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STRONGLY FILLABLE CONTACT MANIFOLDS ANDJ{HOLOMORPHIC FOLIATIONSCHRIS WENDLAbstra
t. We prove that every strong symple
ti
 �lling of a planar
onta
t manifold admits a symple
ti
 Lefs
hetz �bration over the disk,and every strong �lling of T 3 similarly admits a Lefs
hetz �bration overthe annulus. It follows that strongly �llable planar 
onta
t stru
turesare also Stein �llable, and all strong �llings of T 3 are equivalent up tosymple
ti
 deformation and blowup. These 
onstru
tions result from a
ompa
tness theorem for pun
tured J{holomorphi
 
urves that foliatea 
onvex symple
ti
 manifold. We use it also to show that the 
om-pa
tly supported symple
tomorphism group on T �T 2 is 
ontra
tible,and to de�ne an obstru
tion to strong �llability that yields a non-gauge-theoreti
 proof of Gay's re
ent non�llability result [Gay06℄ for
onta
t manifolds with positive Giroux torsion.
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2 CHRIS WENDL1. Introdu
tionLet M be a 
losed, 
onne
ted and oriented 3{manifold. A (positive,
ooriented) 
onta
t stru
ture on M is a 2{plane distribution of the form� = ker �, where the 
onta
t form � 2 
1(M) satis�es � ^ d� > 0. Itis a natural question in 
onta
t geometry to ask whether a given 
onta
tmanifold (M; �) is symple
ti
ally �llable, meaning the following: we saythat a 
ompa
t and 
onne
ted symple
ti
 manifold (W;!) with boundary�W =M is a weak �lling of (M; �) if !j� > 0, and it is a strong �lling if � =ker �Y ! for some ve
tor �eld Y de�ned near �W whi
h points transverselyoutward at the boundary and satis�es LY ! = !. If Y extends globally overW , then �Y ! de�nes a global primitive of ! and thus makes (W;!) an exa
t�lling. A still stronger notion is a Stein �lling (W;!), whi
h 
omes withan integrable 
omplex stru
ture J and admits a proper plurisubharmoni
fun
tion ' : W ! [0;1) for whi
h �W is a level set, Y is the gradient and! = �ddC'. We refer to [Etn98,OS04℄ for more details on these notions.The ve
tor �eld Y near the boundary of a strong �lling is 
alled a Li-ouville ve
tor �eld, and it indu
es a 
onta
t form � := �Y !jM . As we'llreview shortly, the existen
e of Y is then equivalent to the 
ondition thatone 
an smoothly glue the positive symple
tization ([0;1) � M; d(ea�))to (W;!) along �W = f0g �M ; in the language of symple
ti
 �eld the-ory (
f. [BEH+03℄), this produ
es a symple
ti
 
obordism with a positive
ylindri
al end. One 
an also repla
e � by a positive multiple of any other
onta
t form de�ning � after atta
hing to (W;!) a trivial symple
ti
 
obor-dism (see (2.1) below). In either 
ase, the enlarged symple
ti
 manifold isexa
t if (W;!) is an exa
t �lling.In this paper we examine some of the 
onsequen
es for strong symple
ti
�llings and Stein �llings when a subset of the 
onta
t manifold (or rather itssymple
tization) admits foliations by J{holomorphi
 
urves. It turns outthat whenever a foliation with 
ertain properties exists, it 
an be extendedfrom [0;1) �M to �ll the entirety of W with embedded J{holomorphi

urves, forming a symple
ti
 Lefs
hetz �bration (Theorems 1 and 2), andthis de
omposition is stable under deformations of the symple
ti
 stru
ture(Theorem 3). The existen
e of su
h a �bration has 
onsequen
es for thetopology of the �lling, e.g. for planar 
onta
t stru
tures, it implies that thenotions \strongly �llable" and \Stein �llable" are equivalent (Corollary 1).For the 3{torus, our arguments establish a 
onje
ture of Stipsi
z [Sti02℄by showing that all minimal strong �llings are symple
ti
ally deformationequivalent, and exa
t �llings in parti
ular are symple
tomorphi
 to starshaped domains in T �T 2 (Theorem 4); moreover, the group of 
ompa
tlysupported symple
tomorphisms on T �T 2 is 
ontra
tible (Theorem 5). Inother situations, one �nds that the foliation on W produ
es an obvious
ontradi
tion, thus implying that the 
onta
t manifold 
annot be strongly

http://arxiv.org/abs/0806.3193v3


FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 3�llable (Theorem 6)|this is the 
ase in parti
ular for any 
onta
t manifoldwith positive Giroux torsion (Example 2.11).A
knowledgments. This work emerged originally out of dis
ussions withKlaus Niederkr�uger and subsequently re
eived mu
h valuable en
ourage-ment from John Etnyre. It was the latter in parti
ular who pointed outto me the questions regarding Giroux torsion and Stein �llability; I'malso grateful to both John and Paolo Ghiggini for bringing Stipsi
z' paper[Sti02℄ to my attention after the �rst version of this paper was 
ir
ulated.Thanks also to Dietmar Salamon, Ko Honda, Mark M
Lean and espe
iallyRi
hard Hind for helpful 
onversations.2. Main results2.1. Existen
e of Lefs
hetz �brations and Stein stru
tures. Re
allthat a 
onta
t manifold (M; �) is 
alled planar if it admits an open bookde
omposition that supports � and has pages of genus zero. We referto [Etn06℄ or [OS04℄ for the pre
ise de�nitions; for our purposes in thestatement of the theorem below, an open book de
omposition is a �bration� : M n B ! S1 where the binding B is a link in M . Then the pages arethe preimages ��1(t) and the 
ondition \supports �" means essentiallythat � = ker � for some 
onta
t form (a so-
alled Giroux form) su
h thatd� is symple
ti
 on the pages and � is positive on the binding. One 
analways \fatten" an open book de
omposition by expanding B to a tubularneighborhood N (B) and slightly shrinking the pages, thus deforming � toa nearby map ^� :M n N (B)! S1:We will use this notation 
onsistently in the following.Suppose W and � are 
ompa
t oriented manifolds of real dimension 4and 2 respe
tively, possibly with boundary. A Lefs
hetz �bration � : W !� is then a smooth surje
tive map whi
h is a lo
ally trivial �bration outsideof �nitely many 
riti
al values q 2 int�, where ea
h singular �ber ��1(q)has a unique 
riti
al point, at whi
h � 
an be modeled in some 
hoi
e of
omplex 
oordinates by �(z1; z2) = z21 + z22 . For (W;!) a symple
ti
 man-ifold, we 
all the Lefs
hetz �bration symple
ti
 if the �bers are symple
ti
submanifolds. If q0 2 � is 
lose to a 
riti
al value q, then there is a spe
ial
ir
le C � ��1(q0), 
alled a vanishing 
y
le, su
h that the singular �ber��1(q) 
an be identi�ed with ��1(q0) after 
ollapsing C to a point. (Again,see [OS04℄ for pre
ise de�nitions.) One says that the Lefs
hetz �bration isallowable if all vanishing 
y
les are homologi
ally nontrivial in their �bers.Denote by D � C the 
losed unit disk, whose boundary �D is naturallyidenti�ed with S1 = R=Z. For any symple
ti
 manifold (W;!) with 
onta
tboundary (M; �), the restri
tion of a symple
ti
 Lefs
hetz �bration � :W ! D over �D de�nes an open book de
omposition supporting � (see[OS04, x10.2℄). One 
an see in parti
ular that for any Liouville ve
tor �eld

4 CHRIS WENDLY near �W , the indu
ed 
onta
t form � := �Y ! satis�es d� > 0 on ea
h�ber over �D . One 
an now ask whether the 
onverse holds: given an openbook ^� : M n N (B) ! S1 supporting � and a strong �lling W , does Wadmit a Lefs
hetz �bration over D that restri
ts to ^� on �W nN (B)? Thiswould be too ambitious as stated, as one 
annot expe
t that the 
onta
tform indu
ed on �W will de�ne positive area on the pages of ^�: this 
annotbe true in parti
ular if ker!j�W is ever tangent to a page.This problem 
an be avoided by enlarging the �lling so as to indu
edi�erent 
onta
t forms (but the same 
onta
t stru
ture) on the boundary:if �Y !j�W = ef� for some 
onta
t form � and smooth fun
tion f :M ! R,then for any other fun
tion g : M ! R with g > f one 
an de�ne thedomain(2.1) Sgf = f(a;m) 2 R �M j f(m) � a � g(m) g:This yields a symple
ti
 
obordism (Sgf ; d(ea�)) with Liouville ve
tor �eld�a, indu
ing the 
onta
t forms ��ad(ea�) = ef� and eg� on its negativeand positive boundaries respe
tively. We shall refer to su
h domains astrivial symple
ti
 
obordisms, and will sometimes also 
onsider non
ompa
tversions for whi
h f = �1 or g = +1. The following is proved by aroutine 
omputation.Lemma 2.1. Assume (W;!) is a strong �lling of (M; �) with Liouvilleve
tor �eld Y near �W , and �Y ! = �0. Suppose further that � is a 
onta
tform on M and f : M ! R is a smooth fun
tion su
h that �0jM = ef�.Then if 'tY denotes the 
ow of Y for time t, for suÆ
iently small � > 0,there is a symple
ti
 embedding : �Sff��; d(ea�)� ,! (W;!) : (a;m) 7! 'a�f(m)Y (m)that maps �Sf�1 to �W and is a di�eomorphism onto a 
losed neighborhoodof �W in W . Moreover  ��0 = ea� and  ��a = Y .In light of this, one 
an smoothly glue any trivial symple
ti
 
obordismof the form (Sgf ; d(ea�)) to (W;!), and the enlarged �lling is exa
t if (W;!)is an exa
t �lling. An important simple example is the 
ase where f � 0and g = 1: then we are simply atta
hing the positive symple
tization([0;1)�M; d(ea�)) where � = �Y !j�W . It will often be 
onvenient howeverto take non
onstant f , so that the 
onta
t form appearing in d(ea�) maybe 
hosen at will.Re
all that an ex
eptional sphere in a symple
ti
 4{manifold (W;!) is asymple
ti
ally embedded 2{sphere with self-interse
tion number �1, and(W;!) is 
alled minimal if it 
ontains no ex
eptional spheres. We 
an nowstate the �rst main result.



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 5Theorem 1. Suppose (W;!) is a strong symple
ti
 �lling of a planar 
on-ta
t manifold (M; �), and � : M n B ! S1 is a planar open book sup-porting �. Then there is an enlarged �lling (W 0; !) obtained by atta
hinga trivial symple
ti
 
obordism to W , su
h that W 0 admits a symple
ti
Lefs
hetz �bration � : W 0 ! D for whi
h �j�W 0nN (B) = ^�. Moreover,� : W 0 ! D is allowable if W is minimal.The following 
orollary was pointed out to me by John Etnyre:Corollary 1. Every strongly �llable planar 
onta
t manifold is also Stein�llable.Proof. Suppose (W;!) is a strong �lling of (M; �) and the latter is planar.By blowing down as in [M
D90℄ and then atta
hing a trivial symple
ti

obordism, we 
an modify W to a minimal �lling (
W; ^!) that admits anallowable symple
ti
 Lefs
hetz �bration due to Theorem 1. It then followsfrom Eliashberg's topologi
al 
hara
terization of Stein manifolds [Eli90b℄(see also [GS99,AO01℄) that (
W; ^!) is symple
ti
ally deformation equiva-lent to a Stein domain. �Re
all that by a result of Giroux [Gir℄, a 
onta
t 3{manifold is Stein �l-lable if and only if it admits a supporting open book whose monodromy isa produ
t of positive Dehn twists. One 
an understand this in the 
ontextof Lefs
hetz �brations as follows: if (W;!) is a Stein �lling of (M; �), thenit admits a Lefs
hetz �bration over the disk by a result of Loi-Piergallini[LP01℄ or Akbulut-Ozbag
i [AO01℄. The monodromy of the resulting openbook de
omposition of M 
an then be obtained by 
omposing positiveDehn twists along the vanishing 
y
les of ea
h singular �ber (see for exam-ple [OS04℄). Conversely, any open book with this property 
an be realizedas the boundary of some Lefs
hetz �bration, whi
h admits a Stein stru
-ture due to Eliashberg [Eli90b℄. Giroux asked whether it might in fa
t betrue that every open book of (M; �) must have this property when (M; �)is Stein �llable. Theorem 1 implies an aÆrmative answer at least for theplanar open books:Corollary 2. If (M; �) is a planar 
onta
t manifold, then it is strongly(and thus Stein) �llable if and only if every supporting planar open bookhas monodromy isotopi
 to a produ
t of positive Dehn twists.As an immediate 
onsequen
e of Corollary 1, we also obtain a new ob-stru
tion to the existen
e of planar open books:Corollary 3. If (M; �) is a 
onta
t manifold whi
h is strongly �llable butnot Stein �llable, then it is not planar.Remark 2.2. It was not known until re
ently whether strong and Stein�llability are equivalent notions: a negative answer was provided by a 
on-stru
tion due to P. Ghiggini [Ghi05℄ of strongly �llable 
onta
t manifolds

6 CHRIS WENDLthat are not Stein �llable. It follows then from the above results thatGhiggini's 
onta
t stru
tures are not planar.The reason here for the restri
tion to planar 
onta
t stru
tures is thata planar open book 
an always be presented as the proje
tion of a 2{dimensional R{invariant family of J{holomorphi
 
urves in the symple
ti-zation R�M . This is a spe
ial 
ase of a 
onstru
tion due to C. Abbas [Abb℄that relates open book de
ompositions on general 
onta
t manifolds to so-lutions of a nonlinear ellipti
 problem, whi
h spe
i�
ally in the planar 
asegives J{holomorphi
 
urves. (An existen
e proof for the planar 
ase is alsogiven in [Wen
℄.) For analyti
al reasons, J{holomorphi
 
urves with thedesired properties and higher genus generi
ally 
annot exist.1 Nonetheless,one 
an sometimes derive interesting results for non-planar 
onta
t mani-folds using other kinds of de
ompositions with genus zero �bers, of whi
hthe following is an example.Let T 3 = S1 � S1 � S1 = T 2 � S1 with 
oordinates (q1; q2; �), and writethe standard 
onta
t stru
ture on T 3 as �0 = ker �0 where�0 = 
os(2��) dq1 + sin(2��) dq2:This 
an be identi�ed with the 
anoni
al 
onta
t form on the unit 
otan-gent bundle S�T 2 � T �T 2 as follows: writing points in T 2 as (q1; q2), we usethe natural identi�
ation of T �T 2 with T 2 � R2 3 (q1; q2; p1; p2) and writethe 
anoni
al 1{form as p1 dq1 + p2 dq2. The 3{torus is then S�T 2 =T 2 � �D , with the �{
oordinate 
orresponding to the point (p1; p2) =(
os(2��); sin(2��)) 2 �D , and �0 is the restri
tion of p1 dq1+p2 dq2 to thissubmanifold. The 
anoni
al symple
ti
 form !0 := dp1 ^ dq1 + dp2 ^ dq2on T �T 2 = T 2�R2 
an then be written as �ddC f for the proper plurisub-harmoni
 fun
tion f(q; p) = 12 jpj2, thus T 2 � D is a Stein domain; we shallrefer to it as the standard Stein �lling of (T 3; �0). More generally, one hasthe following 
onstru
tion:De�nition 2.3. A star shaped domain S � T �T 2 is a subset of the formf(q; tf(q; p) �p) 2 T �T 2 j t 2 [0; 1℄, (q; p) 2 S�T 2g for some smooth fun
tionf : S�T 2 ! (0;1).Observe that the boundary �S of a star shaped domain is always trans-verse to the radial Liouville ve
tor �eld p1�p1+p2�p2, thus (S; !0) is 
learlyan exa
t �lling of T 3.Eliashberg showed in [Eli96℄ that �0 is the only strongly �llable 
onta
tstru
ture on T 3. It is not planar due to [Etn04, Theorem 4.1℄, as thestandard �lling has b02(T 2�D ) 6= 0, though Van Horn-Morris [VHM07℄ hasshown that it does admit a genus 1 open book. It also admits the followingde
omposition, whi
h one might think of as a generalization of an open1Hofer pointed out this trouble in [Hof00℄ and suggested the aforementioned ellip-ti
 problem as a potential remedy, but its 
ompa
tness properties are not yet fullyunderstood.



