Given the embedding Σ →֒ M and normal vector field ν,
the second fundamental form is the tensor field II ∈ Γ(T 0

2Σ) defined by

II(X, Y ) = −〈X,∇νp(Y )〉.
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Differentiating the expression 〈Y, ν〉 ≡ 0 for Y ∈ Vec(Σ) gives 〈∇YX, ν〉+
〈X,∇Y ν〉 = 0, thus the second fundamental form actually computes the
normal part of the covariant derivative,

II(X, Y ) = 〈∇YX, ν(p)〉. (6.3)

It’s important to note that the use of the word “form” does not mean
II(X, Y ) is antisymmetric, but merely that it is a bilinear form. In fact:

Proposition 6.9. The second fundamental form is symmetric: II(X, Y ) =
II(Y,X).

Proof. This follows from (6.3) and the symmetry of the Levi-Civita con-
nection:

II(Y,X)− II(X, Y ) = 〈∇XY −∇YX, ν(p)〉 = 〈[X, Y ](p), ν(p)〉 = 0.

Corollary 6.10. The Weingarten map ∇νp : TpΣ → TpΣ is a self-adjoint
operator with respect to the inner product 〈 , 〉; in particular, the corre-
sponding matrix with respect to any choice of orthonormal basis on TpΣ is
symmetric.

Recalling some notation from §4.3.4, denote by πΣ : TM |Σ → TΣ the
fiberwise linear projection along the orthogonal complement of TΣ, so that
the connections ∇ on (M, g) and ∇̃ on (Σ, j∗g) are related by

∇̃ = πΣ ◦ ∇.

Denote by R and R̃ the Riemann curvature tensors on (M, g) and (Σ, j∗g)
respectively.

Proposition 6.11. For p ∈ Σ and X, Y, Z ∈ TpΣ,

R̃(X, Y )Z = πΣ (R(X, Y )Z) + II(X,Z)∇νp(Y )− II(Y, Z)∇νp(X).

Proof. The connections ∇ on TM |Σ and ∇̃ on TΣ induce a connection on
the bundle Hom(TM |Σ, TΣ) → Σ, which we will denote also by ∇: then
for Y ∈ Vec(M) and X ∈ TΣ,

∇̃X(πΣ(Y )) = (∇XπΣ)(Y ) + πΣ(∇XY ).

This yields the formula

(∇XπΣ)(Y ) = ∇̃X(πΣ(Y ))− πΣ(∇XY ) = πΣ (∇X(Y − 〈Y, ν〉ν))− πΣ(∇XY )

= −πΣ (∇X(〈Y, ν〉ν)) = −πΣ ((LX〈Y, ν〉)ν + 〈Y, ν〉∇Xν)

= −〈Y, ν〉∇Xν.
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Now, choosing X, Y, Z ∈ Vec(Σ), we find

R̃(X, Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z

= ∇̃X (πΣ(∇Y Z))− ∇̃Y (πΣ(∇XZ))− πΣ

(
∇[X,Y ]Z

)

= (∇XπΣ)(∇YZ) + πΣ(∇X∇Y Z)− (∇Y πΣ)(∇XZ)

− πΣ(∇Y∇XZ)− πΣ

(
∇[X,Y ]Z

)

= πΣ(R(X, Y )Z)− 〈∇Y Z, ν〉∇Xν + 〈∇XZ, ν〉∇Y ν

= πΣ(R(X, Y )Z)− II(Y, Z)∇Xν + II(X,Z)∇Y ν.

We now specialize to the case (M, g) = (R3, g0) and dimΣ = 2. Then
R(X, Y )Z vanishes and ∇ is the trivial connection, so by Prop. 6.11, the

curvature R̃ of Σ at p ∈ Σ depends only on the Weingarten map ∇νp :
TpΣ → TpΣ. This in turn is simply the derivative of the Gauss map
ν : Σ → S2 at p, thus the Gaussian curvature is

KG(p) = det(∇νp).

We can express this in a slightly more revealing form using the fact that
∇νp is a self-adjoint operator. Applying the spectral theorem for self-
adjoint operators, TpΣ admits an orthonormal basis (X1, X2) of eigenvec-
tors ∇νp(Xj) = λjXj, and the determinant is simply the product of the
eigenvalues, thus

KG(p) = λ1λ2.

The eigenvalues λ1 and λ2 of ∇νp are called the principal curvatures of Σ
at p. Observe that if the sign of ν is switched, then the second fundamental
form and the Weingarten map both change sign, but the Gaussian curva-
ture remains the same. This is why KG can be defined without assuming
Σ is oriented. We will continue assuming Σ has an orientation since our
considerations are fundamentally local in any case.

The metric and orientation define on Σ a natural area form dA ∈ Ω2(Σ)
such that

dA(X1, X2) = 1

for any positively oriented orthonormal basis (X1, X2) of TpΣ.
1 (Note that

dA is not necessarily an exact form: this notation for an area form is chosen
out of tradition rather than logic.) Now assume that the orthonormal basis
(X1, X2) above consists of eigenvectors of ∇νp. Define

J0 : TpΣ → TpΣ

to be the unique linear map such that J0(X1) = X2 and J0(X2) = −X1.

1In fancier terms, the bundle TΣ → Σ has structure group SO(2) due to the orien-
tation and bundle metric, and this is contained in SL(2), so the extra structure of a
volume form comes for free.
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Exercise 6.12. Show that J0 ∈ End(TpΣ) is a complex structure on TpΣ,
i.e. J2

0 = − Id, and with respect to any positively oriented orthonormal
basis on TpΣ, the matrix representing J0 is

(
0 −1
1 0

)

This exercise also shows that J0 is antisymmetric with respect to the
inner product 〈 , 〉, i.e. 〈X, J0Y 〉 = −〈J0X, Y 〉 for all X, Y ∈ TpΣ.

Using Prop. 6.11 with X = X1 and Y = X2, we find

R̃(X1, X2)Z = II(X1, Z)∇νp(X2)− II(X2, Z)∇νp(X1)

= λ1λ2 (〈X1, Z〉X2 − 〈X2, Z〉X1)

= KG(p) (〈−J0X1, J0Z〉X2 − 〈−J0X2, J0Z〉X1)

= −KG(p) (〈X2, J0Z〉X2 + 〈X1, J0Z〉X1)

= −KG(p)J0Z,

or by the definition of the area form

R̃(X1, X2)Z = −KG(p) dA(X1, X2)J0Z. (6.4)

Now we can replace X1 and X2 by any linear combinations of these two
vectors and see from the bilinearity of both sides that (6.4) still holds. The
result is precisely the formula advertised at the end of Chapter 5 for the
Gaussian curvature:

Theorem 6.13. Suppose Σ is an oriented surface embedded in Euclidean
R3, dA is the natural area form on Σ, KG : Σ → R is its Gaussian cur-
vature, R(X, Y )Z is its Riemann curvature tensor and J : TΣ → TΣ is
the unique fiberwise linear map such that for any vector X ∈ TpΣ with
|X| = 1, (X, JX) is a positively oriented orthonormal basis. Then

R(X, Y )Z = −KG dA(X, Y )JZ.

For arbitrary surfaces Σ, not embedded in R
3, Theorem 6.13 can be

taken as a definition of the Gaussian curvature KG : Σ → R, and it shows
in fact that all information about curvature on a surface can be expressed
in terms of this one real-valued function. Note that once again the result
doesn’t actually depend on an orientation: locally, if the orientation of Σ
is flipped, this changes the sign of both J and dA, leaving the final result
unchanged.

