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Abstract. By a result of Eliashberg, every symplectic filling of a three-

dimensional contact connected sum is obtained by performing a boundary
connected sum on another symplectic filling. We prove a partial generaliza-

tion of this result for subcritical contact surgeries in higher dimensions: given

any contact manifold that arises from another contact manifold by subcritical
surgery, its belt sphere is null-bordant in the oriented bordism group ΩSO

∗ (W )

of any symplectically aspherical filling W , and in dimension five, it will even be

nullhomotopic. More generally, if the filling is not aspherical but is semiposi-
tive, then the belt sphere will be trivial in H∗(W ). Using the same methods,

we show that the contact connected sum decomposition for tight contact struc-

tures in dimension three does not extend to higher dimensions: in particular,
we exhibit connected sums of manifolds of dimension at least five with Stein

fillable contact structures that do not arise as contact connected sums. The
proofs are based on holomorphic disk-filling techniques, with families of Leg-

endrian open books (so-called “Lobs”) as boundary conditions.

1. Introduction

1.1. The main result and corollaries. The idea of constructing contact man-
ifolds as boundaries of symplectic 2n-manifolds by attaching handles of index at
most n goes back to Eliashberg [Eli90b] and Weinstein [Wei91]. In this context,
a special role is played by subcritical handles, i.e. handles with index strictly less
than n. One well-known result on this topic concerns subcritical Stein fillings,
which are known to be flexible in the sense that their symplectic geometry is de-
termined by homotopy theory, see [CE12]. There are also known restrictions on the
topological types of subcritical fillings, e.g. by results of M.-L. Yau [Yau04] and
Oancea-Viterbo [OV12, Prop. 5.7], the homology of a subcritical filling with van-
ishing first Chern class is uniquely determined by its contact boundary; this result
can be viewed as a partial generalization of the Eliashberg-Floer-McDuff theorem
[McD91] classifying symplectically aspherical fillings of standard contact spheres
up to diffeomorphism. In dimension three, there is a much stronger result due to
Eliashberg [Eli90a; CE12]: in this case every subcritical surgery is a connected sum,
and the result states that if (M ′, ξ′) is a closed contact 3-manifold obtained from
another (possibly disconnected) contact manifold (M, ξ) by a connected sum, then
every symplectic filling of (M ′, ξ′) is obtained by attaching a Weinstein 1-handle to
a symplectic filling of (M, ξ). This implies that symplectic fillings of subcritically fil-
lable contact 3-manifolds are unique up to symplectic deformation equivalence and
blowup—in particular, their Stein fillings are unique up to symplectomorphism.

The present paper was motivated by the goal of generalizing Eliashberg’s con-
nected sum result to higher dimensions. The natural question in this setting is the
following:
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Question 1.1. Given a closed contact manifold (M ′, ξ′) that is obtained from an-
other contact manifold (M, ξ) by subcritical contact surgery, is every (symplectically
aspherical) filling of (M ′, ξ′) obtained by attaching a subcritical Weinstein handle
to a symplectic filling of (M, ξ)?

Classifying fillings up to symplectomorphism as suggested in this question would
be far too ambitious in higher dimensions, e.g. the strongest result known so far,
the Eliashberg-Floer-McDuff theorem, is essentially a classification of fillings up to
homotopy type (the h-cobordism theorem then improves it to a classification up to
diffeomorphism). Our objective in this paper will therefore be to understand the
main homotopy-theoretic obstruction to an affirmative answer to Question 1.1.

To state the main result, let us first recall some basic notions. Given an oriented
(2n− 1)-dimensional manifold M , a (positive, co-oriented) contact structure on
M is a hyperplane distribution of the form ξ = kerα, where the contact form
α is a smooth 1-form satisfying α ∧ (dα)n−1 > 0, and the co-orientation of ξ is
determined by α > 0. In this paper, contact structures will always be assumed to
be both positive (with respect to a given orientation on M) and co-oriented, and
all contact forms will be assumed compatible with the co-orientation. A compact
symplectic 2n-manifold (W,ω) with oriented boundary M = ∂W carrying a contact
structure ξ is called a strong symplectic filling of (M, ξ) if ξ admits a contact
form λ that extends to a primitive of ω on a neighborhood of ∂W . It is equivalent
to say that the boundary is symplectically convex, as the vector field ω-dual
to λ is then a Liouville vector field pointing transversely outward at ∂W . More
generally, we say that (W,ω) is a weak symplectic filling of (M, ξ) if ξ is the
bundle of complex tangencies for some ω-tame almost complex structure near ∂W
that makes the boundary pseudoconvex (see [MNW13]).

Recall that if (M, ξ) contains a (k − 1)-dimensional isotropic sphere Sk−1at with
trivial normal bundle, then one can perform a contact surgery of index k on
(M, ξ) by attaching to (−ε, 0]×M a handle of the form Dk ×D2n−k along a neigh-

borhood of Sk−1at . The new contact manifold (M ′, ξ′) then contains the (2n−k−1)-

dimensional coisotropic sphere S2n−k−1
belt = {0} × ∂D2n−k, which we call the belt

sphere of the surgery. This surgery operation was first introduced by Weinstein
[Wei91], and we will give a more precise description of it in Section 3. A Wein-
stein handle yields a symplectic cobordism that can be attached to any weak filling
(W,ω) of (M, ξ) for which ω is exact along Sk−1at ; the result is a weak filling of
(M ′, ξ′) in which the belt sphere is necessarily contractible (Figure 1).

Our main result is the following.

Theorem 1.2. Suppose (M ′, ξ′) is a closed contact manifold of dimension 2n−1 ≥
3 that has been obtained from a manifold (M, ξ) by a contact surgery of index

k ≤ n − 1, with belt sphere S2n−k−1
belt ⊂ M ′. Assume (W ′, ω′) is a weak symplectic

filling of (M ′, ξ′).

(a) If (W ′, ω′) is semipositive, then the belt sphere represents the trivial homol-
ogy class in H2n−k−1(W ′;Z).

(b) If (W ′, ω′) is symplectically aspherical, then the belt sphere represents the
trivial element in the oriented bordism group ΩSO2n−k−1(W ′). If additionally
either (1) M ′ is 5-dimensional, or (2) M ′ is 7-dimensional and k = 3,

then S2n−k−1
belt is contractible in W ′, that is, it represents the trivial class in

π2n−k−1(W ′).
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Figure 1. The belt sphere bounds an embedded disk inside the handle.

We now state two related results that follow via the same techniques.
Recall that in dimension three, convex surface theory gives rise to a contact

prime decomposition theorem, implying e.g. that every tight contact structure on
a closed 3-manifold of the form M0#M1 arises as a contact connected sum of tight
contact structures on M0 and M1 (see [Col97], or [Gei08, §4.12] for more details).
Some evidence against a higher-dimensional generalization of this result appeared
in the recent work of Bowden, Crowley and Stipsicz [BCS15], providing also a
negative answer to a topological version of Question 1.1: namely, there exist pairs
of closed oriented manifolds M0,M1 such that M0 #M1 admits a Stein fillable
contact structure but M0 and M1 do not. This did not imply an actual answer to
Question 1.1, however, as it was unclear whether the contact structures on M0 #M1

in the examples of [BCS15] could actually be contact connected sums, i.e. whether
they arise from contact structures ξ0 on M0 and ξ1 on M1 by performing index 1
contact surgery. The following result gives a negative answer to the latter question,
and shows that there is no hope of extending the contact prime decomposition
theorem to higher dimensions. The theorem applies in particular whenever M is an
almost contact Sn−1-bundle over Sn that is not a homotopy sphere, so for instance
M could be Sn−1 × Sn or—as in [BCS15]—the unit cotangent bundle of a sphere.

Theorem 1.3. Suppose M is a closed oriented manifold of dimension 2n− 1 ≥ 5
that is not a homotopy sphere but admits an almost contact structure Ξ and a
Morse function with unique local maxima and minima and otherwise critical points
of index n−1 and n only. Then M # (−M) admits a Stein fillable contact structure
that is homotopic to the almost contact structure Ξ # Ξ but is not isotopic to ξ1 # ξ2
for any contact structures ξ1 and ξ2 on M and −M respectively. 1

Note that the contact structures in the above statement are necessarily tight in
the sense of Borman-Eliashberg-Murphy [BEM15]; this follows from Stein fillability,
using [Nie06] and the observation in [BEM15] that any overtwisted contact structure
is also PS-overtwisted.

The holomorphic disk techniques developed in this article can also be used as
in the work of Hofer [Hof93] to prove the Weinstein conjecture for a wide class of
contact manifolds obtained by subcritical surgery. The following theorem, proved in
Section 7, is related to the well-known result that every subcritically Stein fillable
contact form admits a contractible Reeb orbit. (A similar result specifically for
index 1 surgeries appeared recently in [GZ16].)

1Given an oriented manifold M with almost contact structure Ξ, we denote by −M the same
manifold with reversed orientation, and let Ξ denote the almost contact structure on −M obtained
by inverting the co-orientation of Ξ.
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Theorem 1.4. Assume (M ′, ξ′) is the result of performing a contact surgery of
index k ≤ n − 1 on a closed contact manifold (M, ξ) of dimension 2n − 1 ≥ 3,

with belt sphere S2n−k−1
belt ⊂M ′, and suppose at least one of the following conditions

holds:

(1) [S2n−k−1
belt ] 6= 0 in ΩSO2n−k−1(M ′);

(2) [S2n−k−1
belt ] 6= 0 in π2n−k−1(M ′) and either dimM ′ = 5 or dimM ′ = 7 with

k = 3;
(3) dimM ′ = 5 and (M ′, ξ′) is a contact connected sum (M0, ξ0) # (M1, ξ1)

with the following two properties:
(a) Neither M0 nor M1 is homeomorphic to a sphere;
(b) If M0 and M1 are both rational homology spheres, then either both are

not simply connected or at least one of them has infinite fundamental
group.

Then every contact form for ξ admits a contractible Reeb orbit.

Before discussing the proofs, some further remarks about the main theorem are
in order.

Remark 1.5. We do not know whether the dimensional restriction for the con-
tractibility result in part (b) of Theorem 1.2 is essential, but given the wide range
of known contact geometric phenomena that can happen only in sufficiently high
dimensions, we consider it plausible that the contractibility statement could be
false without some restriction of this type (thus implying a definitively negative
answer to Question 1.1 in general). It is apparent in any case that our method will
not work in all dimensions, as the improvement from “null-bordant” to “nullhomo-
topic” involves subtle topological difficulties that increase with the dimension; see
the beginning of Section 5 for more discussion of this.

Remark 1.6. It is clear that nothing like Theorem 1.2 can be true for critical surg-
eries in general, i.e. the case k = n. There are obvious counterexamples already
in dimension three, as any Legendrian knot L ⊂ (M ′, ξ′) can be viewed as the belt
sphere arising from a critical contact surgery—take (M, ξ) in this case to be the
result of a Legendrian (+1)-surgery along L. It is certainly not true in general that
arbitrary Legendrian knots are nullhomologous in every filling of (M, ξ)!

Remark 1.7. The semipositivity assumption in part (a) of Theorem 1.2 is there for
technical reasons and could presumably be lifted using more advanced technology
(e.g. polyfolds, see [HWZ11]). In contrast, symplectic asphericity in part (b) is a
geometrically meaningful condition that, while not needed for Eliashberg’s three-
dimensional version of this result, cannot generally be removed in higher dimen-
sions; see Example 1.8 below. The answer to Question 1.1 thus becomes negative
without this assumption.

Example 1.8. The blowup of the total space of the rank 2 holomorphic vector bundle
O(−2) ⊕ O over CP 1 at the zero section can be viewed as a (not symplectically
aspherical) weak filling of a subcritically Stein fillable contact manifold (M ′, ξ′)
containing a belt sphere that is homotopically nontrivial in the filling. This is a
special case of the following construction, which gives examples with subcritical
handles of any even index k = 2m ≥ 2 in any dimension 2n ≥ 2k + 2 ≥ 6.
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Choose integers m, ` ≥ 1 and set n = 2m + `, and suppose (Σ, σ) is a 2m-
dimensional closed symplectic manifold. Then consider the 2n-dimensional We-
instein manifold T ∗Σ × C`, i.e. the `-fold stabilization of T ∗Σ with its standard
Weinstein structure, and denote its ideal contact boundary by (M ′, ξ′). Any Morse
function on Σ gives rise to a Weinstein handle decomposition of T ∗Σ × C`, such
that the function’s maximum q ∈ Σ corresponds to an (n − `)-handle whose belt

sphere Sn+`−1belt is isotopic to the unit sphere in T ∗q Σ × C`. Let Σ ⊂ T ∗Σ denote

the zero section, so Σ × {0} is an isotropic submanifold in T ∗Σ × C`, and denote
by π : T ∗Σ×C` → Σ× {0} the obvious projection. Then for any ε > 0 sufficiently
small, adding επ∗σ to the natural exact symplectic form on T ∗Σ×C` gives a weak
filling of (M ′, ξ′) with Σ× {0} as a symplectic submanifold. We can then blow up
along this submanifold, as explained in [MS98, Section 7.1]. This produces a new

weak filling (W ′, ω′) of (M ′, ξ′), in which the belt sphere Sn+`−1belt ⊂ M ′ is nullho-

mologous but homotopically nontrivial: indeed, every fiber T ∗q Σ×C` has now been
replaced by its blowup at the point (0, 0), which can be viewed as the tautological

line bundle over CPm+`−1, so the bundle projection sends Sn+`−1belt to a generator

of π2(m+`)−1(CPm+`−1) ∼= Z.

The special case with Σ = S2 and ` = 1 gives the construction described at the
beginning of this example, because the total space of O(−2) is a deformation of
T ∗S2.

The following represents another easy application of Theorem 1.2.

Example 1.9. Suppose (M1, ξ1) is a contact 5-manifold obtained by a subcritical
surgery of index 2 on a sphere (S5, ξ), where ξ is any contact structure. Then M1 is
diffeomorphic to either S2×S3 or S2×̃S3, i.e. the trivial or nontrivial 3-sphere bundle
over the 2-sphere. Indeed, closed loops in S5 are automatically unknotted, and the
possible framings of the surgery are classified by the elements of π1

(
SO(3)

) ∼= Z2. If
(W,ω) is any symplectically aspherical weak filling of (M1, ξ1), then by Theorem 1.2,
the fiber {p} × S3 is a contractible 3-sphere in W .

Now take (M2, ξ2) to be the unit cotangent bundle of the 3-sphere or, more gen-
erally, any contact manifold supported by a contact open book with page T ∗S2 and
monodromy isotopic to a 2k-fold product of Dehn twists for some integer k ≥ 1.
Then M2 will be diffeomorphic to S2 × S3, but (M2, ξ2) admits a Stein filling that
contracts to a bouquet of 2k − 1 three-dimensional spheres (see e.g. [KN05]). We
conclude that whenever (M1, ξ1) admits a symplectically aspherical weak filling,
it is not contactomorphic to (M2, ξ2). This implies for instance that the contact
structures induced on the ideal contact boundaries of T ∗S3 and T ∗S2 × C (cf. Re-
mark 1.7) are not isomorphic.

There are presumably other ways to distinguish ξ1 and ξ2 in many cases, e.g. us-
ing Symplectic Homology, but the technique described above is much more topo-
logical.

