TRANSVERSALITY AND SUPER-RIGIDITY FOR MULTIPLY COVERED
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Abstract. ~ We develop new techniques to study regularity questions for moduli spaces of pseu-
doholomorphic curves that are multiply covered. Among the m ain results, we show that un-
branched multiple covers of closed holomorphic curves are gnerically regular, and simple in-
dex O curves in dimensions greater than four are generically super-rigid, implying e.g. that the
Gromov-Witten invariants of Calabi-Yau 3-folds reduce to s ums of local invariants for nite
sets of embedded curves. We also establish partial results a super-rigidity in dimension four
and regularity of branched covers, and brie y discuss the outlook for bifurcation analysis. The
proofs are based on a general strati cation result for modul i spaces of multiple covers, framed
in terms of a representation-theoretic splitting of Cauchy -Riemann operators with symmetries.
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1. Introduction

Motivation. The issue of transversality in Gromov's theory of pseudohamorphic curves [Gro85]
has always been problematic, and has attracted renewed intest in recent years. While many
powerful symplectic invariants such as Gromov-Witten theay, Hamiltonian Floer homology
and symplectic eld theory are based on holomorphic curves,most of them run into severe
technical complications unless multiply covered curves aabe excluded, thus necessitating rather
sophisticated techniques that typically replace the standard nonlinear Cauchy-Riemann equation
by an abstract perturbation, see e.g. [[LT98b| FO99, Rua99, &,[CM07,[HWZ17,[Parl6]. Aside
from the technical challenges that these methods pose, thegre non-ideal for many applications:
for instance abstract perturbations destroy intersection theory in symplectic 4-manifolds, and
in Calabi-Yau 3-folds they obscure information that one might hope to nd in the geometric
relationship between simple curves and their multiple coves, as exempli ed by the Gopakumar-
Vafa formula [GV]|BPO01|PT14/1P18! DIWI.

The motivating principle of this paper is in some sense orthgonal to that of abstract pertur-
bations: our aim will be to extend the transversality theory for the standard pseudoholomorphic
curve equation as far as it can reasonably be pushed, i.e. torgve transversality when it is pos-
sible, and in other cases to isolate the precise phenomena wh make it impossible and explain
what is true instead. Let us start by singling out two situati ons in which this program is not
obviously hopeless.

Example 1.1. Ifu:, ;j d M; J dis a closedJ -holomorphic curve and' : | ;|~OI b 1] 4Is
an unbranched cover of closlécPconnected Riemann surfaces with degrele N, then l.lﬁe virtual

dimensions of the moduli spaces containingit andu ' : ;| M;J 5 also known as the
- b**'d b d

indices of these two curves, are related by -

indbu ‘ d d indbud'
Since indqu ' ,is then nonnegative whenever in%‘éd 0, there is no obvious reason why
u ' could not achieve transversality generically, but 7fraditional methods in the theory of
J-holomorphic curves do not prove this except whenu ' is simply covered, or in certain 4-

dimensional cases[[HLS97], or more recently, when i dd 0 if a su ciently large space of
perturbed almost complex structures is allowed [[GW17].

Example 1.2. Supposeu : b i d bM;J d is a closed simply covered curve with index 0 and

"ok Y ;] yis a branched cover of closed connected Riemann surfaces Wwitlegreed , N
an Zbclﬂ;i d 0 as the algebraic count of branch points. Then combining theRiemann-Hur\)ﬁtz
formula

(1.2) bt d d b d Zbd‘ d

with the standard index formula for closed holomorphic cunes gives the relation

(1.2) indbu ' d d indbud pN 3GZbd' d b " 3GZbd' d

where dimg M 2n. This shows that u ' lives in a space of nonpositive virtual dimension

when dimM 6 and thus cannot achieve transversality if' has branch points, as the space
of holomorphfé branched covers then has dimension2d" , , 0. It is interesting however to
observe thatu must be immersed ifJ is generic, so it has a well-de ned normal bundleN ,
and restricting the linearized Cauchy-Riemann operators &r u andu ' to the normal bt%dle
and its pullback gives operatorsD!\ and DI . with indices related by

: N - N . Co
'ndbDU'd d mdbDUOI p" 1ded d b " 1ded d
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The latter is always nonpositive, soD!\ . can be injective, and this condition has a geometric
meaning: it implies that u ' can never be the limit of a sequence of somewhere injective @s
(see Proposition[B.1). In fact, the only other curves nearu ' are other branched covers of the
formu ' rfor' rnear', and the cokernels of the operatord )\ . de ne an obstruction bundle
over the space of branched covers which can be used to compu@&romov-Witten invariants.
This phenomenon is known assuper-rigidity, see De nition 2.3,

Considerable interest in super-rigidity has been motivatel by the study of Gromov-Witten
invariants in Calabi-Yau 3-folds, where all moduli spaces bholomorphic curves without marked
points have virtual dimension zero. In this case it can be inerpreted as a Morse-Bott condition
for families of \degenerate" (i.e. multiply covered) curves, so that the Gromov-Witten counts of
these curves are expressed by integrating Euler classes dfstruction bundles over nitely many
such families|these integrals de ne the so-called \multip le cover contributions,” also known as
the local Gromov-Witten invariants of the underlying embedded curves. A substantial body
of results has emerged during the past two decades on local @Gmov-Witten invariants and
their consequences for Calabi-Yau 3-folds in the presencd the super-rigidity hypothesis, using
both algebro-geometric [Pan99, BKLO1,BPO1,BP05,BP0B] ad symplectic methods [LZ07,Zin11,
DWa]. In spite of these developments, a general result estdigshing the super-rigidity hypothesis
itself has thus far been unavailable. In the algebraic categry it is known to hold in some
cases and not in others[[BP06], and while it was conjecturedni [BPQO1] to hold generically in
symplectic manifolds, proofs have been found only in very sgcial settings (e.g.[[LPOT,LP12] for
certain Kahler surfaces), and a strategy was even outlinedn [LZ07] to disprove the conjecture
for higher genus curves.

Results. The rst of the main results stated in éEI:I] below settles the super-rigidity question for
symplectic manifolds of dimension at least six” by Theoreni_A super-rigidity does hold in this

setting for all simple closedJ-holomorphic curves of index 0 ifJ is generic, and it also holds in
dimension four for curves of low genus. Complementary to ths, we will see in Theoren B that
transversality holds for the unbranched multiple covers inExample[1.1, and we will also be able
to prove some transversality results for branched covers (fieorem[Q). The actual main result
of this paper is Theorem[D, which implies the aforementionedresults by stratifying the space

of all multiply covered J-holomorphic curves into smooth submanifolds, with precig formulas

for their dimensions. The dimensions are determined by a geal picture of Cauchy-Riemann

type operators with symmetries described in , Which has its origins in Taubes's work on
the Gromov invariant of symplectic 4-manifolds [Tau96&]. As in Taubes's paper, the approach
adopted here also lends itself to the study of bifurcations ad wall crossing for multiple covers,
on which we will make some brief remarks i but save the detailed examination for future
work.

The diculty. As with any transversality result, the proof of our main theorem boils down to
establishing that a certain bounded linear operator is surgctive. The type of operator that
arises has appeared before, e.g. in the context of wall-creimg arguments [Tau964al, IP18] (see
also [Eft16]), and it has previously been dealt with by variaus ad hoc methods that su ce for
certain speci c applications, but would not be general enogh for the problems studied here.
The solution to this di culty is probably the most technical ly novel element in the present
paper: it is reduced to a local property of Cauchy-Riemann type operators known asPetri's
condition, which involves a \decoupling" between the pointwise linea dependence relations for
local solutions of a linear Cauchy-Riemann type equation ad of its formal adjoint equation.
Section[5 of this paper proves that Petri's condition holds @nerically for Cauchy-Riemann type
operators, and this should be regarded as the main step that mkes all of our other results
possible.
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Outlook. While the results in this paper focus speci cally on closed lmlomorphic curves, there

is no obvious obstruction to applying the same techniques tcstudy punctured curves in sym-

plectic cobordisms. As with [Tau964a] and the Gromov invariant, this can be expected to have
important applications to the foundations of Embedded Contact Homology [Hutl4], e.g. for

de ning cobordism maps and proving invariance without reliance on Seiberg-Witten theory. It

also raises the intriguing possibility of localizing (in the sense of Corollaryi_1l6 below) and/or
proving integrality results for invariants in symplectic eld theory [EGHOQ]. A few special cases
of super-rigidity in the punctured case have previously ber observed in [Wen10, Fab1B]; those
examples were restricted to dimension four, but the resultsof the present article suggest that

super-rigidity is likely to be a considerably more general nenomenon.

Since the rst version of this paper appeared, A. Doan and T. Walpuski have initiated a pro-
gram extending the equivariant transversality methods introduced here to more general classes
of elliptic problems; see [[DWb]. More recently, Bai and Swarmathan [BS] have also carried
out the rst step in the bifurcation analysis proposed in , and applied it toward de ning an
extension of Taubes's Gromov invariant to Calabi-Yau 3=fols.

1.1. Super-rigidity and transversality theorems. To state the main results, assumeOM; ! d
is a symplectic manifold with

dmM 2n * 4;
and J 4 is a smooth almost complex structure that iscompatible with ! , meaning that! , ;J 4
de nes a Riemannian metric onM . We x also an open subsetU € M with compact closure,
and consider the space

. ' . .

J bM,. ;U Iy d
of smooth ! -compatible almost complex structures onM that match J outside of U, with its
natural Cg -topology.

Remark 1.3. The existence of a symplectic form orM is not required for any of the arguments
in this paper, but we are including it in the setup since it is important in applications|all
results could alternatively be stated and proved for the lager space ofl -tame almost complex
structures, or for arbitrary almost complex structures on a smooth (not necessarily symplectic)
manifold.

Following the usual convention among symplectic topologits, we will say that a subset of a
topological space is aBaire subset if it is comeager, i.e. it is a countable intersection of open
and dense subsets. The intersection of a countable sequenct Baire subsets is again a Baire
subset, and by the Baire category theorem, any Baire subsetfa complete metric space is dense.
We will say that a given property is true generically (e.g. for genericJ) whenever there exists a
Baire subset of the space of all admissible data (e.g. id bM; U dy d) such that the property
holds for all choices of data in that subset.

GivenJ  J IOM;! ; U;Jx 4 a closed connected Riemann surfacs and a J-holomorphic
curve u T g y bM;J d the index of u is the integer

where we abbrevuateclbud X bTM J d’L ox Yt U H2 M q A closed and connected
J-holomorphic curve u-: bt ; |~d bM J dIS sald to be a @- foldlf multlple cover ofuifa u '
for some holomorphic map' : of degreed . 2, and u is called simple if it is

nonconstant and is not a multlp e cov of any other curve.

The notion of super-rigidity was outlined already in Example[1.2; see De nition[Z3 for a more
precise formulation. We will also use the termFredholm regular to refer to the standard notion
of transversality for moduli spaces of unparametrized] -holomorphic curves, cf. Proposition[2.2
below. In each of the following theorems M I is a symplectic manifold of dimension 2 with
a compatible almost complex structured 4 , andcb M is an open subset with compact closure.
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Theorem A (super-rigidity) . If dimM _ 6, then there exists a Baire subset] ™9 of the space
J M;! ; U;Jy ,such that for all J = J ™9, every simple J-holomorphic curve of index0 that
intersects U is super-rigid. Moreové?, this result also holds whendim M 4 for all simple
index O curves of genus) or 1.