For surfaces in R3, Theorem 6.13 implies the following famous result
of Gauss, which has come to be known by the Latin term for “remarkable
theorem”:
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Theorema Egregium. For a surface Σ embedded in Euclidean R3, the
Gaussian curvature KG : Σ → R defined in (6.2) is an invariant of the
induced Riemannian metric on Σ. To be precise, if Σ1,Σ2 ⊂ R3 are two
surfaces embedded in R3 with induced metrics g1, g2 and Gaussian curva-
tures K1

G, K
2
G respectively, and there is a diffeomorphism ϕ : Σ1 → Σ2 such

that ϕ∗g2 ≡ g1, then
K1

G ≡ K2
G ◦ ϕ.

Example 6.14. As a simple application, this shows that there are no
isometries between any open subsets of the sphere S2 ⊂ R3 and the hyper-
boloid of Example 6.6.

To derive an explicit formula for KG, we first observe the following
relation between the metric 〈 , 〉, the natural area form dA ∈ Ω2(Σ) and
the fiberwise linear map J ∈ Γ(End(TΣ)):

dA(X, Y ) = 〈JX, Y 〉.

This is true by definition for the special case where X is a unit vector and
Y = JX , implying that dA(X, JX) and 〈JX,X〉 define identical quadratic
forms; then one can easily use bilinearity and symmetry to show that the
two bilinear forms are the same. Theorem 6.13 then implies

〈R(X, Y )Y,X〉 = −〈KG dA(X, Y )JY,X〉

= −KG dA(X, Y )〈JY,X〉 = KG · |dA(X, Y )|2,

thus

KG(p) =
〈R(X, Y )Y,X〉

|dA(X, Y )|2
(6.5)

for any pair of linearly independent vectors X, Y ∈ TpΣ. We can rewrite
this as follows in terms of an oriented coordinate chart (x1, x2) defined
near p. If the components of the metric are denoted by gij and we define
the symmetric matrix-valued function

g =

(
g11 g12
g21 g22

)
,

we recall from Chapter 2, Equation (2.4) that dA takes the form

dA =
√
det g dx1 ∧ dx2.

Then applying (6.5) to the coordinate vectors X = ∂1 and Y = ∂2, we have

〈R(∂1, ∂2)∂2, ∂1〉 = gijR
i
12kδ

k
2δ

j
1 = gi1R

i
122 = R1122,

where we’ve used the index raising/lowering conventions described in Ap-
pendix A to lower the first index of Ri

jkℓ. This yields the formula

KG =
R1122

det g
.
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Exercise 6.15. Show that the Poincaré half-plane (H, h) from Exam-
ple 4.22 has constant Gaussian curvature KG ≡ −1. (Presumably you
wrote down the Christoffel symbols when you did Exercise 4.23; you can
use these with the formula of Exercise 5.20 to compute the Riemann ten-
sor.)

6.3 The Gauss-Bonnet formula

6.3.1 Polygons and triangulation

We begin this discussion with the following reminiscence from our youth,
when life was simpler and, above all, geometry was easier.

Proposition 6.16. For any triangle in R2, the angles at the vertices add
up to π.

A simple example on S2 shows that on curved surfaces this is no longer
true: it’s easy for instance to find a “triangle” on S2 whose edges are
geodesics but with angles that add up to 3π/2 (see Figure 5.1 in Chapter 5).
We will show in fact that the sum of the angles of any triangle with geodesic
edges on a Riemannian 2-manifold differs from π by an amount depending
on the amount of curvature enclosed. This result can then be generalized
to a formula for the integral of the Gaussian curvature over any compact
surface, and the answer turns out to depend on a topological invariant
which has nothing to do with Riemannian metrics.

We begin by defining some terminology that is needed to formulate
a generalization of Prop. 6.16. A piecewise smooth curve in a smooth
manifold M is a continuous map γ : [a, b] → M for which there are finitely
many points a = t0 < t1 < . . . < tN−1 < tN = b such that the restrictions

γ|[tj−1,tj ] : [tj−1, tj ] → M

are smooth immersions for each j = 1, . . . , N . The curve is called a piece-
wise smooth simple closed curve if γ(b) = γ(a) and there is no other self-
intersection γ(t) = γ(t′) for t 6= t′.

Definition 6.17. A smooth polygon in R2 is the closure P ⊂ R2 of a
region bounded by the image of a piecewise smooth simple closed curve
γ : [0, 1] → R

2. For each subinterval [tj−1, tj ] on which γ is smooth, the
image γ([tj−1, tj]) is called an edge of P . We denote their union by ∂P .

Observe that if P has a smooth boundary then ∂P ∼= S1 inherits from
the orientation of R2 a natural orientation as the boundary of P . This
notion of orientation generalizes naturally to the piecewise smooth case so
that each edge of ∂P inherits a natural orientation.
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Now suppose (Σ, g) is a 2-dimensional oriented Riemannian manifold
with Levi-Civita connection ∇ and Gaussian curvature KG : Σ → R.
Denote by dA ∈ Ω2(Σ) the natural area form defined by the metric and
orientation.

Definition 6.18. A smooth polygon P ⊂ Σ is the image of a smooth
polygon P0 ⊂ R2 under a smooth map that embeds an open neighborhood
of P0 into Σ. The edges of P are defined as the images of the edges of P0

under this map.

The orientation of Σ restricts to any smooth polygon P and induces a
natural orientation on its edges, whose union we again denote by ∂P . The
metric also restricts to each edge ℓ ⊂ ∂P and defines a natural “volume
form” ds ∈ Ω1(ℓ); again the notation is chosen for traditional reasons, and
should not imply that ds is the differential of a specific function. Although
∂P is not generally a smooth manifold, it’s easy to see that Stokes’ theorem
still holds: ∫

P

dλ =

∫

∂P

λ

for any λ ∈ Ω1(Σ), where the integral over ∂P is defined by summing the
integrals over the edges. One can prove this by an approximation argument,
perturbing ∂P to a smooth loop that bounds a region Pǫ on which

∫
Pǫ
dλ

is almost the same.
For any oriented 1-dimensional submanifold ℓ ⊂ Σ one can define the

geodesic curvature

κℓ : ℓ → R

as follows. Choose any parametrization γ(t) ∈ ℓ such that |γ̇(t)| ≡ 1 and
γ̇(t) points in the positive direction along ℓ. Differentiating 〈γ̇, γ̇〉 ≡ 1
gives 〈∇tγ̇, γ̇〉, thus ∇tγ̇(t) is always orthogonal to Tγ(t)ℓ. The orientation
of Σ defines a unique unit normal vector ν(t) ∈ Tγ(t)Σ along ℓ such that
(γ̇(t), ν(t)) gives a positively oriented orthonormal basis of Tγ(t)Σ for all t.
Then κℓ(γ(t)) is defined as the unique real number such that

∇tγ̇(t) = κℓ(γ(t))ν(t).

The next observation follows immediately from the definition and the
geodesic equation.

Proposition 6.19. A 1-dimensional submanifold ℓ ⊂ Σ can be parametrized
by a geodesic if and only if its geodesic curvature κℓ : ℓ → R vanishes iden-
tically.

We are now ready to state the first version of the Gauss-Bonnet theo-
rem.
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Theorem 6.20. Assume P ⊂ Σ is a smooth polygon with N ≥ 1 smooth
edges ℓ1 ∪ . . . ∪ ℓN = ∂P , and the angles at the vertices are α1, . . . , αN ∈
(0, 2π). Then

N∑

j=1

αj = (N − 2)π +

∫

P

KG dA+

N∑

j=1

∫

ℓj

κℓj ds.

Corollary 6.21. If P ⊂ Σ is a smooth polygon with N edges which are all
geodesics, then the angles α1, . . . , αN at the vertices satisfy

N∑

j=1

αj = (N − 2)π +

∫

P

KG dA.

We postpone the proof of Theorem 6.20 to the end of this section, and
first discuss a related (and arguably more important) result that arises
from it. The idea is to compute the integral of KG over the entirety of a
compact surface by decomposing it into smooth polygons.