1.2. Idea of the proof. Our proof of Theorem 1.2 is based on a higher-dimensional
analogue of the disk-filling methods underlying Eliashberg’s result in dimension
three [Eli90a]. Such methods work whenever one can find a suitable submanifold
to serve as a boundary condition for holomorphic disks, and the natural object to
consider in this case is known as a Legendrian open book or “Lob”. Let us recall
the definition, which is due originally to the second author and Rechtman [NR11].
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Definition 1.10. A Lob in a (2n − 1)-dimensional contact manifold (M, ξ) is a
closed n-dimensional submanifold L ⊂ M equipped with an open book decompo-
sition π : L \ B → S1 whose binding B ⊂ L is an (n − 2)-dimensional isotropic
submanifold of (M, ξ), and whose pages π−1(∗) are each Legendrian submanifolds
of (M, ξ).

The simplest interesting example of a Lob occurs at the center of the “neck” in
any 3-dimensional contact connected sum: here we find a 2-sphere S ⊂M on which
the characteristic foliation ξ ∩ TS traces an S1-family of longitudes connecting the
north and south poles, so we can regard the longitudes as pages of an open book with
the poles as binding. Such spheres were used as totally real boundary conditions
for holomorphic disks in [BG83; Gro85; Eli90a], and similarly in Hofer’s proof of
the Weinstein conjecture [Hof93] for contact 3-manifolds (M, ξ) with π2(M) 6= 0.

In higher dimensions, a Lob L ⊂ (M, ξ) with binding B ⊂ L similarly defines a
totally real submanifold {0}× (L \B) in the symplectization R×M of (M, ξ), and
thus serves as a natural boundary condition for pseudoholomorphic disks. Moreover,

Figure 2. A schematic picture of the Bishop family around the
binding of a Lob L.

for a suitably “standard” choice of almost complex structure near the binding, a
Lob always gives rise to a canonical family of holomorphic disks near {0}×B whose
boundaries foliate a neighborhood of B in L\B (see Figure 2). This is the so-called
Bishop family of holomorphic disks, and it has the useful property that no other
holomorphic curve can enter the region occupied by the Bishop disks from outside.
For a unified treatment of the essential analysis for Bishop disks with boundary on
a Lob, see [Nie13].

As in the 3-dimensional case, we will see that the belt sphere of a surgery of
index n− 1 on a contact (2n− 1)-manifold is also naturally a Lob, so there is again
a natural moduli space of holomorphic disks that fill the belt sphere, implying that
it is nullhomologous. For surgeries of index k < n−1, the belt sphere has dimension
2n − k − 1 > n, and thus cannot be a Lob, but we will show that after a suitable
deformation, the belt sphere can be viewed as a parametrized family of Lobs, giving
rise to a well-behaved moduli space of disks with moving boundary condition. It
should now be clear why this method cannot work for critical surgeries: the belt
sphere in this case has dimension n − 1, so it is too small to define a totally real
boundary condition.

The construction of the family of Lobs foliating a general subcritical belt sphere
is somewhat less than straightforward: as we will see in Section 3, the standard
model for a contact form after surgery does not lend itself well to this construction,
but a natural family of Lobs can be found after deforming to a different model of
the belt sphere as piecewise smooth boundary of a poly-disk.



SUBCRITICAL SURGERY AND SYMPLECTIC FILLINGS 7

Let us now discuss the topological reasons why the family of Lobs foliating
S2n−k−1
belt ⊂ (M ′, ξ′) in Theorem 1.2 places constraints on the filling (W ′, ω′). We

focus for now on the case where (W ′, ω′) is symplectically aspherical, which rules
out bubbling of holomorphic spheres. For a suitable choice of tame almost com-
plex structure J on (W ′, ω′), the Bishop families associated to S2n−k−1

belt generate

a compactified moduli space M of J-holomorphic disks in W ′ with one marked
point, whose boundaries are mapped to S2n−k−1

belt . In light of the marked point, this
moduli space is necessarily diffeomorphic to a manifold with boundary and corners
of the form

Σ× D2 ,

where Σ is a smooth, compact, connected and oriented manifold with boundary
and corners, whose boundary is a sphere. Furthermore, the natural evaluation map

ev :
(
M, ∂M

)
→
(
W ′, S2n−k−1

belt

)
is smooth, and its restriction

ev|∂M : ∂M→ S2n−k−1
belt

is a continuous map of degree ±1. The latter follows readily from the properties of
the Bishop family, which provide a nonempty open subset U ⊂ W ′ that intersects
S2n−k−1
belt and is the diffeomorphic image of ev−1(U) ⊂M.

This description of the evaluation map ev : M→W ′ already implies the homo-
logical part of Theorem 1.2, i.e. that [S2n−k−1

belt ] = 0 ∈ H2n−k−1(W ′). To deduce
stronger constraints, we will apply two further techniques. The first consists in
performing surgery on the moduli space M to simplify its topology and suitably
extending the evaluation map in order to prove [S2n−k−1

belt ] = 0 ∈ π2n−k−1(W ′). This

method works when the dimension of M is not too large. The second method is
relevant in particular to the case k = 0 of the main result, as well as to Theorem 1.3,
and is based on the following topological lemma.

Lemma 1.11. Let X,Y be smooth orientable compact manifolds with boundary and
corners such that ∂Y is homeomorphic to a sphere and dimX + 2 = dimY ≥ 3.
Write X ′ = X × D2, and assume that

f : (X ′, ∂X ′)→ (Y, ∂Y )

is a continuous map that is smooth on the interior of X ′, and for which we find an
open subset U ⊂ Y̊ such that f |f−1(U) : f−1(U)→ U is a diffeomorphism.

Then Y is contractible.

While it will not be essential to most of our arguments, note that the h-cobordism
theorem implies:

Corollary 1.12. If dimY ≥ 5 in the lemma, then Y is diffeomorphic to a ball.

The k = 0 case of Theorem 1.2 is the case where (M ′, ξ′) is the standard contact
sphere and the belt sphere is the entirety of M ′. In this setting, applying the
above lemma to the evaluation map ev : (M = Σ×D2, ∂M)→ (W ′,S2n−1) implies
that W ′ must be diffeomorphic to a ball, hence this reproves the Eliashberg-Floer-
McDuff theorem. We will explain this argument in more detail in §2, including the
proof of the lemma (see Lemma 2.3). In another context, we will also apply the
lemma in §6 to demonstrate that the contact structures arising on the boundaries
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of certain Stein domains which look topologically like connected sums cannot arise
from index 1 contact surgery, thus proving Theorem 1.3.

Here is a brief outline of the paper. In Section 2, we provide a foretaste of the
methods in the rest of the paper by using them to give an alternative proof of
the Eliashberg-Floer-McDuff theorem. Section 3 then explains the general case of
the family of Lobs associated to a subcritical belt sphere. In Section 4, we define
the relevant moduli space of holomorphic disks and establish its basic properties,
leading to the proof of the homological part of Theorem 1.2. Section 5 then improves
this to a homotopical statement in cases where the moduli space has sufficiently
low dimension. Finally, in §6 and §7 respectively we prove Theorems 1.3 and 1.4
on contact connected sums and contractible Reeb orbits. The paper concludes with
a brief appendix addressing the technical question of orientability for our moduli
space of holomorphic disks.
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2. The Eliashberg-Floer-McDuff theorem revisited

In this section we modify slightly the proof of the Eliashberg-Floer-McDuff the-
orem [McD91, Theorem 1.5] in order to illustrate the methods that will be applied
in the rest of the article. The original argument worked by capping off the sym-
plectic filling and then sweeping through it with a moduli space of holomorphic
spheres. Our version will be the same in many respects, but has more in common
with the 3-dimensional argument of Eliashberg in [Eli90a]: instead of spheres, we
use holomorphic disks attached to a family of Lobs.

Theorem 2.1 (Eliashberg-Floer-McDuff). Let S2n−1 ⊂ Cn be the unit sphere with
its standard contact structure ξ0 given by the complex tangencies to the sphere, that
is,

ξ0 = TS2n−1 ∩
(
i · TS2n−1

)
.

Every symplectically aspherical filling of
(
S2n−1, ξ0

)
is diffeomorphic to the (2n)-

ball.

Let z = x+ iy =
(
x1 + iy1, . . . , xn+ iyn

)
be the coordinates of Cn. The function

f : Cn → [0,∞) given by

f(z) =

n∑
j=1

(x2j + y2j )

is plurisubharmonic, and the unit sphere is the boundary of the ball

D2n =
{
z ∈ Cn

∣∣ f(z) ≤ 1
}
.
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The main geometric ingredient needed for our proof is a foliation of S2n−1 (minus
some singular subset) by a family of Lobs, but this idea does not seem to work
when applied directly to the unit sphere f−1(1). Instead, we will deform the sphere
to a different shape, which does contain a suitable family of Lobs that will suffice
for our purposes. Define two functions gA, gB : Cn → [0,∞) by

gA(z) = y21 + · · ·+ y2n−1

gB(z) = x21 + · · ·+ x2n−1 + x2n + y2n .

Note that gB is strictly plurisubharmonic and gA is weakly plurisubharmonic as

−ddcgA = 2 dx1 ∧ dy1 + · · ·+ 2 dxn−1 ∧ dyn−1
−ddcgB = 2 dx1 ∧ dy1 + · · ·+ 2 dxn−1 ∧ dyn−1 + 4 dxn ∧ dyn .

We will now consider the subset (see Fig. 3)

D̂2n =
{
z ∈ Cn

∣∣ gB(z) ≤ 1
}
∩
{
z ∈ Cn

∣∣ gA(z) ≤ 1
}
.

Up to reordering the coordinates, D̂2n is a bi-disk Dn+1×Dn−1 ⊂ R2n, which clearly
contains the unit ball. Its boundary is not a smooth manifold, but is nonetheless
homeomorphic to the unit sphere. It decomposes as

∂D̂2n ∼= Dn+1 ×
(
∂Dn−1

)
∪
(
∂Dn+1

)
× Dn−1 = SA ∪ SB ,

where we have used the notation

SA :=
{
gA = 1

}
∩ ∂D̂2n ∼= Dn+1 × Sn−2

and

SB :=
{
gB = 1

}
∩ ∂D̂2n ∼= Sn × Dn−1 .

Figure 3. We find a family of Lobs by deforming the sphere to
the boundary of a bi-disk. One of the two parts of the boundary,
which we denote by SB , will then be foliated by Lobs.

Let now (W,ω) be a symplectically aspherical filling of
(
S2n−1, ξ0

)
. If it is only

a weak filling, we can extend it by attaching a symplectic collar to obtain a strong
symplectic filling of the sphere [MNW13, Remark 2.11] because ω|TS2n−1 is exact.
This filling is diffeomorphic to the initial one, and it is also still symplectically
aspherical, because any 2-sphere can just be pushed by a homotopy entirely into the
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old symplectic filling. After rescaling the symplectic form, the extended symplectic
manifold will be a strong symplectic filling of the unit sphere.

Remove now the interior D̊2n of the unit ball from D̂2n, and glue D̂2n \ D̊2n

symplectically onto the filling W . Denote this new symplectic manifold by (Ŵ , ω̂).

Clearly Ŵ is homeomorphic to W . Using holomorphic disks, we will show as in the

original paper by McDuff that Ŵ is contractible, so that the h-cobordism theorem
[Sma62; Mil65] implies that W must be diffeomorphic to D2n whenever 2n− 1 ≥ 5.

To study Ŵ using holomorphic curves, choose first an almost complex structure J

on Ŵ that is tamed by ω̂ and that agrees on a small neighborhood of ∂D̂2n in Ŵ
with the standard complex structure i on Cn. The holomorphic curves we are
interested in are attached to a family of Lobs, which we will introduce now. Let

Ψ: Sn × Dn−1 → SB ⊂ ∂Ŵ be the embedding into the boundary of Ŵ given by(
(a1, a2, . . . , an+1); (b1, . . . , bn−1)

)
7→
(
a1 + ib1, . . . , an−1 + ibn−1, an + ian+1

)
.

The image of Ψ lies in SB ⊂ ∂Ŵ , and the J-complex tangencies on the corre-

sponding part of ∂Ŵ are the kernel of the 1-form

−dcgB = 2x1 dy1 + · · ·+ 2xn−1 dyn−1 + 2
(
xn dyn − yn dxn

)
.

We obtain for the pull-back

Ψ∗
(
−dcgB

)
= 2a1 db1 + · · ·+ 2an−1 dbn−1 + 2

(
an dan+1 − an+1 dan

)
so that the restriction of Ψ∗

(
−dcgB

)
to each of the spheres Sn ×

{
(b1, . . . , bn−1) =

const
}

gives

2
(
an dan+1 − an+1 dan

)
.

This means that the projection(
(a1, a2, . . . , an+1); (b1, . . . , bn−1)

)
7→ arg(an + ian+1) ∈ S1

defines for each (b1, . . . , bn−1) a Lob with the (n − 1)-ball as pages and trivial
monodromy. From now on we denote the points in Dn−1 by b = (b1, . . . , bn−1), and
write for the Lob

Lb = Ψ
(
Sn × {b}

)
,

and Bb for its binding.
For the technical details of the following part, we refer to Section 4.3. We will

study the space

M̃? =
{

(b, u, z0)
∣∣∣ b ∈ Dn−1, u : (D2, ∂D2)→

(
Ŵ , Lb

)
, z0 ∈ D2

}
of nonconstant holomorphic maps from a disk, equipped with one marked point z0,
and with boundary sent into one of the Lobs Lb. Additionally, we require that u is

homotopic to a Bishop disk as an element in π2
(
Ŵ , Lb \ Bb

)
, and we denote the

corresponding subset by M̃. Next we divide M̃ by the action of the group Aut(D2)

of biholomorphic transformations on D2, where ϕ ∈ Aut(D2) acts on M̃ via

ϕ · (b, u, z0) =
(
b, u ◦ ϕ−1, ϕ(z0)

)
.

We denote the moduli space M̃/Aut(D2) by M. Note that for every class [b, u, z]
in M, we can fix a unique representative (b, u0, z0) by choosing a parametrization
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of u such that

(2.1) u(z) ∈


the 0 degree page of the Lob, if z = 1,

the π/2 degree page of the Lob, if z = i,

the π degree page of the Lob, if z = −1.

A corollary of this is that the moduli space M (before the compactification, see
below) is a trivial disk bundle over the space of unmarked disks. This is the key
fact that will allow us to “push” the topology of W into its boundary (which is the
geometric analogue of the algebraic argument given in [McD91] and [OV12]).

Next, we need to understand the compactification of M. Note first that typ-
ical holomorphic disks are surrounded by a neighborhood of other typical holo-
morphic disks, that is, they represent smooth points of the interior of the moduli
spaceM. With “typical”, we mean smooth holomorphic disks whose interior points

are mapped to the interior of Ŵ , and whose boundary sits on a Lob Lb that is not
a boundary Lob, i.e. for which ‖b‖ < 1, and such that the disk does not touch the
binding Bb of the Lob.

Let us now consider the remaining cases. The boundary of Ŵ consists of SA ⊂{
gA = 1

}
and SB ⊂

{
gB = 1

}
, which are weakly and strongly plurisubharmonic

hypersurfaces respectively. A disk touching SB with one of its interior points will
automatically be constant. If the disk touches SA instead, then it needs to be
entirely contained in this hypersurface, and in particular its boundary will lie on a
Lob with ‖b‖ = 1; below we will explain how to understand the disks in this second
case explicitly.