Super-rigidity has a number of well-known consequences, vith are especially important in
the case dimM 6. These are based partly on the observation that the space dll covers of
super-rigid curves is an open and closed subset of the ambiemoduli space of J-holomorphic
curves, see Propositio B.IL in AppendiX_B. Applying Gromov ®mpactness and the standard
implicit function theorem for simple curves, plus the fact that simple J-holomorphic curves of
index 0 are generically embedded and disjoint from each othrén dimensions greater than four,
this implies:

Corollary 1.4. For generic compatibleJ in a closed symplectic6-manifold bM;! there exist
for each integerg , 0 and real numberE | 0at most nitely many distinct simple J-?ﬁolomorphic
curves u of genu’§g in homology classes u A szM with Cled 0 and ! bAd E.
Moreover, these curves are embedded and pairwisg’ diSJoinEI |

Remark 1.5. Doan and Walpuski [DWa] have recently shown that if one xes the classA
Ho M ,in Corollary [.4] then it is not actually necessary to x the genusg, i.e. for genericJ;
there exist at most nitely-many simple curves of any genushomologous toA. Their proof uses
technigues from geometric measure theory.

Using results of Zinger [Zin11] (see also Lee-Parker [LP1R]Theorem[A] also implies that for
generic J, the space of branched covers of an embedded index O curve aifsna well-de ned
obstruction bundle which can be used to compute Gromov-Witen invariants. In particular,
if dim M 6andu: ;j4,, ,M;J 4is an embedded]-holomorphic curve of genusg with
C1,U 0;"one can apply [ZIng1, Theorem 1.2] with no marked point costraints to study the
space ofJ -holomorphic curves with image in U, g SO that Theorem[Al establishes hypothesis (b)
in Zinger's result, implying that the cokernels of%e normal operators D). for ' varying in the

spaceM hbd :j ;of degreed nodal holomorphic curves inb o dwith arithmetic genus h form
a well-de ned and oriented orbibundle
Ob* Y Mngd 2lg

with rank r Ob" p " 1d@h 2 d2 ”ng Note that by the Riemann-Hurwitz formula,
the term 2h 2 d,2 2g,is simply lFhe algebraic count of branch pointsZ,d' | for any map
" in the non-nodal stratum of M ,,d _j The obstruction bundle is interesting mainly in
the 6-dimensional case, since 3 means that rankzy Ob" matches the real virtual dimension
of M hde ]| d and the count of solutions to an abstract perturbation of the holomorphic
curve equafion can then be computed by integrating the Eulerclasse Ob" | over the virtual

fundamental cycle ofM dL sl din the sense of([LT984, LT98l, FO99]. JPhis groduces a formula
for the local Gromov-Witten invariants of the curve u,

ebOb“d bQ;

N h »
dpH _
b'd Moangd ol ge"
de ned for every d ., N and h | g. These numbers depend only on the germ of the almost
complex manifold I{ﬂ;\] qat uy Note that ngbud 1, with the sign depending on the
canonically orienteg determinant ﬂne of DN
Combining the obstruction bundle discussion with Corollary [ 4, let
NAM:! 4 LQ
denote the 0-point Gromov-Witten invariant of bM;! dfor genusg curves in a classA szbM d

with Cled 0.

1one must keep in mind however that the non-nodal stratum of M p,,d may be empty even if M ,, d
. . - b ad b ad
itself is not, e.g. this is the case wheneverd landh,6 g.
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Corollary 1.6 (via [Zin11l, Theorem 1.2]) Suppose,M;! d is a closed symplectic6-manifold,
0 is an integer and A sz d satis es Cled l?) Then for generic ! -compatible almost

co7r§nplex structuresJ,
N

NAM:! 4 | 1N§‘ibuidt

where the sum ranges over the (by Corollary 1]4) nite set of pawise disjoint embeddedJ-
holomorphic curvesug;:::;un that have genera at mostg and homology classes satisfying
d.LuI2 A for somed;:::;dy b

In particular in the Calabi-Yau case, with cleM I d 0, this corollary localizes all of the
Gromov-Witten invariants of
We next state two results on transversality for multiple covers.

Theorem B (transversality, unbranched). There exists a Baire subset] g J M;! ;U;d X
such that for all J . J "9, for every simple J-holomorphic curveu : j) mtersectlng
U and every unbranched holomorphic cover : bt ;|~d b o d of cIosed emann surfaces the
J-holomorphic curveu ' : bt ;|~d " bM;J d is Fredholm regular.

Remark 1.7. The case indqu 0 of Theorem[B has been proved previously in([GW17],
though with stronger assumptions: for technical reasons,tiwas necessary in that paper to

assume thatu |s contained entirely in U, and in dimension four also to allow perturbations

of J that are P -tame but not necessarily! -compatible. The present paper uses a completely
di erent approach to the transversality problem and is thus able to remove these restrictions. As
explained in [GW17], the theorem implies an integrality result for the Gromov-Witten invariants

in dimension four.

It is generally harder to achieve transversality for coversu ' with branch points, e.g. the
index relation (.Z2) shows that ind u ' ,can easily become negative in dimensions greater than
six. More seriously, ifu is Fredholm regular, then one can always nd a smooth family & other
multiple covers nearu ' obtained by varying both u and ' in their respective moduli spaces;
since the latter lives in a space of real dimensionzb d the condition

mdbu ' d |ndb d ZZbd d
is evidently necessary in order fou ' to be Fredholm regular. Observe thatif* hasr | O critical
values, then this condition is satis ed whenever in u indeed, each crltﬁal value is

the image of at mostd 1 branch points (counted algéaralcally% so we haveZ bd do bd 1Or
and (L.2) implies

ind,u ' ind, u

g d d 1,indwu

Md b9 Lgnddg b0 3E ¢
£ Mdy b I8 g b 3f g Mg 2 g
The next result states that the condition ind bud 7< bn 10r is also, in some sense, Su cient.

Theorem C (transversality, branched). There exists a Baire subset] 9 = J M;! ; U;J

such that the following holds for allJ = J 9. Supposeu : . ;j M; IS a simple J-
. ; ) . b''dpyb d

holomorphic curve intersectingU and satisfying -

mdb d*b 10r

for some integerr 0, and ' : ;] 4 is a holomorphic branched cover of closed
connected Rremannﬁsurfaces withr dIStIn(%I critical' values. Then there exists aJ-holomorphic
curve and a holomorphic branched cover

" piFayp g
', ] and }-respectively, andu

u oy o dubM;‘]d and
such thatu, ' ,j and | are arbitrarily Cg -close tou,
bl ;|~OI " pM; J dqis Fredholm regular.
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Note that whenever ind u ' ,is alsostrictly greater than ind Uy 2Z . d' ¢ One can combine
this result with the implicinuncgon theorem to deduce the existence oPsimpIeJ-hoIomorphic
curves that are small perturbations of multiple covers ofu.

The proofs of these theorems are inspired by the work of Tautse[Tau964], whose de nition of
the Gromov invariant for symplectic 4-manifolds required aspecial case of Theorerh B along with

related bifurcation-theoretic results (cf. ) for multiply covered holomorphic tori. Roughly
speaking, the idea is to study the local structure of spacesfahe form
(1.4) M kicg: & u ' dimkerDy  kand dimcokerDy ol ;

wherek;c , 0 are xed integers, u varies in the moduli space of simpleJ-holomorphic curves
and' variés in the moduli space of holomorphic branched covers. deally, one would like to
show that these spaces are smooth manifolds for generi;, and to compute their codimensions
in the space of pairsbu;' This turns Theorems[A and[Bl into \dimension counting" probl ems,
as whenever one can show that the codimension &l k;c,is larger than the dimension of the
. . b \ N N
ambient space for suitable values ok and ¢, one may conclude that either kerD ; or cokerD ;
must be trivial. This discussion is oversimpli ed in at least three respects: rst, we will not
be able to nd any nice structure on M k;cif ' varies in the space ofall branched covers,
but it will help to con ne it to certain substrata of that spac e in which all branch points have
prescribed branching orders. For similar reasons, it will &0 help to con ne u to substrata
in which its number of critical points and their orders are constrained, and this is easily done.
More seriously, the spaceM Kk; c ,as sketched above can have di erent codimensions on di erent
components, as its codimension depends intricately on symaetry information which is ignored
in (L.4). We will therefore need to de ne a more elaborate vesion of M  k; c ,which depends on
a splitting of the operator D into summands corresponding to irreducible representatios of
the (generalized) symmetry group of the cover. This idea is brrowed directly from [Tau96a],
though the details are somewhat more involved since, in comést to the case of unbranched
covers of tori, we cannot assume that all covers are regularrahat their symmetry groups are
abelian. We will see that once the formalism is developed inwscient generality, it \breaks the
symmetry” of DY enough to make dimension counting arguments much more e ecte.

Remark 1.8. A slightly di erent variation on the ideas in [Tau96a]l has been implemented by
Eftekhary to prove a partial result toward super-rigidity i n dimension six, see [Eft15].

Here is an outline of the rest of the paper.

After establishing some standard de nitions and notation, [2 will further elucidate the ideas
sketched above and formulate a precise version of the stateant that M k;c, from (L 4) is a
smooth submanifold, Theorem[D. This will then be used as a blek box to prove Theorems[A,

Bl and [C in , followed in by a brief informal discussion of bifurcation theory. The
remainder of“the paper is then devoted to the proof of TheoreniDl In [3, we explain the

splitting construction for Cauchy-Riemann operators with symmetries and prove some lemmas
based on a mixture of elliptic regularity for punctured Cauchy-Riemann operators, topology of
covering spaces, and representation theory of nite groups The summands in the splitting are
also Cauchy-Riemann operators, whose indices are a somewhdelicate computation, carried
out in éZI] In [H we prove a local genericity result for Cauchy-Riemann opextors that takes on
the rol€ usualty played by unique continuation in applications of the Sard-Smale theorem, and
the latter will be used in 6 to complete the proof of Theorem D. Finally, I7 deals with super-
rigidity in the four-dimensional case, which is something & an anomaly and requires di erent
technigues based on intersection theory. The appendices pvide various results that may be
considered \standard" and vyet, in this author's experience seem to cause su cient confusion
among experts to warrant some discussion; their proofs redre a few ideas that will in any case
be useful elsewhere in the paper.

1.2. Apologies and acknowledgements. The super-rigidity problem has a slightly troubled
history, and as the author of a new paper on the subject, it wold behoove me at this point
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to apologize for having caused some of that trouble: | am awar of three previous attempts to
prove some version of Theoreni’A which were later either withdawn or revised to prove much
weaker statements, and | was an author of one of them (the origal version of [GW17]). To
make matters worse, earlier versions of the present paper b contained a major error inéﬂ on
which the main results were crucially dependent, causing tk paper to be withdrawn for séveral
months while the o ending section underwent an extensive rewite. (For more on the history of
failed super-rigidity proofs, see Appendix(D.) With all thi s in mind, | would sympathize with
any reader's inclination to greet this paper with a dose of skpticism, though it seems worth
pointing out that rather than being an attempt to rescue the (probably unrescuable) proof
originally attempted in [GW17], the approach taken here hasalmost nothing in common with
the previous one, other than the considerable debt that bothof them owe to the ideas of Taubes
[Tau96hlTau96e].