Definition 6.22. Let Σ be a 2-dimensional manifold, possibly with bound-
ary. A polygonal triangulation of Σ is a collection of isolated points Σ0 ⊂ Σ
(called vertices) and compact 1-dimensional submanifolds with boundary
(called edges, their union denoted by Σ1 ⊂ Σ) such that

1. Both boundary points of each edge are vertices.

2. Every vertex is a boundary point for at least one edge.

3. Each edge is disjoint from the vertices except at its boundary.

4. All edges are disjoint from one another except possibly at their bound-
aries.

5. Each connected component of Σ \Σ1 (called a face) is the interior of
a smooth polygon P ⊂ Σ whose edges are edges in Σ1.

It is a fact that every 2-manifold Σ admits a polygonal triangulation,2

and that if Σ is compact, the triangulation can be assumed to be finite,
meaning it has finitely many faces, edges and vertices. This can be proved
by choosing a large number of vertices close enough together so that edges
connecting nearby vertices can be constructed as geodesics; see [Spi99b,
Problem 4.17].

Definition 6.23. Given a finite polygonal triangulation of Σ with v ver-
tices, e edges and f faces, the Euler characteristic of Σ is the integer

χ(Σ) = v − e+ f.
2The notion of a triangulation can be generalized naturally to higher dimensions,

and every smooth n-manifold admits a triangulation, though this is not easy to prove,
and is also not true for topological manifolds in general.



6.3. THE GAUSS-BONNET FORMULA 141

The Euler characteristic turns out to be a topological invariant of Σ,
though our definition makes this far from obvious—a priori it appears to
depend rather crucially on a choice of triangulation. It will follow from
Theorem 6.25 below that this is not the case, that in fact χ(Σ) depends at
most on the differentiable structure of Σ. Proving that it only depends on
the topology of Σ requires methods from algebraic topology: the standard
approach is to define χ(Σ) in terms of singular homology and use either
cellular or simplicial homology to prove that the quantity above matches
this definition for any triangulation. Details may be found in [Hat02] or
[Bre93].

Exercise 6.24. Taking it on faith for the moment that the Euler charac-
teristic doesn’t depend on a choice of triangulation, show that χ(S2) = 2,
χ(D) = 1 and χ(T 2) = 0. (Here D ⊂ R2 denotes the closed unit disk, and
T 2 is the 2-torus S1 × S1.)

We shall now compute the integral ofKG over a compact surface using a
finite polygonal triangulation with v vertices, e edges and f faces. Assume
e = e0+ e∂ where e∂ is the number of edges contained in ∂Σ, and similarly
v = v0 + v∂ . Observe that e∂ = v∂. By Theorem 6.20,

∫
Σ
KG dA contains

a term of the form

−
∑

j

∫

ℓj

κℓj ds+
∑

j

αj − (N − 2)π

for each face, assuming the face in question has N edges. Adding these up
for all faces, we make the following observations:

1. Every edge ℓ ⊂ Σ \ ∂Σ is an edge for two distinct faces and thus
appears twice with opposite orientations, so the geodesic curvature
terms for these edges cancel in the sum.

2. The geodesic curvature terms for all edges ℓ ⊂ ∂Σ add up to

−

∫

∂Σ

κ∂Σ ds.

3. The sum of all angles αj at an interior vertex (for every face adjacent
to that vertex) is 2π, and for boundary vertices the sum is π. Thus
altogether these terms contribute 2πv0 + πv∂ = 2πv − πv∂.

4. Every interior edge is counted twice and boundary edges are counted
once, so the −(N −2)π terms add up to −π(2e0+ e∂ −2f) = 2π(f −
e) + πe∂ .
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Summing all these contributions, we have

−

∫

∂Σ

κ∂Σ ds+ 2πv + 2π(f − e)− πv∂ + πe∂ = −

∫

∂Σ

κ∂Σ ds+ 2πχ(Σ).

This proves:

Theorem 6.25 (Gauss-Bonnet). For any compact 2-dimensional Rieman-
nian manifold with boundary (Σ, g),

∫

Σ

KG dA+

∫

∂Σ

κ∂Σ ds = 2πχ(Σ).

Several wonderful things follow immediately from this formula. Observe
that the left hand side has nothing to do with the triangulation, while the
right hand side makes no reference to the metric or curvature.

Corollary 6.26. The Euler characteristic χ(Σ) does not depend on the
choice of triangulation, and for any two diffeomorphic surfaces Σ1 and Σ2,
χ(Σ1) = χ(Σ2).

Corollary 6.27. For a fixed compact surface Σ, the sum
∫
Σ
KG dA +∫

∂Σ
κ∂Σ ds is an integer multiple of 2π, and is the same for any choice of

Riemannian metric.

In particular, the latter statement imposes serious topological restric-
tions on the kinds of metrics that are allowed on any given surface: e.g. it
is impossible to find a metric with everywhere positive Gaussian curvature
on a surface with negative Euler characteristic. To get a handle on this, it
helps to have some concrete examples in mind; these are provided by the
following exercises.

Exercise 6.28. Suppose Σ is a compact oriented surface with boundary
and ℓ1, ℓ2 ⊂ ∂Σ are two distinct connected components of ∂Σ. We can
glue these two components to produce a new surface Σ′ as follows: since
ℓ1 and ℓ2 are both circles, there is an orientation reversing diffeomorphism
ϕ : ℓ1 → ℓ2, which we use to define

Σ′ = Σ/ ∼

where the equivalence identifies p ∈ ℓ1 with ϕ(p) ∈ ℓ2, thus identifying ℓ1
and ℓ2 to a single circle, now in the interior of Σ′. Show that χ(Σ′) = χ(Σ).

Note that Σ need not be a connected surface to start with: this trick

can be used to glue together two separate surfaces along components of

their boundaries!
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Exercise 6.29. Let Σ be the closed unit disk in R2 with two smaller
disjoint open disks removed: the resulting surface is called a pair of pants.
Show that χ(Σ) = −1.

Similarly, a handle is a surface Σ diffeomorphic to the torus T 2 with
one open disk removed. Show that χ(Σ) = −1.

Exercise 6.30. Suppose Σ is a compact surface with boundary. The op-
eration of gluing a handle to Σ is defined as follows: choose a smoothly
embedded closed disk in the interior of Σ, remove its interior, and glue
the resulting surface along its new boundary component to a handle (see
Exercise 6.29). Show that this operation decreases the Euler characteristic
of Σ by 2.

Exercise 6.31. A closed oriented surface of genus g is any compact surface
Σ without boundary that is diffeomorphic to a surface obtained from S2

by gluing g handles. Special cases include the sphere itself (g = 0) and the
torus (g = 1). Show that χ(Σ) = 2− 2g.

For Σ a compact surface with boundary, we say it has genus g if it is
diffeomorphic to a closed surface of genus g with finitely many small open
disks cut out. Show that if such a surface has m boundary components,
then χ(Σ) = 2− 2g −m.

In case you didn’t already believe this, we now have a simple proof
of the fact that two closed oriented surfaces with differing genus are not
diffeomorphic: if they were, then their Euler characteristics would have to
match. The converse is also true, but harder to prove; see [Hir94].

The Gauss-Bonnet theorem enables us to make some sweeping state-
ments regarding what kinds of metrics may exist on various compact sur-
faces. In general, we say that a surface Σ with a Riemannian metric has
positive (or zero or negative) curvature if its Gaussian curvature is positive
(or zero or negative) at every point.

Theorem 6.32. Let Σ be a closed oriented surface of genus g. Then Σ
admits a Riemannian metric with positive curvature if and only if Σ ∼= S2,
zero curvature if and only if Σ ∼= T 2, and negative curvature if and only if
g ≥ 2.