For every Lob Lb, there is a certain neighborhood of its binding Bb that is only
intersected by Bishop disks. Since there is exactly one disk meeting every point of
this neighborhood, that is, the evaluation map

ev : M→ Ŵ , [b, u, z0] 7→ u(z0)

restricts close to Bb to a diffeomorphism, it follows that the compactification M
contains disks that collapse to a point in the binding. In [NR11] it was shown that
adding these constant disks to M, corresponds to adding points which lie on the
smooth boundary of the compactification M.

Before understanding the bubbling, we will discuss disks whose boundary lies in
a Lob Lb ⊂ SA.

Lemma 2.2. Suppose u ∈ M maps ∂D2 to a Lob Lb such that ‖b‖ = 1. Then
the image of u is completely contained in SA, and moreover, it is obtained by the
intersection of a complex line parallel to the zn-plane with SA.

Proof. Parametrize the disk by polar coordinates reiφ. By acting on the coordinates
z1, . . . , zn−1 with a matrix in SO(n− 1) (regarded as an element of SU(n− 1) with
real entries), we can assume without loss of generality that the Lob Lb corresponds
to the parameter b = (1, 0, . . . , 0), as the functions gA and gB are invariant under
such an action. In particular it follows that the y1-coordinate of u has its maximum
on the boundary of u. The x1-coordinate of u|∂D2 is bounded, and hence there is
an angle eiφ0 at which the derivative

d

dφ

∣∣∣∣
φ=φ0

x1

(
u
(
eiφ
))

= 0
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is zero. Complex multiplication gives i · ∂r = ∂φ, hence

dy1
(
Du · ∂r

)
= dy1

(
Du · (−i · ∂φ)

)
= −dy1

(
i ·Du · ∂φ

)
= −dx1

(
Du · ∂φ

)
= 0 .

It follows that the outward derivative of the y1-coordinate vanishes at the point
eiφ0 ∈ D2, so that according to the boundary point lemma, y1 must equal the
constant 1 on the whole disk, and as a consequence u lies entirely in SA.

The y2- to yn−1-coordinates are all 0 on the boundary of the disk, and hence
by the maximum principle, they need to be both maximal and minimal on all of
the disk. With the Cauchy-Riemann equation we obtain that the x1- up to xn−1-
coordinates of u need all to be constant on u (for more details read Section 4.2). �

As explained in Section 4.3, no bubbling can occur under our assumptions, and
hence M will be a compact manifold with boundary and corners (the boundary is
smooth everywhere with the exception of the disks corresponding to the edges of

Ŵ ). Moreover, the moduli space is orientable (see Appendix A) and the evaluation
map

ev :
(
M, ∂M

)
→
(
Ŵ , ∂Ŵ

)
, [b, u, z0] 7→ u(z0)

is a degree 1 map, that is, it maps the fundamental class [M] ∈ H2n

(
M, ∂M;Z

)
onto the fundamental class [Ŵ ] ∈ H2n

(
Ŵ , ∂Ŵ ;Z

)
. We are therefore in a position

to apply the following topological result, which was stated as Lemma 1.11 in the
introduction.

Lemma 2.3. Let X,Y be smooth orientable compact manifolds with boundary and
corners such that ∂Y is homeomorphic to a sphere and dimX + 2 = dimY ≥ 3.
Write X ′ = X × D2, and assume that

f : (X ′, ∂X ′)→ (Y, ∂Y )

is a continuous map that is smooth on the interior of X ′, and for which we find an
open subset U ⊂ Y̊ such that f |f−1(U) : f−1(U)→ U is a diffeomorphism.

Then Y is contractible.

Proof. Note that by Whitehead’s theorem, it suffices to show that Y is weakly
contractible, that is, πj(Y ) = 0 for all j > 0. Using Hurewicz’s theorem we will
show instead that Y is simply connected and satisfies Hj(Y ;Z) = 0 for all j > 0.

(i) We will first consider the fundamental group of Y . Choose the base point p0 ∈
U ⊂ Y̊ . Let γ be a smooth, embedded loop representing a class in π1

(
Y, p0

)
that

lies in the interior of Y . After a perturbation, we can assume that γ is transverse
to the map f , so f−1

(
γ
)

will be a finite collection of loops Γ0, . . . ,ΓN in X ′.
There is one loop, say Γ0, that is mapped to γ with degree one. The reason for

this is that γ runs through U , where f is a diffeomorphism. Then the loop f ◦ Γ0

is homotopic to γ, and thus represents the same class in π1
(
Y, p0

)
.

Using the fact that X ′ is diffeomorphic to a trivial disk bundle, we may shift Γ0

into the boundary of X ′ (just by moving it inside the D2-factor). In particular, this
shows that [γ] = [f ◦ Γ0] can be represented by a loop that lives in the boundary
of Y , and is thus contractible.

(ii) Next we need to compute the homology of Y . It is easy to see that the image
of

f∗ : H∗
(
X ′;Z

)
→ H∗

(
Y ;Z

)
is trivial. Indeed, all homology groups Hk

(
X ′;Z

)
with k ≥ dimX are trivial, so

that we only need to study k < dimX < dim ∂Y . Let A ∈ Hk(Y ;Z) be a homology
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class that lies in the image of f∗ so that there is a B ∈ Hk(X ′;Z) with A = f∗B.
Since X ′ = X × D2 where D2 is contractible, B can be represented by a cycle in
X ×{p} for any point p ∈ D2; in particular we are free to choose p ∈ ∂D2, hence B
is represented by a cycle in ∂X ′. This implies that the class A is homologous to a
cycle in the sphere ∂Y , which shows that A must be trivial.

We will now show that f∗ : Hk

(
X ′;Z

)
→ Hk

(
Y ;Z

)
is surjective for every k ≤

1
2 dimY . Assume for now that k < 1

2 dimY and that we already have shown for
every l < k that Hl(Y ;Z) = 0. From (i), we see that k ≥ 2. By Hurewicz’s theorem
we know that Hk

(
Y ;Z

)
is isomorphic to πk

(
Y, p0

)
so that we can represent any

homology class in Hk

(
Y ;Z

)
by a map

s : Sk → Y .

We additionally assume again that the base point p0 lies in U . After a generic per-
turbation (see [Hir94, Theorem II.2.12]), s will be an embedding that is transverse to
f , and we find a closed (possibly disconnected) smooth submanifold f−1(s) ⊂ X ′.
As in step (i), there is a unique connected component S of f−1(s) which passes
through the base point p0. Clearly we have a map S → Sk of degree one that
makes the following diagram commute:

S //

f ��

Sk

s
~~

Y

As we wanted to show, it follows that f(S) represents the same class in Hk

(
Y ;Z

)
as

s, so that f∗ : Hk

(
X ′;Z

)
→ Hk

(
Y ;Z

)
is surjective, and as a consequence Hk

(
Y ;Z

)
is trivial.

Let us now study the case k = 1
2 dimY . Again we may represent any element

in Hk

(
Y ;Z

)
by a map

s : Sk → Y

that goes through p0 ∈ U . Perturbing s, we may assume that it is an immersion
with transverse self-intersections, and also that it is transverse to f (position the
double-points at regular values of f).

The map F := (f, s) : X ′×Sk → Y ×Y is transverse to the diagonal4Y ⊂ Y ×Y ,
and it follows that F−1(4Y ) is a closed smooth submanifold of X ′ × Sk. Let S be
the unique component of F−1(4Y ) that is mapped by F to (p0, p0). By definition
we have f ◦ Π1|S = s ◦ Π2|S , where Π1 : X ′ × Sk → X ′ and Π2 : X ′ × Sk → Sk are
the canonical projections. Furthermore Π2 is a degree one map.

This ends the proof, because [f ◦ Π1|S ] = [s] ∈ Hk(Y ;Z).

(iii) Above we have seen that Hk

(
Y ;Z

)
is trivial for all 1 ≤ k ≤ 1

2 dimY . Using

Poincaré-Lefschetz duality, HdimY−k(Y, ∂Y ;Z
)

is isomorphic to Hk

(
Y ;Z

)
and thus

it also vanishes (for 1 ≤ k ≤ 1
2 dimY ). The long exact sequence of the pair then

implies that HdimY−k(Y ;Z
)

= {0}, and finally the universal coefficient theorem

tells us that HdimY−k
(
Y ;Z

)
= {0}, so that Y has trivial homology. �

To conclude the proof of Theorem 2.1, simply apply the lemma and Corollary 1.12

to the moduli space and its evaluation map found above. It follows that Ŵ is
diffeomorphic to a ball.
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3. Weinstein handles and contact surgeries

In this section, we will give a precise description of Weinstein handle attachment,
and then show how to deform the contact structure near the belt sphere in order
to find a suitable family of Lobs.

Assume (W,ω) is a weak symplectic filling of a (2n − 1)-dimensional contact

manifold (M, ξ), choose an isotropic sphere Sk−1at ↪→ (M, ξ) with trivial normal

bundle νSk−1at , and suppose that ω|TSk−1
at

is exact (this is obviously always the case

if k 6= 3). After deforming the symplectic structure in a small neighborhood of the
boundary using [MNW13, Remark 2.11], we can find a Liouville vector field XL on

a neighborhood U ⊂W close to Sk−1at that points transversely out of W , and such
that

α|U∩M = (ιXLω)|T (U∩M)

is a contact form for ξ.
Topologically, the handle attachment can be described as follows. Choose a

trivialization of the normal bundle νSk−1at in M , identifying a tubular neighborhood
with

T ∗Sk−1 × R2(n−k)+1 ∼= Sk−1 × R2n−k ,

and let the k-handle Hk be the poly-disk

Hk := Dk × D2n−k .

The boundary of Hk can be written as the union

∂Hk := Sk−1 × D2n−k ∪ Dk × S2n−k−1 .

Using the obvious homeomorphism, we can “glue” Hk along the subset Sk−1 ×
D2n−k ⊂ ∂Hk to the neighborhood of Sk−1at using the trivialization chosen above.
Denote the new manifold by

W ′ = W ∪νSk−1
at

Hk .

Note that the gluing operation depends on the trivialization chosen for the normal
bundle of Sk−1at .

The boundary M ′ = ∂W ′ is obtained from the old contact manifold M by
removing the neighborhood of Sk−1at , and gluing in the free boundary component of
the handle, that is,

M ′ =
(
M \ νSk−1at

)
∪ (Dk × S2n−k−1) .

This operation changing M to M ′ is called a contact surgery of index k along
Sk−1at . We will recall below how the natural symplectic structure on W ′ with weakly

contact-type boundary M ′ is defined. The belt sphere S2n−k−1
belt of the handle Hk

is the “cosphere to the gluing sphere”,

S2n−k−1
belt := {0} × S2n−k−1 ⊂ ∂Hk .

Note that contact surgery can also be defined as an operation on contact man-
ifolds without assuming that they are symplectically fillable: one only need re-
gard (M, ξ) as the contact boundary of a piece of its symplectization

(
(−ε, 0] ×

M,d(etα)
)
. Topologically, a surgery of index k is the operation of removing a small

neighborhood of the isotropic sphere Sk−1at from the contact manifold (M, ξ) and
gluing into the cavity a standard patch that is diffeomorphic to Dk × S2n−k−1.
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3.1. Attaching Weinstein handles. We now define a symplectic model for a
subcritical Weinstein handle of index k in dimension 2n. For this, split Cn into
Ck × Cm × C with n = k +m+ 1, and write the coordinates on Ck as

z− = x− + iy− :=
(
x−1 + iy−1 , . . . , x

−
k + iy−k

)
,

the ones on Cm as

z+ = x+ + iy+ :=
(
x+1 + iy+1 , . . . , x

+
m + iy+m) ,

and the ones on C as

z◦ = x◦ + i y◦ .

The coordinate z◦ behaves like any other of the coordinates in z+, and in the
usual descriptions of the handle attachment, it is not distinguished from z+. (For
a critical handle attachment k = n, thus there are no z+- or z◦-coordinates.) The
reason why we have introduced this more complicated notation is to prepare for
the deformation we will perform in the next section, in which the z◦-coordinate will
play a particular role.

As a model for the handle, take

Hr := Dk × D2n−k
r ⊂ Cn ,

where the first disk corresponds to the y−-coordinates, the second disk to the
(x−, z+, z◦)-coordinates, and r > 0 is a constant, i.e. Hr is the intersection of the
two subsets {

‖y−‖2 ≤ 1
}
∩
{
‖x−‖2 + ‖z+‖2 + |z◦|2 ≤ r2

}
.

We denote
∂−Hr = ∂Dk × D2n−k

r , ∂+Hr = Dk × ∂D2n−k
r .

The core of ∂−Hr is the (k − 1)-sphere

S− :=
{
‖y−‖2 = 1, x− = 0, z+ = 0, z◦ = 0

}
which will be identified with the attachment sphere in a contact manifold; the core
of ∂+Hr is the (n+m)-sphere (note that n+m = 2n− k − 1)

S+ :=
{
y− = 0, ‖x−‖2 + ‖z+‖2 + |z◦|2 = r2

}
.

Choose on Cn the symplectic form

ω = 2

k∑
r=1

dx−r ∧ dy−r + 4

m∑
s=1

dx+s ∧ dy+s + 4 dx◦ ∧ dy◦ .

It admits the Liouville form

λ = 2

k∑
r=1

(
2x−r dy

−
r + y−r dx

−
r

)
+ 2

m∑
s=1

(
x+s dy

+
s − y+s dx+s

)
+ 2 (x◦ dy◦ − y◦ dx◦)

that is associated to the Liouville vector field

XL =

k∑
r=1

(
2x−r

∂

∂x−r
− y−r

∂

∂y−r

)
+

1

2

m∑
s=1

(
x+s

∂

∂x+s
+ y+s

∂

∂y+s

)
+

1

2

(
x◦

∂

∂x◦
+ y◦

∂

∂y◦

)
.
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The field XL points outward through ∂+Hr and inward at ∂−Hr, so that both ∂+Hr

and ∂−Hr are contact type hypersurfaces with the corresponding coorientations.
The core S− ⊂ ∂−Hr is an isotropic sphere with trivial conformal symplectic normal
bundle.

Figure 4. The handle can be glued onto a contact manifold.

Let now (M, ξ) be a given contact manifold and let Sk−1at ⊂ M be a (k − 1)-
dimensional isotropic sphere with trivial conformal symplectic normal bundle that
will serve as the attaching sphere of the k-handle Hr. Fixing r > 0 small enough,
∂−Hr, endowed with the contact structure induced by λ, is contactomorphic to a
neighborhood N (Sk−1at ) ⊂ (M, ξ) of Sk−1at . We choose a contact form α for ξ on M
such that α|N (Sk−1

at ) can be glued to λ|T (∂−Hr)
and define the Liouville manifold

(W0, λ0) :=
(
(−ε, 0]×M, etα

)
∪∂−Hr (Hr, λ) .

The positive boundary of W0 (denoted ∂+W0) has two smooth faces M \N (Sk−1at )
and ∂+Hr, meeting along a corner which is the image of the corner ∂Dk × ∂D2n−k

r

in ∂Hr, see Fig. 4. Fix a small neighborhood U of the corner, and choose a smooth
hypersurface M ′ that matches ∂+W0 outside of U , and is transverse to XL in U .
Denote the induced contact structure on M ′ by ξ′ = TM ′ ∩ kerλ0.

Note that the constant r > 0 can be made arbitrarily small, without changing
the isotopy class of the contact structure on M ′; we can shrink the size of the handle
continuously (including the smoothing) which allows us to apply Gray stability to
obtain an isotopy with support in the model neighborhood.