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 7book with planar pages. Let Z = f� 2 f0; 1=2gg � T 3, a union of twodisjoint pre-Lagrangian 2{tori, and de�ne� : T 3 n Z ! f0; 1g � S1(q1; q2; �) 7! ((0; q2) if � 2 (0; 1=2),(1; q2) if � 2 (1=2; 1).(2.2)This is a smooth �bration, and we 
an think of it intuitively as a unionof two open book de
ompositions with 
ylindri
al pages, and the subsetZ playing the role of the binding. It supports the 
onta
t stru
ture inthe sense that d�0 is positive on ea
h �ber, and the �bers have natural
ompa
ti�
ations with boundary in Z su
h that �0 is positive on theseboundaries. As with an open book, one 
an \fatten" Z to a neighborhoodN (Z) and deform � to a nearby �bration^� : T 3 n N (Z)! f0; 1g � S1;whose �bers are 
ompa
t annuli.Theorem 2. Suppose (W;!) is any strong symple
ti
 �lling of (T 3; �0).Then one 
an atta
h to W a trivial symple
ti
 
obordism, produ
ing anenlarged �lling W 0 that admits a symple
ti
 Lefs
hetz �bration � : W 0 ![0; 1℄� S1 for whi
h �j�W 0nN (Z) = ^�. Moreover, every singular �ber is theunion of an annulus with an ex
eptional sphere; in parti
ular, there are nosingular �bers if (W;!) is minimal.There is also a stability result for the Lefs
hetz �brations 
onsidered thusfar. Note that in the following, we don't assume the symple
ti
 forms !tare 
ohomologous. This result is applied in [Wene℄ to 
lassify strong �llingsof various 
onta
t manifolds up to symple
ti
 deformation equivalen
e.Theorem 3. If (W;!t) for t 2 [0; 1℄ is a smooth 1{parameter family ofstrong �llings of either a planar 
onta
t manifold (M; �) or (T 3; �0), thenby atta
hing a smooth family of trivial symple
ti
 
obordisms, one 
an 
on-stru
t a smooth family of strong �llings (W 0; !0t) for whi
h !0t is independentof t near �W 0, and there exists a smooth family of !0t{symple
ti
 Lefs
hetz�brations �t : W 0 ! � as in Theorems 1 and 2, su
h that the 
riti
alpoints vary smoothly with t.2.2. Classifying strong �llings of T 3. Stipsi
z showed using a gaugetheory argument [Sti02℄ that all Stein �llings of T 3 are homeomorphi
 toT 2�D , and 
onje
tured that this result 
an be strengthened to a di�eomor-phism. In fa
t, more turns out to be true: by Theorem 2, every minimalstrong �lling W of T 3 admits a symple
ti
 �bration over the annulus with
ylindri
al �bers. One 
an now repeat this 
onstru
tion starting from adi�erent de
omposition of T 3 (
orresponding to a 
hange in the (q1; q2){
oordinates), and thus show that W admits two symple
ti
 �brations overthe annulus, with 
ylindri
al �bers su
h that any two �bers from ea
h

8 CHRIS WENDL�bration interse
t ea
h other on
e transversely. This provides a di�eomor-phism from W with an atta
hed 
ylindri
al end to T �T 2, and in x5 we willuse Moser isotopy arguments to show:Theorem 4. All minimal strong �llings of T 3 are symple
ti
ally deforma-tion equivalent, and every exa
t �lling of T 3 is symple
tomorphi
 to a starshaped domain in (T �T 2; !0).Corollary 4. Every minimal strong �lling of T 3, and in parti
ular everyStein �lling, is di�eomorphi
 to T 2 � D .The �rst uniqueness result of this type was obtained by Eliashberg[Eli90a℄, who showed that all Stein �llings of S3 are di�eomorphi
 to the4{ball. Shortly afterwards, M
Du� [M
D90℄ 
lassi�ed Stein �llings of theLens spa
es L(p; 1) with their standard 
onta
t stru
tures up to di�eo-morphism, showing in parti
ular that they are unique for all p 6= 4. M
-Du� argued by 
ompa
ti�
ation in order to apply her 
lassi�
ation resultsfor rational and ruled symple
ti
 4{manifolds, and several other unique-ness and �niteness results have sin
e been obtained using similar ideas,e.g. [Lis08, OO05℄. Many of these uniqueness results 
an be re
overed,and some of them strengthened or generalized, using the pun
tured holo-morphi
 
urve te
hniques introdu
ed here (
f. [Wene℄). By 
ontrast, thereare also 
onta
t manifolds that admit in�nitely many non-di�eomorphi
 ornon-homeomorphi
 Stein �llings: see [AEMS℄ and the referen
es mentionedtherein.The aforementioned result of M
Du� for L(p; 1) was strengthened touniqueness up to Stein deformation equivalen
e by R. Hind [Hin03℄, using a
onstru
tion similar to ours, though the te
hni
al arguments are somewhatdi�erent. Hind uses a foliation by J{holomorphi
 planes asymptoti
 to amultiply 
overed orbit; sin
e planes 
annot undergo nodal degenerationsunless there are 
losed 
urves involved, singular �bers are ruled out andthe result is a smooth symple
ti
 �bration outside of the asymptoti
 orbit.This �bration 
an then be used to 
onstru
t a plurisubharmoni
 fun
tionwith 
ontrol over the 
riti
al points, thus leading to a uniqueness result upto Stein homotopy. It is plausible that one 
ould apply Hind's idea to our
onstru
tion and further sharpen our 
lassi�
ation of Stein �llings for T 3,though we will not pursue this here.Another 
onsequen
e of Theorem 4 (and also a step in its proof) is thatevery exa
t �lling of T 3 be
omes symple
tomorphi
 to (T �T 2; !0) afteratta
hing a positive 
ylindri
al end. It is then natural to ask about thetopology of the 
ompa
tly supported symple
tomorphism group. In x5 wewill prove:Theorem 5. The group Symp
(T �T 2; !0) of symple
tomorphisms with 
om-pa
t support is 
ontra
tible.



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 92.3. Obstru
tions to �llability. The results stated so far all start withthe assumption that a �lling exists, and then use the existen
e of some J{holomorphi
 
urves to dedu
e properties of the �lling. In other situations,the same argument 
an sometimes lead to a 
ontradi
tion, thus de�ningan obstru
tion to �lling|to understand this, we must �rst re
all somegeneral notions about holomorphi
 
urves in symple
tizations and �niteenergy foliations.If � is a 
onta
t form on M , then the Reeb ve
tor �eld X� 2 Ve
(M) isde�ned by the 
onditionsd�(X�; ) � 0; �(X�) � 1:The symple
tization R �M then admits a natural splitting of its tangentbundle T (R�M) = R�RX���; let us denote the R{
oordinate on R�Mby a and let �a denote the 
orresponding unit ve
tor �eld. There is nowa nonempty and 
ontra
tible spa
e J�(M) of almost 
omplex stru
tures Jon R �M having the following properties:� J is invariant under the R{a
tion by translation on R �M� J�a = X�� J� = � and J j� is 
ompatible with the symple
ti
 stru
ture d�j�Given J 2 J�(M), we will 
onsider J{holomorphi
 
urvesu : ( _�; j)! (R �M;J)where (�; j) is a 
losed Riemann surfa
e, _� = � n � is the pun
turedsurfa
e determined by some �nite subset � � �, and u has �nite energy inthe sense de�ned in [Hof93℄. The simplest examples of su
h 
urves are theso-
alled orbit 
ylinders~x : R � S1 ! R �M : (s; t) 7! (Ts; x(T t));for any T{periodi
 orbit x : R ! M of X�. We will not need to re
allthe pre
ise de�nition of the energy here, only that its �niteness 
onstrainsthe behavior of u at the pun
tures: ea
h pun
ture is either removable orrepresents a positive/negative 
ylindri
al end, at whi
h u approximates anorbit 
ylinder, asymptoti
ally approa
hing a (perhaps multiply 
overed)periodi
 orbit in f�1g �M .Re
all that a T{periodi
 orbit is 
alled nondegenerate if the transversalrestri
tion of the linearized time T 
ow along the orbit does not have 1 as aneigenvalue. More generally, a Morse-Bott submanifold of T{periodi
 orbitsis a submanifold N � M 
onsisting of T{periodi
 orbits su
h that the 1{eigenspa
e of the linearized 
ow is always pre
isely the tangent spa
e to N .We say that � isMorse-Bott if every periodi
 orbit belongs to a Morse-Bottsubmanifold; this will be a standing assumption throughout. Note that anondegenerate orbit is itself a (1{dimensional) Morse-Bott submanifold.

10 CHRIS WENDLNow 
onsider a 
ompa
t 3{dimensional submanifold M0 � M , possiblywith boundary, su
h that �M0 is a Morse-Bott submanifold. The followingobje
ts were originally 
onsidered in [HWZ03℄:De�nition 2.4. A �nite energy foliation F on (M0; �; J) is a foliation ofR �M0 with the following properties:� For any leaf u 2 F , the R{translation of u by any real number isalso a leaf in F .� Every u 2 F is the image of an embedded �nite energy J{holomorphi

urve satisfying a uniform energy bound.In light of the se
ond requirement, we shall often blur the distin
tionbetween leaves and the J{holomorphi
 
urves that parametrize them. Thede�nition has several immediate 
onsequen
es: most notably, let PF denotethe set of all simple periodi
 orbits that have 
overs o

urring as asymptoti
orbits for leaves of F . Then an easy positivity of interse
tions argument(see e.g. [Wen05℄) implies that for ea
h 
 2 PF , the orbit 
ylinder R � 
 isa leaf in F , and every leaf that isn't one of these remains embedded underthe natural proje
tion � : R �M !M:In fa
t, abusing notation to regard PF as a subset ofM , the quotient F=Rde�nes a smooth foliation of M0 n PF by embedded surfa
es transverseto X�. These proje
ted leaves are non
ompa
t and have 
losures withboundary in PF . It is easy to see from this that �M0 � PF .As we will see in Example 2.11, it is relatively easy to 
onstru
t �niteenergy foliations in various simple lo
al models of 
onta
t manifolds, andthis will suÆ
e for the obstru
tion to �llability that we have in mind.Global 
onstru
tions are harder but do exist, for instan
e on the tight3{sphere [HWZ03℄, on overtwisted 
onta
t manifolds [Wen08℄ and moregenerally on planar 
onta
t manifolds [Abb,Wen
℄.De�nition 2.5. We will say that a �nite energy foliation F on (M0; �; J)is positive if every leaf that isn't an orbit 
ylinder has only positive ends.De�nition 2.6. A leaf u 2 F will be 
alled an interior leaf if it is not anorbit 
ylinder and all its ends belong to Morse-Bott submanifolds that liein the interior of M0.De�nition 2.7. A leaf u 2 F will be 
alled stable if it has genus 0, allits pun
tures are odd and ind(u) = 2 (see the appendix for the relevantte
hni
al de�nitions).This notion of a stable leaf is meant to ensure that u behaves well in thedeformation and interse
tion theory of J{holomorphi
 
urves. In pra
ti
e,these 
onditions are easy to a
hieve for leaves of genus zero.De�nition 2.8. A leaf u 2 F will be 
alled asymptoti
ally simple if allits asymptoti
 orbits are simply 
overed and belong to pairwise disjoint