Proof. We shall not provide the entire proof, but by this point the result
should at any rate seem believable, and in one direction the claim is clear:
the stated conditions on the genus are necessary due to the Gauss-Bonnet
theorem and the formula χ(Σ) = 2 − 2g. It’s easy to see that the sphere
admits a metric with positive curvature: this is true for the induced met-
ric coming from the standard embedding of S2 in R3. Things are similarly
simple for the torus, though the usual embedding of T 2 into R3 (as a dough-
nut) is the wrong picture to look at. Instead take R2 with its standard flat
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metric and define T 2 as R2/Z2: the translation invariance of the Euclidean
metric implies that it gives a well defined metric on the quotient, and it is
indeed locally flat.

The only part that is less obvious is that every surface of genus g ≥
2 admits a metric of negative curvature—in fact, by a famous result in
the theory of surfaces, one can always find a metric that has constant
curvature −1. One approach is to take the Poincaré half-plane (H, h)
as a model (see Exercise 6.15) and show that every such surface can be
constructed by drawing a smooth polygon in (H, h) and identifying certain
edges appropriately. We refer to [Spi99b, Chapter 6, Addendum 1] for
details.

Remark 6.33. For a surface Σ of genus g ≥ 2, the standard way of embed-
ding Σ into R

3 as a surface with g handles is misleading in some respects:
as a hypersurface in R3, its Gaussian curvature is sometimes positive and
sometimes negative. The Gauss-Bonnet theorem guarantees at least that
the part with negative curvature is the majority. Unfortunately (from the
perspective of people who like to visualize things), there is no isometric
embedding of any closed surface with everywhere negative curvature into
R3.

We turn finally to the proof of Theorem 6.20, which makes essential use
of the local connection 1-form associated to a local trivialization. By way
of preparation, suppose P ⊂ R2 is a smooth polygon and g is a Riemannian
metric (not necessarily the standard Euclidean metric) defined on an open
neighborhood of P . We can construct an orthonormal frame for TR2|P
by starting from the standard basis of R2 and using the Gram-Schmidt
procedure to make it orthonormal at each point of P . Denote by Φ :
TR2|P → P × R2 the resulting trivialization. Now choose a piecewise
smooth positively oriented parametrization γ : [0, T ] → R

2 of ∂P with
γ(0) = γ(T ), such that g(γ̇(t), γ̇(t)) ≡ 1 except at finitely many parameter
values

0 = t0 < t1 < . . . < tN−1 < tN = T

where γ̇(t) may fail to exist. One can then find a piecewise continuous
real-valued T -periodic function θ : R → R such that

Φ(γ̇(t)) =

(
γ(t),

(
cos θ(t)
sin θ(t)

))
.

We may assume θ(t) is smooth on [0, T ] except for jump discontinuities

∆θj := lim
t→t+

j

θ(t)− lim
t→t−

j

θ(t) ∈ (−π, π)

for each j = 0, . . . , N .
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Lemma 6.34.

∫ T

0

θ̇(t) dt+

N∑

j=1

∆θj = 2π.

Proof. We leave it as an exercise for the reader to show that this formula is
correct if Φ is defined by the standard framing (e1, e2) on R2: in that case
it simply measures the total change in the angular coordinate of γ̇(t) is the
boundary of P is traversed, including the jump discontinuities. In general,
the sum in question is clearly some integer multiple of 2π, and since it
can only change continuously under continuous deformations of Φ, it will
in fact remain unchanged under such deformations. The result follows by
choosing a continuous deformation of g to the standard Euclidean metric
by the interpolation

gτ = (1− τ)〈 , 〉R2 + τg, τ ∈ [0, 1].

Then the Gram-Schmidt procedure provides a continuous family of or-
thonormal frames and hence a continuous family of trivializations.

If P ⊂ Σ is a smooth polygon, the result above provides a trivialization

Φα : TΣ|P → P × R
2

which preserves the orientations of the fibers and carries the bundle metric
to the standard Euclidean metric on R

2; we can then define a piecewise
smooth parametrization γ : [0, T ] → ∂P and a function θ(t) in the same
manner so that Lemma 6.34 is satisfied. Moreover if the vertices of P at
t = tj have angles αj ∈ (0, 2π), we have

αj +∆θj = π.

Denote the smooth edges of ∂P by

ℓj = γ([tj−1, tj ]) ⊂ ∂P,

for j = 1, . . . , N .
Writing vector fields X ∈ Vec(P ) via the trivialization as Xα : P → R2,

the covariant derivative can be written in terms of an so(2)-valued 1-form
Aα ∈ Ω1(P, so(2)) as

(∇XY )α = dYα(X) + Aα(X)Yα(p)

for p ∈ P , X ∈ TpΣ. The curvature 2-form ΩK ∈ Ω2(Σ,End(TΣ)) can
then be expressed via the trivialization as

(ΩK(X, Y )Z)α = Fα(X, Y )Zα,
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where Fα ∈ Ω2(P, so(2)) is defined by

Fα(X, Y ) = dAα(X, Y ) + [Aα(X), Aα(Y )].

This is the general formula for Fα, but in the present case the second term
vanishes since SO(2) is abelian, implying Fα = dAα. As was observed at
the end of Chapter 5, another consequence of SO(2) being abelian is that
Fα does not actually depend on the trivialization. This reflects the fact
that one can define a natural action of SO(2) (and therefore also of so(2))
on the fibers of TΣ: simply choose any orthonormal basis to identify a
tangent space TpΣ with R2 and use the natural action of SO(2) on R2.
It’s easy to show that the resulting action on TpΣ doesn’t depend on the
basis—this is true specifically because elements of SO(2) commute. From
this perspective, Fα(X, Y ) is the same thing as ΩK(X, Y ), simply using an
element of so(2) to define an endomorphism of TpΣ.

Recall now that KG : P → R can be defined as the unique real-valued
function such that

Fα(X, Y ) = −KG(p) dA(X, Y )J0

for p ∈ P , X, Y ∈ TpΣ, where J0 =

(
0 −1
1 0

)
. Define a real-valued 1-form

λα ∈ Ω1(P ) such that

Aα(X) = λα(X)J0,

then we have dλα = −KG dA. It should now be fairly obvious what
approach we intend to take: since KG dA is presented as the exterior
derivative of a 1-form, we can integrate it using Stokes’ theorem.

Lemma 6.35. The geodesic curvature of an edge ℓj ⊂ ∂P at γ(t) ∈ ℓj is
given by

κℓj (γ(t)) = θ̇(t) + λα(γ̇(t)).

Proof. Let v(t) = (γ̇(t))α ∈ R2, so by definition

v(t) =

(
cos θ(t)
sin θ(t)

)
and v̇(t) =

(
− sin θ(t)
cos θ(t)

)
θ̇(t) = θ̇(t)J0v(t).

Thus

(∇γ̇(t))α = v̇(t) + Aα(γ̇(t))v(t) =
(
θ̇(t) + λα(γ̇(t))

)
J0v(t).

The claim follows since J0v(t) ∈ R2 is the unique vector such that (v(t), J0v(t))
is a positively oriented orthonormal basis.