The belt sphere S2n−k−1
belt = Sn+mbelt of the k-handle is the core S+ of ∂+Hr.

3.2. Families of Lobs on a deformed subcritical handle. To find the desired
family of Lobs, we will now modify the contact structure in a neighborhood of the
belt sphere in two steps. The first deformation is borrowed from the recent article
[GZ16]; it replaces a technically more complicated method that was used in an
earlier version of this paper.

Consider again a “thin” handle Hr = Dk × D2n−k
r ⊂ Cn with r � 1 as used

above. Suppose that the rounding of the corners has been performed for values of
‖y−‖ in the interval [1− ε, 1]. The part of ∂+Hr outside the smoothing region lies
in the level set {f = r2} of the function

f(z−, z+, z◦) = ‖x−‖2 + ‖z+‖2 + |z◦|2 .



SUBCRITICAL SURGERY AND SYMPLECTIC FILLINGS 17

We would like to modify the Liouville field on a neighborhood of the belt sphere so
that the induced contact structure coincides with the field of complex hyperplanes
on the boundary. For this, add the Hamiltonian vector field XH of a function
H : Cn → R to XL, since then X̂L := XL +XH will still be a Liouville field.

Let ρ : [0,∞)→ [−1, 0] be a smooth function that is equal to −1 on the interval
[0,
√

1− 2ε], equal to 0 on the interval [
√

1− ε, 1] and that increases monotonically
in between. Define the Hamiltonian function

H(z−, z+, z◦) := 2 〈x−,y−〉 ρ
(
‖y−‖2

)
.

The Hamiltonian vector field corresponding to H is

XH = −
k∑
r=1

y−r ρ
(
‖y−‖2

) ∂

∂y−r
+

k∑
r=1

(
2 〈x−,y−〉 y−r ρ′

(
‖y−‖2

)
+ x−r ρ

(
‖y−‖2

)) ∂

∂x−r
.

The vector field X̂L agrees outside the support of ρ with XL, and it is everywhere
transverse to ∂+Hr as can be seen from

LX̂Lf = LXLf + LXHf

= 4 ‖x−‖2 + ‖z+‖2 + |z◦|2 + LXH‖x−‖
2

= (4 + 2 ρ) ‖x−‖2 + ‖z+‖2 + |z◦|2 + 4 〈x−,y−〉2 ρ′ > 0 ,

because ρ ≥ −1, and ρ′ ≥ 0.

It follows that λ and λ̂ := ιX̂Lω induce isotopic contact structures on M ′.

The contact structure on the domain ∂+Hr ∩ {‖y−‖
2 ≤ 1− 2ε} is the kernel of

the Liouville form

λ̂ = λ+ dH = 2

k∑
r=1

x−r dy
−
r + 2

m∑
s=1

(
x+s dy

+
s − y+s dx+s

)
+ 2 (x◦ dy◦ − y◦ dx◦) .

Remark 3.1. This first deformation shows that the surgered manifold contains
a neighborhood of the belt sphere that is contactomorphic to a cylinder

{
f =

r2} ∩
{
‖y−‖2 ≤ 1/2

}
⊂ Cn with r arbitrarily small and a contact structure given

as kernel of λ̂. Note that λ̂ on the domain under consideration is equal to the
differential −dcf , i.e. the contact structure on our domain coincides with the com-
plex tangencies. This is the key fact that we will exploit in the second deformation
below.

To continue, we consider the setting of Theorem 1.2, in which (M ′, ξ′) was a
fillable contact manifold obtained by subcritical surgery. Since this will be the main
object of study from now on, it will be convenient to simplify the notation, hence
we assume (unlike in the statement of Theorem 1.2) that (M, ξ) is a closed contact
manifold of dimension 2n − 1 that has been obtained by a surgery of index k ∈
{1, . . . , n− 1} from another contact manifold, and let (W,ω) be a weak symplectic
filling of (M, ξ). Since the theorem in dimension three already follows from the
much stronger result of Eliashberg [Eli90a], we are free to assume n ≥ 3. The
belt sphere then has dimension 2n − k − 1 ≥ n ≥ 3, hence the restriction of ω to
S2n−k−1
belt is automatically exact. It follows (using [MNW13, Remark 2.11]) that ω

can be deformed in a collar neighborhood of ∂W so that an outwardly transverse
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Liouville vector field exists near S2n−k−1
belt , and we are therefore free to pretend in

the following discussion that (W,ω) is a strong filling of (M, ξ). In particular, we
may assume that the symplectic structure on a collar neighborhood close to the
belt sphere looks like the symplectic structure on the boundary of the model of the
handle, and we may identify both.

Let f : Cn → [0,∞) be again the plurisubharmonic function

f(z−, z+, z◦) = ‖x−‖2 + ‖z+‖2 + |z◦|2 .

By the explanations above (see Remark 3.1), the belt sphere Sn+mbelt has a neigh-
borhood UM ⊂M that is contactomorphic to the cylinder

Cr :=
{

(z−, z+, z◦) ∈ Cn
∣∣ f(z−, z+, z◦) = r2, ‖y−‖2 < 1/2

}
for arbitrarily small r � 1 with contact structure ξ̂ given as the kernel of the Liou-

ville form λ̂ = −dcf |TCr , and since the cylinder is a level set of f , this also means

that ξ̂ are the complex tangencies of Cr. We denote by UW a small neighborhood
of UM in W that is symplectomorphic to the subset{

(z−, z+, z◦) ∈ Cn
∣∣ f(z−, z+, z◦) ∈ (r2 − δ, r2], ‖y−‖2 < 1/2

}
with symplectic form ω = −ddcf .

Using the embedding of UW into our model, we can extend the symplectic filling
(W,ω) by attaching the following compact symplectic subdomain of Cn: replace f
by G := max{gA, gB} which is obtained as the maximum of the two functions:

gA(z−, z+, z◦) := ‖y+‖2

and

gB(z−, z+, z◦) := ‖x−‖2 + ‖x+‖2 + ψ
(
‖y−‖

)
· ‖y+‖2 + |z◦|2 ,

where ψ is a cut-off function that vanishes close to 0, and increases until it reaches
1 close to ‖y−‖ = 1/

√
2.

Clearly gA is a weakly plurisubharmonic function. The function gB is strictly
plurisubharmonic on a neighborhood of {y+ = 0} because the last term of

−ddcgB = 2

k∑
r=1

dx−r ∧dy−r +2

m∑
s=1

dx+s ∧dy+s +4 dx◦∧dy◦−ddc
(
ψ
(
‖y−‖

)
· ‖y+‖2

)
simplifies along this subset to

−ddc
(
ψ
(
‖y−‖

)
· ‖y+‖2

)
= −ψ

(
‖y−‖

)
ddc‖y+‖2 − d‖y+‖2 ∧ dcψ

(
‖y−‖

)
− dψ

(
‖y−‖

)
∧ dc‖y+‖2 − ‖y+‖2 ddcψ

(
‖y−‖

)
= 2ψ

(
‖y−‖

) m∑
s=1

dx+s ∧ dy+s ,

which is weakly plurisubharmonic. This implies that if the chosen handle Cr is thin
enough, that is if r > 0 has been chosen sufficiently small, then gB will be strictly
plurisubharmonic on its neighborhood.

For large values of ‖y−‖2, the cut-off function is equal to 1 and gB agrees with
f . Since it also dominates gA, the level set {G = r2} glues smoothly to the given
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contact manifold, and it bounds a symplectic manifold

Ŵ = W ∪
{

(z−, z+, z◦) ∈ Cn
∣∣ f(z−, z+, z◦) ≥ r2 and G(z−, z+, z◦) ≤ r2

}
obtained from the given symplectic filling W by attaching to it the symplectic
domain lying in our model between the level sets {f = r2} and {G = r2}, see

Figures 5 and 6. Note that the boundaries of W and Ŵ are continuously isotopic.

We also write Wmodel for the subdomain UW ∪
(
Ŵ \W

)
that lies entirely in Cn.

We decompose the boundary of Ŵ into three domains, which we denote by

Mreg, MA and MB . Here MA and MB are the parts of ∂Ŵ that lie in the level

set {gA = r2} or {gB = r2} respectively, and satisfy ‖y−‖2 < 1/2; Mreg is the

remaining part of the boundary of Ŵ , i.e. the part that is disjoint from the boundary
of the deformed handle.

The boundary of the handle contains a deformation of the belt sphere, which
we will still write as Sn+mbelt = {y− = 0} even though it has edges. The cut-off

function ψ vanishes on a neighborhood of Sn+mbelt , so that G simplifies to

G(z−, z+, z◦) := max
{
‖y+‖2, ‖x−‖2 + ‖x+‖2 + |z◦|2

}
.

It follows that Sn+mbelt is the boundary of the poly-disk{
‖y+‖2 ≤ r2, y− = 0

}
∩
{
‖x−‖2 + ‖x+‖2 + |z◦|2 ≤ r2,y− = 0

}
∼= Dm × Dn+1 .

Figure 5. We need to deform the handle to find a suitable family
of Lobs in the belt sphere. The new handle will have edges. The
green area in the picture represents the boundary MA, the yellow
one is the boundary MB , and the grey part is Mreg. The belt
sphere SA ∪ SB corresponding to the deformed handle also has
edges. The part SB is foliated by Lobs.

We can decompose the boundary of the poly-disk Dm × Dn+1 as a union of two
smooth parts

∂
(
Dm × Dn+1

)
= Sm−1 × Dn+1 ∪ Dm × Sn .

We will denote the first part of the belt sphere by

SA :=
{

y− = 0, ‖y+‖2 = r2, ‖x−‖2 + ‖x+‖2 + |z◦|2 ≤ r2
}
∼= Sm−1 × Dn+1 ,
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Figure 6. The deformed handle differs from the original one by
the attachment of a symplectic cobordism. This cobordism can
also be added to any other symplectic filling of the surgered contact
manifold. The figure shows a cut through this cobordism.

but for now, we will be mostly interested in the second part

SB :=
{

y− = 0, ‖y+‖2 ≤ r2, ‖x−‖2 + ‖x+‖2 + |z◦|2 = r2
}
∼= Dm × Sn .

It lies in the i-convex hypersurface MB :=
{
gB = r2

}
, whose complex tangencies

are the kernel of the 1-form −
(
dcgB

)∣∣
TMB

. Close to {y− = 0}, we compute

−dcgB = 2

k∑
r=1

x−r dy
−
r + 2

m∑
s=1

x+s dy
+
s + 2

(
x◦ dy◦ − y◦ dx◦

)
which simplifies on SB ⊂ {y− = 0} further to

−dcgB = 2

m∑
s=1

x+s dy
+
s + 2

(
x◦ dy◦ − y◦ dx◦

)
.

The submanifold SB ∼= Dm × Sn can be foliated by the n-spheres with constant
y+-value. For every fixed value of y+ = b+ ∈ Dmr we write the corresponding leaf
as

Lb+ =
{

(y−,y+) = (0,b+), ‖x−‖2 + ‖x+‖2 + |z◦|2 = r2
}
.

The restriction of −dcgB to each of these spheres is

2
(
x◦ dy◦ − y◦ dx◦

)
so that Lb+ is actually a spherical Lob in the (strictly) i-convex level set MB .

The binding Bb+ of the Lob Lb+ is given by the set of points where z◦ vanishes,
i.e. Bb+

∼= Sn−2; the pages of the open book are the fibers of the map

ϑ : Lb+ \Bb+ → S1, (z−, z+, z◦) 7→ z◦

|z◦|
.

In the following sections we will study holomorphic disks that each have bound-
ary on one of the Lobs Lb+ .
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4. The space of holomorphic disks attached to the belt sphere

We will now construct the moduli space of pseudoholomorphic disks needed for
the proof of Theorem 1.2 and show that it is a smooth manifold with boundary.
We continue with the setup and notation used in §3.2 above.

Assumptions 4.1. Choose an almost complex structure J on Ŵ with the following
properties:

• J is tamed by ω;
• J agrees on Wmodel with the standard complex structure i;
• the unmodified domain Mreg in ∂W is J-convex, and its J-complex tan-

gencies agree with ξ.

4.1. The top stratum of the moduli space. We define M̃
(
Ŵ , SB ; J

)
as the

moduli space of “parametrized” curves
(
b+, u, z0

)
, where:

(i) b+ ∈ Dmr is a point in the m-disk parametrizing the Lobs Lb+ ⊂ SB
described in the previous section;

(ii) u :
(
D2, ∂D2

)
→
(
Ŵ , Lb+ \Bb+) is a J-holomorphic map which is trivial in

π2(Ŵ , Lb+); and
(iii) z0 is a marked point in the closed unit disk D2.

Additionally we require that (
ϑ ◦ u

)∣∣
∂D2 : S1 → S1

is a degree 1 map, that is, the boundary of each disk makes one turn around the
binding of the open book.

Since Lb+ lies in the strictly convex hypersurface MB , the map
(
ϑ ◦ u

)∣∣
∂D2 is a

diffeomorphism, i.e. the disk intersects every page of the Lob Lb+ precisely once;
see [Nie13, Corollary II.1.11]. It is very easy to deduce from this that the disks in

M̃
(
Ŵ , SB ; J

)
are somewhere injective near the boundary. However, since we are

not really free to choose the almost complex structure near the boundary, we need
more to achieve transversality. We say that a J-holomorphic disk u is simple if it
is somewhere injective in an open dense set of D2. For closed holomorphic curves,
simple means not multiply covered, but for disks the situation is more complicated;
see [Laz00]. However our situation is not the most general one, and it is possible
to adapt the arguments of [MS04, Proposition 2.5.1] to prove that all disks in

M̃
(
Ŵ , SB ; J

)
are simple.

Lemma 4.2. Every disk u ∈ M̃
(
Ŵ , SB ; J

)
is simple.

Proof. We know u : D2 → W is embedded near the boundary. Let X denote the
set of points z ∈ D2 such that either of the following is true:

(i) Dzu = 0, or
(ii) There exists a different point z′ ∈ D2 such that u restricted to disjoint

neighborhoods of z and z′ has an isolated intersection u(z) = u(z′).

(Recall that either u(z) = u(z′) is an isolated intersection, or there exists neigh-
bourhoods of z and z′ with the same image.)

Standard local results plus the fact that u is embedded at ∂D2 tell us that X is
a finite set of interior points. The image u(D2 \X) is then a smoothly embedded

J-holomorphic submanifold of W ; in particular, it is a Riemann surface Σ̇ with
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connected boundary and finitely many punctures. The inclusion of Σ̇ into W is then
a J-holomorphic embedding, and it extends over the punctures to a J-holomorphic
map v : Σ→W , which is not necessarily an embedding but has only finitely many
critical points and self-intersections.

At this point we don’t know the topology of Σ, except that it has connected
boundary. But the original map u, restricted to D2 \ X, defines a holomorphic

map to Σ̇, which then extends by removal of singularities to a holomorphic map
ϕ : D2 → Σ such that u = v ◦ϕ. Given the properties of u at the boundary, ϕ must
restrict to a diffeomorphism ∂D2 → ∂Σ, and it maps interior to interior. So it has
degree one, and is therefore biholomorphic. �

Lemma 4.2 will allow us to use the following transversality result.

Proposition 4.3. Let (W,J) be an almost complex manifold, and let Dmε ×L ⊂W
be a submanifold for which every slice Lx := {x} × L is a totally real submanifold.
For generic choices of J satisfying Assumptions 4.1, the following holds. Suppose
u0 :

(
D2, ∂D2

)
→
(
W,L0

)
is any J-holomorphic map such that

• the interior points of u0 do not touch the boundary of W ;
• the boundary of u0 lies in the interior of L0;
• the disk u0 is simple.