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 11Morse-Bott families; moreover every nontrivial Morse-Bott family amongthese is a 
ir
le of orbits foliating a torus.Remark 2.9. This last 
ondition 
an very likely be relaxed, but it's satis�edby most of the interesting examples I'm aware of so far and will simplifythe 
ompa
tness argument in x3 
onsiderably, parti
ularly in proving thatlimit 
urves are somewhere inje
tive.Theorem 6. Suppose (M; �) has a Morse-Bott 
onta
t form �, almost
omplex stru
ture J 2 J�(M) and 
ompa
t 3{dimensional submanifold M0with Morse-Bott boundary, su
h that (M0; �; J) admits a positive �niteenergy foliation F 
ontaining an interior, stable and asymptoti
ally simpleleaf u0 2 F . Assume also that either of the following is true:(1) M0 (M .(2) There exists a leaf u0 2 F whi
h is not an orbit 
ylinder and isdi�erent from some interior stable leaf u0 in the following sense:either u0 and u0 are not di�eomorphi
, or if they are, then there isno bije
tion between the ends of u0 and u0 su
h that the asymptoti
orbits of u0 are all homotopi
 along Morse-Bott submanifolds to the
orresponding asymptoti
 orbits of u0.Then (M; �) is not strongly �llable.The idea behind this obstru
tion is that if (M; �) 
ontains su
h a foliationand is �llable, one 
an extend the foliation into the �lling and derive a
ontradi
tion by following the family of holomorphi
 
urves along a pathleading either outside ofM0 or to a \di�erent" leaf u0 2 F . As we'll note inRemark 4.2, a similar argument leads to a proof of the Weinstein 
onje
turewhenever a subset of M admits a �nite energy foliation with an interior,stable and asymptoti
ally simple leaf.Example 2.10 (Overtwisted 
onta
t stru
tures). It was shown in [Wen08℄that every overtwisted 
onta
t manifold globally admits a �nite energyfoliation satisfying the 
onditions of Theorem 6, so this implies a new(admittedly mu
h harder) proof of the 
lassi
 Eliashberg-Gromov resultthat all strongly �llable 
onta
t stru
tures are tight (see also Remark 2.12).The foliation in question is produ
ed by starting from a planar open bookde
omposition in S3 and performing Dehn surgery and Lutz twists along atransverse link: ea
h 
omponent of the link is surrounded by a torus whi
hbe
omes a Morse-Bott submanifold in the foliation (see Figure 1). Notethat an easier proof that strongly �llable manifolds are tight is possibleusing the result for Giroux torsion below; 
f. [Gay06, Corollary 5℄.Example 2.11 (Giroux torsion). Let T 2 = S1 � S1 and T = T 2 � [0; 1℄with 
oordinates (q1; q2; �). Given smooth fun
tions f; g : [0; 1℄ ! R, a1{form � = f(�) dq1 + g(�) dq2
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PSfrag repla
ements[0;1)�M(W;!) Figure 1. A global �nite energy foliation produ
ed froma planar open book de
omposition on S3 by surgery alonga transverse link. Any overtwisted 
onta
t manifold 
an befoliated this way, giving a new proof that strongly �llable
onta
t manifolds are tight.is a positive 
onta
t form if and only if D(�) := f(�)g0(�)� f 0(�)g(�) > 0,meaning the path � 7! (f; g) 2 R2 winds 
ounter
lo
kwise around theorigin. An important spe
ial 
ase is the 1{form�1 = 
os(2��) dq1 + sin(2��) dq2;with 
onta
t stru
ture �1 := ker�1. A 
losed 
onta
t manifold (M; �) issaid to have positive Giroux torsion if it admits a 
onta
t embedding of(T; �1). Re
ently, D. Gay [Gay06℄ used gauge theory to show that 
onta
tmanifolds with positive Giroux torsion are not strongly �llable, and anotherproof using the Ozsv�ath-Szab�o 
onta
t invariant has been 
arried out byGhiggini, Honda and Van Horn-Morris [GHVHM℄. We shall now reprovethis result by 
onstru
ting an appropriate �nite energy foliation in T ; api
torial representation of the proof is shown in Figure 2.First note that one 
an always slightly expand the embedding of T andthus repla
e it with T 0 := T 2 � [��; 1 + �℄ for some small � > 0, with thesame 
onta
t form �1 as above. Now multiplying the 
onta
t form by asmooth positive fun
tion of �, we 
an repla
e �1 by � = f(�) dq1+g(�) dq2su
h that g0(��) = g0(1 + �) = 0. Note that also g0(1=4) = g0(3=4) = 0.The result is that these four spe
ial values of � all de�ne Morse-Bott torifoliated by 
losed Reeb orbits in the ��q2 dire
tion (with signs alternating).
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PSfrag repla
ements

[0;1)�M
(W;!)

Figure 2. The reason why Giroux torsion 
ontradi
tsstrong �llability: one 
an 
onstru
t a �nite energy foliation
onsisting of three families of holomorphi
 
ylinders withpositive ends. The middle family 
ontains interior stableleaves, whi
h then spread to a foliation of any �lling andmust eventually run into the other families, giving a 
ontra-di
tion.Indeed, it is easy to 
ompute that the Reeb ve
tor �eld takes the formX�(q1; q2; �) = g0(�)D(�)�q1 � f 0(�)D(�)�q2 :Now 
hoose J to be a 
omplex stru
ture on �1 su
h thatJ(C��) = � g(�)D(�)�q1 + f(�)D(�)�q2for some 
onstant C > 0. As shown in [Wen08, x4.2℄, it is easy to 
onstru
ta foliation by holomorphi
 
ylinders in this setting: we simply supposethere exist 
ylinders u : R � S1 ! R � T 0 of the formu(s; t) = (a(s); 
; t; �(s));

14 CHRIS WENDLwhere 
 2 S1 is a 
onstant, and �nd that the nonlinear Cau
hy-Riemannequations redu
e to a pair of ODEs for a(s) and �(s); these have uniqueglobal solutions for any 
hoi
e of a0 := a(0) and �0 := �(0). In parti
ular,the solution �(s) is monotone and maps R bije
tively onto the largestinterval (��; �+) � (��; 1 + �) 
ontaining �0 on whi
h g0 is nonvanishing.Likewise, a(s) ! +1 as s ! �1. As a result, in ea
h of the subsetsf� 2 (��; 1=4)g, f� 2 (1=4; 3=4)g and f� 2 (3=4; 1 + �)g, we obtain asmooth (R�S1){parametrized family of J{holomorphi
 
urves that foliatethe 
orresponding region; adding in the trivial 
ylinders for all four of theaforementioned Morse-Bott tori yields a positive �nite energy foliation ofT 0. It is straightforward to verify that all 
urves in the foliation are stablein the sense de�ned here. Sin
e the leaves in f� 2 (1=4; 3=4)g have theirasymptoti
 orbits in the interior of T 0, and all other leaves have asymptoti
orbits on di�erent Morse-Bott submanifolds, Theorem 6 applies, giving a
ompletely non-gauge-theoreti
 proof that no 
onta
t manifold 
ontaining(T 0; �1) 
an be strongly �llable.Remark 2.12. Giroux torsion is not generally an obstru
tion to weak �lla-bility, e.g. this was demonstrated with examples on T 3 by Giroux [Gir94℄and Eliashberg [Eli96℄. Note also that overtwisted 
onta
t manifolds arenot weakly �llable, but our method does not prove this, as Theorem 7 be-low requires the atta
hment of a positive 
ylindri
al end to the boundaryof the �lling. This is an important di�eren
e between our te
hnique andthe \disk �lling" methods used by Eliashberg in [Eli90a℄.Remark 2.13. The setup used in Example 2.11 above for Giroux torsion isalso suitable for (T 3; �0), thus the same tri
k yields a positive stable �niteenergy foliation whose leaves proje
t to the �bers of the �bration (2.2).We will make use of this foliation in the proof of Theorem 2.Example 2.14. We've generally assumed the 
onta
t manifold (M; �) tobe 
onne
ted, but one 
an also drop this assumption. Theorem 6 thenapplies, for instan
e, to any disjoint union of 
onta
t manifolds 
ontaininga planar 
omponent. One re
overs in this way a result of Etnyre [Etn04℄,that any strong symple
ti
 �lling with a planar boundary 
omponent musthave 
onne
ted boundary. This applies more generally if any boundary
omponent admits a positive stable �nite energy foliation, e.g. the stan-dard T 3. A further generalization to partially planar 
onta
t manifolds isexplained in [ABW℄, using similar ideas.3. Holomorphi
 
urves and 
ompa
tnessThe theorems of the previous se
tion are 
onsequen
es of the 
ompa
t-ness properties of pseudoholomorphi
 
urves belonging to a foliation ina symple
ti
 4{manifold with a positive 
ylindri
al end. The setup formost of this se
tion will be as follows: assume (M; �) has a Morse-Bott
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onta
t form � and almost 
omplex stru
ture J+ 2 J�(M), a 
ompa
t3{dimensional submanifold M0 � M with Morse-Bott boundary and apositive �nite energy foliation F+ of (M0; �; J+) 
ontaining an interior sta-ble leaf that is asymptoti
ally simple. Assume further that (W1; !) is anon
ompa
t symple
ti
 manifold admitting a de
ompositionW1 = W [�W ([R;1)�M)for some R 2 R, where W is a 
ompa
t manifold with boundary �W =M and !j[R;1)�M = d(ea�), with a denoting the R{
oordinate on R �M . There is a natural 
ompa
ti�
ation W1 of W1, de�ned by 
hoosingany smooth stru
ture on [R;1℄ and repla
ing [R;1) �M in the abovede
omposition by [R;1℄ �M ; then W1 is a 
ompa
t smooth manifoldwith boundary �W1 =M .The open manifold (W1; !) is a natural setting for pun
tured pseudo-holomorphi
 
urves. Indeed, 
hoose any numbera0 2 [R;1)and an almost 
omplex stru
ture J on W1 that is 
ompatible with !and satis�es J j[a0;1)�M = J+. Just as in the symple
tization R �M , onethen 
onsiders pun
tured J{holomorphi
 
urves of �nite energy in W1,su
h that ea
h pun
ture is a positive end approa
hing a Reeb orbit atf+1g�M .Let F0 denote the 
olle
tion of leaves in F+ that lie entirely within[a0;1) �M : observe that this in
ludes some R{translation of every leafthat isn't an orbit 
ylinder. Then ea
h of these leaves embeds naturallyinto W1 as a �nite energy J{holomorphi
 
urve. After a generi
 pertur-bation of J 
ompatible with ! in the region W [ ((R; a0)�M), standardtransversality arguments as in [MS04℄ imply that every somewhere inje
-tive J{holomorphi
 
urve v : _�!W1 not fully 
ontained in [a0;1)�Msatis�es ind(v) � 0. We will assume J satis�es this generi
ity 
onditionunless otherwise noted.Remark 3.1. Note that we are not assuming J+ 2 J�(M) is generi
, whi
his important be
ause we wish to apply the results below for foliations(M0; �; J+) as 
onstru
ted in Example 2.11, where J+ is 
hosen to be assymmetri
 as possible. We 
an get away with this be
ause of the distin
tly4{dimensional phenomenon of \automati
" transversality: in parti
ular,Prop. A.1 guarantees transversality for stable leaves without any gener-i
ity assumption. We need generi
ity in the 
ompa
tness argument ofTheorem 7 only to ensure that nodal 
urves with 
omponents of negativeindex do not appear.Denote by M the moduli spa
e of �nite energy J{holomorphi
 
urvesin W1, and let M denote its natural 
ompa
ti�
ation as in [BEH+03℄:the latter 
onsists of nodal J{holomorphi
 buildings, possibly with multiple

16 CHRIS WENDLlevels, in
luding a main level in W1 and several upper levels, whi
h areequivalen
e 
lasses of nodal 
urves in R �M up to R{translation. Thereare no lower levels sin
e W1 has no negative end.Choose any interior stable leaf u0 2 F0 that is asymptoti
ally simple, letM0 � M be the 
onne
ted 
omponent 
ontaining u0 and M0 � M the
losure of M0.We will now prove two 
ompa
tness results: one that gives the existen
eof a global foliation with isolated singularities on W1, and another thatpreserves this foliation under generi
 homotopies of the data.Theorem 7. If M 
ontains a submanifold M0 with �nite energy foliationF+ as des
ribed above, then M0 = M . Moreover, the moduli spa
es M0and M0 have the following properties:(1) Every 
urve inM0 is embedded and unobstru
ted (i.e. the linearizedCau
hy-Riemann operator is surje
tive), and no two 
urves in M0interse
t.(2) M0 nM0 
onsists of the following:(a) A 
ompa
t 1{dimensional manifold of buildings that ea
h havean empty main level and one nontrivial upper level that is aleaf of F+ (see Remark 3.2 below),(b) A �nite set of 1{level nodal 
urves in W1, ea
h 
onsisting oftwo embedded index 0 
omponents with self-interse
tion num-ber �1 (see Remark 3.3 below), whi
h interse
t ea
h other ex-a
tly on
e, transversely. These are all disjoint from ea
h otherand from the smooth embedded 
urves in M0.(3) The 
olle
tion of 
urves inM0 plus the embedded 
urves inW1 thatform 
omponents of nodal 
urves in M0 forms a foliation of W1outside of a �nite set of \double points" where two leaves interse
ttransversely; these are the nodes of the isolated nodal 
urves inM0 nM0.(4) M0 is a smooth manifold di�eomorphi
 to either [0; 1℄ � S1 or D ;it is the latter if and only if every asymptoti
 orbit of the interiorstable leaf u0 is nondegenerate.Remark 3.2. Note that the 
urves in the upper levels of a building are te
h-ni
ally only equivalen
e 
lasses of 
urves up to R{translation, nonethelessit makes sense to speak of su
h a 
urve being a leaf of F+, sin
e the latteris also an R{invariant foliation.Remark 3.3. The self-interse
tion number here is meant to be interpretedin the sense of Siefring's interse
tion theory for pun
tured holomorphi

urves [Sie, SW℄. This is reviewed brie
y in the appendix, though it'smost important to 
onsider the 
ase where the 
urve under 
onsiderationis 
losed: then the de�nition of \self-interse
tion number" redu
es to theusual one.
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ondition for u0 implies dueto (A.2) that its normal Chern number 
N (u0) vanishes, hen
e 2 = ind(u) >
N(u) = 0 for all u 2 M0. The transversality 
riterion of Prop. A.1 thusguarantees that every u 2 M0 is unobstru
ted on
e we prove that it is alsoembedded; we will do this in Step 7. The proof now pro
eeds in severalsteps.Step 1: We 
laim that no 
urve u 2 M0 
an have an isolated interse
tionwith any leaf u+ 2 F0. Clearly, for any given u+ 2 F0, positivity ofinterse
tions implies that the subset of 
urves u 2 M0 that have no isolatedinterse
tion with u+ is 
losed, and we must show that it's also open. There'sa slightly subtle point here, as the non
ompa
tness of the domain allowsa theoreti
al possibility for interse
tions to \emerge from in�nity" underperturbations of u. To rule this out, we use the interse
tion theory ofpun
tured holomorphi
 