I would like to thank Dan Cristofaro-Gardiner, Chris Gerig, Michael Hutchings, Eleny lonel,
Mihai Munteanu, Tom Parker, Cli Taubes and Aleksey Zinger f or conversations and correspon-
dence which helped to improve my understanding of the problms studied in this paper. Special
thanks are due to Aleksander Doan and Thomas Walpuski for haing uncovered a few minor
errors and one major error in the original version; my discusions with them were invaluable in
the e ort toward xing those errors. Finally, many thanks to t he anonymous referees for their
impressively careful reading of earlier drafts, which hasriduced measurable improvements in
the exposition.

2. The main idea

2.1. Some denitions.  Let us nhow x some notation and de nitions that will be essential in
the rest of the paper.

Given integersg;m , 0 and a classA szM the moduli space of unparametrized
J-holomorphic curves ™ M ¢:m A;J , can bB de ned as the set of equivalence classes of tuples
b i ;uywhere,. ;j yis a closed connected Riemann surface of gengs is an ordered
set ofm dpllstinct points (the marked points ), and u: M; J OIis aJ—%oIomorphic map

g
satisfying u_: u A, with equivalence de ned By d; > b;u T 0t su
: L2 . — L2 ’b.. d KJ/I o .b.d d
for dieomorphisms™ — 7,, . The Gromov compacti cation of g;mIOA,J qis the space
M g;mbA;J of (equivalencgI classes of$table nodal curves bS;j; ; ;u, where nowS may

be disconnected, and the original data are augmented by an wrdered set of distinct points in
SS, arranged into unordered pairs

such that u, g u,z ,foreachi 1;:::;r. We call the pairslﬁ;g nodes, and each individual

iorz Sanodal point . The curvesinM ¢m A;J  are require Po havearithmetic genus g,
which njf’eans that the surface obtained fromS by performing connected sums at all matched pairs
of nodal points is a closed connected surface of gengs The stability condition requires that any
component of S on which u is constant should have negative Euler characteristic. Wih
this condition, gmA;J 4 can be given a natural topology as a metrizable Hausdor spae,
and it is compact wheneverJ is tamed by a symplectic form. A de nition of the topology may
be found e.g. in [BEH _03]; for convergent sequences iM ¢, A;J , it amounts to the notion of
Cg -convergence folj and u after a choice of parametrization for which all domains and narked
point sets are identi ed. Curves . S;j; ; Uy M g:mA;J ywith can equivalently be
regarded as elements oM g;mbA;t%l d and are %th called smooth cur\%s to distinguish them
from nodal curves.

Remark 2.1. In this paper, the word \curve" always means \smooth curve" (i.e. without nodes)
unless the word \nodal" is explicitly included. Similarly, all dimensions and Fredholm indices in
this paper arereal (not complex) unless otherwise speci ed. This usage di ers amewhat from
the algebraic geometry literature.
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When there is no danger of confusion, we shall sometimes abeigotation by writing equiva-
Ience classe K ;u M 9 mbA J,or \S:j; M g mbA J ,via the abbreviations
P d o d
M g mbA oru 7 J respectlvely, and We will refer to the restriction of a nodal
; 'fb any connected component of its domainS as asmooth component
of u. \/\% shall also aebbrewate

MgAJdyt MgofAidg and MgAJd o MgoAd g
Recall that M gbA J ;hasvirtual dimension  equal to the index of any curveu i J qas
written in (1.3}, wh|Ie the virtual dimension of the moduli s pace with marked ptlﬁnts is

vir-dim M g;mbA;J d vir-dim M gbA;J d 2m:

The muItipIy covered curves form a distinguished closed suget of M ¢ A;J Given any
:J , with domain ;] » and integersh . 0,d ., 1, de ne the space of stablenodal
]% b ''d & X
d-rold covers of u,

Midiug Sk U g MngdAdg (S5 go Mg 5l
so in particular, each smooth componentur-of & M ,,d;u, belongs to a spaceM o di;u of
smooth branched coversu ' ; of some degreee; ,~ 0, such that. ; d; d. Note that M hi ddu
may in general be strictly larger than the closureﬁ)fM hd;uin the Gromov topology|to C|te
one well-known example, the spacéM 1, S? of smooth degree 1 holomorphic tori |an
is empty, but M 1, S?_i ,contains a nodal curve with a constant component of genus 1.

Recall next that every J-holomorphic curve u : b i d M;J | gives rise to alinearized

) nb d

Cauchy-Riemann operator <

Dy: TMdM 0?1b U TM

i.e. the linearization at u of the nonlinear Cauchy-Riemann operator Tu J Tu

01 :u TM , whose zero-set is the space of all-holomorphic ma %lwrth domain ThE’
operator D, takes vector elds along u to ,0; 1d-forms valued in the complex vector %undle
pH T™™;J d and can be written explicitly as

D, r Jbudr i b’ ‘]d Tu |
for any choice of symmetric connectionr (cf. [Wena, .2.4]). Recall moreover that wheneveru

iS nonconstant, its critical points are isolated and ong cannd a smooth splitting of complex
vector bundles

(2.1) uTM T, Ny

such that T, matches the image ofdu at regular points; see e.g.[[Wen10,3.3] for details. We
shall refer to N, as the generalized normal bundle  of u. In many cases of interest in this
paper, u will be a cover of an immersed] -holomorphic curvev, soN, is then simply the pullback
of the normal bundle of v via the cover. We de ne the normal Cauchy-Riemann operator
at u as the restriction of D, to sections ofN, composed with the projection y :u TM Ny
along Ty, hence v
DDI N Dul N“d- bNud|/| 0,lb ;Nud'

In general, a neighborhood of any element irtM 4., A;J  can be identi ed with the zero-set
of a smooth Fredholm section of a Banach space bundle, modul@ nite group action if there
are nontrivial automorphisms. We say that u ;J is Fredholm regular  whenever it is
a transverse intersection of this section with tt'?e zero-sdion. Note that whenever this condition
holds, it automatically also holds after adding any nite collection of marked points and viewing
u as an element ofM ¢:m A;J . The implicit function theorem gives the open set of regular
curves in M g:m A;J d the structure of a smooth orbifold with dimension equal to its virtual
dimension, and Tocal isotropy groups determined by the autmorphism groups of the curves|in
particular, the set of regular simple curves forms a manifal, though orbifold singularities can
appear when multiple covers are included. The following covenient repackaging of the regularity
condition comes from [Wen10, Corollary 3.13].
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Proposition 2.2. A closed and connected] -holomorphic curveu : . ;j d bM; J d is Fredholm

regular if and only if its normal operator DY : WKP N, wk 1P Homc i Ny 4 IS surjective
u b ™dn b b dd

for some (and therefore all) k b N and p b bl; gd <

De nition 2.3. A closed, connected, simple] -holomorphic curve u : b o dy
super-rigid if it satis es the following: “
Q) indbud 0;
(2) u: M is an immersion;
(3) For allflclosed connected Riemann sun‘ace%L ;|~d and holomorphic maps' : bt ;|~d
i "k ;|~d Y bM;J d admits no nontrivi
0. *~

bM; J d is called

;] 4 of positive degree, the curveu~ u
solutions to the normal linearized equationD |}

Proposition B.1lin Appendix Blproves that if u is a super-rigid curve, then the only possible
sequences that converge to a nodal branched cover af consist of other covers ofu. In the
language of the present section, this means:

Corollary 2.4  (of Proposition B.I). Suppose,M;J ,is an almost complex manifold andu
M gbA;J d is a super-rigid curve in M. Then for every h * Oandd * 1L M hbd;ud is an ope
and closed subset oM hbdA;J d

2.2. A strati cation theorem. We now explain in precise terms the strati cation result that
underlies the main theorems ofé?l:l].

2.2.1. Splitting the linearization at a doubly covered curve.Supposev : b g bM;J d is a
simple J-holomorphic curve with genusg | 0,and’ : b T b | dis aholomo}%hlc branched
cover with degreed | 1, giving rise to th’g multiply covereéj ghrve u v ' b T I M; J
of genush | 0. We §ssume as always that and rare both closed and connected, %8 for tHe
sake of intﬁition, we begin in this subsection with the spedil cased 2. The automorphism
group

Aut Uy Auty g ! b I;deMb 11y o)
then contains a unique nontrivial element , and the space of sections bNud has a natural
splitting

PNug  BNug OblN“d
where Ny.y: Ny . Splitting Ny Homc, T 3 Ny 4in the
same Wayl/? onde o[btaihs g sp itting of the normal Cauchy—l—ie)lemandopergtor b dd
(2.2) D) D) Dy
into two operators D[} Nug gHome T £ Nuyy It is not hard to see that D).

is in some sense equivalent t® !, as its domain and target both consist of sections that are
pullbacks via' of sections over . The operators D} and D[} have unique extensions over
the spaces of symmetric/antisymmetric sections of SoboleelassW kP for k bN and p b bl;

giving bounded linear operators 8d

DN :W"?prudMW"?promeT I

and the standard transversality theory for simple curves then implies that D{}‘; can be assumed
surjective (and also injective if v is immersed with index 0) if J is chosen generically. We will
see that the problem of proving surjectivity or injectivity for D becomes more tractable when
viewed as two independent problems for the operator®[} and D}

In order to generalize this discussion beyond the degree 2 g@, it helps to adopt an alternative
perspective based on representation theory. Let denote a nite subset that contains all
critical values of ' , and set €

(2.3) 10 1b d 3 - ol T
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so that 'S @ smooth covering map with G : Autb d Z, as its group of deck
transformatlélﬂs De ne
. G 82 . g

as the isomorphism to the symmetric group on 1 2 We can then identify the covering map
a7 éNIth

M ]_ l. 2 V\I G . . I 1 Z .

' T UaLbZ’debUbd'

where G acts on a7 by deck transformations and on _1;2 via . Now if ,e1;e ,denotes the
standard basis ofR?, then also gives rise to a real permutation representation

:GI(I GLbZ;Rd; bgae, egbid;

and a corresponding real vector bundlev Y ade ned as the Zj,-quotient of a trivial bundle
over gr, -

Vi g R NG
The space of sections of the twisted normal bundle

N, : vaRV n o
then has a natural identi cation with the space of sections d Ny " Ny: indeed, we can
represent sections ofN, as Z,-equivariant sections ° ,2 1 'Leof" Ny R R2, which
satisfy the relation ' bd, thus a corresponding sectionb b b N"d can be de ned
under the identi cation of aIWIth ba' | 1; an{G by

bbufiided  HEd
Under this identi cation, D becomes a Cauchy-Riemann type operator on the twisted bun-
dle Ny, de ned locally by D) boSd b DN dp s whenevers is a local section ofV that has
a constant lift to the trivial bundle a7 R2,
The above construction appears cumbersome at rst glance, bt it has the following advantage:
the decomposition bN“d bN“d now corresponds to a splitting of the twisted
bundle Ny into subbundﬁlals ‘

N, N, ) N, :bNVpRV d bNVpRV q
whereV a7 W G are de ned in terms of the natural spliting of RZ W W into
irreducible G-invariant su spaces ‘
1 2.
w R 1 ¢ R<:

This is the simplest nontrivial example of what turns out to b e a general principle: splittings of
Cauchy-Riemann operators for multiply covered curves arie from decompositions of permutation
representations into irreducible summands. To turn into a splitting of Cauchy-
Riemann operators, we still have a small analytical issue tacdope with since the bundlesN,

are de ned over aand do not both extend over the punctures. In place of (22), we therefore

obtain a splitting
Qi Bu  Bu o

where the dots over the operators indicate that we are restiting them to the punctured do-
main a1 We will see in ,%3:2 how to de ne suitable weighted Sobolev spaces oveéand a7 SO
that the punctured operators have the same indices, kerneland cokernels as their unpunctured
counterparts.