Let M̃ be the space of all J-holomorphic maps

u :
(
D2, ∂D2

)
→
(
W,Lx

)
for all x ∈ Dmε .

Then the space of solutions in M̃ close to u0 forms a smooth ball that has u0 as
its center and whose dimension is

dimM =
1

2
dimW + µ

(
u∗0TW, u

∗
0TL0

)
+m ,

where µ
(
u∗0TW, u

∗
0TL0

)
denotes the Maslov index of the disk u0.

Proof. The result is standard if m = 0, in which case 1
2 dimW + µ(u∗0TW, u

∗
0TL0)

is the Fredholm index of the linearized Cauchy-Riemann operator on a suitable
Banach space of sections of u∗0TW with totally real boundary condition; see [MS04,
Section 3.2]. For m > 0, the linearized problem is the same as that of the m = 0
case, but with an extram-dimensional space of smooth sections added to the domain
in order to allow for the moving boundary condition, cf. [Wen05, §4.5]. Thus the
Fredholm index becomes larger by m. Given the corresponding enlargement of the
nonlinear configuration space, the proof of transversality for generic J works as in
the standard case by defining a suitable universal moduli space and applying the
Sard-Smale theorem, see e.g. [MS04, Chapter 3]. �

Recall from Section 3.2 that the family of Lobs is parametrized by a disk Dmr of
some fixed radius r � 1. We define

M̃int

(
Ŵ , SB ; J

)
=
{(

b+, u, z0
)
∈ M̃

(
Ŵ , SB ; J

) ∣∣ ‖b+‖ < r
}
.

Since gB is plurisubharmonic and gA is weakly plurisubharmonic, this subspace

consists of J-holomorphic disks that map the interior of D2 to the interior of Ŵ ;
see also Proposition 4.8.
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Corollary 4.4. The subspace M̃int

(
Ŵ , SB ; J

)
of the parametrized moduli space is

a smooth manifold with boundary, and its dimension is 2n− k + 3, where k is the
index of the surgery. Its boundary consists of triples

(
b+, u, z0

)
with z0 ∈ ∂D2.

Note that triples
(
b+, u, z0

)
with ‖b+‖ = r do not belong to M̃int

(
Ŵ , SB ; J

)
,

and therefore are not points of its boundary.

Proof. By definition the elements of M̃int

(
Ŵ , SB ; J

)
satisfy the hypotheses of

Proposition 4.3, and therefore every J-holomorphic disk u ∈ M̃int

(
Ŵ , SB ; J

)
has

an open neighbourhood which is diffeomorphic to a ball of dimension 1
2 dim Ŵ +

µ
(
u∗TŴ , u∗TLb+

)
+m+2 — the presence of the marked point adds 2 to the index.

A simple computation shows that µ
(
u∗TŴ , u∗TLb+

)
= 2 for all (b+, u, z0), so that

M̃int

(
Ŵ , SB ; J

)
is a smooth manifold with boundary of dimension

dimM̃int

(
Ŵ , SB ; J

)
= n+m+ 4 .

(The boundary points are those with the mark point in ∂D2.) Since m = n−k− 1,
we obtain the desired formula for the dimension. �

In the next subsection we will analyze what happens when ‖b+‖ = r, and we

will also show that M̃
(
Ŵ , SB ; J

)
is non-empty. To consider geometric disks in-

stead of parametrized ones, we divide M̃
(
Ŵ , SB ; J

)
by the group of biholomorphic

reparametrizations of D2 ⊂ C. We define the moduli space of “unparametrized”
curves:

M
(
Ŵ , SB ; J

)
= M̃

(
Ŵ , SB ; J

)
/ ∼ ,

where
(
b+, u, z0

)
∼
(
b̃+, ũ, z̃0

)
if and only if b+ = b̃+ and there exists a trans-

formation ϕ ∈ Aut(D2) with u = ũ ◦ ϕ−1 and z0 = ϕ(z̃0). The action of the

reparametrization group Aut(D2) preserves M̃int

(
Ŵ , SB ; J

)
; we denote its quo-

tient by Mint

(
Ŵ , SB ; J

)
.

Proposition 4.5. The subspace Mint

(
Ŵ , SB ; J

)
of the moduli space is a smooth

manifold with boundary of dimension 2n− k.

Proof. The map ϑ : SB \{z◦ = 0} → S1 is globally defined for all Lobs in the family.
Therefore we can define the subset

M̃0

(
Ŵ , SB ; J

)
⊂ M̃int

(
Ŵ , SB ; J

)
consisting of triples

(
b+, u, z0

)
such that

(4.1) ϑ
(
u(z)

)
=


1 if z = 1,

i if z = i,

−1 if z = −1.

We know that M̃0

(
Ŵ , SB ; J

)
is a submanifold of M̃int

(
Ŵ , SB ; J

)
because ϑ◦ u|∂D2

is a diffeomorphism and the biholomorphism group of the disk is triply transitive

on ∂D2. Then the subset M̃0

(
Ŵ , SB ; J

)
provides a global slice for the action of

Aut(D2) on M̃int

(
Ŵ , SB ; J

)
. �
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4.2. The Bishop disks. In this section, we want to study a certain class of disks

in M
(
Ŵ , SB ; J

)
that lie entirely in the model neighborhood Wmodel and that can

be described explicitly.
A Bishop disk is a disk that we obtain by intersecting a z◦-plane in Cn with

constant (z−, z+)-coordinates with the model neighborhood Wmodel. A possible
way to parametrize it is as a map

u :
(
D2, ∂D2

)
→
(
W,Lb+

)
,

with constant coordinates (y−,y+) = (0,b+), constant x− and x+-coordinates, so
we write

u(z) =
(
x−; x+ + ib+;Cz

)
,

where C =

√
r2 − ‖x−‖2 − ‖x+‖2. The Bishop disks are the buds from which

the moduli space will grow, and it is therefore important to establish that they
are Fredholm regular, meaning that their linearized Cauchy-Riemann operators
are surjective. This is ensured by the following “automatic” transversality lemma
(see [Nie13, Section III.1.3]).

Lemma 4.6. Let u : D2 → Ŵ be a Bishop disk with image in Wmodel and boundary
mapped to the Lob Lb+ . Then its linearized Cauchy-Riemann operator D(b+,u),
defined on suitable Banach space completions with totally real boundary condition
determined by the Lob Lb+ , is surjective.

Corollary 4.7. The triples (b+, u, z0) where u is a Bishop disk with image in

Wmodel are regular points of the moduli space M̃
(
Ŵ , SB ; J

)
.

Proof. The relevant linearized operator is the same as D(b+,u) in Lemma 4.6,
except that the moving boundary condition satisfied by J-holomorphic maps in

M̃
(
Ŵ , SB ; J

)
means that this domain must be enlarged by some finite-dimensional

space of smooth sections, allowing the boundary to move to different Lobs in the
family (see Appendix A for more details). The target of the operator remains the
same, so surjectivity of D(b+,u) in Lemma 4.6 immediately implies surjectivity on
the enlarged domain. �

The rest of this subsection will be concerned with the proof that the Bishop
disks are the only holomorphic disks in Wmodel.

Proposition 4.8. If a holomorphic disk

u :
(
D2, ∂D2

)
→
(
Ŵ , Lb+

)
touches the boundary of Ŵ at an interior point of D2, then either it is constant or it
is a multiple cover of a Bishop disk that is completely contained in SA ⊂MA∩Sn+mbelt .

Proof. Let z0 ∈ D̊2 be a point in the interior of the disk at which u touches MA,
MB , or Mreg. We will obtain the desired statement by using the maximum princi-
ple; we only need to be a bit more careful compared with the standard situation,

because the boundary of Ŵ is defined piecewise as a union of level sets of different
plurisubharmonic functions.

Assume first that u(z0) touches MB . The function gB is not defined on the
whole symplectic filling, but we may nonetheless assume that gB exists on a small
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neighborhood of u(z0), hence we find an open subset U ⊂ D̊2 containing z0 such
that (

gB ◦ u
)∣∣
U

: U → R
is a plurisubharmonic function having a maximum at z0. It follows from the maxi-
mum principle that gB ◦ u|U is constant, and due to strong convexity it even follows
that the holomorphic map u|U itself must be constant. This implies that the open
set U chosen above can in fact be extended to the whole disk, and u will be a
constant disk.

Note that this argument also remains valid if u(z0) lies in the edge where MA

and MB meet. The disk lies in the model locally in the domain with gB ≤ r2, and
thus gB ◦ u|U still has a local maximum at z0 ∈ D̊2, as used previously. Similarly,
the argument can be used verbatim for disks that touch Mreg, and this implies
in fact that there are no disks at all touching Mreg at interior points, because a
constant disk must lie in Lb+ ⊂ Sn+mbelt , which is disjoint from Mreg.

Let us now assume that the disk u touches the hypersurface MA at z0. Again,
we find an open subset U ⊂ D̊2 containing z0 for which(

gA ◦ u
)∣∣
U

: U → R

is defined and has a maximum at z0. By weak plurisubharmonicity, this function
must be constant.

Now it is easy to see that we can choose U to be the whole disk D2, because by

continuity, the image of every point z ∈ U lies in ∂Ŵ . If z is an interior point of
the disk, and if u(z) is an interior point of MA, i.e. it does not lie in MA ∩MB ,
then we can extend U to a larger open domain that contains z in its interior. If z
is an interior point but u(z) does lie in MA∩MB , then we know by the first part of
the proof that u must be a constant map. In both cases the whole disk lies in MA.

It remains to see that a nonconstant holomorphic disk lying in MA must be
a Bishop disk (or a multiple cover). We know that all coordinate functions are
harmonic, and hence each of them must attain both its maximum and its minimum
at a point on the boundary of the disk. The boundary of u lies in Lb+ ⊂

{
y− = 0

}
,

and hence it follows that all of the y−-coordinates vanish on the disk. From the
Cauchy-Riemann equation, we then see that the x−-coordinates of the disk will be
constant.

Similarly, the y+-coordinates of the disk must all be equal to b+, because Lb+ ⊂{
y+ = b+

}
, and again by the Cauchy-Riemann equation also the x+-coordinates

will be constant.
The only nonconstant coordinate functions of the disk are the z◦-coordinate, and

they span a round disk. �

Recall that

Bb+ = Lb+ ∩ {z◦ = 0}
is the binding of the Lob Lb+ .

Proposition 4.9. There exists an open subset V ⊂ Wmodel, containing Bb+ for
every b+ ∈ Dmr , such that every holomorphic disk

u :
(
D2, ∂D2

)
→
(
Ŵ , Lb+

)
in M̃

(
Ŵ , SB ; J

)
intersecting V must be a Bishop disk up to reparametrization.
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Proof. Note that

h(z−, z+, z◦) = ‖x−‖2 − 1

2
‖y−‖2 + ‖x+‖2

is a weakly plurisubharmonic function on Wmodel. Its value on the binding Bb+ is
r2, and it decreases along the Lob. If we choose a sufficiently small ε > 0, we can
make sure that V := h−1

(
(r2 − ε,+∞)

)
∩Wmodel is an open neighborhood of Bb+

with V ⊂Wmodel. It follows in fact from gB ≤ r2 and h > r2 − ε that

gB(z−, z+, z◦)− h(z−, z+, z◦) =
1

2
‖y−‖2 + ψ

(
‖y−‖

)
· ‖y+‖2 + |z◦|2 < ε ,

so that both the y− and the z◦-coordinates are small in V , and in particular we
can assume that ψ = 0 on V . On the other hand,

‖x−‖2 + ‖x+‖2 > r2 − ε+
1

2
‖y−‖2 ≥ r2 − ε

implies that every point in V lies in an arbitrarily small neighborhood of SB .

Let now u :
(
D2, ∂D2

)
→
(
Ŵ , Lb+

)
be a holomorphic disk whose image intersects

V . Assume that h ◦ u is not constant: then we can choose by Sard’s theorem a
slightly smaller number ε′ < ε for which r2 − ε′ will be a regular value of h ◦ u, so
that the subdomain

G :=
{
z ∈ D2

∣∣ (h ◦ u)(z) ≥ r2 − ε′}
is compact and has piecewise smooth boundary, which we denote by

∂G = ∂+G ∪ ∂−G ,

where ∂+G = G ∩ ∂D2 lies in the boundary of the unit disk, and ∂−G lies in the
interior of the unit disk. Denote the restriction

u|G : G→Wmodel

by uG.
By the maximum principle, it follows that the maximum of h ◦ uG on each

component of G must lie on the boundary of that component. Clearly then the
boundary of every component of G must intersect ∂+G, because otherwise h ◦ uG
would have an interior maximum on that component, so it would be equal to r2−ε′,
but this contradicts the assumption that r2 − ε′ is a regular value.

It follows then that every component of G must intersect ∂D2, and since h◦uG is
minimal along ∂−G, the maximum of h◦uG must lie at a point z0 ∈ ∂+G ⊂ ∂D2. By
the boundary point lemma, a version of the maximum principle at the boundary
(see for example [Nie13, Theorem II.1.3]), the derivative of h ◦ uG at z0 in the
outward radial direction must be strictly positive. We choose polar coordinates
(r, ϕ) on D2. Using the fact that u is J-holomorphic, we can write

∂r
(
h ◦ u

)
= dh

(
Du · ∂r

)
= dh

(
Du · (−i · ∂ϕ)

)
= −dh

(
i ·Du · ∂ϕ

)
= −dch

(
Du · ∂ϕ

)
,

but note that

−dch =

k∑
r=1

(
2x−r dy

−
r + y−r dx

−
r

)
+ 2

m∑
s=1

x+s dy
+
s .

We obtain −dch · Du · ∂ϕ = 0 along the whole boundary of the disk, because the
boundary of u lies in the Lob Lb+ , which is a subset of {y− = 0,y+ = b+}. It
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follows that ∂r
(
h ◦ u

)
= −dch

(
Du · ∂ϕ

)
vanishes at z0, and by the boundary point

lemma, the disk must be contained in one of the level sets of h, so in particular it
lies in V ⊂Wmodel.

The rest of the statement follows from standard arguments. All of the coordi-
nate functions on Wmodel are harmonic, hence they must attain their maxima and
minima on the boundary of the disk. Since y− = 0 along ∂D2, the y−-coordinates
of u are zero on the whole disk, and using the Cauchy-Riemann equation, we see
that the x−-coordinates must be constant on the disk. Similar arguments work for
y+ and x+, and we finally conclude that u must be a Bishop disk. �

Proposition 4.10. Let Lb+ be a Lob that lies in the hypersurface MA, i.e. b+ ∈
Dmr has been chosen such that ‖b+‖ = r. Then up to parametrization, every holo-

morphic disk u in M̃
(
Ŵ , SB ; J

)
whose boundary lies in Lb+ is a Bishop disk.

Proof. Note that Lb+ lies in the level set of the weakly plurisubharmonic function

gA : Ŵ → R. It suffices to prove that the image of u has to lie entirely in MA ⊂
Wmodel, as this already implies the desired statement by Proposition 4.8.

Since the whole boundary u
(
∂D2

)
lies in MA, we can find a closed annulus

G ⊂ D2 having ∂D2 as one of its boundary components such that(
gA ◦ u

)∣∣
G

: G→ R

is defined and everywhere weakly plurisubharmonic, and it takes its maximum along
∂D2 ⊂ G.