urves de�ned in [Sie,SW℄ (a basi
 outline is givenin the appendix). The point is that there exists a homotopy invariantinterse
tion number i(u; u+) 2 Z that in
ludes a 
ount of \asymptoti
interse
tions", and the 
ondition i(u; u+) = 0 is suÆ
ient to guaranteethat no 
urve homotopi
 to u ever has an isolated interse
tion with u+.This number vanishes in the present 
ase due to Lemma A.3.Step 2: As an obvious 
onsequen
e of Step 1, a similar statement is truefor any 
omponent v of a building u 2 M0: v has no isolated interse
tionwith any leaf u+ 2 F+ if v is in an upper level, or with any u+ 2 F0 if v isin the main level.Step 3: If u 2 M0 nM0, we 
laim that one of the following is true:(1) u has only one nontrivial upper level, 
onsisting of a leaf of F+ inR �M , and the main level is empty.(2) u has no upper levels.Indeed, suppose u has nontrivial upper levels and let v denote a nontrivial
omponent of the topmost nontrivial level. Due to our assumptions onu0, ea
h positive end of v is then a simply 
overed orbit belonging to adistin
t Morse-Bott submanifold in the interior of M0, hen
e v is some-where inje
tive. The asymptoti
 formula of [HWZ96b℄ now implies that� Æ v is an embedding into M near ea
h end and is disjoint from the 
orre-sponding asymptoti
 orbit; hen
e it interse
ts some proje
ted leaf of F+;we 
on
lude that v interse
ts some leaf u+ 2 F+. By the result of Step 2,this interse
tion 
annot be isolated, and sin
e v is somewhere inje
tive, we
on
lude v 2 F+. As a result, v has no negative ends and its positive endsare in one-to-one 
orresponden
e with those of u0, so u 
an have no othernonempty 
omponents.Step 4: Suppose u 2 M0 nM0 satis�es the se
ond alternative in Step 3:u is then a nodal 
urve in the main level. We 
laim that any non
onstant
omponent v of u either is a leaf in F0 or it is not 
ontained in the subset[a0;1)�M � W1. There are two 
ases to 
onsider: if v has no ends then
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annot be in [a0;1)�M be
ause the symple
ti
 form here is exa
t, sono non
onstant 
losed holomorphi
 
urve 
an exist. If on the other hand vhas positive ends and is 
ontained in [a0;1)�M , where J is R{invariant,then a similar argument as in Step 3 �nds an illegal isolated interse
tionof v with a leaf of F0 unless v is su
h a leaf.Step 5: Continuing with the assumptions of Step 4, we 
laim that oneof the following holds:(1) u is smooth (i.e. has no nodes).(2) u has exa
tly two 
omponents, both somewhere inje
tive and withindex 0.To see this, re
all �rst that u0 has genus 0, thus u has arithmeti
 genus 0.Now suppose u has multiple 
omponents 
onne
ted by N � 1 nodes. Ev-ery 
omponent of u is then either a pun
tured sphere with positive ends(denoted here by vi), a non
onstant 
losed sphere (denoted wi) or a ghostbubble, i.e. a 
onstant sphere (denoted gi). For a sphere vi with ends, theasymptoti
 behavior of u0 guarantees that vi is somewhere inje
tive. Thenby Step 4, it is either a leaf of F0 or it is not 
ontained in [a0;1) �M ,hen
e the generi
ity assumption for J implies ind(vi) � 0. Consider now anon
onstant 
losed 
omponent wi, whi
h we assume to be a ki{fold 
overof a somewhere inje
tive sphere ^wi for some ki 2 N . Again, Step 4 and thegeneri
ity of J guarantee that ind( ^wi) = 2
1([ ^wi℄)� 2 � 0, hen
eind(wi) = 2
1([wi℄)�2 = 2ki
1([ ^wi℄)�2 = ki �ind( ^wi)+2(ki�1) � 2(ki�1):Ghost bubbles are now easy to rule out: we have ind(gi) = 2
1([gi℄)� 2 =�2, and by the stability 
ondition of Kontsevi
h (
f. [BEH+03℄), gi has atleast three nodes, ea
h 
ontributing 2 to the total index of u. Sin
e wealready know that the non
onstant 
omponents 
ontribute nonnegativelyto the index, the existen
e of a ghost bubble thus implies the 
ontradi
tionind(u) � 4. With this detail out of the way, we add up the indi
es of all
omponents, 
ounting an additional 2 for ea
h node, and �nd2 = ind(u) =Xi ind(vi) +Xi ind(wi) + 2N� 2Xi (ki � 1) + 2N:Sin
e N � 1 by assumption, this implies that ea
h ki is 1 and N = 1, hen
eu has exa
tly two 
omponents, both somewhere inje
tive with index 0.Step 6: By Step 5, the nodal 
urves in M0 have 
omponents that areunobstru
ted and have index 0, hen
e they are isolated. By the 
ompa
t-ness of M0, this implies that the set of nodal 
urves in M0 nM0 is �nite.A standard gluing argument as in [MS04℄ now identi�es a neighborhoodof any nodal 
urve u in M0 with an open subset of R2 , where every 
urveother than u is smooth. Similarly, sin
e every u 2 M0 is unobstru
ted,
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it fun
tion theorem in Bana
h spa
es de�nes smooth man-ifold 
harts everywhere on M0. Outside a 
ompa
t subset, M0 n �M0
an be identi�ed with the set of leaves in F0, and is thus di�eomorphi
 to[0;1)� V for some 
ompa
t 1{manifold V , so �M0 is di�eomorphi
 to Vitself. The spa
e M0 is therefore a 
ompa
t surfa
e with boundary, and isorientable due to arguments in [BM04℄.Step 7: We now use the interse
tion theory from [Sie,SW℄ to show thatM0 foliates W1. We noted already in Step 1 that i(u; u0) = 0 for anytwo 
urves u; u0 2 M0, whi
h implies that no two of these 
urves 
an everinterse
t. Sin
e every u 2 M0 is obviously somewhere inje
tive due toits asymptoti
 behavior, the adjun
tion formula (A.6) implies sing(u) = 0and thus these 
urves are also embedded. Consider now a nodal 
urveu 2 M0, with its two 
omponents u1 and u2, and observe that (A.2)implies 
N(u1) = 
N(u2) = �1. Applying the adjun
tion formula again,we �nd0 = i(u; u) = i(u1; u1) + i(u2; u2) + 2i(u1; u2)� 2 sing(u1) + 
N (u1) + 2 sing(u2) + 
N(u2) + 2i(u1; u2)= 2 sing(u1) + 2 sing(u2) + 2 [i(u1; u2)� 1℄ :Thus sing(u1) = sing(u2) = 0, implying both 
omponents are embedded,and i(u1; u2) = 1, so the node is the only interse
tion, and is transverse.The adjun
tion formula for ea
h of u1 and u2 individually now also impliesi(u1; u1) = i(u2; u2) = �1. (Note that the 
ov1(z) terms must all vanish,as this is manifestly true for u0 and they depend only on the orbits). Bythe gluing argument mentioned in Step 6, a neighborhood of u in M0 isa smooth 2{parameter family of embedded 
urves from M0; these foliatea neighborhood of the union of u1 and u2. Similarly, the impli
it fun
tiontheorem in [Wend℄ or [Wen05℄ implies that for any u 2 M0, the nearby
urves in M0 foliate a neighborhood of u. This shows thatfp 2 W1 j p is in the image of some u 2 M0gis an open subset of W1. It is also 
learly a 
losed subset sin
e M0 is
ompa
t. We 
on
lude that all of W1 is �lled by the 
urves in M0.Step 8: It follows easily now that M0 =M , as one 
an take a sequen
eof 
urves in M0 whose images approa
h (+1; p) for any p 2 M ; sin
e asubsequen
e 
onverges to a leaf of F+, we 
on
lude that F+ �lls all of M .Step 9: Having shown already thatM0 is a 
ompa
t orientable surfa
ewith boundary, we prove �nally that it must be either D or [0; 1℄ � S1.De�ne a smooth map(3.1) � : W1 !M0by sending p 2 W1 to the unique 
urve in M0 whose image 
ontains p.We 
an extend � over W1 n PF+ by sending p 2 M n PF+ to the uniqueleaf in F+=R = �M0 
ontaining p.

20 CHRIS WENDLAssume �rst that there are degenerate orbits among the asymptoti
 or-bits of the interior stable leaf u0 2 F+: su
h an orbit belongs to a Morse-Bott 2{torus T0 � M foliated by Reeb orbits that are asymptoti
 limitsof leaves in F+. By the de�nition of M0, every 
urve u 2 M0 and thusevery leaf in F+ has a unique end asymptoti
 to some orbit in T0. In this
ase �M0 must have two 
onne
ted 
omponents, and we 
an parametrizethem as follows. Identify a neighborhood of T0 inM with (�1; 1)�S1�S1su
h that f0g � S1 � S1 = T0 and the Reeb orbits are all of the formf0g� f
onstg� S1. Then we 
an arrange that for suÆ
iently small � > 0,the loop 
+(t) = (+1; �; t; 0) 2 W1 passes through a di�erent leaf ofF+ for ea
h t, thus without loss of generality, � Æ 
+ : S1 ! �M0 is anoriented parametrization of one boundary 
omponent of �M0. The otherboundary 
omponent 
an be given an oriented parametrization in the form�Æ
� : S1 ! �M0 where 
�(t) = (+1;��;�t; 0). Now moving both loopsdown slightly from1, we see that [
�℄ = �[
+℄ 2 �1(W1nPF+), implyingthat the two boundary 
omponents of M0 are homotopi
, and thereforeM0 �= [0; 1℄� S1.If all orbits of u0 are nondegenerate, then �M0 must have only one
omponent, whi
h we 
an similarly parametrize by 
hoosing a loop 
 :S1 ! f+1g �M that 
ir
les on
e around one of these orbits and passeson
e transversely through ea
h leaf of F+. Moving 
 again down from+1, it is 
ontra
tible in W1 n PF+, implying �M0 is 
ontra
tible, thusM0 �= D . �To set up the se
ond 
ompa
tness result, assume that for � 2 [0; 1℄,!� is a smooth family of symple
ti
 forms on W1 mat
hing d(ea�) on[a0;1)�M , and J� is a smooth family of almost 
omplex stru
tures 
om-patible with !� for ea
h � and mat
hing J+ 2 J�(M) on [a0;1) � M .Assume also that the homotopy J� is generi
 on W1 n ([a0;1)�M) sothat for any � 2 [0; 1℄, every somewhere inje
tive J�{holomorphi
 
urve unot 
ontained in [a0;1) �M satis�es ind(u) � �1. Then for ea
h � , letM� denote the 
onne
ted moduli spa
e of J�{holomorphi
 
urves 
ontain-ing an interior stable leaf in F0 that is asymptoti
ally simple, and write its
ompa
ti�
ation as M� .Theorem 8. The 
on
lusions of Theorem 7 hold for the moduli spa
esM�for ea
h � 2 [0; 1℄; in parti
ular they are all smooth 
ompa
t manifolds withboundary that form foliations of W1 with �nitely many singularities, andtheir boundaries 
an be identi�ed naturally with the set of leaves in theproje
ted foliation F+=R. Moreover, there exists a smooth 1{parameterfamily of di�eomorphisms M0 !M� that maps M0 to M� and restri
tsto the natural identi�
ation �M0 ! �M� .Proof. For ea
h � 2 [0; 1℄, the proof of Theorem 7 requires only a smallmodi�
ation to work for the almost 
omplex stru
ture J� . The di�eren
e



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 21is that J� is now not ne
essarily generi
, so we have a weaker lower boundon the indi
es of somewhere inje
tive 
urves that are not 
ontained in[a0;1)�M . The only pla
e this makes a di�eren
e is in Step 5: we mustnow 
onsider the possibility that u is a nodal 
urve in W1 with several
omponents of possibly negative index. Sin
e none of these 
omponentsare 
ontained in [a0;1) �M and fJ�g�2[0;1℄ is a generi
 homotopy, theyall 
over somewhere inje
tive 
urves of index at least �1. We 
laim thatthis implies the somewhere inje
tive 
urves have nonnegative index afterall: for 
losed 
omponents the index is always even, so this is 
lear. Thesame turns out to be true for 
omponents with ends: sin
e u0 has onlyodd pun
tures, any pun
tured somewhere inje
tive 
urve with a 
over thatforms a 
omponent of u has all its ends asymptoti
 to orbits that haveodd 
overs, and must themselves therefore be odd. (See [Wenb, x4.2℄ forthe proof that even orbits always have even 
overs; this statement appliesequally well in the Morse-Bott setup des
ribed in the appendix.) It followsthen from the index formula that the index of su
h a 
omponent must beeven, and in this 
ase therefore nonnegative. The rest of the 
ompa
tnessproof now follows just as before, with the added detail that all 
urves arisingin the limit (in
luding 
omponents of nodal 
urves) are unobstru
ted dueto Prop. A.1, whi
h does not require generi
ity.By the above argument, we have moduli spa
es M� that foliate W1with J�{holomorphi
 
urves outside of a �nite set of nodes. Moreover,every 
urve in the foliation is unobstru
ted, so for any given �0 2 [0; 1℄,the index 0 
urves that are 
omponents of nodal 
urves in M�0 deformuniquely to J�{holomorphi
 
urves for � in some neighborhood of �0, andan interse
ting pair of su
h 
urves forms a nodal 
urve. Sin
e the 
urvesin M�0 and M� near their respe
tive boundaries are identi
al, a familiarinterse
tion argument now shows that this nodal 
urve must belong toM� .Similarly, index 2 
urves inM�0 deform to index 2 
urves inM� , providinga lo
al smooth 1{parameter family of di�eomorphismsM�0 !M�for � 
lose to �0, whi
h maps nodal 
urves to nodal 
urves and leaves in F0and F+ to themselves. To extend this for all � 2 [0; 1℄, it only remains toshow that the \parametrized" moduli spa
eM[0;1℄ := f(�; u) j � 2 [0; 1℄, u 2 M�gis 
ompa
t. This follows from the same arguments as above, after observingthat the energies of u 2 M� depend only on the relative homology 
lassde�ned by a leaf u0 2 F0 and (
ontinuously) on !� , thus they are uniformlybounded. �Remark 3.4. In some important situations, one 
an prove the two theoremsabove without any generi
ity assumption at all: the point is that generi
ityis usually needed to ensure a lower bound on the indi
es of 
omponents in