Remark 2.5. A slightly di erent approach to de ning twisted Cauchy-Riem ann operators is
taken by Doan and Walpuski [DWb], who express it in the elegahlanguage of local systems.
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2.2.2. The codimension of a multiply covered curve.We return now to the general case of a closed
f:on_nectedJ_-hoIomorphic c'urveu _ v ' b 'T;j TdidoPM;J of genush, wherev : b | H(-%bM .‘]d
is simple with genusg and ' : b Ty ub | dha egre bN' We continue using t otation
a7 or the d-fold covering map obtained by deleting some nite subsets hat include the
crit@él values and their preimages. Recall that' is called regular if IAut ‘ | deg.! d.
This condition was secretly important in the above discusson of thed 2 case, as the de nition
of the twisted bundle N, required identifying Eyvith the quotient of a7 by deck transformations.
In general, Aut,'  can have order smaller thand and may even be ftrivial, but we can use some

notions from eléementary covering space theory to get aroundhis.

De nition 2.6.  The generalized automorphism group of a d-fold branched cover' : 7
is the quotient G : 1h3d H, whereH is the normal cord of ' b 1pd'dd and aand grare
de ned by (E.3) with as %e et of critical values of ' .

Remark 2.7. Like fundamental groups, the generalized automorphism grop G of ' : 7
depends on choices of base points i%and % but its isomorphism class is independent of|4|he5e
choices. We will see below thatG is a nite group of order at most d! that is isomorphic to
Autb' if and only if ' T is regular, and more generally, G has a natural identi cation
with the automorphism grou%I of a certain regular branched ceer of that is determined by '
and a choice of base points, and factors through .

De nition 2.8. A regular presentation  of the holomorphic d-fold branched cover' : b T au
b ;jdis atupleb PN CHE IS dconsisting of: ©
A nite subset containing the critical values of ' and de ning the punctured
surfaces aand a7 \ﬁa 23);
A connected surfaceas and regular covering map : S | Ey\/ith nite automorphism
group G: Aut d -
A set | with d elements;
A transitive action of G on |, de ned via a homomorphism : G " Sbl dfrom G to the
symmetric group on|; <
A di eomorphism f : T 4 b3 Id , where G acts on 3 by deck transformations
and onl via , suchthat® ~f ! takes the form

N . o :
s |G n o W dz pubzd
We say that b ' 3% Gl f d is minimal if is the set of critical values of ' and
.G " Sy y4's injective. Two regular presentations)) ; g5; j;Gj; j;lj;fj of " : gy for
j 1,2 areisomorphic if 1 > and there exists a di eomorphism : B, o a bijection
g U I», and a group isomorphism : G; Y G> such that: -

Q" 2 1 and for all g bGl, g - g
(2) Forall g, Gy, 1 2 ;
@3) f, f, ! 3kes the od % Pdd

a I " G1 " 12 " G2 1 #ilge b bfd Bddz

Most of the regular presentations we encounter in this papewill be minimal, though an impor-
tant example that is not (in particular where may contain mo re than just the critical values)
will arise in Example B3. Standard results about Riemann stfaces (seel3.1) imply that the
regular cover : 3 én any regular presentation can be extended to a hGlomorphic branched
cover of closed conhected Riemann surfac%s siis | d such that 3 S 1 Ob-

serve that if i b | and G;j € G denotes the stabﬂii@rbofi under the G-action 'de ned by

2Recall that the normal core of a subgroup H in a group is the largest normal subgroup of that is
contained in H.
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then "

E)S{Gi Y o |Gz, bU & dz
is a di eomorphism identifying ' f ! with the natural projection 55¢Ci 85 G 8Thus one
can associate to any regular presentation a (non-unique) forization of = : E;)y covering
maps gs Which extends over the punctures to a factorization of b s, Jsd b Jd

by holomlé'rpﬁ élgranched covers

b S5d b “Tdmb g

We will also show in Lemmal3.2 that' : always admits a unique isomorphism class of
minimal regular presentatlonsb PN G; ,I|4 d for which G is isomorphic to the generalized
automorphism group of' , and in this case : 55 is isomorphic to ' : ' 1 awhenever
the latter happens to be already regular (cf Exampl ). w

Given a choice of regular presentation 55 G i f the discussion of the degree 2
case can be generalized as follows. The ransmve action : S I induces a permutation

representation : G AutRbR on the real vector spaceR! wﬂK| baS|s labeled by the elements

of |, and a twisted bundle N, N, pR \Y " 8where

—

. | .
VvV o b 85 R d{G’
with a natural isomorphism

Bvd b Mad BV ad
that identies D! with a Cauchy-Riemann operator

Bi  Pvay paiNvd
de ned on suitable exponentially weighted Sobolev spacesfsections ofNy . (The appropriate
functional- analytic setting for this operator will be speci ed precisely in .) Any represen-
tation G = Autg Wd on a real nite-dimensional vector spaceW sinvilarly gives rise to a
twisted bundll/I N, Ny _.rV with V S {G and a twisted Cauchy-Riemann
operator P a0 b 9 d

Qi Pvay boNvd
which (up to conjugacy) depends only on I%\'fI and the isomorphism classes of the regular
presentation and the representation . Now any representation-theoretic decompaosition
m1 p ™ induces a splitting of the punctured Cauchy-Riemann operabr

(2.4) D R pRuig T pRu g
with the following useful property:

Lemma 2.9. The normal Cauchy-Riemann operator D!\ for a multiple cover is surjective or
injective if and only if the same holds for all of the summandiél'}'; j in (2.4) with m; | 0.

Remark 2.10. We will see below that the splitting (2.4) for a multiply covered curveu v '
can be arranged to vary smoothly asv and ' move about in their respective (suitably con-
strained) moduli spaces, so the indices of the summand%u _are constant under such vari-
ations. This immediately gives rise to \no-go" results abou transversallty and super-rigidity:
the former is impossible on components of the moduli space vene the I%u; J, do not all have
nonnegative index, and the latter requires them instead to lave nonpositive index. Conversely,
whenever either of these index conditions holds for all suminds given by irreducible represen-
tations, Theorem- below will imply that the desired transversality or super-rigidity result holds
for all pairs lying in some open and dense subset. This is the main idea betd Theo-
rem[C, and |tb5|mqarly can be used to determine the feasibiliy of obstruction bundle arguments
in general situations.
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It should be emphasized that the representations ofs in this discussion arereal, not complex.
We will need to use the standard fact (seel3.3) that for any nite group G, real irreducible
representations : G Autr Wd come it three types, characterized via the algebra&K :
EndGdeof G-equivarlént real-lillnear maps W Y W:

Real type : K R; B
Complex type : K C;
Quaternionic type : K H.

The endomorphism algebrakK EndGdeendows the domain and target of the operaton%[}‘;

with K-module structures, for which I%ﬂ is K-lineard
The purpose of the following de nition will become clear in the statement of Theorem[D
below; it is independent of choices due to the uniqueness ofinimal regular presentations.

De nition 2.11.  The codimension codimbud 0 of the closed, connectedd-fold coveredJ-
holomorphic curveu v ' is a nonnegative mte@er de ned as follows. Choose a minimakgular
presentation  ; 3 Gl f OIof‘ and a complete list of pairwise non-isomorphic irreducible
real representations_ ; : G Y AUtr Wiy 1.:;p Of G, whose equivariant endomorphism algebras
we denote by -
Ki : EndGbWide;C;Hn; i Lnp:

Then

P

codimbud: tikic;

i1
wheret; : dimg K; bIl; 2;4n, ki : dimg, kerl%ﬂ; i andg : dimg, cokerl%ﬂ; i fori  1;:::5p.
Example 2.12. Whend 1, uis a simple curve and its generalized automorphism groufs is
trivial, so there is only the trivial representation : G, Autgr,R to consider in De nition Z1T]
with Endg Ry RandRQi  DY. Soin this case, Todimu, dimkerD{'  dim cokerD
can be interpreted as a measurement of the failure of transwsality at u, and the standar
transversality results imply that all simple curves have calimension 0 for genericl. One of the
consequences of TheoremlID will be that generically, this islso true for generic curves in the
space of multiple covers, though not necessarily for all ofltem.

2.2.3. Isosymmetric strata. In order to discuss what happens to the splitting of Cauchy-Remann
operators (Z4) asv and' move in their respective moduli spaces, we observe that theonstruc-
tion depends quite heavily on the branching structure of : 7, i.e. the number of punctures
T 7and the topological behavior of' in their vicinity. T% necessitates decomposing the
spa€Ce of all degreal branched covers into strata
Mgl gig ° Mbggq
h, 0 b

labeled by their so-calledbranching data b. Choose an integerr | 0, and associate to each of
the numbersi  1;:::;r a nonempty nite ordered set of natural ﬁumbers

bi by
such that

BooBod
and at least one of the numbersg';:::; qqi is strictly greater than 1. We denote the totality of
this data by b b bq;::: ;brdand call it branching data of degree  d with r critical values

3In cases whereD! is already complex linear with respect to the natural comple x structure on Ny, it is
important to keep in mind that this natural complex structur e has nothing to do with the one induced on I%[f
when K C. In fact, these are two distinct complex structures that com mute with each other, and Eéﬁ; is then
complex linear with respect to both of them.
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Given this, let g 'ddenote the moduli space of all closed and connected unparainized

j -holomorphic curves™ of degreed mapping into . ;j ywith g ::: ¢ marked points
b ''d
1..... qr. 1..... R..... 1..... Or
1 1 1 20 1 20 1 y T
such that
(1) t_here are distinct points wy;:::;w; R such that ' 1bWid . Lo, i“i” for each

I Lo _ .
(2) foreachi L:::;randj 1;:::;q,"' isH-to-1 on a punctured neighborhood of /;
(3) ' has no critical points outside of the marked points.