Assume first that the disk u is tangent to MA at one of its boundary points.
We can apply the boundary point lemma around this point (see again [Nie13,
Theorem II.1.3]) to deduce that

(
gA ◦ u

)∣∣
G

has to be constant on all of G. In

particular this implies that u(G) lies in MA, and u touches MA also with one of its
interior points. Proposition 4.8 then implies that u is either constant or one of the
Bishop disks.

Conversely suppose that u is everywhere transverse to MA, meaning that ∂r
(
gA◦

u
)
(z) is strictly positive for every z ∈ ∂D2. The restriction u|G is a J-holomorphic

map whose image lies in Wmodel; moreover, gA ◦ u ≡ r2 on ∂D2 and gA ◦ u < r2 on
the inner boundary of G. Introduce on G the polar coordinates z = ρeiϕ.

Note that along ∂D2, all of the y+-coordinates are constant in the ϕ-direction,
because the boundary of the disk lies in the Lob Lb+ . Multiplying the complex
coordinates z+ by a suitable SO(m)-matrix (the standard complex structure i and
the functions gA, gB are invariant under such a multiplication), we may assume that
b+ = (r, 0, . . . , 0). It follows that the y+1 -coordinate of u|G has its maximum on

∂D2. Note now that the x+1 -coordinate of u|S1 is bounded, and hence it necessarily
must take a maximum at some point eiϕ0 ∈ S1 = ∂D2, so that

d

dϕ

∣∣∣∣
ϕ=ϕ0

x+1

(
u
(
eiϕ
))

= 0 .

Again, we can use complex multiplication to see i · ∂ρ = ∂ϕ, hence

dy+1
(
Du · ∂ρ

)
= dy+1

(
Du · (−i · ∂ϕ)

)
= −dy+1

(
i ·Du · ∂ϕ

)
= −dx+1

(
Du · ∂ϕ

)
,

and in particular the radial derivative of y+1 vanishes at eiϕ0 , so that by the bound-
ary point lemma, y+1 must be constant on all of G.
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Using the fact that r2 =
∣∣y+1 ∣∣2 ≤ gA(z−, z+, z◦) ≤ r2 everywhere on G, we

deduce that all of u(G) lies in MA. In particular, u touches MA at an interior
point, which allows us to conclude the proof by applying Proposition 4.8. �

We end this subsection with a description of the global topology of the moduli

spaces M̃
(
Ŵ , SB ; J

)
and M

(
Ŵ , SB ; J

)
.

Proposition 4.11. The parametrized moduli space M̃
(
Ŵ , SB ; J

)
is a smooth (2n−

k + 3)-dimensional manifold with boundary and corners. Its boundary has two
smooth strata, one corresponding to elements (b+, u, z0) with ‖b+‖ = r, and the
other corresponding to elements (b+, u, z0) with |z0| = 1.

The moduli space M
(
Ŵ , SB ; J

)
is a smooth (2n− k)-dimensional manifold with

boundary and corners, which decomposes as a product

M
(
Ŵ , SB ; J

)
= Σ× D2 ,

where Σ is a (non-compact) manifold with boundary.

Proof. Let (b+, u, z0) be an element of M̃int

(
Ŵ , SB ; J

)
. Since M̃int

(
Ŵ , SB ; J

)
is

open in M̃
(
Ŵ , SB ; J

)
, it follows from Proposition 4.8 that the image of u does

not touch ∂Ŵ with any interior point if ‖b+‖ < r, and that (b+, u, z0) has a

neighborhood in M̃
(
Ŵ , SB ; J

)
which is diffeomorphic to an open ball D̊2n−k+3 if

|z0| < 1, or to a half-ball D̊2n−k+1 ×
{
z ∈ C

∣∣ Im z ≥ 0
}

if |z0| = 1.

Now we consider the elements (b+, u, z0) of M̃
(
Ŵ , SB ; J

)
such that the image of

u touches ∂Ŵ at an interior point. Again by Proposition 4.8 this implies ‖b+‖ = r.
We know by Proposition 4.10 that u will be a Bishop disk up to reparametrization.
Since Bishop disks are regular by Corollary 4.7, a neighborhood of (b+, u, z) in

M̃
(
Ŵ , SB ; J

)
looks like the neighborhood of a boundary point of an (n+m+ 2)-

manifold. A priori the boundary of the unparametrized moduli space may contain
one more stratum consisting of triples (b+, u, z0) such that the image of u touches
the binding Bb+ of the Lob Lb+ at a boundary point. However, in this case, the
image of u would have to intersect the neighborhood V from Proposition 4.9, and
therefore u would be a Bishop disk. Since Bishop disks which intersect the binding

are constant and, by definition, do not belong to M̃
(
Ŵ , SB ; J

)
, the possibility that

the image of u touches Bb+ cannot occur. (We will see later that those constant
disks must be added to the compactification of the moduli space.)

By definition, the space M̃
(
Ŵ , SB ; J

)
of parametrized disks with a marked point

is a trivial disk bundle. The moduli spaceM
(
Ŵ , SB ; J

)
is then a disk bundle over

the moduli space of the same holomorphic curves without the marked point, and
the projection map is simply the map that forgets the marked point.

In our case though, it is even true that M
(
Ŵ , SB ; J

)
is a trivial disk bundle.

Recall that the map ϑ : SB \ {z◦ = 0} → S1 is globally defined for all Lobs in

the family. Hence every equivalence class [b+, u, z] in M
(
Ŵ , SB ; J

)
has a unique

representative (b+, u0, z0), defined by fixing a parametrization of u such that

ϑ
(
u(z)

)
=


1 if z = 1,

i if z = i,

−1 if z = −1,
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as we did in the proof of Proposition 4.5. This choice of parametrization gives a

global slice for the action of Aut(D2) on M̃
(
Ŵ , SB ; J

)
, which identifiesM

(
Ŵ , SB ; J

)
with a subset of M̃

(
Ŵ , SB ; J

)
. ThenM

(
Ŵ , SB ; J

)
is a trivial disk bundle because

the same is true of M̃
(
Ŵ , SB ; J

)
. �

4.3. Topology of the compactified moduli space. In the previous sections, we
introduced the moduli space we want to use, and we showed that all the disks inter-
secting certain domains of the model neighborhood Wmodel must be Bishop disks.
Our aim in this section is to study the topology of the natural compactification of

that moduli space. The compactification of M
(
Ŵ , SB ; J

)
involves two phenom-

ena: (1) Gromov convergence to stable nodal holomorphic disks (see e.g. [Fra08;
FZ15]), and (2) degeneration to constant maps in the binding of a Lob. In order
to accommodate the latter without losing the extra disk-bundle structure provided

by the marked point, we shall (as in Proposition 4.5) replace M
(
Ŵ , SB ; J

)
by

the space M̃0

(
Ŵ , SB ; J

)
of parametrized curves that satisfy the condition (4.1).

This introduces a hint of extra book-keeping into the following statement, but the
reader should keep in mind that the space we are actually interested in is always

M
(
Ŵ , SB ; J

)
.

Proposition 4.12. Any sequence (b+
j , uj , zj) ∈ M̃

(
Ŵ , SB ; J

)
satisfying the con-

dition (4.1) has a subsequence that converges to a unique configuration of one of
the following types:

(1) An element of the moduli space (b+
∞, u∞, z∞) ∈ M̃

(
Ŵ , SB ; J

)
, still satis-

fying (4.1);
(2) A triple (b+

∞, p∞, z∞), where b+
∞ ∈ Dm, p∞ represents the constant map

at the point p∞ ∈ Bb+
∞

and z∞ ∈ D2; or

(3) A triple (b+
∞, t∞, z∞), where b+

∞ ∈ Dm, t∞ is a stable nodal holomorphic
disk with boundary on Lb+

∞
⊂ Sn+mbelt , consisting of a single nonconstant

disk with a tree of sphere bubbles attached, and z∞ is a marked point on
the domain of t∞.

Convergence in cases (1) and (2) is in the C∞-topology, and in case (3) it is in the
sense of Gromov. If W is symplectically aspherical, then the third case does not
occur.

Proof. Since the parameters b+
j belong to the closed ball Dmr , we can extract a

first subsequence from (b+
j , uj , zj) for which the parameters converge to some limit

b+
∞ ∈ Dmr . For simplicity, we still denote this subsequence by (b+

j , uj , zj).
The usual statement of Gromov’s compactness theorem for holomorphic disks

(see [Fra08, §4]) applies to sequences of unparametrized curves with fixed numbers
of interior marked points and/or boundary marked points. Thus in order to apply

the theorem to (b+
j , uj , zj) ∈ M̃

(
Ŵ , SB ; J

)
, it will be convenient to observe that

parametrized curves satisfying (4.1) can be identified in a canonical way with un-
parametrized stable nodal J-holomorphic disks carrying one interior marked point
(corresponding to zj) and three extra boundary marked points (corresponding to
the points 1, i,−1), where the latter are required to satisfy incidence conditions
under the evaluation map. In this picture, smooth (i.e. non-nodal) unparametrized
curves with extra boundary marked points correspond to triples (b+

j , uj , zj) with
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zj ∈ D2 \ ∂D2, and triples with zj ∈ ∂D2 are identified with nodal curves that con-
sist of a nonconstant disk uj attached by a node at zj to a single constant (“ghost”)
disk on which the interior marked point lives.

With this identification understood, suppose the maps uj have images bounded
away from the binding Bb+

∞
. Then after taking a subsequence, we can assume

by Gromov compactness that the corresponding sequence of unparametrized stable
curves with extra boundary marked points converges in the Gromov topology to a
smooth or nodal J-holomorphic disk. Note that each of the unparametrized curves
has a unique parametrization for which the (ordered) set of boundary marked points
is (1, i,−1), thus if the Gromov limit is smooth, then this means zj converges to an
interior point of D2 and uj converges in C∞ to a smooth J-holomorphic disk u∞.
Similarly, if the nodal limit consists only of one nonconstant J-holomorphic disk u∞
and one ghost disk containing the interior marked point, then this means that uj
converges in C∞ to u∞ while zj converges to a point in ∂D2. In all other cases, uj
can be viewed as converging to a bubble tree which may include both spheres and
disks, while zj converges to an interior or boundary point on one of the components.

Suppose now that the sequence (uj , zj) converges to a bubble tree (t∞, z∞).
We will show that t∞ does not contain any nonconstant disk bubble. (Since the
boundary marked points are always mapped to distinct points in the image, stability
then implies that with the exception of the cases interpreted above as smooth
limits, t∞ contains no disk bubbles at all.) Suppose on the contrary that the
sequence uj bubbles a nonconstant disk v with boundary on the Lob Lb+

∞
. The

points 1,−1, i divide ∂D2 into three segments, one of which is necessarily disjoint
from the bubbling region. The fact that for each j the function ϑ ◦ uj |∂D2 is a
diffeomorphism then implies that ϑ ◦ v|∂D2 is not surjective. Thus the boundary
of v is somewhere tangent a page of the Lob Lb+

∞
, but it follows from a standard

argument using the boundary point lemma [Nie13, Theorem II.1.3] that the disk v
cannot exist. We conclude that t∞ is a bubble tree containing only holomorphic
spheres. This is case (3).

If there is a sequence wj ∈ D2 such that uj(wj) approaches the binding, then
the maps uj are Bishop disks for j large enough because, sooner or later, the
images of the uj will intersect the domain V as in Proposition 4.9 nontrivially.
This implies that the limit u∞ is the constant map at a point p∞ ∈ Bb+

∞
, and we

have case (2). �

Using the natural identification ofM
(
Ŵ , SB ; J

)
with the space of parametrized

curves satisfying (4.1), we can now compactifyM
(
Ŵ , SB ; J

)
by adding the limiting

configurations described in Proposition 4.12. We will denote this compactified

moduli space by M
(
Ŵ , SB ; J

)
. Its “boundary”

∂M
(
Ŵ , SB ; J

)
⊂M

(
Ŵ , SB ; J

)
can be defined naturally as the set of equivalence classes [(b+, u, z)] for which
either b+ ∈ ∂D2

r, z ∈ ∂D2 (including cases where the domain of u contains sphere
bubbles), or u is a constant map into the binding of a Lob. The compactification
can also be decomposed naturally into two disjoint pieces,

M
(
Ŵ , SB ; J

)
=Msmooth ∪Mbubble,
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defined as the subsets consisting of non-nodal and nodal curves respectively. We
define

∂Msmooth := ∂M
(
Ŵ , SB ; J

)
∩Msmooth .

The next proposition describes the topology of the compactified moduli space. We
refer to [MS04, §6.5] for general facts about pseudocycles, and [Sch99; Zin08] for
the fact that pseudocycles up to bordism can be identified with integral homology
classes.

Proposition 4.13. Let (W,ω) be a symplectic filling of a contact (2n−1)-manifold
(M, ξ). Suppose that (M, ξ) has been obtained by a surgery of index k ≤ n − 1
from another contact manifold, and that Sn+mbelt is the corresponding belt sphere

(with n = k + m + 1). Deform W as described in Section 3.2 to (Ŵ , ω), and let

M
(
Ŵ , SB ; J

)
be the compactification of the moduli space M

(
Ŵ , SB ; J

)
of disks

attached to SB ⊂ Sn+mbelt . Then ev : M
(
Ŵ , SB ; J

)
→ Ŵ extends to a continuous

map

ev :
(
M
(
Ŵ , SB ; J

)
, ∂M

(
Ŵ , SB ; J

))
→
(
Ŵ , Sn+mbelt

)
.

Moreover:

(a) If (W,ω) is semipositive, then

ev|∂Msmooth
: ∂Msmooth → Ŵ

defines an (n+m)-dimensional pseudocycle in Ŵ representing the homology

class ±[Sn+mbelt ] ∈ Hn+m(Ŵ ;Z), and

ev|Msmooth
: Msmooth → Ŵ

defines a bordism of the above pseudocycle to the empty (n+m)-dimensional

pseudocycle in Ŵ .

(b) If (W,ω) is symplectically aspherical, then M
(
Ŵ , SB ; J

)
is homeomorphic

to a manifold with boundary and corners of the form

Σ× D2 ,

where Σ is a smooth, compact, connected and oriented (n+m−1)-manifold
with boundary and corners, whose boundary is homeomorphic to Sn+m−2.
Furthermore,

ev|
∂M
(
Ŵ ,SB ;J

) : ∂M
(
Ŵ , SB ; J

)
→ Sn+mbelt

is a map of degree ±1.

Proof. Let us describe the natural topology onM
(
Ŵ , SB ; J

)
, using again the iden-

tification of M
(
Ŵ , SB ; J

)
with the slice in M̃

(
Ŵ , SB ; J

)
defined via the condi-

tions (4.1). The boundary of the uncompactified space M
(
Ŵ , SB ; J

)
consists of

holomorphic disks whose marked points lie in ∂D2, together with Bishop disks with
boundary on a Lob Lb+ with b+ ∈ ∂D2

r. Proposition 4.12, provides a description
of the two additional limit objects we need to consider. If (b+, p∞, z) is one of
the constant disks appearing in case (2) of Proposition 4.12, then it follows from
Proposition 4.9 that it is surrounded only by Bishop disks. Using the parametriza-
tion of the Bishop disks given at the beginning of Section 4.2—in this description
the constant disks are obtained by choosing C = 0—we can add the constant disks
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(b+, p∞, z) to the chosen slice in M̃
(
Ŵ , SB ; J

)
, and give it a smooth structure that

agrees with the one induced by C∞-convergence of maps. Attaching the constant
disks in this way corresponds to adding boundary points to the global slice. Defin-

ing a smooth structure on M
(
Ŵ , SB ; J

)
in this way, it is straightforward to see

that the evaluation map extends smoothly to the constant disks in M
(
Ŵ , SB ; J

)
.