22 CHRIS WENDLnodal 
urves, but is not required to show that the 
urves a
tually obtainedin the limit are unobstru
ted. Thus if there are topologi
al 
onditions pre-venting the appearan
e of nodal 
urves, then any 
ompatible J or smoothfamily J� (also for � varying in a higher-dimensional spa
e) will suÆ
e:this works in parti
ular for exa
t �llings of T 3 and will play a 
ru
ial rolein the proof of Theorem 5.4. Lefs
hetz fibrations and obstru
tions to fillingWe are now in a position to 
onstru
t the Lefs
hetz �brations that werepromised in x2. It will be 
onvenient to introdu
e the following notation.Suppose (W;!) is a strong �lling of (M; �) and Y is a Liouville ve
tor�eld near �W su
h that �Y !jM = ef� for some 
onta
t form � on M andsmooth fun
tion f : M ! R. Then for any 
onstant R > max f , we 
anuse Lemma 2.1 to atta
h the trivial symple
ti
 
obordism (SRf ; d(ea�)),produ
ing an enlarged �lling(WR; !) := (W;!) [�W (SRf ; d(ea�)):This has �a as a Liouville ve
tor �eld near �WR, su
h that ��a!j�WR = eR�.One 
an now atta
h a 
ylindri
al end,(W1; !) := (WR; !) [�WR ([R;1)�M; d(ea�));de�ning a non
ompa
t symple
ti
 
obordism whi
h admits the 
ompa
ti-�
ation W1 = WR [�W ([R;1℄�M) :We assign a smooth stru
ture to [R;1℄ so that W1 may be 
onsidereda smooth manifold with boundary, though its symple
ti
 stru
ture degen-erates at �W1. It is sometimes useful however to de�ne a new symple
-ti
 stru
ture on W1 that does extend to in�nity. Observe �rst that forany � > 0 with R � � > max f , (W1; !) 
ontains the slightly extended
ylindri
al end ([R � �;1) � M; d(ea�)). Now 
hoose Æ 2 (0; �) and adi�eomorphism ' : [R � �;1℄! [eR��; eR℄with the property that '(a) = ea for a 2 [R��; R�Æ℄. Then the symple
ti
form !' on W1 de�ned by!' = (d('�) on [R� �;1)�M ,! everywhere elsehas a smooth extension to W1, su
h that the map[R� �; R℄�M ! [R� �;1℄�M : (a;m) 7! ('�1(ea); m)extends to a symple
tomorphism (WR; !)! (W1; !').We will 
onsider almost 
omplex stru
tures J onW1 that are 
ompatiblewith !, are generi
 in W1 n ([R � Æ;1)�M) and mat
h some �xed J+ 2
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h a J is also 
ompatiblewith the modi�ed symple
ti
 form !' de�ned above, thus �nite energyembedded J{holomorphi
 
urves in W1 give rise to properly embeddedsymple
ti
 submanifolds of (W1; !') �= (WR; !).Lemma 4.1. The almost 
omplex stru
ture J above 
an be 
hosen so thatevery 
losed, non
onstant J{holomorphi
 
urve in (W1; J) is 
ontained inthe interior of W .Proof. It suÆ
es to arrange that W1 nW is foliated by J{
onvex hyper-surfa
es. Choose r < R � Æ, let h : [r;1) �M ! R denote any smoothfun
tion satisfying(1) �ah > 0,(2) h(a;m) = a for a � R� Æ,(3) h(a;m) = a� r + f(m) for a near r,and de�ne a di�eomorphism : [r;1)�M ! S1f : (a;m) 7! (h(a;m); m):This restri
ts to the identify on [R�Æ;1)�M and satis�es  �(ea�) = eh�,thus it de�nes a symple
tomorphism ([r;1)�M; d(eh�))! (SRf ; d(ea�)).Now for a 2 [r;1), denote by ha : M ! (0;1) the smooth 1{parameterfamily of fun
tions su
h that eh(a;�) = eaha, and de�ne the family of 
onta
tforms �a := ha� with 
orresponding Reeb ve
tor �elds Xa. Regarding �ain the natural way as a 1{form on R �M , we now haved(eh�) = ea da ^ �a + ea d�a;and an almost 
omplex stru
ture ^J 
ompatible with d(eh�) 
an thus be
onstru
ted as follows. Given J+ 2 J (�), 
hoose ^J on [r;1)�M so thatit mat
hes J+ on [R� Æ;1)�M , and at fag �M satis�esJ�a = Xa and J(�) = �;where J j� is 
ompatible with d� (and therefore also with d�a for ea
h a).Now the level sets fag�M are ^J{
onvex, thus an almost 
omplex stru
tureof the desired form on S1f is given by J :=  � ^J , and we 
an extend thelatter to an !{
ompatible almost 
omplex stru
ture on W1 for whi
h thehypersurfa
es  (fag � M) for a � r are J{
onvex. Sin
e J{
onvexityis an open 
ondition with respe
t to J , it is also safe to make a smallperturbation on WR so that J be
omes generi
 outside of [R� Æ;1)�M .�Proof of Theorem 1. Assume (M; �) is a 
onta
t manifold supported by aplanar open book � :M nB ! S1. Then using the 
onstru
tion in [Wen
℄,there is a nondegenerate 
onta
t form � with ker � = � and J+ 2 J�(M)su
h that up to isotopy, the pages of � are proje
tions to M of embeddedJ+{holomorphi
 
urves in R � M , with positive ends asymptoti
 to the

24 CHRIS WENDLorbits in B. This de�nes a positive �nite energy foliation F+ of (M;�; J+),with every leaf stable. Now if (W;!) is a strong �lling of (M; �), we de�nethe enlarged �llings WR and W1 with generi
 almost 
omplex stru
tureJ as des
ribed above, and then Theorem 7 yields a moduli spa
e M0 ofJ{holomorphi
 
urves that foliate W1 outside a �nite set of transversenodes, su
h that �M0 is the spa
e of leaves in F+ up to R{translation.Sin
e � is nondegenerate, M0 �= D , and the map� : W1 nB !M0de�ned as in (3.1) gives a symple
ti
 Lefs
hetz �bration of (W1 nB; !') �=(WR nB; !) over the disk. We 
an easily modify � so that it extends overB: �rst fatten B to a tubular neighborhood N (B) � M , then extend �over this neighborhood by 
ontra
ting the disk. We observe �nally thatif any singular �ber 
ontains a 
losed 
omponent, this must be a holo-morphi
 sphere v : S2 ! W1 with i(v; v) = �1, thus an ex
eptionalsphere, and for an appropriate 
hoi
e of J it must be 
ontained in W dueto Lemma 4.1. Therefore if W is minimal, every 
omponent of a singular�ber has nonempty boundary, implying that the vanishing 
y
le is homo-logi
ally nontrivial. �Proof of Theorem 2. The argument is mostly the same as for Theorem 1,but using a spe
i�
 Morse-Bott �nite energy foliation 
onstru
ted as inExample 2.11 (see Remark 2.13). In this 
ase the spa
e of leaves in T 3 isparametrized by two disjoint 
ir
les, thus the moduli spa
e M0 providedby Theorem 7 has two boundary 
omponents, and is therefore an annulus.The argument produ
es a Lefs
hetz �bration � : W1 n Z ! [0; 1℄ � S1,whi
h one 
an extend over Z by fattening it to a neighborhood N (Z) andthen �lling in using the homotopy between 
omponents of �M0.It remains to show that all singular �bers 
onsist of a union of a 
ylinderwith an ex
eptional sphere. By Theorem 7, the only other option is a unionof two transversely interse
ting disks, whi
h would give a vanishing 
y
leparallel to the boundary of the �ber. We 
an rule this out by looking at themonodromy maps of the �brations at f0g�S1 and f1g�S1: these are thetwo 
onne
ted 
omponents of the �bration in (2.2). Thus both monodromymaps are trivial, but they must also be related to ea
h other by a produ
tof positive Dehn twists, one for ea
h nontrivial vanishing 
y
le. Sin
e themapping 
lass group of the 
ylinder has only one generator, there is noprodu
t of positive Dehn twists that gives the identity, thus there 
an beno nontrivial vanishing 
y
les. �Proof of Theorem 3. For a smooth 1{parameter family of strong �llings(W;!t) of (M; �) with t 2 [0; 1℄ and a suitable Morse-Bott 
onta
t form�, one 
an �nd a smooth family of fun
tions ft : M ! R su
h thatfor R > maxfft(m) j t 2 [0; 1℄; m 2 Mg, the trivial symple
ti
 
obor-dism (SRft; d(ea�)) 
an be atta
hed to (W;!t), produ
ing an enlarged �lling
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ti
 form is �xed near the boundary. Now atta
hthe 
ylindri
al end as usual and 
hoose a generi
 smooth 1{parameter fam-ily Jt of !t{
ompatible almost 
omplex stru
tures that are identi
al on theend. If (M; �) is planar or is (T 3; �0), then the result now follows by ap-plying the same arguments as in the previous two proofs together withTheorem 8. �Proof of Theorem 6. Suppose (M; �) is a 
onta
t manifold with a positivefoliation F of (M0; �; J) 
ontaining an interior stable leaf u 2 F that isasymptoti
ally simple: then for any strong �lling (W;!), we 
an again �llW1 with J{holomorphi
 
urves using Theorem 7, and we already have a
ontradi
tion if M0 ( M . On the other hand if M0 = M , we 
an �nd apoint p that lies in some \di�erent" leaf u0 2 F , and then 
onsider for largen the sequen
e un 2 M0, where un is the unique 
urve passing through(n; p) 2 [R;1) �M � W1. As n ! 1, a subsequen
e must 
onvergeto u0, implying that u and u0 are di�eomorphi
 and have ends in the sameMorse-Bott manifolds, whi
h is a 
ontradi
tion. �Remark 4.2. The Weinstein 
onje
ture for a 
onta
t manifold (M; �) as-serts that for any 
onta
t form � with ker� = �, X� has a periodi
 orbit.The idea of using pun
tured holomorphi
 
urves to prove this is originallydue to Hofer [Hof93℄, and works so far under a variety of assumptions on(M; �) (see also [ACH05℄). The 
onje
ture for general 
onta
t 3{manifoldswas proved re
ently by Taubes [Tau07℄, using Seiberg-Witten theory, buta general proof using only holomorphi
 
urves is still la
king.A minor modi�
ation of Theorem 7 yields a new proof of the Weinstein
onje
ture for any setting in whi
h one 
an 
onstru
t a positive foliation
ontaining an interior stable leaf that is asymptoti
ally simple, for instan
eon the standard 3{torus, or any 
onta
t manifold with positive Giroux tor-sion. The argument is a generalization of the one used by Abbas-Cieliebak-Hofer [ACH05℄ for planar 
onta
t stru
tures: we repla
e the symple
ti
�lling W by a 
ylindri
al symple
ti
 
obordism 
W , having (M; 
�) forsome large 
onstant 
 > 0 at the positive end and (M; f�) for any smoothpositive fun
tion f : M ! R with f < 
 at the negative end. Then thesame 
ompa
tness argument works for any sequen
e of 
urves un : _�! 
Wthat is bounded away from the negative end. Just as in [ACH05℄, one 
antherefore produ
e a sequen
e un that runs to �1 in the negative end andbreaks along a periodi
 orbit in (M; f�), proving the existen
e of su
h anorbit.22The 
ompa
tness argument in [ACH05℄ 
ontains a minor gap, as it ignores thepossibility of nodal degenerations. Our argument �lls the gap by showing that onlyembedded index 0 
urves 
an appear in su
h degenerations, thus they are 
on�ned to asubset of 
odimension 2 and 
an be avoided by following a generi
 path to �1.

26 CHRIS WENDL5. Fillings of T 3We now pro
eed to the proofs of Theorems 4 and 5 on �llings of T 3. Thekey fa
t is that if a strong �lling of (T 3; �0) is minimal, then the Lefs
hetz�bration given by Theorem 2 is an honest symple
ti
 �bration, i.e. it hasno singular �bers. In fa
t, it is easy to 
onstru
t two su
h �brations, whose�bers interse
t ea
h other exa
tly on
e transversely; the situation is thusanalogous to that of Gromov's 
hara
terization of split symple
ti
 forms onS2 � S2 ([Gro85℄, also subsequent related work by M
Du� [M
D90℄). We
an 
onstru
t a simple model Stein manifold, whi
h is symple
tomorphi
 toT �T 2 and 
arries an expli
it de
omposition by two �brations for whi
h the
omplex and symple
ti
 stru
tures both split. Mat
hing this de
ompositionwith the �brations 
onstru
ted for a general �lling via Theorem 7 givesa symple
ti
 deformation equivalen
e, whi
h in the exa
t 
ase yields asymple
tomorphism via the Moser isotopy tri
k.There is one subtle point here that doesn't arise in the 
losed 
ase: sin
ewe intend to 
arry out the Moser isotopy on a non
ompa
t manifold, it'simportant that our di�eomorphism be suÆ
iently well behaved near in�n-ity, and this will not generally be the 
ase without some e�ort. To see whynot, observe that for any strong �lling (W;!) of (T 3; �0), the asymptoti
s ofthe J{holomorphi
 
urves in W1 given by Theorem 7 en
ode a homotopyinvariant of the foliation. Indeed, suppose f
�0g�2S1 and f
�1g�2S1 are thetwo Morse-Bott families of Reeb orbits that serve as the asymptoti
 limitsof the 
urves in the moduli spa
eM. Then we 
an 
hoose a di�eomorphismR � S1 !M : (�; �) 7! u(�;�)su
h that u(�;�) has asymptoti
 orbits 
�0 and 
f(�;�)1 for some 
ontinuousfun
tion f : R � S1 ! S1;whi
h has the form f(�; �) = � for j�j large due to the �xed stru
ture ofM in the 
ylindri
al end. The map � 7! f(�; 0) thus de�nes a loop in S1whose homotopy 
lass in �1(S1) = Z 
an be shown (using Theorem 8) tobe an invariant determined by (W1; !) and J up to 
ompa
tly supporteddeformations. Now if (W1; !1) and (W2; !2) are two strong �llings that wewish to prove are symple
tomorphi
, we'd like to do so by 
hoosing a dif-feomorphism that both respe
ts the stru
ture of the holomorphi
 foliationsand is \
ompa
tly supported" in the sense of respe
ting the natural identi-�
ations of W11 and W12 with [R;1)�T 3 near in�nity. It is easy enoughto modify the foliations slightly so that an appropriate di�eomorphism 
anbe 
onstru
ted near in�nity, but this will not be globally extendable unlessthe above 
onstru
tion gives the same 
lass in �1(S1) for both foliations.The upshot is that it is not enough to take only T �T 2 with its standard
omplex and symple
ti
 stru
ture as a model �lling|rather, we will need awider variety of models that 
ome with holomorphi
 foliations attaining all
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onstru
t su
h models in x5.1 by performingLuttinger surgery along the zero se
tion in T �T 2. Note that unlike thesituation in a 
losed manifold, the manifolds obtained by surgery are allsymple
tomorphi
, but the point is that their 
omplex stru
tures (and theresulting holomorphi
 foliations) behave di�erently at in�nity. With thesemodels in pla
e, we'll 
arry out the Moser deformation argument in x5.2to prove Theorem 4. Finally, x5.3 will use the stability of our �brationsunder homotopies (Theorem 8) to prove Theorem 5.5.1. Model �llings and �brations. As usual, we identify T �T 2 withT 2�R2 and use 
oordinates (q1; q2; p1; p2), so that the standard symple
ti
stru
ture is !0 = d�0, where �0 = p1 dq1+p2 dq2. Ea
h pair of 
oordinates(pj; qj) for j = 1; 2 de�nes a 
ylinder Zj = R�S1 so that we have a naturaldi�eomorphism T 2 � R2 = Z1 � Z2:We de�ne on ea
h Zj the standard 
omplex stru
ture i�pj = �qj and sym-ple
ti
 stru
ture !0 = dpj ^ dqj, so that !0 on Z1 � Z2 is the dire
t sum!0 � !0, and we 
an similarly de�ne a 
ompatible 
omplex stru
ture i onT 2 � R2 as i � i. This makes (T 2 � R2 ; !0; i) into a Stein manifold, withplurisubharmoni
 fun
tion f : T 2 � R2 ! [0;1) : (q; p) 7! 12 jpj2 su
h that�df Æ i = �0, and the latter indu
es the Liouville ve
tor �eldrf = p1�p1 + p2�p2 ;whose 
ow is given by 'trf(q; p) = (q; etp). The restri
tion of �0 to�(T 2� D ) = T 3 gives the standard 
onta
t form, whi
h we'll denote in thefollowing by �0. We will use the 
oordinates (q; p) on T 3 with the assump-tion that jpj = 1, and sometimes also write (p1; p2) = (
os 2��; sin 2��)with � 2 S1.We 
an use the 
ow of rf to embed the symple
tization of T 3 into(T 2 � R2 ; !0): expli
itly,� : (R � T 3; d(ea�0)) ,! (T 2 � R2 ; !0) : (a; (q; p)) 7! (q; eap)satis�es ���0 = ea�0. Using this to identify (0;1)� T 3 with the 
omple-ment of T 2�D , we 
an now 
hoose a new almost 
omplex stru
ture J0 withJ0�pj = g(jpj)�qj for some fun
tion g, so that J0 = i near the zero se
tionand be
omes R{invariant on the end, in other words J0j[0;1)�T 3 2 J�0(T 3).This 
hoi
e of J0 has pre
isely the form on [0;1)�T 3 that was used in Ex-ample 2.11 (via Remark 2.13). In terms of the splitting T 2�R2 = Z1�Z2,the 
ylinders Z1�f�g and f�g�Z2 are now �nite energy J0{holomorphi