6.3. THE GAUSS-BONNET FORMULA 147

Proof of Theorem 6.20. Define the piecewise smooth parametrization γ(t)
and the function θ(t) as described above. Then combining Lemmas 6.34
and 6.35 with Stokes’ theorem,

∫

P

KG dA = −

∫

P

dλα = −

∫

∂P

λα = −
N∑

j=1

∫ tj

tj−1

λα(γ̇(t)) dt

= −
N∑

j=1

∫ tj

tj−1

[
κℓj(γ(t))− θ̇(t)

]
dt

= −

N∑

j=1

∫

ℓj

κℓj ds+ 2π −

N∑

j=1

∆θj

= −

N∑

j=1

∫

ℓj

κℓj ds+ 2π −

N∑

j=1

(π − αj)

= −
N∑

j=1

∫

ℓj

κℓj ds− (N − 2)π +
N∑

j=1

αj

6.3.2 Counting zeros and the Euler number

Although the focus of this chapter is primarily on Riemannian manifolds,
the proof of Theorem 6.20 invites a certain amount of generalization beyond
this context. For instance, if we consider not the tangent bundle but a more
general vector bundle E → Σ with structure group SO(2), then we still
have a well defined so(2)-valued curvature 2-form F ∈ Ω2(M, so(2)), which
is locally the exterior derivative of any connection 1-form. What happens
if we integrate this 2-form over Σ? As we will see, the integral does indeed
compute an invariant, called the Euler number of the bundle E → Σ, which
happens to equal the Euler characteristic when E = TΣ.

The Euler number is an integer that can be associated to any oriented
vector bundle E of rank n over a closed n-manifold M . In this discussion
we shall deal exclusively with the 2-dimensional case, but much of what
we will say can be generalized. The integer arises most naturally as the
answer to the following question:

Given an oriented vector bundle E of rank 2 over a closed surface Σ,
how many zeros does a “generic” smooth section of E have?

It may seem surprising at first that this question has a well defined answer;
we must of course be careful to specify precisely what we mean by “generic”
and “how many”. A simple example shows in any case that the answer is
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not arbitrary: in particular, not every such bundle admits a smooth section
with no zeros. If indeed E → Σ has such a section v ∈ Γ(E), then using
the orientation we can find another section w ∈ Γ(E) such that (v, w)
defines an oriented basis at every point, which implies that E is trivial.
Clearly then, for nontrivial oriented bundles the answer is not zero; we will
see in fact that if zeros are counted with appropriate multiplicities, then
the answer is independent of the choice of section, and defines an invariant
that one can use to distinguish non-isomorphic bundles.

To facilitate the following definition, define γ : R → R2 to be the
obvious parametrization of the unit circle:

γ(t) = (cos t, sin t).

Definition 6.36. Suppose f : R2 → R2 is a smooth map with f(0) = 0
and f(p) 6= 0 for all p in some neighborhood of 0. Then the index of f at
0 is defined as the integer

ind(f ; 0) =
1

2π
(θ(2π)− θ(0))

where θ(t) is any smooth function such that f(ǫγ(t)) = r(t)γ(θ(t)) with
r(t) > 0 for ǫ > 0 arbitrarily small.

Put another way, ind(f ; 0) is the winding number of the path f ◦ γ
about 0; it is positive if the path winds counterclockwise and negative if it
winds clockwise. Take a moment to convince yourself that this definition
doesn’t depend on the choice of the function θ(t) or the (small!) number
ǫ > 0.

Exercise 6.37. Using the natural identification of R2 with C, show that
for any integer k ≥ 0, the function f(z) = zk has ind(f ; 0) = k, while
g(z) = z̄k has ind(g; 0) = −k.

For the remainder of this section, Σ will be a closed oriented 2-manifold
and E → Σ will be an oriented vector bundle of rank 2. The notion of the
index of a zero can be extended naturally to smooth sections v ∈ Γ(E).

Definition 6.38. Let v ∈ Γ(E), suppose v(p) = 0 and that p is an isolated
zero of v, i.e. it is contained in a neighborhood p ∈ U ⊂ Σ such that
v(q) 6= 0 for all q ∈ U \ {p}. Then choosing any oriented coordinate chart
and oriented local trivialization near p so that v is identified with a smooth
map vα from a neighborhood of 0 ∈ R

2 to R
2, define the index of v at p by

ind(v; p) = ind(vα; 0).

There is of course something to prove here: how do we know that
ind(v; p) doesn’t depend on the choice of coordinates and trivialization? If
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vβ is the expression for v in a different oriented trivialization, then there
exists a transition map gβα taking a neighborhood of p to GL(2,R) such
that det gβα(q) > 0 and

vβ(q) = gβα(q)vα(q).

We need to show that for sufficiently small loops γ : S1 → Σ around p,
vβ ◦ γ and vα ◦ γ have the same winding number about 0. The key is that
gβα◦γ can be deformed continuously to the identity: simply shrink γ to the
constant loop at p and then move gβα(p) by a continuous path in GL(2,R)
to 1, which is possible since det gβα(p) > 0. The result is a continuous
deformation of vβ ◦ γ to vα ◦ γ through loops that never pass through 0,
implying that both have the same winding number.

Definition 6.39. The Euler number of E → Σ is defined as

e(E) =
∑

p∈v−1(0)

ind(v; p)

where v is a section of E with finitely many zeros.

At this stage it is far from obvious that e(E) doesn’t depend on the
choice of section, but this will follow from Theorem 6.40 below, which com-
putes e(E) as an integral of the curvature 2-form for a metric connection
on E. Before getting into that, it would be a shame not to mention, at
least as an aside, that the existence of the Euler number can also be proved
by a quite beautiful argument that has nothing to do with curvature. The
idea is roughly as follows: say that a section v ∈ Γ(E) is generic if it has
finitely many zeros, all of which have either index 1 or −1. Recalling the
discussion of transversality in §3.3.4, this is precisely the case in which the
submanifold v(Σ) ⊂ E intersects the zero-section transversely, and the sign
of ind(v; p) for each p ∈ v−1(0) depends on whether the linearization

dv(p) : TpΣ → Ep

preserves or reverses orientation. One can then regard the zero set v−1(0)
as a compact oriented 0-dimensional submanifold of Σ, with the orientation
of each point defined by the sign of ind(v; p). Now if w ∈ Γ(E) is another
generic section, we can find a smooth homotopy between them, i.e. a map

H : [0, 1]× Σ → E

such that H(t, ·) ∈ Γ(E) for each t, with H(0, ·) = w and H(1, ·) = v.
By a nontrivial bit of transversality theory, one can always make a small
perturbation of H so as to assume without loss of generality that its image
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in E meets the zero-section transversely, in which case H−1(0) ⊂ [0, 1]×Σ
is a smooth 1-dimensional submanifold with boundary. Then

∂
(
H−1(0)

)
=

(
{1} × v−1(0)

)
∪
(
{0} × (−w−1(0))

)
,

where the minus sign on the right hand side indicates reversal of orienta-
tion. The 1-manifold H−1(0) will generally have multiple connected com-
ponents, which come in three flavors:

1. Circles in the interior of [0, 1]× Σ

2. Arcs with one boundary point in {1}× v−1(0), and the other a point
in {0} × w−1(0) with the same orientation

3. Arcs with both boundary points in either {1}×v−1(0) or {0}×w−1(0),
having opposite orientations

The result is that the points in the disjoint union of v−1(0) with w−1(0)
come in pairs: matching pairs of zeros of v and w, or cancelling pairs of
zeros of v alone or w alone. Thus the count of positive points in v−1(0)
minus negative points in v−1(0) is the same as the corresponding count
for w. This argument can be extended to arbitrary sections with isolated
zeros by a simple perturbation: if p is a zero with ind(v; p) 6= ±1, then one
must perturb v near p to a section that has only zeros of index ±1, and
one can check that the signed count of these is always equal to the original
index. Details of these arguments may be found in [Mil97].