The other singular points we need to consider inM
(
Ŵ , SB ; J

)
are bubble trees,

each consisting of one holomorphic disk and several holomorphic spheres. If (W,ω)
is symplectically aspherical as in case (b), it does not contain any holomorphic
spheres, and hence no bubbles can appear. In this case, the compactified moduli

space M
(
Ŵ , SB ; J

)
will be diffeomorphic to

Σ× D2

according to Propositon 4.11, where Σ is a smooth compact manifold with boundary
and corners. If we are in case (a), then bubbling of spheres may occur, but standard
index counting arguments using the semipositivity assumption imply that such
bubbling is a “codimension 2 phenomenon”. The restriction of ev to ∂Msmooth is
then a pseudocycle, and the restriction toMsmooth is a bordism of this pseudocycle
to the trivial one.

In the absence of bubbling, M
(
Ŵ , SB ; J

)
is a trivial disk bundle over the com-

pact base manifold Σ, whose boundary consists of Bishop disks sitting on boundary
Lobs and/or collapsing into the binding. The boundary Lobs are parametrized by
b+ ∈ ∂Dmr ∼= Sm−1, and there is precisely one (unparametrized) Bishop disk going
through every point of the page of the Legendrian open book of Lb+ , hence we
conclude that the first disks can be parametrized by Sm−1 × Dn−1. The binding
of a Lob Lb+ , on the other hand, is diffeomorphic to Sn−2, and since there is a

Dmr -worth of Lobs, we conclude that M
(
Ŵ , SB ; J

)
contains a family of constant

disks that is parametrized by Dmr ×Sn−2. These two parts meet at their boundaries
and form a (topological) manifold homeomorphic to Sn+m−2, as claimed.

Finally, we observe that the restriction of ev to ∂M
(
Ŵ , SB ; J

)
is always bijective

on some subset consisting of Bishop disks, so it is a map of degree ±1 onto Sn+mbelt

whenever ∂M
(
Ŵ , SB ; J

)
is a topological manifold. More generally, this implies

that the pseudocycle ev|∂Msmooth
: ∂Msmooth → Sn+mbelt represents a generator of

Hn+m(Sn+mbelt ;Z) whenever it is well defined.

The orientability of M
(
Ŵ , SB ; J

)
is shown in Appendix A. �

Proof of Theorem 1.2. The proof of statement (a) follows directly from part (a) of
Proposition 4.13, using the natural identification between singular homology classes
and bordism classes of pseudocycles, see [Sch99; Zin08].

Statement (b) can be obtained by using part (b) of Proposition 4.13. Since

M
(
Ŵ , SB ; J

)
is diffeomorphic to a trivial disk bundle, we can apply Proposition 5.1

in the general situation, or Propositions 5.2 and 5.3 respectively, when n + m = 3
or n+m = 4. This implies that Sn+mbelt is the trivial element in the oriented bordism
group ΩSOn+m(W ), and it is even contractible in W , if n+m = 3 or 4 as claimed. �
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5. Surgery on moduli spaces

If bubbling can be ruled out in the proof of Theorem 1.2 given in the previous sec-
tion, we can use topological results to conclude that the belt sphere is not only null-

homologous but null-bordant in ΩSO∗ (Ŵ ), and in cases where dimM
(
Ŵ , SB ; J

)
≤

5, it is even null-homotopic. The idea in both cases is to attach handles to the
moduli space and extend the evaluation map accordingly so that we obtain a new

space together with a map into Ŵ which will be topologically simpler than the
original moduli space. Our argument for this will make essential use of the fact
that the moduli space is naturally a trivial disk bundle.

Note that if Σ is a compact oriented k-manifold with boundary, then using han-
dle attachments to turn Σ×D2 into a ball cannot succeed unless Σ×D2 admits an
embedding into Rk+2, which cannot always be guaranteed, i.e. in general there are
topological obstructions to the applicability of this technique to obtain contractibil-
ity of the belt sphere. We will show that these can be overcome if dim Σ ≤ 3.

Proposition 5.1. Let W be a compact manifold possibly with boundary, and let
S ⊂ W be an embedded (k + 1)-sphere. Assume that Σ is a compact connected
orientable k-manifold with non-empty boundary. Let X be Σ× D2, and let

f : (X, ∂X)→ (W,S)

be a continuous map, whose restriction to the boundary

f |∂X : ∂X → S

is of degree 1. Then it follows that S is null-bordant in ΩSOk+1(W ).

Proof. We will assume k ≥ 2, since for k ≤ 1, Σ is either a point or a closed
interval. The manifold Σ has a handle decomposition that consists of a k-disk
with finitely many handles of index < k attached to it (attached successively in
order of their indices). Since the product of a k-dimensional handle with D2 is a
(k+ 2)-dimensional handle of the same index, X = Σ×D2 is built up by attaching
(k + 2)-dimensional handles of index < k. For each q = 0, . . . , k − 1, let X(q) ⊂ X
denote the union of all the handles up to index q, so X = X(k−1).

For every 1-handle in X(1) we can find a closed curve in the boundary of X(1)

by pushing the core of the handle into ∂X(1), and connecting the end points with a
path in ∂X(1) that does not intersect any other 1-handle. This is possible, because
X(0) consists of a unique 0-handle that in particular is connected. These curves
intersect the belt sphere of the corresponding handle exactly once. Moreover since
dim ∂X(1) = k + 1, there is enough space to assume that the loops corresponding
to different 1-handles are disjoint from each other and also disjoint from any of the
attaching circles of the 2-handles needed to obtain X(2). The loops thus embed into
∂X(2), and we can repeat this reasoning to see that they also embed into ∂X(3)

and so on up to ∂X.
Standard Morse theory implies that a q-handle can be canceled out by attaching

a (q + 1)-handle along an embedded q-sphere that intersects the belt sphere of the
q-handle exactly once. It is thus possible to convert X(1) into a ball by attaching 2-
handles, each corresponding to one of the 1-handles. Since the loops also embed into
∂X, we may equally well attach the 2-handles to X, obtaining in this way a compact
connected orientable (k+ 2)-manifold X ′ that admits a handle decomposition with
exactly one 0-handle, and no handles of index 1 or of index ≥ k.
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The map f : X →W can be extended to the newly added 2-handles because ∂X,
and hence also the attaching curves, are mapped to S, which is simply connected.
We can thus construct a continuous map

f ′ :
(
X ′, ∂X ′

)
→ (W,S) .

The restriction of f ′ to the boundary is still of degree 1, because the image of the
2-handles can be assumed to be a thin set in the (k + 1)-sphere S.

To finish the proof, consider the double of X ′, obtained by gluing a copy of
X ′ with reversed orientation to itself along its boundary. One can decompose
the double into handles such that for each q-handle in the original X ′, there is a
corresponding (k+ 2− q)-handle in the second copy (think of the two copies of X ′

as carrying Morse functions f and c − f for some constant c ∈ R). Our handle
decomposition of the double therefore has exactly one handle of index k + 2 and

none of index k+1. Let X̂ denote the result of removing the (k+2)-handle. Then X̂
is a compact connected orientable (k + 2)-manifold obtained from X ′ by attaching

additional handles of various indices 3, . . . , k, and ∂X̂ ∼= Sk+1. Since πq(S) = 0 for
all q = 2, . . . , k, the map f ′ extends from X ′ to a continuous map

f̂ :
(
X̂, ∂X̂

)
→ (W,S) ,

mapping all of the additional handles into S. Note in particular that the restriction

of f̂ to ∂X̂ is a degree 1 map to S, because all the handles added to X ′ are of index
lower than dimS.

The restriction f̂
∣∣∣
∂X̂

is homotopic to a diffeomorphism between the two (k+ 1)-

spheres ∂X̂ and S, and it follows that S is null-bordant in ΩSOk+1(W ). �

Proposition 5.2. Let W be a compact manifold possibly with boundary, and let
S ⊂W be an embedded 3-sphere. Assume that Σ is a compact connected orientable
surface with non-empty boundary. Let X be Σ× D2, and let

f : (X, ∂X)→ (W,S)

be a continuous map, whose restriction to the boundary

f |∂X : ∂X → S

is of degree 1. Then it follows that S is contractible in W .

Proof. The proof is a special case of the argument used for Proposition 5.1. The
difference is that X consists only of a 4-disk and 1-handles, thus after passing to X ′

by attaching 2-handles, it already follows that X ′ is diffeomorphic to a 4-disk D4.
We then obtain a continuous map

f ′ :
(
D4, ∂D4

)
→ (W,S)

whose restriction to the boundary is still of degree 1, and is therefore homotopic to
a homeomorphism ∂D4 → S. �

Proposition 5.3. Let W be a compact manifold, possibly with boundary, and let
S ⊂ W be an embedded 4-sphere. Let Σ be a compact connected orientable 3-
manifold with non-empty boundary ∂Σ ∼= S2. Assume that X is Σ× D2, and that

f : (X, ∂X)→ (W,S)

is a continuous map, whose restriction to the boundary

f |∂X : ∂X → S
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is of degree 1. Then it follows that S is contractible in W .

Proof. The manifold Σ is an orientable 3-manifold minus a ball. It admits a handle
decomposition given by a 3-ball with 1- and 2-handles attached, and we may assume
that Σ has been obtained by attaching first the 1-handles and then the 2-handles.
As in the proof of Proposition 5.1, it follows that the manifold X is built up by first
attaching 1- and then 2-handles to a 5-ball D5. Denote by X(1) the intermediate
space consisting only of the 5-ball and the 1-handles.

It is easy to find for every 1-handle an embedded loop in ∂X(1) that intersects
the belt sphere of the handle exactly once. For dimensional reasons, these loops will
be generically disjoint from each other, but they will also generically not intersect
any of the attaching circles of the 2-handles. We can cancel all 1-handles of X(1)

by attaching 2-handles along the chosen loops. The chosen loops also embed into
∂X, hence we can also kill all 1-handles by attaching 2-handles to X. Note that we
could get rid of the 1-handles without choosing a particular framing when attaching
the 2-handles; however X is parallelizable (as is any oriented 3-manifold), and using
Lemma 5.4 below, we attach the 2-handles in such a way that the resulting manifold
is also parallelizable. Since the image f(∂X) lies in the sphere S, we can extend f
to the additional 2-handles without changing the degree of f |∂X .

After the previous step, we will assume that X is a 5-manifold with trivial
tangent bundle that has been obtained by gluing 2-handles to the 5-ball. Every
embedding of S1 into S4 = ∂D5 is isotopic to a standard one for dimensional reasons
(see [Hae62]), and it follows that the 2-handles are all attached along unknots. Note
also that these unknots are unlinked since we may shrink the first unknot into an
arbitrarily small ball, so that the other loops will bound embedded disks that are
disjoint from this ball.

We may therefore assume that X is the boundary sum of a finite collection of
5-manifolds, each consisting of a 5-ball with a single 2-handle attached along an
unknot. The only invariant of each such manifold is the framing of the 2-handle. It
is given by a loop in SO(3), which means there are only two choices, corresponding
to the two elements of π1(SO(3)). In fact, each of these manifolds is diffeomorphic
to either the trivial rank 3 bundle over S2 or the twisted one, S2×̃D3. The total
space of the twisted one is not parallelizable: it suffices to study T

(
S2×̃D3

)∣∣
S2×̃{0}

which is obtained by clutching two copies of C ⊕ R3 over two disks together. The
gluing map is e2iφ ⊕ ψ, where ψ is the nontrivial loop in π1(SO(3)), but since this
is the nontrivial element of π1(SO(5)), the bundle is not trivial. It follows that X
is the boundary connected sum of copies of S2 × D3.

We can then also kill the 2-handles by attaching 3-handles, and the map f
extends to this new manifold. This proves that S is homotopically trivial in the
filling. �

The following lemma was used above in the proof of Proposition 5.3.

Lemma 5.4. Let X be a compact parallelizable n-manifold with boundary, and let
γ be an embedded loop in ∂X. Assume n ≥ 5. Then one can choose a framing of γ
such that the manifold

X ∪γ H2

obtained by attaching a 2-handle H2 along γ is also parallelizable.
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Proof. A framing of γ is an oriented trivialization of the normal bundle ν(γ) of
γ in ∂X. Given one framing, any other one can be obtained by multiplying the
first one in each fiber with a matrix in GL+(n − 2), i.e. the second framing can
be represented with respect to the first one by a map S1 → GL+(n − 2). We are
only interested in framings up to homotopy, hence it follows that all framings are
classified by π1

(
GL+(n − 2)

)
, and since GL+(n − 2) ' SO(n − 2), there are only

two possible choices.
Choose now a trivialization of TX. Such a trivialization allows us to identify

TX|γ with S1 × Rn. Any other trivialization of TX|γ can be represented with re-

spect to the first one by a map S1 → GL+(n), that is, up to homotopy there are also
only two trivializations of TX|γ , corresponding to the elements of π1(SO(n)). In

particular, any framing (e1, . . . , en−2) of ν(γ) extends to a basis (f1, f2, e1, . . . , en−2)
of TX|γ , where the vector fields f1 and f2 are given by

f1 = ~n cosφ− γ̇ sinφ

f2 = ~n sinφ+ γ̇ cosφ ,

where φ parametrizes γ. Here ~n denotes the outward normal vector field to the
boundary ∂X, and γ̇ is the tangent vector field to the loop γ. If this basis is not
homotopic to the given trivialization of TX|γ , it suffices to choose instead(

f1, f2, e1 cosφ− e2 sinφ, e1 sinφ+ e2 cosφ, e3, . . . , en−2
)
,

which corresponds to the second framing of γ, but also to the other homotopy class
of possible trivializations of TX|γ . It is thus possible to homotope the trivial-

ization of TX into one that coincides close to γ with (f1, f2, e1, . . . , en−2), where
(e1, . . . , en−2) is a framing of γ.

On H2 = D2×Dn−2 with coordinates (x, y; z) ∈ D2×Dn−2, the attaching circle
{x2 +y2 = 1, z = 0} has the obvious framing

(
∂u, ∂v, ∂z1 , . . . , ∂zn−2

)
. If we glue H2

to X with the chosen framing, then the trivialization (f1, f2, e1, . . . , en−2) extends
to
(
∂u, ∂v, ∂z1 , . . . , ∂zn−2

)
, so the manifold X ∪γ H2 has trivial tangent bundle, as

desired. �

6. Contact structures that are not contact connected sums

In this section we prove Theorem 1.3. The construction we are going to use is
inspired by a similar one in [BCS15], though we do not need the full strength of
that paper.

Let M be a closed (2n− 1)-dimensional manifold that admits an almost contact
structure and that has a handle decomposition with a single handle of index 0, a
single one of index 2n− 1, and otherwise only handles of indices n− 1 and n. We
assume also that M is not a homotopy sphere, which by the Hurewicz theorem
implies that it must have nontrivial homology in dimension n − 1 or n. Possible
examples include the unit cotangent bundle of Sn, and Sn−1 × Sn; the first carries
a canonical contact structure, and the second is easily seen to be almost contact
since it is stably parallelizable.