urves, and those whi
h lie entirely in [0;1)� T 3 reprodu
e the foliations
onstru
ted in Example 2.11. In parti
ular, ea
h 
ylinder Z1 � f�g is as-ymptoti
 to a pair of Reeb orbits in the Morse-Bott tori f� = 0; 1=2g withthe same value of the 
oordinate q2 2 S1 at both ends, and a 
orrespondingstatement is true for f�g � Z2 with the Morse-Bott tori f� = 1=4; 3=4g.

28 CHRIS WENDLWe shall now 
onstru
t more holomorphi
ally foliated model �llings us-ing surgery along the zero se
tion in T 2�R2 . The following is a spe
ial 
aseof the surgery along a Lagrangian 2{torus in a symple
ti
 4{manifold intro-du
ed by Luttinger in [Lut95℄; our formulation is borrowed from [ADK03℄.For r > 0, let Kr = T 2 � [�r; r℄ � [�r; r℄. Choose 
onstants � :=(
; k1; k2) 2 (0;1)� Z2 and a smooth 
uto� fun
tion � : R ! [0; 1℄ su
hthat � � = 0 on a neighborhood of (�1;�1℄,� � = 1 on a neighborhood of [1;1),� R 1�1 t� 0(t) dt = 0.De�ne also the fun
tion � : R ! R to equal 0 on (�1; 0) and 1 on [0;1).Then there is a symple
tomorphism  � : (K2
 n K
; !0) ! (K2
 n K
; !0)given by �(q1; q2; p1; p2) = �q1 + k1�(p2)� �p1
 � ; q2 + k2�(p1)� �p2
 � ; p1; p2� :We 
onstru
t a new symple
ti
 manifold (W�; !�) by deleting K
 fromT 2 � R2 and gluing in K2
 via  �:(W�; !�) = ((T 2 � R2) nK
; !0) [ � (K2
; !0):In the following, we shall regard both ((T 2 � R2) n K
; !0) and (K2
; !0)as symple
ti
 subdomains of (W�; !�), and �x lo
al 
oordinates as follows.Let (q1; q2; p1; p2) denote the usual 
oordinates on (T 2 � R2) n K
, nowviewed as a subset of W�, and on the glued in 
opy of K2
 � W�, denotethe natural 
oordinates by (Q1; Q2; P1; P2). Thus on the region of overlap,(q; p) =  �(Q;P ) and!� = dp1 ^ dq1 + dp2 ^ dq2 = dP1 ^ dQ1 + dP2 ^ dQ2:Observe that the (Q;P ){
oordinates 
an be extended globally so that theyde�ne a symple
tomorphism (Q;P ) : (W�; !�)! (T 2 � R2 ; !0).If 2
 = eR, then the part of (W�; !�) identi�ed with ((T 2�R2) nK
; !0)naturally 
ontains a symple
tization end of the form ([R;1)�T 3; d(ea�0)).Lemma 5.1. W� admits a 1{form �� su
h that d�� = !� and ��j[R;1)�T 3 =ea�0.Proof. The 1{form ea�0 is the restri
tion to [R;1)� T 3 of �0 := p1 dq1 +p2 dq2, whi
h is a well de�ned primitive of !0 = !� on (T 2�R2)nK
. De�nef(s) = 1
 R s�
 t� 0(t=
) dt, a smooth fun
tion with support in (�
; 
) due toour assumptions on �. Then there is a smooth fun
tion � : (T 2�R2)nK
 !R de�ned by �(q1; q2; p1; p2) = 8><>:k2f(p2) if p1 � 
,k1f(p1) if p2 � 
,0 otherwise,
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omputation shows that on (T 2 � R2) n K
, �0 = P1 dQ1 +P2 dQ2 + d�. Now 
hoosing a smooth fun
tion b� : W� ! R that mat
hes� on [R;1)� T 3 and vanishes in K
, a suitable primitive is given by�� = P1 dQ1 + P2 dQ2 + db�: �We wish to de�ne an !�{
ompatible almost 
omplex stru
ture J� onW� that mat
hes J0 on the end [R;1)� T 3, i.e. for jpj � eR, J� satis�es�J��qj = G(jpj)�pj for some positive smooth fun
tion G. Swit
hing to(Q;P ){
oordinates in K2
, J� is now determined in K2
 \ ([R;1)� T 3)by the 
onditions�J��Q1 = �P1 �G(jP j)k1
 �(P2)� 0(P1=
) �Q1 ;�J��Q2 = �P2 �G(jP j)k2
 �(P1)� 0(P2=
) �Q2 :Thus if we repla
e � in this expression by the 
uto� fun
tion t 7! �(t=
),whi
h equals � outside of [�
; 
℄, we obtain the desired extension of J� overK2
. The following lemma is immediate.Lemma 5.2. For ea
h 
onstant (�; �) 2 R � S1, the surfa
es Z(�;�)1 :=f(P2; Q2) = (�; �)g and Z(�;�)2 := f(P1; Q1) = (�; �)g in W� are images ofembedded �nite energy J�{holomorphi
 
ylinders. Moreover,(1) Ea
h point in W� is the unique interse
tion point of a unique pairZ(�;�)1 and Z(�0;�0)2 , whose tangent spa
es at that point are symple
ti

omplements.(2) For j�j � 
, the 
ylinders Z(�;�)1 and Z(�;�)2 are identi
al to Z1 �f(�; �)g and f(�; �)g � Z2 respe
tively in T 2 � R2 = Z1 � Z2. This
olle
tion therefore 
ontains all of the 
urves in [R;1) � T 3 
on-stru
ted via Example 2.11 and Remark 2.13.The essential di�eren
e between (W�; !�) and (T 2�R2 ; !0) is that theyea
h 
ome with holomorphi
 foliations that behave di�erently at in�nity:the 
ylinder Z(�;�)1 for instan
e has one end asymptoti
 to the Reeb orbit atf� = 1=2; q2 = �g, while its other end approa
hes the orbit at f� = 0; q2 =� + k2�(�=
)g. Thus the data � = (
; k1; k2) determine o�sets within therespe
tive families of Morse-Bott orbits at one end of ea
h 
ylinder.5.2. Classi�
ation up to symple
tomorphism. Assume (W;!) is aminimal strong �lling of (T 3; �0). Adopting the notation from x4, (WR; !)is the enlarged �lling obtained by atta
hing a trivial symple
ti
 
obordismsu
h that the indu
ed 
onta
t form at �WR is eR�0, and we 
an furtheratta
h a 
ylindri
al end ([R;1) � T 3; d(ea�0)) to 
onstru
t (W1; !). If(W;!) is an exa
t �lling with primitive �, then we 
an also assume � ex-tends over W1 so that �j[R;1)�T 3 = ea�0. Choosing an almost 
omplex

30 CHRIS WENDLstru
ture J that is generi
 in WR and has the standard form J0 2 J�0(T 3)on [R;1) � T 3, we start from a �nite energy foliation 
onstru
ted as inExample 2.11 (via Remark 2.13), 
onsisting of 
ylinders with ends asymp-toti
 to orbits in the two Morse-Bott tori Z = f� 2 f0; 1=2gg, then useTheorem 7 to produ
e a moduli spa
e M1 of J{holomorphi
 
ylinders fo-liating W1. Sin
e (W;!) is minimal, this produ
es a smooth �bration�1 : W1 !M1, where both the �ber and the base are di�eomorphi
 toR � S1.We 
an now repeat the same tri
k starting from a di�erent foliationof T 3: let Z 0 = f� 2 f1=4; 3=4gg, a pair of Morse-Bott tori with Reeborbits pointing in the dire
tion orthogonal to those on Z. Then by a minormodi�
ation of the 
onstru
tion in Example 2.11, the �brationT 3 n Z 0 ! f0; 1g � S1(q1; q2; �) 7! ((0; q1) if � 2 (�1=4; 1=4),(1; q1) if � 2 (1=4; 3=4)
an also be presented as the proje
tion to T 3 of a positive �nite energy folia-tion on R�T 3 , with the same 
onta
t form and almost 
omplex stru
ture asbefore. This yields a se
ond moduli spa
e M2 of J{holomorphi
 
ylindersfoliating W1, and a 
orresponding �bration �2 : W1 !M2 �= R � S1.Lemma 5.3. Any u1 2 M1 and u2 2 M2 interse
t ea
h other exa
tlyon
e, with interse
tion index +1.Proof. One 
an verify this expli
itly from the foliations on [R;1) � T 3whenever both 
urves are near the boundaries of their respe
tive modulispa
es, and sin
e they have no asymptoti
 orbits in 
ommon, this impliesi(u1; u2) = 1. The latter is a homotopy invariant 
ondition, and the fa
tthat the two 
urves have separate orbits guarantees that there is never anyasymptoti
 
ontribution, hen
e there is always a unique interse
tion pointu1(z1) = u2(z2), 
ontributing +1 to the interse
tion 
ount. �It follows that the map�1 � �2 : W1 !M1 �M2is a di�eomorphism. Our goal is to use this to identify W1 with one ofthe model �llings 
onstru
ted in x5.1.For � 2 f0; 1=4; 1=2; 3=4g, denote by P� the 1{dimensional manifold ofMorse-Bott orbits foliating the 2{torus whose �{
oordinate has the givenvalue: ea
h of these 
an be naturally identi�ed with S1 using either the q1or q2{
oordinate. Then as explained in the appendix, there exist real linebundles E� ! P�;where the �bers E�x are 1{dimensional eigenspa
es of the asymptoti
 op-erators at x 2 P�, and the asymptoti
 formula (A.3) de�nes \asymptoti




FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 31evaluation maps"M1 ev0��! E0 M1 ev1=2���! E1=2M2 ev1=4���! E1=4 M2 ev3=4���! E3=4:For any � = (
; k1; k2) 2 (0;1) � Z2, let M�1 and M�2 denote themoduli spa
es of J�{holomorphi
 
ylinders Z(�;�)1 and Z(�;�)2 respe
tively in(W�; !�), 
onstru
ted in the previous se
tion: as a spe
ial 
ase, M01 andM02 will denote the spa
es of J0{holomorphi
 
ylinders Z1 � f�g, f�g �Z2 in (T 2 � R2 ; !0). These last two moduli spa
es are ea
h 
anoni
allyidenti�ed with R � S1, and they also 
ome with asymptoti
 evaluationmaps ev0�, de�ned as above. These are manifestly di�eomorphisms andhave the property that the resulting maps(ev0�)�1 Æ ev� :M1 !M01 for � = 0; 1=2,(ev0�)�1 Æ ev� :M2 !M02 for � = 1=4; 3=4(5.1)are proper: indeed, for any u 2 Mj outside of some 
ompa
t subset, theyde�ne the natural identi�
ation between 
urves in Mj and M0j that are
ontained in the 
ylindri
al end.Lemma 5.4. The maps de�ned in (5.1) are di�eomorphisms.Proof. They are lo
al di�eomorphisms due to Lemma A.2. The 
laim thusredu
es to the fa
t that any lo
al di�eomorphism with 
ompa
t supporton a 
ylinder R � S1 is a global di�eomorphism. �By the lemma, we 
an 
ompose (5.1) with the 
anoni
al identi�
ationsM0j = R � S1 and de�ne di�eomorphisms'� :M1 ! R � S1 for � = 0; 1=2,'� :M2 ! R � S1 for � = 1=4; 3=4,so that the resulting 
ompositions '0 Æ '�11=2 and '1=4 Æ '�13=4 are di�eomor-phisms of R � S1 with 
ompa
t support. Choose 
 > 0 suÆ
iently largeso that both of these are supported in [�
; 
℄ � S1 and (making R largerif ne
essary) 2
 = eR. Now, re
alling the 
uto� fun
tion � from x5.1, set� = (
; k1; k2) where k1; k2 are the unique integers su
h that there is an iso-topy f 1t 2 Di�(R�S1)gt2[0;1℄ supported in [�
; 
℄�S1, with  10 = '0Æ'�11=2and  11(�; �) = (�; � + k2�(�=
));and similarly there is an isotopy  2t from '1=4 Æ '�13=4 to 21(�; �) = (�; � + k1�(�=
)):From now on, we will use the di�eomorphisms '1=2 and '3=4 to parametrizeM1 and M2 respe
tively, denotingu(�;�)1 := '�11=2(�; �); u(�;�)2 := '�13=4(�; �):