Note that we do not require every marked point of ' to be a critical point, but we are assuming
Wit W is the set of critical values, whose preimages are marked pas and may include

E)oth critical and regular points. For any ' blg bH’ q e have

thus d and b determine the genush of ' via the Riemann-Hurwitz formula, and we shall denote
by
MbgqeMngh 2lg

the image of the natural map % gH d M h dL ;] , de ned by forgetting the marked points.
Note that in some cases, the Riemannmurw}gz caﬁcuqation m# produce a negative genus, which
just means that M gH d is empty. If b is empty, i.e. r 0, it means every' M ng is
unbranched. b

It is a classical fact that M glé is a smooth manifold of real dimension 2, as it can be
parametrized locally by the positions of the critical values wq;:::;w; (cf. Example 3.6).
Moreover, it depends smoothly onj in the sense that if P is any smlBoth nite-dimensional
family of complex structures on , then

ol d
. Mbddmp

o)
Iy

de nes a smooth ber bundle. We will show in éSZI] that regular presentations of' : 7
can also be arranged to vary smoothly as varieS with xed branching data. Y

Constraints must also be imposed on the simplel -holomorphic curve v so that the normal
Cauchy-Riemann operatorsD!} and D!\ vary smoothly as v moves in its moduli space. Given
integers m * Oand q1;:::; 1, let

denote the subset consisting of curves that have critical piots of critical order °; at the ith
marked point for i 1;:::;m and are immersed everywhere else. As explained in Appen-
dix A] the simple curves in this space form a smooth submanifid for generic J, with codi-
mension ho ;' in M gm A;J , Moreover, the generalized normal bundleN, of curvesv
MgmAJ s 1000 mycan be regarded as a smooth family (cf. Lemm&®%l4). This is nogerlfz

erally true if v is allowed to move freely inM g;mbA;J ¢ as the topology of Ny changes when
critical points of v appear, disappear or change order.
Given an integerd bN and branching data b of degreed with r * 0 critical values, de ne

d A TP ~ .

to be the set of all curves admitting representatives of theédrmu v ' : b it

M;J
where' : b 7] I i dparametrizes an element inM gH dandv e d bM;J d igl elljsimp?e
curve that mterseg{stb and (after labeling its critical points as markec?pointglin a suitable order)
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smooth strati cation of the moduli space of all J-holomorphic curves. They are sometimes called
isosymmetric strata , as they have the property that all curves in the same conne@d compo-
nent of M ng gmd T \"‘d have isomorphic generalized automorphism groups. More
importantly, each 1Isosymmetric stra(%um admits a smooth family of normal Cauchy-Riemann
operators D with a smooth family of splittings as in (24) with respect to the irreducible
representations of their generalized automorphism groups

2.2.4. Walls. Here is the main strati cation result.
Theorem D (strati cation) . There exists a Baire subset
reg oy
J €JbM,. ,U,de

such that the following holds for all = J 9. For all choices of integersg;m . 0,d; 1;:::; " m
1, branching data b of degreed andthomology classe®A szM d the srﬁooth isosymmetﬁc

stratum M g M gm A5 1 \"‘d s a union of countaay many pairwise disjoint connected
smooth submanifolds, referred to in gwe following asvalls , which have the following properties:

(1) Foru, M ng gmd;J 5 T15000 T m g4 the vector spacesker D)) and cokerD|] form the
bers d? smooth vector bundles over each wall;
2) The codi_mension inM ng g;mbA;J TR ‘mddof the wall containing any given curve
u is codim,u
b d
Remark 2.13. The statement of Theorem[D is specically geared toward the g@plications
treated in this paper, but for di erent purposes one could formulate various other versions,

e.g. one could add more marked points taVl g:m,A;J ; "1;:::; myand impose intersection con-
straints on them, or one could consider generic nite-dimersional families Js s p of almost
complex structures and thus replaceM ¢:m A;J ; "1;::1; m 4 With a parametric moduli space of

pairs  u;s wheres P and u is Js-holomorphic. Either would require no serious modi cations
to the proof, other tRan more cumbersome notation (cf. Remak £.34).

Remark 2.14. A natural guess for the precise de nition of the walls menticned in Theorem[D
would be that they are maximal connected subsets di ng g;mfbA; J: i T m atisfying the
constraint that dimker D and dimcokerD} are constant. In fact, smooth walls can be de ned
in that way using the methods of [DWHD], but the actual de niti on used in this paper is slightly
more complicated: it requires a choice of a smooth family of mmimal regular presentations, and
the constraint to impose is then that for every nite-dimensional representation of the result-
ing generalized automorphism group, the kernels and cokenis of the twisted Cauchy-Riemann
operators I%ﬂ should have constant dimension asu varies in the wall. This would give the
same result as the simpler de nition if one could guarantee hat every summand in the splitting
@34) of D)) appears with positive multiplicity, i.e. that m; , 0 for each of the irreducible repre-
sentations i, but the latter is not always true. As a consequence, a maximaconnected subset
on which kerD and cokerD!\ have constant dimension may in general contain multiple wak
of varying codimensions, distinguished from each other bywisted Cauchy-Riemann operators
corresponding to representations that play no role in the sfitting of D|Y. This phenomenon is
harmless: the important detail for our purposes is that wherever transversality or super-rigidity
fails for a particular curve u, it implies that u belongs to a wall whose codimension is positive
and satis es certain estimates. The converse is neither tre nor necessary.
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We need two further ingredients in order to turn Theorem[Dl into a powerful enough tool for
proving the theorems of%]:l]. The rst is an index calculation for the twisted operators I%l'}' .
The precise result is stated and proved inéZl], but for the main applications we only need the
following estimate, which is a corollary:

Lemma 2.15. Given a J-holomorphic curvev : b i d bM;J dwith normal Cauchy-Riemann
operator D/, a d-fold branched cover' : b T b ,K]dwnh r . O critical values, a regular
presentation b oS HCHMN d for ' and a representation : " AutRde, the resulting
twisted Cauchy-Riemann operatorl%l'}'; foru v ' satises -

dimw mdbDVd p" 14 o mdbl%u; do dimw mdbDVd
Moreover, if the regular presentation is minimal and is a faithful irreducible representation
with EndGde K b [R; C; Hn’ then the second estimate can be improved to

and this estimate is strict in the caseK R unless all branch points of have branching order2.

For the proof of super-rigidity, we will need the next result as a means of improving the upper
bound in Lemmal[2ZI5 for representations that are not faithfu.

Lemma 2.16 (see ). Under the assumptions of Lemm&g_2Z. 15, suppose the regular pre
sentation is minimal; and the splitting 4) of D)\ includes a summand[é[]'; for which the
representation G Autgr Wd is not faithful. Then ' : b 7] I ;] yadmits a factoriza-

) ) mb 'd

tion by holomorphic %Iranche covers “

. . ! 0 .
b M dyb #lddyb ld
with dego‘ oq d, and I%l'}' is conjugate to an operatorl%l'}'o; , de ned with respect to a regular
presentation b’ o5 o0: Go; o;lo;fod for ' g, whereug : v 'g: b @-;j@d Y bM;Jd Go :
G{ ker , and -
is the faithful representation of Gy determined by . Moreover, D[}'o also admits a splitting in
the form (2.4) which hasQy . , as a summand.

2.3. Proof of the main theorems modulo strati cation. Let us now take the results of
the previous section as black boxes and prove the main theomes from é]:l]

Proof of Theorem [Al (super-rigidity) in dimension greater than four. We argue by induction on
the degreesd . N of branched covers. Fod 1, we only need to know that generic perturbations
of J suce to Fhake all simple index 0 curves through U regular and immersed; this is standard
(see Appendix[A for the immersion property). Thus ford . 2, assume we have already found a
Baire subsetind \M;! ; U;Jy ,for which all branched 00\7§rsu DoV i with v g M; J
a simol k% N oo b ﬁ/lléb d

ple curve of index 0 an deg o d 1 haveD| injective. Suppose by has
r 0 critical values and degb‘ d c?and D) is not injective for u : v . If'hen pigking
the minimal regulqr presentation b oS HCHMN dfor ' and decomposing into irreducible
representations ; * ::: p ” of G splits D)) into twisted Cauchy-Riemann operators %L’}' i
fori  1;:::;pwith -

ki i dimg, kerQy: ;

and at least one of thek; must be strictly positive by LemmaZ9. If k; | 0and ; is non-faithful,
then Lemma 216 identi es By} , with a summand of D{) for some other coveruo of v with
strictly smaller degree, implying dim kerDL’}'0 ;0 and thus violating the inductive hypothesis.
We can therefore assumek; , 0 for some faithful representation ;. But then Theorem Dland
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LemmalZI5 imply that u lives in a submanifold of the 2 -dimensional space of branched covers
of v with branching data b, having dimension at most

2r ik K indKibI%ﬂ; d o 2r tikiLki b n 1d’2 FLZ tk,b 1d2 tikiz 0
since we are assuming X 3. This gives a contradiction and thus completes the inductdn.

In dimension four, the above argument fails to exclude the pssibility of dim ker I%l'}' . Lfor
some real-type repesentation j, and this is why we do not know whether super-rigidity always
holds in dimension four. We will prove in [7] that it does hold for covers of genus zero and one

curves, using di erent techniques based oh intersection thery.

Proof of Theorem (transversality, unbranched) Supposev : |s a simple curve
intersecting U and ' 7] 8 is a d-fold unbrancRed cr%er for wh|chu v
is not Fredholm regular bhence M/ Brop%ﬂ D) is not surjective. Fixing the minimal regular
presentation of' and considering the splitting QE) we nd a twisted Cauchy-Riemann operator

Qu. , with

¢ dimg, cokerRyy |, O

for some irreducible representation i:G " Aut g, Wi , of the generalized automorphism group

G of ', with End GbW'd R;C;H_* Supposev has exactly m _ O critical points, with
critical orders 1,570 " m, SO V|e|ﬁ/ ﬁg these as marked points allows us ﬁ) consideras an element
in the spaceM g mIOA J Ty m g which has dimension

dlmMgmbAJ, 1;:::;‘md |ndbOI 2m ZandVd

The count of critical pomts Z v also appears in the relation between |n and indD!:
indeed, writing v TM IQV, we can viewdv as a holomorphic section ofq—lor@bT T"d

hence
Zbdvd C1 Homcb 'T\,d cle d Cle"d b d CleVd
implying ¢; NV 1.V TM Cle"d CLy TMd b d Zbdvd Plugging in this into the
Riemann- Roch orm lfa then gives
|ndbd ZZbdvd

Meanwhile, ' lives in a discrete stratum of the space of branched coversrsie it has no branch
points, and Lemmal2.15 reduces to an equality

indKi I%DI, : dimKi Wi, indeD\')'d'
Now using Theorem[D, we nd that if J is generic,u lives in a manifold of dimension at most
dimM gmAJ ;"5 myg GGG indk, I%l'}' d
. - : N
|ndb d 2m  2nZ bdvd t,c,bc, drmKi Wi indD, v g
|ndb d gm nZ bdvd tic,bc, dimg, W; mdb q Zzbdvded
b 1 tigdimg, Widrmdb d 2m  2nZ bdvd
2tic dimg, Wi jn 17, dvy m, ti2 O
:/;/Z(Satrelwe note that ay 1dZ bdvd m * 0 sincen * 2 and every critical point has order at

Proof of Theorem[Zj (transversality, branched) Assumev : |s simple and satis-
es ind b while ' 7] I Ig has degreed q\l'%nd r crltlcal values. If J is
generic, t?]& by Proposmon[EIPthe m&jull space contamng'@ has an open and dense subset
consisting of immersed curves, so we are free to assumés immersed and thus mdov indD.
The key observation is then that by Lemmal2.15, the twisted ogerators I% all have nonnegative
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index, hence Theoren{ D implies that all of them are surjectie unlessbv;' d lies in a countable
union of submanifolds with positive codimension.

2.4. Some remarks on wall crossing. Part of the point of Taubes's twisted bundle setup
in [Tau96ad] was to understand bifurcations of isolatedJ-holomorphic tori under generic 1-
parameter deformations inJ. While bifurcation theory is not the main topic of this artic le, it
should be clear that such a theory could be developed based drheorem[D, thus we take this
opportunity to make a few observations about it.

Remark 2.17. In the time since the present article rst appeared in preprint form, some
interesting cases of the bifurcation analysis proposed belv have been worked out in detail by
Bai and Swaminathan, see[[BS].