Remove a small open disk D from M and denote the resulting manifold by M∗.
The product manifold W = M∗× [−1, 1] is compact and has boundary and corners,
and after smoothing, its boundary

∂W = M∗ × {−1} ∪
(
∂M∗ × [−1, 1]

)
∪M∗ × {+1}
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is diffeomorphic to M # (−M).
Now we can proceed with the proof of Theorem 1.3.

Proof of Theorem 1.3. By assumption, the manifold M∗ admits a Morse function
with outward pointing gradient at the boundary and critical points of index at
most n, and the same is therefore true ofW . Moreover, any almost contact structure
Ξ onM induces an almost complex structure onW , thus by a well-known theorem of
Eliashberg [Eli90b], there is a Stein structure whose complex structure is homotopic
to the given almost complex structure. The boundary ∂W ∼= M # (−M) inherits
from this Stein structure a contact structure ξ which is homotopic to the almost
contact structure Ξ # Ξ. Note that the belt sphere of the connected sum (i.e. the
center of the “neck” in M # (−M)) is

S := ∂M∗ × {0} ⊂ ∂W .

Arguing by contradiction, suppose now that ξ1 and ξ2 are positive contact struc-
tures on M and −M respectively such that ξ1 # ξ2 is isotopic to ξ. Then after
a deformation of the Stein structure near ∂W and hence an isotopy of ξ, we can
assume ξ in a neighborhood of S is contactomorphic to the contact structure on a
neighborhood of the belt sphere of an index one Weinstein handle. According to
Proposition 4.13 there is a compact (2n−1)-dimensional moduli spaceM∼= Σ×D2

and an evaluation map ev : (M, ∂M)→ (W,S) such that

(1) ev|∂M : ∂M→ S has degree one, and

(2) Σ is a compact orientable (2n− 3)-manifold with non-empty boundary.

Moreover, ev is a diffeomorphism on some open subset.
Consider the projection p : W = M∗ × [−1, 1] → M∗, which maps S to ∂M∗,

and denote by f : M → M∗ the composition f = p ◦ ev. It is easy to check that
f : M → M∗ now satisfies the conditions of Lemma 1.11. This implies that M∗

has vanishing homology in positive degrees, and is thus a contradiction. �

On the other hand, note that there is no homotopical obstruction to decomposing(
M # (−M), ξ

)
, because ξ is, by construction, homotopic to Ξ # Ξ.

Remark 6.1. A similar argument can be used to find examples of Stein fillable
contact structures that are homotopic (through almost contact structures) but not
isotopic to contact structures obtained via subcritical surgery of arbitrary index
k = 1, . . . , n− 1. The above is the k = 1 case of this result.

7. The Weinstein conjecture for subcritical surgeries

We will now prove Theorem 1.4, the existence of contractible Reeb orbits for
certain contact manifolds (M ′, ξ′) obtained by subcritical surgery.

Under either of the first two conditions stated in the theorem, the proof is a
trivial modification of the proof of Theorem 1.2, following [Hof93]. Suppose α is
the contact form for which we’d like to find a contractible Reeb orbit, and let α′

denote a second contact form that matches the one given in our Weinstein surgery
model near the belt sphere S2n−k−1

belt . After rescaling α, we can find an exact
symplectic structure on R×M ′ that matches d(etα) on (−∞,−1]×M ′ and d(etα′)
on [−1/2,∞) ×M ′. We then choose a compatible almost complex structure and,
as in Theorem 1.2, study the moduli space of holomorphic disks in R ×M ′ with
boundary in the Lobs obtained by deformation from {0} × S2n−k−1

belt ⊂ R ×M ′. If
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α admits no contractible Reeb orbits, then bubbling is impossible, so the proof of
Theorem 1.2 shows that S2n−k−1

belt will be null-bordant in R ×M ′, and thus also

in M ′. If n = 3, or n = 4 with k = 3, it also shows that S2n−k−1
belt is trivial in

π2n−k−1(R×M ′) = π2n−k−1(M ′).
It remains to handle the third condition in Theorem 1.4, which specifically con-

cerns contact connected sums in dimension five. The above argument shows that
in this situation, if there is no contractible Reeb orbit, then the belt sphere must
be nullhomotopic. But the following theorem of Ruberman [Rub97] says that this
can only happen in the cases excluded by the third condition.

Theorem 7.1 (Ruberman). Let M be a closed oriented manifold, and suppose S
is an embedded codimension 1 sphere that is nullhomotopic. Then either S is the
boundary of a homotopy-ball embedded in M , or M is the connected sum

M = N0 #N1

of two rational homology spheres N0 and N1, one of which is simply connected,
while the other has finite fundamental group.

The proof of Theorem 1.4 is thus complete.

Appendix A. Orientability of the moduli spaces

In this appendix we prove that the moduli spaces used in this paper are ori-
entable. Let us fix some notation which will be used in the proof. Fix a real
number p > 2. Let B denote the space of pairs (b+, u) where:

• b+ ∈ Dmr with ‖b+‖ < r;
• u : D2 → W is a map of class W 1,p such that u(∂D2) ⊂ Lb+ \ Bb+ where
Lb+ denotes the Lob indexed by b+ and Bb+ its binding; and

• ϑ ◦ u|∂D2 has degree one, where ϑ : Lb+ \ Bb+ → S1 is the fibration of the
Lob.

Of course the information about b+ is already contained in u, and b+ only serves
for book-keeping. We denote by Bb+ the fibers of the projection p : B → Dmr , i.e.
p(b+, u) = b+. Then Bb+ consists of the maps u ∈ B such that u(∂D2) ⊂ Lb+\Bb+ .

The linearized Cauchy-Riemann operator at (b+, u) ∈ B (or to be more precise,
the vertical differential of the nonlinear Cauchy-Riemann operator, as defined in

[MS04]), will be denoted D̃(b+,u). Recall that this depends on a choice of connection
on W , though it is independent of this choice whenever u is J-holomorphic. We
define

det D̃(b+,u) = Λtop ker D̃(b+,u) ⊗ Λtop(coker D̃(b+,u))
∗ .

The determinant bundle D → B is the real rank-one bundle whose fiber at
(b+, u) is det D̃(b+,u). In order to prove that the moduli space M̃int(Ŵ , SB ; J) is
orientable, it suffices to show that D → B is trivial.

To better understand the determinant bundle we take a closer look at the lin-
earized Cauchy-Riemann operator. The tangent space T(b+,u)B consists of sections

ξ ∈ W 1,p(u∗TŴ ) such that, for all z ∈ ∂D2, they satisfy ξ(z) ∈ Tu(z)S
n+m
belt and

moreover the projection of ξ(z) to Tb+Dmr is independent of z ∈ ∂D2. It contains
the subspace TuBb+ ⊂ T(b+,u)B which is defined as

TuBb+ =
{
ξ ∈W 1,p(u∗TŴ )

∣∣ ξ(z) ∈ Tu(z)Lb+ ∀z ∈ ∂D2
}
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and therefore we can identify

(A.1) T(b+,u)B ∼= TuBb+ ⊕ Tb+Dmr .

The tangent spaces TuBb+ are the fibers of a vector bundles over B which we will
denote T vertB and the decomposition (A.1) globalizes to a bundle isomorphism

TB ∼= T vertB ⊕ p∗TDmr .

Although the above isomorphism is not canonical, its homotopy class is.

We denote the restriction of D̃(b+,u) to TuBb+ by D(b+,u). If we write the
elements of T(b+,u)B as pairs (ξ, v) ∈ TuBb+ ⊕ Tb+Dmr using the identification in

Equation (A.1), we can decompose D̃(b+,u) as

D̃(b+,u)(ξ, v) = D(b+,u)(ξ) +K(b+,u)(v) .

The operator D(b+,u) is the linearization at u of the nonlinear Cauchy-Riemann
operator defined on Bb+ , and therefore it is a linear Cauchy-Riemann type operator.

Let D′ → B the real line bundle whose fiber at (b+, u) is detD(b+,u). Since the
determinant line bundles of homotopic families of Fredholm operators are isomor-
phic, we obtain an isomorphism

(A.2) D ∼= D′ ⊗ p∗ΛmTDmr
by homotoping the operators K(b+,u) to the zero operator via a linear homotopy.
Note that this defines a homotopy of families of Fredholm operators because the
operators K(b+,u) are defined on a finite dimensional space. By the isomorphism
(A.2), the triviality of D is equivalent to the triviality of D′, so from now on we
will concentrate on this second bundle.

Triviality of a rank-one real line bundle can be checked on loops. Thus let
(b+
• , u•) : S1 → B be a loop in B, i.e. θ 7→ (b+

θ , uθ). From a different point of
view we have a map ũ : S1 × D2 → W defined as ũ(θ, z) = uθ(z). We define
the vector bundle T vertSn+mbelt such that T vert

p Sn+mbelt = TpLb+(p), where Lb+(p) de-

notes the Lob containing p. We define a complex vector bundle E → S1 × D2

by E = ũ∗TW ⊕ C and a real vector subbundle F → S1 × ∂D2 of E|S1×∂D2 by

F =
(
ũ|S1×∂D2

)∗
T vertSn+mbelt ⊕R. Here C and R denote the trivial complex and real

line bundle, respectively.
We denote by Eθ the restriction of E to {θ} × D2, by Fθ the restriction of F

to {θ} × D2 and by Γ(Eθ, Fθ) the sections of Eθ which take values in Fθ along
∂D2. Similarly, let Γ(C,R) denote the sections of the trivial line bundle C over
D2 with real values at ∂D2, and D0 the standard Cauchy-Riemann operator act-
ing on Γ(C,R). We consider the family of linear Cauchy-Riemann type operators
D+
θ = D′uθ ⊕D0 acting on Γ(Eθ, Fθ). This family gives rise to a determinant line

bundle D+ → S1. Since detD0 = R, we have D+ ∼= u∗•D′. Therefore studying the
orientability of D+ is equivalent to studying the orientability of the moduli space.

Being spheres, the Lobs are stably parallelizable and the parameter space Dmr
is contractible, so T vertSn+mbelt is stably trivial. An orthonormal trivialization of

T vertSn+mbelt ⊕R can be pulled back to an orthonormal trivialization ν0 of F . We can
also regard ν0 as a unitary trivialization of E|S1×∂D2 , because F is a Lagrangian
subbundle of E|S1×∂D2 . However ν0 does not extend to a unitary trivialization of

E. In fact it does not extend to the meridian disks of S1×D2, because (Eθ, Fθ) has
Maslov index two. We choose a map A : ∂D2 → U(n) such that the trivialization ν
defined as ν(θ, z) = A(z)−1ν0(θ, z) extends to a trivialization of E over any meridian
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disk. (Of course the new trivialization is no longer an orthonormal trivialization of
F .) We extend ν to a trivialization of E on a regular neighborhood of (S1×∂D2)∪
({θ0} × D2) for a fixed θ0 ∈ S1. The complement of this neighborhood in S2 × D2

is a ball. We can extend ν inside this ball because π2(U(n)) = 0.
Then ν defines an isomorphism (E,F ) ∼= (Cn, F ′), where F ′(θ,z) = A(z)Rn. The

operators D+
θ become D+

0 +aθ, where D+
0 is the standard Cauchy-Riemann operator

on Γ(Cn, F ′) and aθ ∈ Ω0,1(TD2, E). Since aθ belongs to a contractible space, the
loop θ 7→ D+

θ can be continuously deformed to a constant loop. Then D′ is a
trivial line bundle. This ends the proof of the orientability of the moduli space

M̃int(Ŵ , SB ; J).

References

[BCS15] J. Bowden, D. Crowley, and A. Stipsicz. “The topology of Stein fillable
manifolds in high dimensions II”. In: Geom. Topol. 19 (2015), 2995–
3030 (electronic). doi: 10.2140/gt.2015.19.2995.

[BEM15] S. Borman, Y. Eliashberg, and E. Murphy. “Existence and classification
of overtwisted contact structures in all dimensions”. In: Acta Math.
215.2 (2015), pp. 281–361. doi: 10.1007/s11511-016-0134-4.

[BG83] E. Bedford and B. Gaveau. “Envelopes of holomorphy of certain 2-
spheres in C2”. In: Amer. J. Math. 105.4 (1983), pp. 975–1009. doi:
10.2307/2374301.

[CE12] K. Cieliebak and Y. Eliashberg. From Stein to Weinstein and back.
Vol. 59. American Mathematical Society Colloquium Publications. Sym-
plectic geometry of affine complex manifolds. American Mathematical
Society, Providence, RI, 2012, pp. xii+364.

[Col97] V. Colin. “Chirurgies d’indice un et isotopies de sphères dans les variétés
de contact tendues”. In: C. R. Acad. Sci. Paris Sér. I Math. 324.6
(1997), pp. 659–663. doi: 10.1016/S0764-4442(97)86985-6.

[Eli90a] Y. Eliashberg. “Filling by holomorphic discs and its applications”. In:
Geometry of low-dimensional manifolds, 2 (Durham, 1989). Vol. 151.
London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ.
Press, 1990, pp. 45–67. doi: 10.1017/CBO9780511629341.006.

[Eli90b] Y. Eliashberg. “Topological characterization of Stein manifolds of di-
mension > 2”. In: Internat. J. Math. 1.1 (1990), pp. 29–46. doi: 10.
1142/S0129167X90000034.

[Fra08] U. Frauenfelder. “Gromov convergence of pseudoholomorphic disks”.
In: J. Fixed Point Theory Appl. 3.2 (2008), pp. 215–271. doi: 10.1007/
s11784-008-0078-1.

[FZ15] U. Frauenfelder and K. Zehmisch. “Gromov compactness for holomor-
phic discs with totally real boundary conditions”. In: Journal of Fixed
Point Theory and Applications (2015), pp. 1–20. doi: 10.1007/s11784-
015-0229-0.

[Gei08] H. Geiges. An introduction to contact topology. Vol. 109. Cambridge
Studies in Advanced Mathematics. Cambridge: Cambridge University
Press, 2008, pp. xvi+440. doi: 10.1017/CBO9780511611438.

[Gro85] M. Gromov. “Pseudo holomorphic curves in symplectic manifolds”. In:
Invent. Math. 82 (1985), pp. 307–347. doi: 10.1007/BF01388806.

http://dx.doi.org/10.2140/gt.2015.19.2995
http://dx.doi.org/10.1007/s11511-016-0134-4
http://dx.doi.org/10.2307/2374301
http://dx.doi.org/10.1016/S0764-4442(97)86985-6
http://dx.doi.org/10.1017/CBO9780511629341.006
http://dx.doi.org/10.1142/S0129167X90000034
http://dx.doi.org/10.1142/S0129167X90000034
http://dx.doi.org/10.1007/s11784-008-0078-1
http://dx.doi.org/10.1007/s11784-008-0078-1
http://dx.doi.org/10.1007/s11784-015-0229-0
http://dx.doi.org/10.1007/s11784-015-0229-0
http://dx.doi.org/10.1017/CBO9780511611438
http://dx.doi.org/10.1007/BF01388806


REFERENCES 41

[GZ16] H. Geiges and K. Zehmisch. “The Weinstein Conjecture for Connected
Sums”. In: Int. Math. Res. Not. IMRN 2016.2 (2016), pp. 325–342.
doi: 10.1093/imrn/rnv124.

[Hae62] A. Haefliger. “Plongements différentiables dans le domaine stable”. In:
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[Nie06] K. Niederkrüger. “The plastikstufe - a generalization of the overtwisted
disk to higher dimensions”. In: Algebr. Geom. Topol. 6 (2006), pp. 2473–
2508. doi: 10.2140/agt.2006.6.2473.
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