32 CHRIS WENDLThe point of this 
onvention is that u(�;�)1 2 M1 now approa
hes the Morse-Bott family f� = 1=2g at the same orbit and along the same asymptoti
eigenfun
tion as Z(�;�)1 2 M�1 , and a 
orresponding statement holds forM2and M�2 .Lemma 5.5. There exist 
onstants R2 > R1 > R, an almost 
omplexstru
ture ^J on W1 tamed by !, and moduli spa
es 
M1 and 
M2 of em-bedded �nite energy ^J{holomorphi
 
ylinders foliating W1, whi
h have thefollowing properties. For j 2 f1; 2g, 
Mj 
an be parametrized by a 
ylinderR � S1 3 (�; �) 7! ^u(�;�)j 2 
Mjsu
h that(1) In the region WR [ ([R;R1℄� T 3), ^J � J and ^u(�;�)j is identi
al tou(�;�)j 2 Mj.(2) In [R2;1) � T 3, ^J � J� and ^u(�;�)j is identi
al to Z(�;�)j 2 M�j ,where we use the natural identi�
ation of the ends of W1 and W�.(3) Lemma 5.3 holds also for the spa
es 
M1 and 
M2.Proof. The 
urves u(�;�)j already have the desired properties when j�j � 
,so 
hanges are needed only on 
ompa
t subsets of Mj, and only near theends of these 
urves. The idea is simply to modify the foliation de�ned byfu(�;�)j g(�;�)2[�
;
℄�S1 outside of a large 
ompa
t subset to a new foliation ofthe same region su
h that the 
hange to the tangent spa
es is uniformlysmall. One 
an then make the new foliation ^J{holomorphi
 for some ^J thatis uniformly 
lose to J and therefore also tamed by !. Lemma 5.3 is trivialto verify for the modi�ed foliations, be
ause adjustments to M1 happenonly in a region where M2 is un
hanged, and vi
e versa. We pro
eed intwo steps.Choose R1 > 0 suÆ
iently large so that for j�j � 
, the tangent spa
es ofthe 
urves u(�;�)j in [R1;1)� T 3 are uniformly 
lose to the tangent spa
esof the asymptoti
 orbit 
ylinders. Then 
hoosing R0 mu
h larger than R1,a suÆ
iently gradual adjustment of the remainder term in the asymptoti
formula (A.3) produ
es a new surfa
e ^u(�;�)j in [R1; R0℄� T 3 that looks likeu(�;�)j near fR1g � T 3 and Z(�0;�0)j 2 M0j near fR0g � T 3, where (�0; �0) isrelated to (�; �) via the di�eomorphism '0 Æ '�11=2 or '1=4 Æ '�13=4.It remains to adjust the parameters (�0; �0) so that in [R2;1) � T 3 forsome R2 > R0, ^u(�;�)j mat
hes Z(�;�)j 2 M�j . For this we use the isotopies jt , de�ning the surfa
e ^u(�;�)j so that its interse
tion with fsg � T 3 fors 2 [R0; R2℄ mat
hes Z jf(t)(�;�)j 2 M0j for some fun
tion f : [R0; R2℄! [0; 1℄with suÆ
iently small derivative. (Of 
ourse, R2 must be large). �We 
an now 
arry out the deformation argument.



FILLABLE CONTACT MANIFOLDS AND HOLOMORPHIC FOLIATIONS 33Proposition 5.6. There exists a di�eomorphism  : W� ! W1 whi
hrestri
ts to the identity on [R2;1)� T 3, su
h that the 2{forms!(t) := t �! + (1� t)!�are symple
ti
 for all t 2 [0; 1℄.Proof. Applying Lemma 5.3 to the spa
es 
M1 and 
M2 and using the givenidenti�
ations of both with R � S1, we have a di�eomorphismb�1 � b�2 : W1 ! 
M1 � 
M2 = (R � S1)� (R � S1);and there is a similar di�eomorphism��1 � ��2 : W� !M�1 �M�2 = (R � S1)� (R � S1):Composing the se
ond with the inverse of the �rst yields a di�eomorphism : W� ! W1 whi
h equals the identity in [R2;1)� T 3. We 
laim that!(t) = t �! + (1 � t)!� is nondegenerate, and thus symple
ti
 for everyt 2 [0; 1℄. Indeed, the almost 
omplex stru
ture  � ^J tames !(1) =  �!,and it also tames !(0) = !� sin
e every tangent spa
e now splits into a sumof !�{symple
ti
 
omplements that are also  � ^J{invariant. Thus  � ^J isalso tamed by !(t) for every t 2 [0; 1℄, proving the 
laim. �Proposition 5.7. If (W;!) is an exa
t �lling, then one 
an arrange the dif-feomorphism of Prop. 5.6 to be a symple
tomorphism (W�; !�)! (W1; !).Proof. Let  : W� !W1 be the di�eomorphism 
onstru
ted in Prop. 5.6.By Lemma 5.1, there is a 1{form �� onW� that satis�es d�� = !� globallyand mat
hes � =  �� = ea�0 on [R2;1) � T 3. Now !(t) = d�(t), where�(t) = t ��+ (1� t)��. De�ne a time-dependent ve
tor �eld Vt on W� by!(t)(Vt; �) = �� �  ��:Sin
e �� �  �� vanishes in [R2;1) � T 3, the 
ow 'tV of Vt has 
ompa
tsupport and is well de�ned for all t: the map Æ '1V : W� !W1then gives the desired symple
tomorphism (W�; !�)! (W1; !). �Proof of Theorem 4. By Prop. 5.6, (W;!) is symple
ti
ally deformationequivalent to an exa
t �lling, so let us assume from now on that it is exa
t.Then by Prop. 5.7, there is a symple
tomorphism  : (W1; !)! (W�; !�)whi
h equals the identity in [R;1) � T 3 for suÆ
iently large R, and weshall now use it to 
onstru
t a symple
tomorphism of (W;!) to a starshaped domain in T �T 2. Choose a global primitive � of ! whi
h mat
hesea�0 on [R;1) � T 3 and denote by Y and Y� the Liouville ve
tor �elds
orresponding to � and �� respe
tively, so!(Y; �) = �; !�(Y�; �) = ��:

34 CHRIS WENDLBoth of these mat
h �a on [R;1) � T 3. There is also another Liouvilleve
tor �eld Y0 on W� de�ned by !�(Y0; �) = P1 dQ1 + P2 dQ2, thusY0 = P1 �P1 + P2 �P2 ;and by the 
onstru
tion of ��, Y0 = Y� on K
. All of these have globallyde�ned 
ows whi
h dilate the respe
tive symple
ti
 forms, e.g. ('tY )�! =et! for all t 2 R.By the 
onstru
tion of W1, there is a smooth fun
tion f : T 3 ! Rsu
h that the 
losure of (W1 nW;!) is the trivial symple
ti
 
obordism(S1f ; d(ea�0)), and Y = �a on this region. Now 
hoose T > 0 suÆ
ientlylarge so that 'TY (�W ) � [R;1)� T 3;thus 'T gives a symple
tomorphism (W;!)! ('TY (W ); e�T!). Then  Æ'TYmaps (W;!) symple
tomorphi
ally to the domain in (W�; e�T!�) boundedby �Sf+T�1 � [R;1)� T 3, whi
h is transverse to Y�. The 
omposition T := '�TY� Æ  Æ 'TY : (W1; !)! (W�; !�)now maps W to a 
ompa
t domain in W� with boundary transverse to Y�.Re
all next from the proof of Lemma 5.1 that �� = P1 dQ1+P2 dQ2+db�for some smooth fun
tion b� : W� ! R that vanishes in K
, and we 
anassume without loss of generality that �(Q1; Q2; P1; P2) depends only onP1 and P2. It follows that Y� = Y0 + bYfor some ve
tor �eld bY that vanishes in K
 and has 
omponents only inthe Q1 and Q2{dire
tions. We 
an therefore 
hoose � > 0 suÆ
iently largeso that '��Y� maps  T (W ) into K
 and then'�Y0 Æ '��Y� : (W�; !�)! (W�; !�)is a symple
tomorphism that maps  T (W ) to a 
ompa
t domain withboundary transverse to Y0. Under the symple
tomorphism (W�; !�) !(T 2�R2 ; !0) de�ned by the (Q;P ){
oordinates, this be
omes a star shapeddomain. Sin
e all su
h domains 
an be deformed symple
ti
ally to thestandard �lling (T 2 � D ; !0), the uniqueness of strong �llings follows. �5.3. Symple
tomorphism groups. We now prove Theorem 5: observethat by the Whitehead theorem, it suÆ
es to prove that Symp
(T �T 2; !0)is weakly 
ontra
tible, i.e. �n(Symp
(T �T 2; !0)) = 0 for every n � 0. Themain idea of the argument goes ba
k to Gromov [Gro85℄ in the 
losed
ase, and was also used by Hind [Hin03℄ in a situation analogous to ours(�llings of Lens spa
es). The key is to 
onstru
t a family of foliationsby J{holomorphi
 
ylinders for J varying in a ball whose boundary isdetermined by a given map Sn ! Symp
(T �T 2). Here it is 
ru
ial to notethat sin
e !0 is exa
t and the 
losed Reeb orbits in T 3 = T 2��D are never
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ontra
tible in T 2 � D , there 
annot exist any 
losed or 1{pun
tured J{holomorphi
 spheres, hen
e the moduli spa
es we 
onstru
t have no nodaldegenerations. In this situation, Theorems 7 and 8 go through without anygeneri
ity assumption for J (see Remark 3.4).As in x5.1, 
hoose an almost 
omplex stru
ture J0 whi
h mat
hes thestandard 
omplex stru
ture near the zero se
tion and belongs to J�0(T 3)on the 
ylindri
al end [0;1) � T 3, where it mat
hes the form used inExample 2.11. Let �0 denote the 
anoni
al 1{form on T �T 2, so d�0 = !0.Suppose now that Sn ! Symp
(T �T 2; !0) : x 7!  xis a smooth family of symple
tomorphisms whi
h all equal the identity on[R;1) � T 3 for some R � 0, and there is a �xed base point x0 2 Snsu
h that  x0 = Id. Let Jx =  �xJ0 for ea
h x 2 Sn: these are all !0{
ompatible almost 
omplex stru
tures that mat
h J0 on [R;1). Now usingthe 
ontra
tibility of the spa
e of 
ompatible almost 
omplex stru
tures,the family fJxgx2Sn 
an be �lled in to a smooth family fJxgx2Bn+1 thatare all 
ompatible with !0 and equal J0 on [R;1)�T 3, where Bn denotesthe 
losed unit ball in Rn .Applying Theorem 8 (with Remark 3.4 in mind), there are now twounique smooth families of moduli spa
esMx1 andMx2 for x 2 Bn+1, ea
h ofwhi
h 
onsists of embedded Jx{holomorphi
 
ylinders foliating T �T 2, su
hthat ea
h 
urve in Mx1 has one transverse interse
tion with ea
h 
urve inMx2 . We have Jx0 = J0, thus the 
urves inMx01 andMx02 are pre
isely the
ylinders that make up the splittingT �T 2 = T 2 � R2 = (R � S1)� (R � S1);as was explained in x5.1. More generally, for x 2 �Bn+1 and j 2 f1; 2g,the 
urves in Mxj 
an be obtained by 
omposing 
urves in Mx0j with thesymple
tomorphism  �1x , and are thus identi
al on [R;1) � T 3 to the
urves in Mx0j . As in the previous se
tion, we 
an now use asymptoti
evaluation maps to de�ne di�eomorphismsR � S1 !Mxj : (�; �) 7! u(�;�)j;x :Arguing further as in Lemma 5.5, for x 2 Bn+1 nSn, 
hange Jx on a regionnear in�nity to a smooth family ^Jx tamed by !0 and mat
hing J0 on someregion [R2;1)� T 3, su
h that for every �xed parameter (�; �), the 
urves^u(�;�)j;x in the resulting moduli spa
es 
Mxj are identi
al on [R2;1) � T 3for all x 2 Bn+1. Then the interse
tion points de�ne a smooth family ofdi�eomorphisms x : T �T 2 ! 
Mx1 � 
Mx2 = (R � S1)� (R � S1) = T �T 2;whi
h mat
h the original family  x 2 Symp0(T �T 2; !0) for x 2 �Bn+1 andall equal the identity on [R2;1) � T 3. We have now a smooth family of
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ti
 forms !x :=  �x!0 whi
h are all standard on [R2;1)� T 3 andmat
h !0 globally for x 2 �Bn+1.Lemma 5.8. There exists a smooth family of 1{forms f�xgx2Bn+1 on T �T 2su
h that(1) d�x = !x,(2) �x � �0 for every x 2 �Bn+1,(3) �x = �0 on [R2;1)� T 3 for every x 2 Bn+1.Proof. For ea
h x 2 �Bn+1,  x is a symple
tomorphism and thus �0� �x�0is a 
losed 1{form with 
ompa
t support. All su
h 1{forms are exa
t:indeed, any element of H1(T �T 2) 
an be represented by a 
y
le 
 lyingoutside the support of �0 �  �x�0, hen
eZ
 (�0 �  �x�0) = 0 for all [
℄ 2 H1(T �T 2);implying [�0 �  �x�0℄ = 0 2 H1DR(T �T 2). Then for x 2 �Bn+1 there is aunique smooth family of 
ompa
tly supported fun
tions fx : T �T 2 ! Rsu
h that �0 =  �x�0 + dfx:Extending fx to a smooth family of 
ompa
tly supported fun
tions forx 2 Bn+1, the desired 1{forms 
an be de�ned by �x =  �x�0 + dfx. �Now given the 1{forms �x from the lemma, de�ne for t 2 [0; 1℄,�(t)x := t�x + (1� t)�0; !(t)x := d�(t)x :The almost 
omplex stru
ture ^Jx is tamed by !0, and using the holomorphi
foliations as in the proof of Theorem 4, we see that it is also tamed by!x =  �x!0, and thus by all !(t)x for t 2 [0; 1℄, proving that the latter aresymple
ti
. Now de�ne a smooth family of time-dependent ve
tor �eldsV tx by !(t)x (V tx ; �) = �0 � �x:These vanish identi
ally when x 2 �Bn+1 and also vanish outside of a
ompa
t set for all x, thus the 
ows 'tVx are well de�ned and 
ompa
tlysupported for all t, and trivial if x 2 �Bn+1. Moreover, ('tVx)�!(t)x = !0. Wethus obtain a smooth family of 
ompa
tly supported symple
tomorphismson (T �T 2; !0) for x 2 Bn+1 via the 
omposition  x Æ '1Vx, whi
h mat
hes x for x 2 �Bn+1. This shows that �n(Symp
(T �T 2; !0)) = 0 for all n, andthus 
ompletes the proof of Theorem 5.Appendix A. Fredholm and interse
tion theoryA.1. Transversality. In this appendix we re
all some useful te
hni
alfa
ts about �nite energy J{holomorphi
 