If ans 0.1 IS @ generic homotopy of compatible almost complex structugs whose endpoints
are éeneﬁ’é, fhen as mentioned in Remark 213, one can modiffheorem[D to the statement
that the parametric moduli space

consisting of pairs,u;s ,wheres 0; 12 andu M ng gmiJds; 1,100 mqqiS Stratied by
smooth submanifo%s &aracterif@é by the din%nsions of thé&ernels and cokernels of twisted
Cauchy-Riemann operators, and their codimensions are give by the same formula. In this
setting, suppose v _is a smooth 1-parameter family of simpleJs -holomorphic curves with
index O for some functionsb d 9; 12, and u v ' _denes a corresponding 1-parameter
family of unbranched covers. Prie I&tter héve index 0 and willbe regular for almost every
but a bifurcation or \wall crossing" phenomenon occurs at ary parameter value ¢ for which
the family [u passes (necessarily transversely) through one of the codansion 1 walls given
by Theorem[DPWhen this happens, most of the twisted operatos I%l'}' o remain both injective
and surjective, but there will be exactly one irreducible representation  for which

dimkerQyj . dimcokerRy . 1

and is necessarily of real type. Whenever is not faithful, one can factor' through a cover
" of smaller degree and instead examing : v , sSo that becomes faithful without loss of
generality (cf. Lemmal2.16). For the trivia? representation, this means replacingu with v itself,
so regularity fails for the underlying simple curve at o- as shown in[[Tau964], this is the case
where the family v _ undergoes abirth-death bifurcation. The other interesting phenomenon
examined by Taubes Was thedegree-doublingbifurcation, in which v remains regular but it has
a double coveru v ' which loses regularity at 0, causing an additional 1-parameter
family of simple curves w _ to collide with u _ at o. This is what happens whenl%l'}' ;
remains an isomorphism for the trivial representation but acquires 1-dimensional kernel and
cokernel for the nontrivial irreducible representation of Z.

In [Tau96al, no further bifurcations beyond these two typesare possible: this can be attributed
to the fact that since Taubes only considers unbranched covs of tori, all covers are regular and
abelian. As a consequence, all the complex irreducible repsentations in the picture are 1-
dimensional, implying that the only faithful real-type irr educible representations one needs to
consider are the trivial representation of the trivial group and the nontrivial representation of Z».
We should not expect this fortunate situation to hold more generally: for unbranched covers with
higher genus, one certainly encounters generalized autonpghism groups that are non-abelian
and thus have faithful real-type representations of dimen#n greater than one. These should
presumably give rise to bifurcation phenomena involving cweers of arbitrarily high degree.

In the context of super-rigidity, it is also important to con sider bifurcations that involve
branched covers of index O curves under generic homotopied d. Inspecting the proof of
Theorem[A], one should expect to see interesting phenomena whever the dimension that was
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estimated at the end of the proof turns out to be at least 1, i.e.
2r ki ki indg; bl%hl d % 1

Assuming we're in dimension at least six, this can only meart; k; 1 and eitherr 0 or
n 3. Thecaser 0 means the cover is unbranched, so this is what we discusseadthe previous
paragraphs. Bifurcations involving branched covers can edently also occur in dimension six,
and in this case the improved index bound from Lemmd2.15 musbe an equality. The scenario
is therefore that the rank of the obstruction bundle over the space of coverstv " _jumps at
a particular parameter value o and for some isolated element |, in the space gf branched
covers with only simple (i.e. two-to-one) branch points: this can presumably cause both a change
in the Euler class of the obstruction bundle and the breakingo of a new family of simple curves
fromv, ' ,. Once again the irreducible representation involved must le of real type but can
have arbitrary dimension, meaning we should not expect anyiinitation on the degree of"' ,
contrary to the situation in [Tau96a].

3. Splitting Cauchy-Riemann operators with symmetries

In this section we give a detailed account of the twisted bundke formalism behind Theorem[D
and prove several lemmas required for its proof, as well as bema [2.168. Instead of talking
directly about J-holomorphic curves, we shall work in the context of abstrat Cauchy-Riemann
operators on vector bundles and their pullbacks.

3.1. Regular presentations of branched covers. The notion of a regular presentation was
introduced in De nition Z.8] The following standard result from the theory of Riemann surfaces
(see e.qg.[[Donlll, Chapter 4, Theorem 2]) allows us to move & back and forth between
talking about holomorphic branched covers of closed Riemam surfaces and honest covering
maps of punctured surfaces.

Lemma 3.1. Supposeba;j d is the complement of a nite set of points in a closed connected
Riemann surfaceb i d bay;j i is a connected noncompact Riemann surface, and

'bo* g bl d
is a holomorphic covering map of nite degree. Then there exis a closed connected Riemann

surface | 1j 1y With a nite set of points 7 1 such that baT;j 14 admits a biholomorphic
identi cation with b T 7jyand' extends over the puncturesto a }qolomorphic branched cover

:b I;deMb;deIhl b d T
Assume' b it b ;jd is a d-fold holomorphic branched cover of closed connected
Riemann surfaces wit Manching datab as de ned in , havingr 0 distinct critical values.

Recall from De nition Z8lthat for a regular presentation ;55 3G i f of ', is a
nite set containing the critical values of ' , giving rise to %e punctured surfaces

3 < ; T S T

where 7: 1b q

Lemma 3.2. There exists a natural bijection between the set of isomorphin classes of regular
presentations of' and the set of pairsb ;H , where is a nite subset containing the

critical values of * and H is a nite-index normal subgroup H 1paq that is contained in

' b 1bo'dd This bijection matches any minimal regular presentation tothe smallest possible
choice of and largest possible choice oH, i.e. the normal core of ' b 1b'd Moreover,

if ' is regular and b 85 Gy I f is a minimal regular presentation, then there exists a
di eomorphism g 3Ty o suchthat g '.
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Proof. Given a nite set containing the critical values of ', pick a base pointw 4
and let ~: U adenote thg universal cover, with U de ned as a space of homotopy clgsses
of paths beginlﬂing atw, so that 1pad-  bo Wy acts naturally on U as the group of deck
transformations for ~. Lifting loops based atw to paths in a7 then de nes a homomorphism

v 1 . -
T pady Sb BYdd py
so that the covering map aIAVl gan be identi ed with

C 1 N : ) .
o U bVd  hddy 8 o de pyitfd
where 13q &cts on U by deck transformations and on’ 1de via ~ We claim that

ker "¢ 1pod
is the normal core of' b 1ba'dd Indeed, selecting a base pointvy

' 1de e a7 to dene
lbaTd: 1bar; WId, we have

b

i - .
b1ddd  p bdd " bV wl |
which obviously contains ker ~ Changing the base pointwy ' 1de changes the subgroup
' 1.al4~ DYy conjugation with arbitrary elements of 1, 47, and the normal core is the in-
b l%.a dd . . od © . )
tersection of all these conjugates, which we can now recogré as the intersection of all the
stabilizers of the permutation action on' 1de and that is ker ~
SupposeH 153 is a nite-index normal subgroup contained in ' b 1pa'dd and therefore

also in ker ~ Then ~descends to the nite group G : 1b8d{H’ giving a homomorphism
. v 1 .

which is injective if and only if H  ker ~ It is now possible to de ne a regular presentation
b oS Gy 1bwd;fdof' with  as the natural quotient projection

" Yy Y wad o
and

vl N f vl N

G Vd  lbadyy & bVd ©

de ned via the quotient projection U U, H 35 Observe that if we chooseH ker ~

and ' is regular, then' b poldd € 1hag iS normal and is therefore identical to H, so the
natural identi cation of aTwith U(F" b 1ho%dd U {H 3 gives an isomorphism between the
covering maps' and
Finally, supposeb ) 5% Gl f d is a regular presentation of' , and de ne the subgroup
H : 1.as.a4 Which is normal since : s is regular and has nite index since
b 1b3°dd L ) >y 9 . :
Autb d G 153 H is nite. We claim H _ ' b 1po'yd indeed, any H is represented
by a loop abased at 'w that lifts to a loop s1in 3 and thus hasd lifts to a7 p S I {':
in the form i fori 1. We can therefore useH to de ne the regular presentation fro
the previous paragraph, with G 1asqH acting on' 1w via ~ and we claim that this
o i bho°d ) b d . 1
is isomorphic to b ' 3% CHE IS d Indeed, choosing a base pointvs b bwd € 35 the
identi cation f : 8T b & Id{G provides a bijection

o1 . P
de|/|| such that fbwrd b WS bWIddefor WIb de’

and combining this with the natural identi cation of 35 with U {H gives an isomorphism of
regular presentations.

Lemma 3.3. Supposeb P C 1 f is a minimal regular presentation of ' : . 1j 8
ij , and let s;jsd |4 b ;jd denote the branched cover of closed Riemann surilgces
H 1 1
provided by Lemma_ 31l such hatas Ss b d Then for eachw b and b deg s,
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the branching order of at is the least common multiple of the branching orders of at all

z b' 1de In particular, and ' have the same sets of critical values.

Proof. If k bN is the branching order of at , we can nd punctured neighborhoodsU, 3
of w and U 35 of and identify both with the half-cylinder LO; d St with coordingtes
bS;td such thgt bS;td bks; ktd Let G € G denote the group of8automorphisms of that
X ;since 35 ais a regular cover, G is necessarily a cyclic group of ordek, with a
generatorg . G that acts on U \ (0 d St as the rotation bS;td I/I%t 1 kd Appealing
again to regularity, we can then restrict the identi cation o' p B dM{G to U and obtain an
identi cation N

1 .

plvg pY  1g G

The connected components of 1 U, ,are then in bijective correspondence to the orbits of the
G -actiononl denedby :G |, with the branching order k; = N of each corresponding
point z lbW given by the number of points in its respective orbit irl?l . By the orbit-stabilizer
theorenjﬁ all of these numbersk, must divide k G ,. If " is their least common multiple, we
conclude thatg | G acts trivially on |, which rlnearlsg\ is the identity since : G S is
injective for the rAnimal regular presentation, hence™ k. Y

Example 3.4. If ' is regular with Autb' d G, then it admits a canonical minimal regular
presentatlonfbls;das; MCHIIN where 3 ah - ", 1 : G, and the action :G % SbGd

of G on itsel e ned by left multiplication
afg: 9h:
Here the identi cation o' w1 b & Gd{G sendsz a7 to Lbz,ede wheree G is the identity

element. The action of G on a7 3 Gd{G by éaeck transformations can now be presented
as the action via right multiplication

G o'y o 9 Ndad pm{bhg ldé

Notice that any regular presentation in which : G "Sbl acts on | both transitively and
without xed points is isomorphic to one of this form, %hce foranyi |I,themapG . 1| :g

gbidde nes a bijection that transforms the action by left multip Iicat,%n into . v Py
Example 3.5. The following construction underlies LemmalZ.16: any propenormal subgroup
H c G gives rise to a factorization of' b 7] Hub ;jdin the following way. Let | ;\H denote
the~set of orbits for the action M ' H " Sbl q 'H1en G{H is a nite group and descends to
a homomorphism <

H :G{H Y SbI{Hd'

which acts transitively on I{H. The regular cover : i, 8 aS{G now factors through the
obvious projections -
. H H G
Py M AT 9 ™
and g y gs a regular holomorphic cover with automorphism group G{H. We can thus
de ne -

. A "Ho. i .
o o bl{Hd My 8 W lde pyHifd
as well as a factorization of' : Ty aby covering maps

- N "HOL
CUNE SRR L
where the rst map is also de ned via the obvious quotient projections. It follows from
Lemma [3.1 that o and o each arise by puncturing closed connected Riemann surfaces
midmgand p s grespectively, and in particular we obtain a factorization of * via holo-
morphic branched covers

- . 'H .
b Mdpyb Flfdyb ld
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with degb‘ H g d equal to the number of distinct orbits of the H -action on I, hence

holds whenever the action ofH on| is nontrivial. Note that ' 4 inherits from this construction a
regular presentationb L ap H GH; H:lH:fH d though it need not be minimal and may
contain points that are not critical values of ' y, even if _ ; 55 (Gl f is minimal. This is
the main reason why non-minimal regular presentations havébeen included in the discussion.