Notice that we’ve so far assumed very little structure on E → Σ: the
definition of the Euler number required a choice of section, but the bundle
itself has intrinsically only a smooth structure and an orientation. One can
always add to this by choosing a bundle metric 〈 , 〉: then E → Σ becomes
an oriented Euclidean vector bundle, with structure group SO(2). Further,
one can choose a connection ∇ compatible with the bundle metric: this
choice is again far from unique, but we’ll find that the ambiguity matters
surprisingly little. We now recall an important fact that was used in our
proof of the Gauss-Bonnet theorem: since SO(2) is abelian, the connection
has a well defined so(2)-valued curvature 2-form

F ∈ Ω2(Σ, so(2)),

which is the exterior derivative of any connection 1-formAα ∈ Ω1(Uα, so(2))
associated to an SO(2)-compatible local trivialization Φα : E|Uα

→ Uα×R2.
If two such trivializations are related by the transition map

gβα : Uα ∩ Uβ → SO(2),

then by Exercise 3.20, the corresponding connection 1-forms satisfy

Aα(X) = g−1
βαAβ(X)gβα + g−1

βαdgβα(X).
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In the present case this can be simplified considerably: writing

gβα(p) =

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)

for some function θ : Uα ∩ Uβ → R, we find

Aα = J0 dθ + Aβ (6.6)

where J0 =

(
0 −1
1 0

)
. It’s obvious from this expression why the 2-form

F = dAα doesn’t depend on the trivialization.

Theorem 6.40. Define ω ∈ Ω2(Σ) by F (X, Y ) = ω(X, Y )J0, where F ∈
Ω2(Σ, so(2)) is the curvature 2-form for any metric connection on the ori-
ented Euclidean bundle E → Σ. Then

−

∫

Σ

ω = 2πe(E).

Proof. Choose a section v ∈ Γ(E) with isolated zeros, and for each p ∈
v−1(0) choose a small disk-shaped open neighborhood p ⊂ Dp ⊂ Σ, which
is the preimage of a small open ball in R2 under a coordinate chart defined
near p. Denote

Σǫ = Σ \
⋃

p∈v−1(0)

Dp.

Since v is nowhere zero in Σǫ, we can rescale it without loss of generality
and assume that 〈v, v〉 ≡ 1 on an open neighborhood Σ′

ǫ of Σǫ; this does
not change the computation of the indices ind(v; p) for p ∈ v−1(0). We can
then find a unique section w ∈ Γ(E|Σǫ

) such that (v, w) defines an oriented
orthonormal frame over Σ′

ǫ, and hence an SO(2)-compatible trivialization

Φα : E|Σ′

ǫ
→ Σ′

ǫ × R
2

in which vα : Σǫ → R2 is the constant unit vector e1 ∈ R2. Define the
1-form λα ∈ Ω1(Σ′

ǫ) such that Aα(X) = λα(X)J0, thus ω = dλα and by
Stokes’ theorem,

−

∫

Σǫ

ω = −

∫

∂Σǫ

λα =
∑

p∈v−1(0)

∫

∂Dp

λα. (6.7)

Focusing now on a particular zero p ∈ v−1(0), we pick another SO(2)-
compatible trivialization on some open neighborhood D′

p of Dp:

Φβ : E|D′

p
→ D′

p × R
2.
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Denote λβ ∈ Ω1(D′) such that Aβ(X) = λβ(X)J0, so again dλβ = ω. Now
if the transition function from Φα to Φβ has the form

gβα =

(
cos θ − sin θ
sin θ cos θ

)
,

then we have vβ =

(
cos θ
sin θ

)
on D′, and by (6.6), λβ = λα + dθ. Thus

applying Stokes’ theorem again, the integral over ∂Dp in (6.7) becomes

∫

∂Dp

λα =

∫

∂Dp

λβ +

∫

∂Dp

dθ =

∫

Dp

ω + 2π ind(v; p).

Combining this expression for all p ∈ v−1(0) with the integral of ω over Σǫ

yields the stated formula.

Corollary 6.41. The Euler number e(E) does not depend on the choice
of section v ∈ Γ(E).

Corollary 6.42. If ω ∈ Ω2(Σ) is defined in terms of the curvature 2-form
F ∈ Ω2(Σ, so(2)) by F (X, Y ) = ω(X, Y )J0, then the integral

∫

Σ

ω

is always an integer multiple of 2π and has no dependence on the choice of
bundle metric 〈 , 〉 or metric connection ∇.

Combining Theorem 6.40 with Theorem 6.25, we obtain a formula for
the Euler number of tangent bundles which justifies its name:

Corollary 6.43. For any closed oriented surface Σ, e(TΣ) = χ(Σ).

Exercise 6.44. Why settle for one proof when you can have two?!

1. Show by explicitly constructing vector fields that e(TS2) = 2 and
e(TT 2) = 0. (It suffices to draw pictures.)

2. Show that a pair of pants (see Exercise 6.29) admits a smooth vector
field which is tangent to the boundary and nonzero there, and has
exactly one interior zero, of index −1.

3. Conclude that the same thing is true for a handle.

4. Use the above results and a gluing argument as in Exercises 6.30
and 6.31 to show that a closed oriented surface Σ of genus g has
e(TΣ) = 2− 2g.
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As the simplest possible application of the above results, one obtains a
theorem that is often described by the phrase “you can’t comb the hair on
a sphere.”

Theorem 6.45. There is no smooth vector field without zeros on S2.

A simple consequence is that TS2 cannot be trivialized globally, and in
fact the formula e(TΣ) = 2− 2g implies:

Corollary 6.46. A closed oriented surface has trivial tangent bundle if
and only if it is a torus.

What we’ve seen in this section is a snippet of a rather large subject
known as Chern-Weil theory, which is part of the theory of characteristic
classes. The latter are invariants of bundles (of which the Euler number is
an example), usually defined in homological terms, which can be used to
distinguish non-isomorphic bundles of various types. These invariants can
be constructed in many ways: the approach taken in Chern-Weil theory is
to make the (mostly arbitrary) choice of a connection on the bundle and
integrate some form that can be constructed from the curvature, show-
ing in the end that the result doesn’t depend on the connection. Among
other things, this leads to some higher dimensional generalizations of the
Gauss-Bonnet formula, which are covered in detail in [Spi99c]. For a com-
prehensive survey of characteristic classes from a more algebraic topological
perspective, we refer to [MS74].

6.4 Geodesics, arc length and sectional cur-

vature

We conclude the chapter by revisiting the relationship between geodesics
and arc length. Assume (M, g) is an n-dimensional Riemannian manifold
and ∇ is the Levi-Civita connection on TM → M . The question of the
hour is:

If γ : [a, b] → M is a geodesic with γ(a) = p and γ(b) = q, is there
any other geodesic from p to q near γ? Is γ in fact the shortest path
between p and q?

For example, consider the geodesics in S2 ⊂ R3 from the north pole to the
south pole. These are far from unique: there is a whole 1-parameter family
of them, all equally long. We’ll find that this is only allowed because S2

has positive curvature; it cannot happen on a surface with negative or zero
curvature.
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6.4.1 The shortest path between nearby points

Let us first address a related issue that has nothing to do with curvature:
locally, a “short” geodesic is always the shortest path between two nearby
points. This was mentioned in Chapter 4, Prop. 4.18, and the proof really
should have appeared there; in a future version of these notes, it probably
will.

Proposition 6.47. For every point p ∈ M , there is a neighborhood p ∈
Up ⊂ M such that each q ∈ Up can be expressed uniquely as expp(X) for
some X ∈ TpM , and the geodesic segment

γ : [0, 1] → M : t 7→ expp(tX)

parametrizes the shortest path in M from p to q.

The existence of the neighborhood Up is the easy part: it follows from
the inverse function theorem, as we can easily differentiate the exponential
map expp : TpM → M at 0 ∈ TpM and find

d expp(0) = Id : TpM → TpM.

Since this map is invertible, there is an open neighborhood 0 ∈ Op ⊂
TpM such that expp restricts to a diffeomorphism from Op to an open
neighborhood Up of p in M . Without loss of generality, we may assume Op

has the form

Op = {X ∈ TpM | |X| < ǫ}

for some ǫ > 0.
Recall now that the Levi-Civita connection was defined by a pair of

natural conditions—symmetry and compatibility with the metric—neither
of which have anything directly to do with arc length. So what it is it
about this particular connection that ensures that the “straight” paths are
also the “shortest”? The key turns out to be the following lemma.