urves. Adopting the notationof x3, (W1; !) = (W;!) [�W ([0;1)�M; d(ea�)) is the union of a 
om-pa
t symple
ti
 manifold (W;!) with 
onta
t boundary �W =M atta
hed
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ylindri
al end ([0;1)�M; d(ea�)), where � is aMorse-Bott 
onta
t form on M , de�ning the 
onta
t stru
ture � = ker �.Let J denote an !{
ompatible almost 
omplex stru
ture on W1 whi
his in J�(M) at the positive end. Then any non
onstant pun
tured J{holomorphi
 
urve u : ( _�; j) ! (W1; J) with �nite energy is asymptoti
at ea
h pun
ture z 2 � to some periodi
 orbit of the Reeb ve
tor �eldX�, for whi
h we 
an 
hoose a parametrization xz : S1 ! M with �( _xz)identi
ally equal to the period Tz > 0. In order to des
ribe the analyti
alinvariants of u, it is 
onvenient to introdu
e the asymptoti
 operatorsAz : �(x�z�)! �(x�z�) : v 7! �J(rtv � TzrvX�);where r is any symmetri
 
onne
tion on M . Morally, this is the Hessianof the 
onta
t a
tion fun
tional on C1(S1;M), whose 
riti
al points areperiodi
 orbits; in parti
ular one 
an show that Az has trivial kernel if andonly if the orbit xz is nondegenerate. Choosing a unitary trivialization �for x�z�, Az be
omes identi�ed with the operatorC1(S1;R2)! C1(S1;R2) : v 7! �J0 _v � Svwhere S(t) for t 2 S1 is a smooth loop of symmetri
 2{by{2 matri
es.Then there is a linear Hamiltonian 
ow 	(t) 2 Sp(1) de�ned by solu-tions to the equation �J0 _v � Sv = 0, and 1 is in the spe
trum of 	(1) ifand only if kerAz is nontrivial. When this is not the 
ase, we de�ne theConley-Zehnder index ��CZ(Az) in the standard way in terms of this pathof symple
ti
 matri
es for t 2 [0; 1℄ (
f. the dis
ussion of the \�{index" in[HWZ95, x3℄). Note that the index depends on � up to an even integer, soits even/odd parity in parti
ular is independent of �. In the Morse-Bott
ontext, Az may have nontrivial kernel, but one 
an generally pi
k a realnumber � 6= 0 and de�ne ��CZ(Az + �), whi
h depends only on the sign of� if the latter is suÆ
iently 
lose to zero.The Fredholm index of u 
an now be written as(A.1) ind(u) = ��( _�) + 2
�1 (u�TW1) +Xz2� ��CZ(Az � �);where � > 0 is an arbitrary small number, and 
�1 (u�TW1) is the relative�rst Chern number of the 
omplex ve
tor bundle (u�TW1; J) with respe
tto the trivialization at the ends de�ned by 
ombining � on � with theobvious trivialization of R � RX� . It is straightforward to show fromproperties of the Conley-Zehnder index and relative Chern number thatthis sum doesn't depend on either � or �. It de�nes the virtual dimensionof the moduli spa
e of J{holomorphi
 
urves 
lose to u. We say that uis unobstru
ted whenever the linearized Cau
hy-Riemann operator at uis surje
tive: then the moduli spa
e 
lose to u is a smooth orbifold (ormanifold if u is somewhere inje
tive) of dimension ind(u). In the 
asewhere all orbits are nondegenerate, this follows from the Fredholm theorydeveloped in [Dra04℄; see [Wen05℄ or [Wend℄ for the Morse-Bott 
ase.
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tures � � � 
an be divided into even pun
tures �0 and oddpun
tures �1 a

ording to the parity of ��CZ(Az � �), whi
h is independentof � and � > 0 as noted above.3 Now one 
an easily use the index formulato show that ind(u) and �0 are either both even or both odd, so if � hasgenus g, there is an integer 
N(u) 2 Z de�ned by the formula(A.2) 2
N(u) = ind(u)� 2 + 2g +#�0:We 
all this the normal Chern number of u, for reasons that are easyto see in the 
ase where W is a 
losed manifold: then the 
ombination of(A.1) and (A.2) yields the alternative de�nition 
N(u) = 
1(u�TW )��(�),whi
h is pre
isely the �rst Chern number of the normal bundle whenever uis immersed. As shown in [Wenb℄, this is also the appropriate interpretationof 
N (u) in the pun
tured 
ase. The following transversality 
riterion is aspe
ial 
ase of a result proved in [Wenb℄:Proposition A.1. If u : _� ! W1 is an immersed �nite energy J{holomorphi
 
urve with ind(u) > 
N(u), then u is unobstru
ted.A stronger statement holds in the 
ase where u is embedded with allasymptoti
 orbits distin
t and simply 
overed, ind(u) = 2 and 
N(u) =0. Then a result in [Wen05,Wend℄ shows that the smooth 2{dimensionalmoduli spa
e of 
urves near u foliates a neighborhood of u( _�) in W1.The reason is that tangent ve
tors to the moduli spa
e 
an be identi�edwith se
tions of the normal bundle Nu ! _� that satisfy a linear Cau
hy-Riemann type equation, and the 
ondition 
N(u) = 0 
onstrains thesese
tions to be nowhere zero. It follows that if we add one marked pointand 
onsider the resulting evaluation map from the moduli spa
e intoW1,this map is a lo
al di�eomorphism.A.2. Asymptoti
 evaluation maps. For the arguments in x5, it is 
on-venient to have an asymptoti
 version of the above statement about theevaluation map. Consider a 
onne
ted moduli spa
eM of �nite energy J{holomorphi
 
urves u : _�! W1 that ea
h have an odd pun
ture asymp-toti
 to an orbit x : S1 !M belonging to a 1{parameter family P of simply
overed Morse-Bott orbits of period T > 0. To simplify the notation, we'llassume this is the only pun
ture, though the dis
ussion 
an be generalizedto multiple pun
tures in an obvious way. LetAx denote the asymptoti
 op-erator for any x 2 P; sin
e it is a 1{parameter family, dimkerAx = 1. Wewill use 
ertain fa
ts about the spe
trum �(Ax) of Ax that are proved in[HWZ95℄: in parti
ular, for any nontrivial eigenfun
tion e� 2 �(x��) witheigenvalue �, the winding number wind�(�) := wind�(e�) 2 Z depends3Note that we're assuming all pun
tures are positive here; if there were negativeMorse-Bott pun
tures, both this de�nition of parity and the Fredholm index formulawould need Az + � instead of Az � �.
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tion�(Ax)! Z : � 7! wind�(�)is monotone and attains every integer value exa
tly twi
e (
ounting multi-pli
ity of eigenvalues). If 0 62 �(Ax), then one 
an also dedu
e the parityof ��CZ(Ax) from these winding numbers: it is even if and only if �(Ax)
ontains a positive and negative eigenvalue for whi
h the winding numbersmat
h. It follows that if ��CZ(Ax � �) is odd and �x < 0 is the largestnegative eigenvalue of Ax, then the 
orresponding eigenspa
e Ex � �(x��)is 1{dimensional and its eigenfun
tions have zero winding relative to anynonzero element of kerAx. The union of these eigenspa
es for all x 2 Pde�nes a real line bundle E ! P:The eigenfun
tions ofAx appear naturally in the asymptoti
 formula provedin [HWZ96b℄ (see also [Sie08℄ for a fuller dis
ussion) for a map u 2 Masymptoti
 to xu 2 P. Choose 
oordinates (s; t) 2 [0;1)�S1 for a neigh-borhood of the pun
ture in _�, and assume without loss of generality thatu maps this neighborhood into [0;1) �M . Then using any R{invariant
onne
tion to de�ne the exponential map, one 
an 
hoose the 
oordinates(s; t) so that for suÆ
iently large s, u satis�es(A.3) u(s; t) = exp(Ts;xu(t)) �e�xs (fu(t) + ru(s; t))� ;where fu 2 Ex and ru(s; t) 2 �xu(t) is smooth and 
onverges to 0 uniformlyin t as s!1. This formula de�nes an \asymptoti
 evaluation map"ev :M! E : u 7! (xu; fu):Lemma A.2. In the situation des
ribed above, if u 2 M is immersed withind(u) = 2 and 
N(u) = 0, then ev : M ! E is a lo
al di�eomorphismnear u.Proof. We will use the analyti
al setup in [Wenb℄ to show that under these
onditions, d ev(u) : TuM! T(xu;fu)E is nonsingular. If Nu ! _� denotesthe normal bundle of u, p > 2 and � > 0 is small, we have TuM = kerDNu ,where DNu : W 1;p;��(Nu)! Lp;��(HomC (T _�; Nu))is the normal Cau
hy-Riemann operator, de�ned on exponentially weightedSobolev spa
esW k;p;�� := fv 2 W k;plo
 j e��sv(s; t) 2 W k;p([0;1)� S1)gfor k = f0; 1g. Note that by Prop. A.1, u is unobstru
ted and thusdimkerDNu = 2. By an asymptoti
 version of lo
al ellipti
 regularity (see[HWZ96a, Sie08℄), any se
tion v 2 kerDNu satis�es a linearized version of(A.3) in the form(A.4) v(s; t) = e�s(fv(t) + r(s; t));

40 CHRIS WENDLwhere fv 2 �(x�u�) is an eigenfun
tion of Axu with eigenvalue � < �, andr(s; t)! 0 as s!1. In the present situation, the largest eigenvalue lessthan � is 0, thus if v is nontrivial then wind�(fv) � wind�(0). The zeroes ofv are then isolated and positive, and 
an be 
ounted by the normal Chernnumber: we have(A.5) Z(v) + Z1(v) = 
N(u);where Z(v) is the algebrai
 
ount of zeros of v, and Z1(v) is a 
orrespond-ing asymptoti
 
ontribution de�ned as wind�(0)� wind�(fv), and is thusalso nonnegative. So the 
ondition 
N (u) = 0 implies that fv has windingnumber zero relative to any nontrivial se
tion in kerAxu.We 
an 
onsider also the restri
tion ofDNu to a smaller weighted domain,D0 : W 1;p;�(Nu)! Lp;�(HomC (T _�; Nu));whi
h amounts to linearizing the J{holomorphi
 
urve problem with anadded 
onstraint �xing the asymptoti
 orbit at the pun
ture. This operatorhas index 1 and is also surje
tive, by the results in [Wenb℄. It followsthat there is a unique one-dimensional subspa
e Vu � TuM 
onsisting ofse
tions v 2 kerDNu for whi
h the eigenvalue � in (A.4) is negative. For allv 2 kerDNu n Vu, this eigenvalue is zero, and we thus have v(s; �) ! fv 2kerAxu as s!1, implying that the derivative of the mapM! P : u 7!xu in this dire
tion is nonzero.Now �x an orbit x 2 P and let Mx = fu 2 M j xu = xg. By theremarks above, this is a 1{dimensional submanifold with TuMx = Vu. Therestri
tion of ev toMx de�nes a mapMx ! Ex, and we 
laim �nally thatfor any nontrivial v 2 Vu, the dire
tional derivative of this map is nonzero.This follows from (A.4) and the fa
t that Z1(v) = 0, as the nontrivialeigenfun
tion in (A.4) must have the same winding as a se
tion in kerAxu,and therefore belongs to Exu. �A.3. Interse
tion numbers. We dis
uss next the pun
tured generaliza-tion of the adjun
tion formula. These results are the topologi
al 
on-sequen
es of the relative asymptoti
 analysis 
arried out by Siefring in[Sie08℄; 
omplete details are explained in [Sie℄ for 
urves with nondegener-ate orbits and [SW℄ for the Morse-Bott 
ase, and a summary with pre
isede�nitions may also be found in the last se
tion of [Wenb℄. We shall onlyneed a few details, whi
h we now state without proof. For any two �niteenergy 
urves u1; u2, there exists an interse
tion numberi(u1; u2) 2 Zwhi
h algebrai
ally 
ounts a
tual interse
tions plus a 
ertain \asymptoti

ontribution," whi
h vanishes generi
ally. The asymptoti
 
ontributionvanishes in parti
ular whenever u1 and u2 have no asymptoti
 orbits in
ommon, and it is otherwise analogous to the term Z1(v) in (A.5): itis a nonnegative measure of the winding numbers of 
ertain asymptoti
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tions that des
ribe the relative approa
h of two distin
t 
urvesto the same orbit, and it vanishes if and only if these winding numbersattain the extremal values determined by the spe
trum. Thus if u1 and u2do not 
over the same somewhere inje
tive 
urve, both the a
tual interse
-tion 
ount and the asymptoti
 
ontribution are nonnegative, and moreover,their sum is invariant under deformations of both 
urves through the mod-uli spa
e. The 
ondition i(u1; u2) = 0 then suÆ
es to ensure that u1 andu2 never have isolated interse
tions. For any somewhere inje
tive 
urve u,there is also a singularity number sing(u) 2 Z, whi
h 
ounts double points,
riti
al points and \asymptoti
 singularities," ea
h 
ontributing nonnega-tively. This sum is also invariant under deformations, and the 
onditionsing(u) = 0 suÆ
es to ensure that a somewhere inje
tive 
urve is embed-ded. The standard adjun
tion formula for 
losed holomorphi
 
urves nowgeneralizes to(A.6) i(u; u) = 2 sing(u) + 
N (u) +Xz2� 
ov1(z);where the terms 
ov1(z) are nonnegative integers that vanish whenever
ertain asymptoti
 eigenfun
tions are simply 
overed, so they depend onlyon the asymptoti
 orbit and sign of the respe
tive pun
ture z 2 �.Finally, we observe one relevant situation where the left hand side of(A.6) is guaranteed to be zero. The proof below is only a sket
h; we referto [Sie℄ for details.Lemma A.3. Suppose that u : _� ! W1 and u0 : _�0 ! W1 are �niteenergy J{holomorphi
 
urves that are both 
ontained in [0;1) �M andhave embedded proje
tions to M that are either identi
al or disjoint. If also
N(u) = 0, then i(u; u0) = 0.Proof. The almost 
omplex stru
ture is R{invariant in the region 
ontain-ing u and u0, thus after translating u0 upwards, we 
an assume withoutloss of generality that u and u0 have no interse
tions. This R-translation
hanges the asymptoti
 eigenfun
tions at the ends of u0 by multipli
ationwith a positive number, thus we 
an also assume these eigenfun
tions arenot identi
al at any 
ommon asymptoti
 orbit of u and u0. Now the van-ishing of 
N(u) implies due to R{invarian
e that u has no asymptoti
 defe
t(
f. [Wena℄): this means its asymptoti
 eigenfun
tions all attain the largestallowed winding number. The asymptoti
 analysis of [Sie08℄ then impliesthat the same is true for the eigenfun
tions 
ontrolling the relative behaviorof u and u0 at in�nity, so the asymptoti
 
ontribution to i(u; u0) is zero. �Referen
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