It will be important to understand how the various objects constructed out of a regular
presentation vary smoothly under changes in' and . To this end, we shall x the following
data for the remainder of [3:

b 7] b g is a holomorphic branched cover of degree b N with branching
data b; -

P C 1;f s a regular presentation of' ;

is a connected smooth Banach manifold;
Vv € gs an open subset with compact closure;
( j P is a smooth family of complex structures on that match j outside of V;

p is a smooth family of di eomorphisms which restrict to the identity

[on \7 &nd are j -holomorphic near . v

We shall abbreviate the family of closed Riemann surfaces dermined by j as

‘b g
and denote hy
. i R 1
b SISd b d S bdeg °
the holomorphic branched cover of closed surfaces providdsy Lemmal[3.] such that 3 s
These choices produce a family of punctured Riemann surfase

a:bs;jdwhere : bdg;
and we de ne

: . ; jT: j on g
where we observe that 1 is always well demed and matchesjynear 7since is holomorphic
near . This makes

ST
N
a smooth family of holomorphic branched covers, where

T ity
b d
and they restrict to holomorphic covering maps of puncturedsurfaces ol 1 0 where

o' p obiTg
Example 3.6. Suppose is the set of critical values of "' , r : , P is the 2r-dimensional open
ball B?,j : jforal ,and : is chosen to be any sméoth family of di eomorphisms
supported near that are holomorp% in a smaller neighborhood of and such that o Id
and
2r T e
. . B I/I . bl/lb led..., bWrdd
is an embedding onto an open~subset, where Wit Wr Then the branched covers
b T T4y b | d parametrize a neighborhood oﬁ’ in M gH d

Example 3.7. If vp : b ;jod M;Jo , represents a simple element of the moduli space
M g;mbA;Jo; 1t my dened 'ﬁ% ppendix Aland Jg is generic, then one can enhance the
previous example as ?ollows to parametrize a neighborhoodfoug : Vvp ' in the space
M ng g;mbA;Jo; i m A neighborhood of vg in M g;mbA;Jo; 1010t T mg can be iden-
tied with a smooth submanifold X of olbod’ where 35, : T B E is the nonlinear
Cauchy-Riemann operator de ned on the product of B : W"?pb ;I\/KId with a Teichmualler
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slice T through jo, cf. Appendix [A] Here T is a nite-dimensional smooth family of com-
pIex structures on , which can all be arranged to match jo near . A neighborhood in

P: B* X;

namely via the curvesv M Jo,for each : b’ H;V P, and we
associate to these parameters the tlamrlrejs : JVIand d . dd b

Example 3.8. Enhancing the previous example one step further, supposé- is an in nite-
dimensional Banach manifold consisting of smooth almost amplex structures and we consider
a neighborhood ofbvo;JOOI in the universal moduli space

U bJu; 150000 m g [b d IJ bJ-- VbM g;mbA;J S LT myy
Such a neighborhood can be |dent| ed with a nite-codimensional submanifoIdX in the in nite-
dimensional Banach manifold Od T B J-, where De ning
P: B? X andthe famrIresEj . an§ qas in Example[Bﬁ the paramger spac® is now
in nite dimensional. '

Observe that the branched covers in the family’ all have essentially the same topological
properties, e.g. their branch points and automorphism grops are identical. It is therefore trivial
to extend b oS HCHMN dto a smooth family of regular presentations

b o> Ghf oy

for ' , where : . By the same reasoning as above, we can de ne ons a smooth
family of complex structures s : j such that
S " ; N b S;Jsd

becomes a smooth family of holomorphic branched covers, reiting to a smooth family of
holomorphic covering maps S 1 0 de ned on the family of punctured Riemann surfaces

3 p a5Iisg
3.2. Cauchy-Riemann operators on closed and punctured domains. Fix a complex
vector bundle

- Ydyb d

of rank m * 1, and de ne the rank m bundle of complex-antilinear maps

F Homch Eqy 01T IDE:

Recall that a rst-order real-linear partial di erential op erator D :
is then called aCauchy-Riemann type operator on E if it satis es thelq_ergnrz ruIe

Dbfd bfd fD

. H i 0;1
for all b bEdandf ngb ,RGr wherer d id | b b d The space

d

CRRbEd
of all such operators is an a ne space modelled on the space amooth real-linear bundle maps

HomR E:F ;Endgr,E;J The pullback of D CRrE via' ;. %7 |
d(te) nes a Caughy Rremann opePator dd b b-d b dyb d
"' D: bE q " bF d

where we de ne two bundles over 7hy
. [ . . A ' 0;1 !
E : E; F Homch T, Ed T Ip E

and characterize' D via the relation

b' Ddb ld ' de for all b bEd'
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Example 3.9. If v _ ;] bM J d is a J-holomorphic curve with generalized normal bundle
Ny , its normal C?auclqylg?lemann operator DY belongs to CRRbNVd and ifu v '
b T IdeM;Jd,then Ny ' NyandD) ' DV bCRRbNUd

Remark 3.10. Note that the operator _: Cg ;COI used in our de nition of Cauchy-
Riemann type operators makes f twiceqhe complex-léntilinear part of the di erential df . Thisis
a common convention inJ -holos}%orphic curve theory, but di ers from the standard convention in
complex analysis. We will also often use the symboé to mean the coordinate-based di erential
operator
B B® 'B

acting on functions valued in a complex vector space and de ad on open domains inC with
complex coordinates it. The alternative convention would be to write B %b|§ iéd

Fixing Hermitian bundle metrics _; g and _; onE and T respectively, we can integrate
real parts of bundle metrics to de ne real-valued L ?-pairings b L2 on E ,and de which
determines aformal adjoint operatorD : de Y bEdvia the relation

X; D 7\|_2 X D , 7\|_2

for all smooth sections de and bEd with compact supportﬂ Viewing D as a
Fredholm operator on SobBIev spaceyvk bEd WK 1;pr for somek . N and p g
we can then identify cokerD with ker D bFUd’ which 1Is ﬂ1e L2—orthoanaI compleer‘?{ of
imD _ Wk 5P F andis a nite-dimensignal space of smooth sections by ellific regularity.

Using%he Riemann-Roch formula ind D m 2c¢1, E ;and computing the algebraic count
of branch points Z,d" |, from the Riemann-Hurwitz formula, the (real) Fredholm indi ces ofD

and' D are related by

indb‘ Dd d indD mZbd'd'

In order to exploit the topological constructions in the previous section, we will need to work
with Cauchy-Riemann type operators on punctured surfacesristead of closed surfaces. We shall
now show that this can be done without loss of generality by closing suitable weighted Sobolev
spaces. Assume

E

is a smooth family of rank m complex vector bundles with complex structures] , equipped with
a smooth family of Cauchy-Riemann operatorsD b CRRbE d Denote the restrictions of the
bundlesE and

to the punctured surfaces 5 by

Ea: Ela; Fa: Fla HomeTa;Ead'
Restricting D to 3 then de nes a family of Cauchy-Riemann type operators
B L CRr ¢

In order to understand the functional-analytic properties of . we must examine its asymptotic
behavior fairly carefully. Fix local holomorphic coordinate charts to identify a neighborhood of
eachw in with the closed unit disk D _ C, with w corresponding to 0, D, and use the
maps ~ introduced at the end of to pro%luce from these a smooth famiR/ of holomorphic
charts on neighborhoods of Wy b for bP' In these coordinates, use the biholomorphic
map

. 1 . . 2 ,s it
LO’8d S % szon'bs'td bl(? b> “d

4The compact support condition is vacuous in the present cont ext since is compact, but the same de nition
is also valid on punctured domains.
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to de ne cylindrical ends of 3 with holomorphic coordinates bs;td 9; d S!. Choose also a
smooth family of trivializations of E near  and denote the resuIE’ng ?rivialization of & over
the cylindrical ends by . The relative rst Chern number g of =N is then given by

(3.1) (e bEa d cle d bZ:
For any tuple of real numbers
p v Ry
we can use the chosen coordinates and trivializations overhe cylindrical ends of 5 to de ne
the Sobolev space withexponential weights

k;p; Lo k;p wS kp O 1 ).
WS B g bWIOC g © bW b od Sqon the end near b

We will also write
L gt WO

Note that sections = WP B 4have exponential decay at any end where,, , 0, but one can
also take , 0, in \Fihich case may be unbounded with exponentialgrowth near w. In order
to emphasize when we are using negative exponential weighta/e associate to LW the
inverse set of weights

. . R S o
The asymptotic coordinates and trivializations also naturally give rise to asymptotic trivializa-
tions of Fy Ho—mch 5 : By 4 SO we can similarly de ne the Banach spacav* 1 o ¢ Which
is a completion of some subset of %1 55 determined by the asymptotic conditions.

Choose a smooth -parametrized family of Hermitian bundle metrics and connections on E

which match the trivial metric and connection in our chosen family of trivializations near

Any Cauchy-Riemann type operator on E can then be written as D g A for some
A 01  EndgE where ; : r J r j : \E q 01 -EP. In the chosen
coB’rdina?es and trivialization negr a point w b the b0; d-forrjﬁI A can be written as
w
A Ab dbzddz

for some smooth functionAb"d : D Endgr, C™ , The restriction of A to an EndeEa d—valued
. 0’1 . /) . . 7 2
g(i: 1dform ) b bd ,EndeEa dgcan then be written on the corresponding cylindrical end

A Ad’wdbs;tdbds idtd

where
w . . 2 s it w 2 s it .