Lemma 6.48. For any r ∈ (0, ǫ), define the hypersurface

Σr = {X ∈ TpM | |X| = r} ⊂ Op.

Then every geodesic through p is orthogonal to all of the hypersurfaces
expp(Σr) ⊂ M .

Proof. For any smooth path X(t) ∈ TpM with |X(t)| ≡ 1, defined for
t ∈ R near 0, let α(s, t) ∈ M denote the smooth map

α(s, t) = expp(sX(t))
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for t near 0 and s ∈ (−ǫ, ǫ). It suffices to show that

〈∂sα(s, 0), ∂tα(s, 0)〉 = 0

for every s ∈ (0, ǫ). Using the symmetry and compatibility of the connec-
tion, we have

∂s〈∂sα(s, 0), ∂tα(s, 0)〉 = 〈∇s∂sα(s, 0), ∂tα(s, 0)〉+ 〈∂sα(s, 0),∇s∂tα(s, 0)〉

= 〈∂sα(s, 0),∇t∂sα(s, 0)〉,

(6.8)

where we used the geodesic equation to eliminate∇s∂sα(s, 0). Likewise, for
any fixed t the path s 7→ α(s, t) is a geodesic with fixed speed |∂sα(s, t)| =
|X(t)| = 1, so

0 = ∂t〈∂sα(s, t), ∂sα(s, t)〉|t=0 = 2〈∂sα(s, 0),∇t∂sα(s, 0)〉,

implying that (6.8) vanishes. Moving s to 0, we therefore have

〈∂sα(s, 0), ∂tα(s, 0)〉 = 〈∂sα(0, 0), ∂tα(0, 0)〉 = 0

since α(0, t) = p is independent of t and thus ∂tα(0, 0) = 0.

Proof of Prop. 6.47. Consider a path γ : [0, 1] → Up of the form

γ(t) = expp(r(t)X(t))

where r(t) is an increasing real-valued function with r(0) = 0 and r(1) ∈
(0, ǫ), and X(t) ∈ TpM is a smooth path with |X(t)| ≡ 1. We will show
that ∫ 1

0

|γ̇(t)| dt ≥ r(1),

with equality if and only if X(t) is constant, implying that γ(t) can be
reparametrized as a geodesic. This implies that the geodesics

[0, 1] → M : t 7→ expp[t · r(1)X ]

parametrize the shortest paths from p to any point on the hypersurface
expp(Σr(1)).

Let α(s, t) = expp(sX(t)) as in the proof of Lemma 6.48; then γ(t) =
α(r(t), t) and

γ̇(t) = ṙ(t)∂sα(r(t), t) + ∂tα(r(t), t).

By the lemma, the two terms in this sum are orthogonal to each other, and
since |∂sα(s, t)| = |X(t)| = 1, we have

〈γ̇(t), γ̇(t)〉 = [ṙ(t)]2 + |∂tα(r(t), t))|
2,

implying |γ̇(t)| ≥ ṙ(t), with equality if and only if ∂tα ≡ 0, implying X(t)
is constant. Clearly then

∫ 1

0

|γ̇(t)| dt ≥

∫ 1

0

ṙ(t) dt = r(1).
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6.4.2 Sectional curvature

With that out of the way, we turn to questions of a more global nature:
assuming that p and q are not necessarily nearby, when is it guaranteed
that a geodesic from p to q is shorter than all other nearby paths? The
answer has to do with a quantity called the sectional curvature of (M, g),
which generalizes the Gaussian curvature to higher dimensional manifolds.

Definition 6.49. For any p ∈ M and a 2-dimensional subspace P ⊂
TpM , we define the sectional curvature KS(P ) ∈ R as follows. Choose a
sufficiently small neighborhood 0 ∈ Op ⊂ TpM so that expp restricts to a
diffeomorphism from Op to a neighborhood of p in M . Then

ΣP := expp(Op ∩ P ) ⊂ M

is a 2-dimensional submanifold containing p, and we set

KS(P ) = KG(p),

where KG : ΣP → R is the Gaussian curvature of ΣP with respect to the
Riemannian metric induced by its embedding in (M, g).

In the case dimM = 2, there is only one 2-dimensional subspace of TpM
to choose from, and we recover the Gaussian curvature KS(TpM) = KG(p).
Then KS(TpM) is easily computed via (6.5), and we’d like to generalize
this formula to the higher dimensional case.

Lemma 6.50. For the 2-dimensional submanifold ΣP = expp(OP ∩ P ) ⊂

M in Definition 6.49, denote by R̃ its Riemann tensor with respect to the
induced metric. Then for any vectors X, Y ∈ P = TpΣP ,

〈R̃(X, Y )Y,X〉 = 〈R(X, Y )Y,X〉,

where R is the Riemann tensor of (M, g).

Proof. It suffices to prove this under the assumption that X and Y form an
orthonormal basis of P , as the general case follows by taking linear combi-
nations of these. We shall now make use of the Riemannian normal coor-
dinates constructed in Prop. 6.3. Namely, extending (X1, X2) := (X, Y ) to
an orthonormal basis (X1, . . . , Xn) of TpM , we define a coordinate chart
x = (x1, . . . , xn) on a neighborhood of p via the inverse of the map

(x1, . . . , xn) 7→ expp(x
1X1 + . . .+ xnXn)

for (x1, . . . , xn) near the origin in Rn. We then have ∂j |p = Xj, and the
submanifold

{x3 = x4 = . . . = xn = 0}
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is a neighborhood of p in ΣP , which inherits the coordinates (x1, x2). Since
now ∂1|p = X and ∂2|p = Y , the claim can be expressed in coordinates as

R̃1122(0) = R1122(0).

By Prop. 6.3, the metric on M has components gij = δij at 0, while its first
derivatives and thus the corresponding Christoffel symbols vanish there.
The formulas from Exercises 4.19 and 5.20 then give

R1122(0) = δ1iR
i
122 = δ1i

(
∂1Γ

i
22 − ∂2Γ

i
12

)
= ∂1Γ

1
22 − ∂2Γ

1
12

=
1

2
∂1

(
δ1ℓ(∂2g2ℓ + ∂2g2ℓ − ∂ℓg22)

)
−

1

2
∂2

(
δ1ℓ(∂1g2ℓ + ∂2g1ℓ − ∂ℓg12)

)

=
1

2
∂1 (2∂2g21 − ∂1g22)−

1

2
∂2∂2g11.

By the same argument, R̃1122(0) satisfies the same formula in terms of the
components g̃ij of the induced metric for i, j ∈ {1, 2}; but these are simply
the restrictions of the corresponding components of gij to the submanifold
{x3 = . . . = xn = 0}, implying that the two expressions are the same.

Proposition 6.51. For any p ∈ Σ and pair of orthogonal unit vectors
X, Y ∈ TpM , if P ⊂ TpM is the subspace spanned by X and Y , then

KS(P ) = 〈R(X, Y )Y,X〉.

Proof. By the lemma, this equals 〈R̃(X, Y )Y,X〉 for the induced Riemann

tensor R̃ on the submanifold ΣP , and (6.5) implies that this is the Gaussian
curvature of ΣP at p.

Recall that in the case dimM = 2, the Riemann tensor of M is entirely
determined by its Gaussian curvature. The generalization of this statement
is also true, though we will not prove it: the Riemann tensor of a higher
dimensional manifold is determined by the sectional curvature KS(P ) for
every plane P ⊂ TM . A proof may be found in [Spi99a].

Definition 6.52. We say that a Riemannian n-manifold (M, g) has positive
(zero, negative) sectional curvature if KS(P ) is positive (zero, negative) for
every plane P ⊂ TpM at every point p ∈ M .

6.4.3 The second variation

To better understand the global relationship between geodesics and length,
we can apply an infinite dimensional version of the “second derivative test”
to the energy and length functionals. Recall the following notation from
Chapter 4: for two parameter values a < b ∈ R and points p, q ∈ M , we
denote by

P = C∞([a, b],M ; p, q)
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the space of smooth paths γ : [a, b] → M starting at p and ending at q. We
think of this space intuitively as an infinite dimensional smooth manifold,
with tangent spaces

TγP := {η ∈ Γ(γ∗TM) | η(a) = 0 and η(b) = 0}.

We then have two functionals ℓ, E : P → R, the length functional

ℓ(γ) =

∫ b

a

|γ̇(t)| dt

and energy functional

E(γ) =
1

2

∫ b

a

|γ̇(t)|2 dt,

where an extra factor of 1/2 has been inserted in front of the energy func-
tional to make some of the expressions below look a bit nicer. For a smooth
1-parameter family of paths γs ∈ P with γ0 = γ and ∂sγs|s=0 = η ∈ TγP,
we computed in Chapter 4 the first variation of the energy functional:

dE(γ)η :=
d

ds
E(γs)

∣∣∣∣
s=0

=

∫ b

a

〈−∇tγ̇(t), η(t)〉 dt.

We can express this more succinctly by defining an inner product on the
space of sections Γ(γ∗TM) for each γ ∈ P: for two such sections ξ and η,
let3

〈ξ, η〉L2 =

∫ b

a

〈ξ(t), η(t)〉 dt.

Informally, we can think of 〈 , 〉L2 as defining a Riemannian metric on P.
Now the first variation can be expressed as

dE(γ)η = 〈∇E(γ), η〉L2,

where
∇E(γ) := −∇tγ̇ ∈ Γ(γ∗TM)

is the so-called L2-gradient of the energy functional. In this notation, γ is
a geodesic if and only if ∇E(γ) = 0.

Informally again, we think of∇E as a vector field on P which represents
the first derivative of E, and we’d now like to compute the second deriva-
tive. For η ∈ TγP, we choose a 1-parameter family γs ∈ P with γ0 = γ and
∂sγs|s=0 = η and define a “covariant derivative” ∇η∇E ∈ Γ(γ∗TM) by

(∇η∇E)(t) := ∇s(∇E(γs)(t))|s=0 .

3The subscript L2 refers to the standard notation for the Hilbert space completion
of Γ(γ∗TM) with respect to this inner product.
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A quick computation shows that this does indeed only depend on η rather
than the 1-parameter family γs:

∇s(∇E(γs))|s=0 = − ∇s∇t∂tγs|s=0

= −∇t∇s∂tγs − R(∂sγs, ∂tγs)∂tγs|s=0

= −∇2
t η −R(η, γ̇)γ̇.

With this calculation as motivation, define for any γ ∈ P a linear operator

∇2E(γ) : Γ(γ∗TM) → Γ(γ∗TM) : η 7→ −∇2
t η −R(η, γ̇)γ̇.

We can now state the second variation formula:

Proposition 6.53. Suppose γ ∈ P is a geodesic and γσ,τ ∈ P is a smooth
2-parameter family of paths with γ0,0 = γ, with variations ξ, η ∈ TγP
defined by

ξ = ∂σγσ,τ |σ=τ=0 and η = ∂τγσ,τ |σ=τ=0 .

Then
∂2

∂σ∂τ
E(γστ )

∣∣∣∣
σ=τ=0

= 〈∇2E(γ)ξ, η〉L2.

Proof. Compute:

∂2

∂σ∂τ
E(γσ,τ )

∣∣∣∣
σ=τ=0

=
∂

∂σ

(
∂

∂τ
E(γσ,τ )

∣∣∣∣
τ=0

)∣∣∣∣
σ=0

=
∂

∂σ

〈
∇E(γσ,0), ∂τγσ,τ |τ=0

〉
L2

∣∣∣∣
σ=0

=
∂

∂σ

∫ b

a

〈
∇E(γσ,0)(t), ∂τγσ,τ (t)|τ=0

〉
dt

∣∣∣∣
σ=0

=

∫ b

a

〈
∇σ∇E(γσ,0)(t)|σ=0 , η(t)

〉
dt

+

∫ b

a

〈
∇E(γ)(t), ∇σ∂τγσ,τ |σ=τ=0

〉
dt

=

∫ b

a

〈(∇ξ∇E)(t), η(t)〉 dt = 〈∇2E(γ)ξ, η〉L2.

Note that we used the assumption that γ is geodesic, so ∇E(γ) = 0.

With this machinery in place, we can prove an important fact about
geodesics in manifolds with zero or negative sectional curvature.

Lemma 6.54. If (M, g) has nonpositive sectional curvature and γ ∈ P is a
geodesic, then the operator ∇2E(γ) : TγP → Γ(γ∗TM) is positive definite,
i.e. for all η ∈ TγP,

〈∇2E(γ)η, η〉L2 ≥ 0,

with equality if and only if η ≡ 0.
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Proof. We compute

〈∇2E(γ)η, η〉L2 =

∫ b

a

〈−∇2
t η, η〉 dt−

∫ b

a

〈R(η, γ̇)γ̇, η〉 dt

=

∫ b

a

〈∇tη,∇tη〉 dt−

∫ b

a

〈R(η, γ̇)γ̇, η〉 dt ≥

∫ b

a

|∇tη|
2 ≥ 0,

where in the last line we’ve integrated by parts and used the curvature
assumption to estimate the second term. Note that since η(a) = 0 and
η(b) = 0 by assumption, ∇tη ≡ 0 would imply η ≡ 0, so the inequality
above is strict unless η ≡ 0.

Theorem 6.55. Suppose (M, g) has nonpositive sectional curvature and
γ : [a, b] → M is a geodesic connecting γ(a) = p to γ(b) = q. Then for
any smooth 1-parameter family of paths γs : [a, b] → M with γs(a) = p,
γs(b) = q and γ0 ≡ γ such that ∂sγs|s=0 is not identically zero, there is a
number ǫ > 0 such that:

1. γ is the only geodesic among the paths γs for s ∈ (−ǫ, ǫ)

2. For all paths γs with s ∈ (−ǫ, ǫ) and s 6= 0,

ℓ(γs) > ℓ(γ).

Proof. We first prove the second statement for the energy functional in-
stead of the length functional, using the second variation formula and
Lemma 6.54 to estimate ∂2

sE(γs)|s=0 in terms of η := ∂sγs|s=0:

d2

ds2
E(γs)

∣∣∣∣
s=0

= 〈∇2E(γ)η, η〉L2 > 0.

It follows by a straightforward calculation that the same holds for the
second derivative of the length functional; we leave this to the reader as
an exercise, referring to §4.3.2 for inspiration.

To see that γ is the only geodesic among the family γs for s close to 0,
denote ηs = ∂sγs ∈ Γ(γ∗

sTM) and compute

d

ds
〈∇E(γs), ηs〉L2

∣∣∣∣ = 〈∇2E(γ)η, η〉L2 + 〈∇E(γ),∇sηs|s=0〉L2

= 〈∇2E(γ)η, η〉L2 > 0.

Thus 〈∇E(γs), ηs〉 6= 0 for sufficiently small |s| 6= 0, implying that ∇E(γs)
itself cannot be 0, so γs is not a geodesic.

Exercise 6.56. In the case dimM = 2, use the Gauss-Bonnet formula to
provide an alternative proof of the first statement in Theorem 6.55, that
there is no other geodesic near γ connecting the same end points. Hint: you
can reduce this to the case where γ and any hypothetical nearby geodesic
do not intersect: then they form a smooth polygon.
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