(3.2) Ad“‘bs’td' 2e “ b "dAb'de b "d;
and given a section bEa expressed as a function ,s;t d C™ with respect to the trivial-
ization on the same end,[3 on this end takes the form

: W : . w : .
(3.3) R 5 IBI Ap"d bds |dtd g Ap"d bds |dtd
(Here and in further local expressions below, we are using # abbreviation _ : B S iB’ as
mentioned in Remark[3.10.) Observe thatAadebs; d 0 with all derivatives as s T This

expression shows thaﬂ% extends to a bounded linear operator

B WP B gy W g
for any choices ofk N, p bl; and exponential weights w Rn"" . Operators of this
type are standard ill’? FIoePtyp(?cgheories, and especially insyrgnpleclﬂc eld theory. Appealing
to the Fredholm theory on punctured surfaces developed in[[895], the asymptotic decay of

SRecall that for any complex line bundle E over a surface with a trivialization ~speci ed outside of s ome
open subset in  with compact closure, the relative rst Cher n number c; Ed Z is de ned by algebraically
counting the zeroes of a generic section that is constant with respect to Wﬁere\lfér the latter is de ned. This
de nition extends uniquely to higher rank bundles via the re lation c,;*. ZbEl Ezd Clleld ClzbEzd
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Aabwd S; ymeans thaty : wkip =) wk Lp is controlled at every puncture by the so-
%.d. . b.dm118d21m . ; .
called trivial asymptotic operator i ;= H bS ; L bS ;C™M , for which 0 is an eigenvalue
of maximal multiplicity. In this sensg,L the asympto(gi& are degenerate, i.e. in the SFT setting,
such an operator can arise as the linearized Cauchy-Riemanoperator of a holomorphic curve
asymptotic to periodic orbits that live in Morse-Bott famil ies foliating an open set. In particular,
- WkP Wk 1P js not Fredholm, but it becomes Fredholm when we introduce suitabé

weights: co'ﬁjugating R cwkei - wk P with a map of the form q e for a suitable
function f : 3 1 R (cf. [HW299,“§6] or [WenlCl,gZ.l]) produces a commutative diagram
) kip; B k Lp;
W d e VT Hod
(3.4) ? ?

WE B g W P
where§ : WkP Wk LP s another Cauchy-Riemann type operator whose asymptotic pera-
tors are o set byléonstants depending on the weights , and thus is Fredholm for suitable choices.
In particular, the computation in (3.7) and (8.8) below will show that imposing the exponential
growth condition e S ka?prO; d SlOI on each cylindrical end for su ciently small |, 0
adjusts the asymptotic operators o%lg so that each acquires an e ective Conley-Zehnder index
m relative to the trivialization .

We need to be a bit cautious with the weights when discussinglliptic regularity and formal
adjoints: as a rule, the Sobolev constantsk . N and p bl; can be changed freely, but
the weights cannot. The following are immedig’te conseqtj%ms %?I [34) after applying standard
regularity arguments to g , plus (in the case of Lemma_3.1R) the fact that Cauchy-Rieman
operators with nondegenerate asymptotics automatically mpose exponential decay conditions
on their kernels (cf. [Sch95, Prop. 3.1.26]):

Lemma 3.11. Supposek N, 1 p , and w . R is any choice of exponential

p; k® 1;p; K;p;
WelghtS. If L [ Ea IIS a weak solution '[Ol% for W [ Fa p then w [ Ea t

Lemma 3.12. Supposel p and the weights are chosen such thaﬂ% s Wk 5
wk Lp B is Fredholm. If LP' B 4is a weak solution toQ) 0, then Wk'%?
for all k EI)\I and ; b bod b

b 9y digd-

d iy
bo d
To discuss the formal adjoint on punctured domains, one shold de ne real L2-products for
bES q and bFad in terms of a family of Hermitian bundle metrics on E and Riemannian
metrics on 5 that are compatible with the conformal structure and standard on the cylindrical
ends; in particular, the right metric to use on the cylindrical ends is the Euclidean metric in

the coordinates s;td 9; S1, so that ends have in nite area and the metric does not
extend over the punch'j’es. %%e key technical point is then thefollowing: there are well-de ned

L 2-pairings

3.5 LP L% R: -

(35) PP obAX N

whenever ]{p 1{q 1, and using the density ofCg , the usual relation

for smooth compactly supported sections and remains valid whenever =~ W 1P bEa dand
wla do g for 1,p 1{q 1. Using (3.3), one nds @) B 1 from which one can

check that 1 W"?é? F wk e W 4 Satis es the Fredholm property and Lemmas[3.11

and (312 under the same conditions on as : Wk q wk Lpi B The next

result appears standard at rst glance, but the reader shoull be glautioned that it depends on

inclusions W kP: WP which hold only when all the weights are nonnegative, so e.gone

does not obtain agly similar result with the roles ofl% and R reversed.
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Proposition 3.13. Assumek N, 1 p g and LW On"" is a set of nonnegative
exponential weights such that b

-y Kip: k 1p;
R W bEa dy w bFa d
is Fredholm. De ning its formal adjoint as a bounded linear map

-y kb k 1p;
B W™ foay W T dad
' ' ' ' Kip; k Lp; k Lp;
and using the obvious inclusionsV bFa dy w bFa dy W bFa ¢ e have

k 1p; ; .
wx +P Hog MQ ’ kerQy :
In particular, cokerly is isomorphic to the space of all sections i bFadfor 1{p 1{q 1
that are L2-orthogonal to im Y € LP: bFa d under the pairing (3.5).

i kip; Lp; i
Proof. If b im I%V\)i.k.erl% , then B for some bW bE6 de w bEa d while
also belongs towW+% iy for 1,p 1{q 1 by Lemmal[312. Thus~ has a well-de ned
L 2-pairing with itself and (3:8) giveg

2 : : :
Pz x B o xB oy O
To show that im [ ker is wk Lp; bFad’ note rst that it is a closed subspace since
is Fredholm. Then in the casek 1, the contrary would mean there exists a nontrivial
p; a; - Lp;

b B_ bFa dd L bFadfor 1{p 1,9 1such tha}t x% b2 0 for all bW d
and _; L2 0 for all kery . The rst condition means ker%< by Lemma [312
and ﬁws contradicts the seE’ond unless 0. To extend this resulttfo all qb N, note that if

k Lp; i Lp;

bW bFa dfr L bFa dthen the k. 1 casekgll\(gs W kb';:f.i d an bker!% such

that [y . Then Lemmal312 implies A WX &P g ng€W P bFad implying that
i i k L1p; i i Bk
R isalsoinW bFa ¢ SO Lemmal3.I1 implies bW bEa dand we are done.

This discussion extends easily to the pulled back operators
"D bCRRb‘ E d and ' @ bCRRb' Ead
on bundles over 7 and a7 respectively. Observe that sinceay 3 has no branch points,
d'" gives a bundle isomorphismT ' "' Ty and we can thus%entify
F = HomchaI;‘ EGd Homcb' Ta;‘ EGd ' Fa;

sothat’ [} canbeviewedasamap  E ' Fy + We can now de ne xed holomorphic

S : L b _Odpy b : )
cylindrical coordinate systems s,td 9 d =S+ on punctured neighborhoods of each point

;7 "1 such that ' l?akes e &fm
b b d
. 1 . 1 .
bS’td bl(llﬁs’k td’

wherek N is the branching order of' at . Pulling back the trivializations on E near
to de ne Jf’orresponding trivializations of ' E near 7 we obtain asymptotic trivializations of
‘ and' on the cylindrical ends and can thus de ne weighted Sobolev arms for sections
of these bundles, producing a bounded linear operator

' ankip; k 1;p;
B W™y BayWt T p R

for all choices ofk N, p bl; d and exponential weights ( Rn LT If LW is
a choice of weights forl% , there is an induced set of weights for Eé de ned by
' - k. ;
b d b T

where k b I1; Dl ;dn again denotes the branching order of at
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Proposition 3.14.  Supposek b N, p b bl; gd’ and the exponential weights

chosen to satisfy

2
0 w o

for every w b Then for any D bCRRbE d the operators
-y Kb k 1p; .
B W™ oy W B d

-

! wwkps ' k 1p; ° '
R W b BayW b By
are Fredholm and satisfy

indbl% d indbD d and indb‘ P d indb' D d
Moreover, the maps E and ' E . de ned by restricting smaooth
sections to the corresp%ndﬁingI pu?lctgred dorRains ge"rlle gompﬁisms

kerD M kerl% and kerb' D d 1 kerb' I% d'

Proof. We will prove the correspondence betwee and Q. as the result for the pulled back
operators follows by the same argument simply replacing thebundles E Y and E YR
with ' E rand’ 57 respectively. - -

The Freolﬂolm property for B and the index calculation follow from the usual index formula
for Cauchy-Riemann operators on Riemann surfaces with cyfidrical ends, proved in [Sch95] (see
also [Wene, Lecture 5]), supplemented by the transformatio (3.4) to handle the exponential
weights (cf. [HWZ99, _6]). In particular, the condition 2 w 0 for eachw
guarantees thatl% is conjugate (cf. (31) and [3:8) below) to a Cauchy-Riemanrtype operator
W"?F’bE8 Wk Ip £ with nondegenerate asymptotic operators at every puncturewhose
Conley-ijeljﬁhder indices with respect to the trivialization are m rankc E . In light of (81},
the index formula from [Sch95] thus gives

indbl% d ™M bad 2c1bEad m | m 44 2c1bE d indbD d
Note that doing the same computation for the pulled back opeators requires the stronger
condition 2 .d w 0 in order to ensure that all of the pulled back weights in the &t
' lie in thé interval 2:0
To understand the kernels, o%serve that since any = kerD is smooth, its restriction to 3
belongs to WkP: =) and is thus in kerl% § Conve'?sely, we need to show that any section

wkip: annihilated by can be extended over the punctures to a section WV P _E
WIL_ﬁch is then automatically annihilated by D . This will follow from the asymptotic elliptic
theory of the equation R 0. Indeed, recall from [33) that on the cylindrical end near
any puncture w b the function bs;td me representing b kery in some trivialization
satis es

w "
B Aé) d 0;
and
S k:p . 1.~m .
e>f for some.f bW bl.o’8d S :C d .
where : b b0;2 d Thenf e S satis es the Cauchy-Riemann type equation
w H w .
(3.7) Bf b Aabdof Bsf . IB‘ b Aabddé 0:
SinceAade S; 0 ass , this equation is asymptotic to the equation A 0 for
the asymp?otig(.'ﬁ!)erator us bg J
. ; . 1l cl.~m 2 cl.~m .
(3.8) A II§ 'HbS’CdULbS’Cd’
SNote that would not belong to W*P bEa d in general if were an arbitrary (not necessarily smooth)

section of classW*P on E , nor if any of the exponential weights were nonnegative|the latter in particular
permits sections in WP bEa that do not decay to zero at in nity, which is crucial since ar bitrary smooth
sections |:)kerD may indeed ge nonzero at points in
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which can be regarded as a densely de ned unbounded self-aiifit operator on L2bsl;cmd
The function Ab"d: D EndeC”“d is smooth by assumption, and [3.2) then implies that the
derivatives B Asbwdbs; t dbf AGde for arbitrary multi-indices  satisfy exponential decay conditions

B Ad’wdbS;td| _Me 2s
for suitable constantsM | 0. Applying [Sie08, Theorem A.1],f therefore satis es
ity ¢ &d "lae
wheree: S'  C™ is a nontrivial eigenfunction of A with eigenvalue 0, and the remainder
.rbS;tE me %cays to zero with all its deriva_tives uniform!y in.t ass . The spectrum of A
is [2 | k bzﬂ € R, hence the assumption b 6) 2 d|mpI|es o and we conclude that
Sty e “SLebtd NS tye
is bounded on the cylindrical end; in fact, one can use this teshow that the smooth function
DS[On Cm:z "y wa de ned via the transformation z e 2 ¥ q has nite W%P-norm on
D On' I(ll/loreover, < ﬂas a continuous extension toz  0: indeed, the extension is obviously
b% o if , While in the case , the eigenfunction e t | is necessarily constant,
so that B> g converges to this constant value ass . All these conditions together imply
that the continuous extension of over the puncturgls,sfs of classWkP, e.g. the case&k 1lis a
standard exercise using the de nition of weak derivatives €f. [Wend, Exercise 2.118]), and the
general case follows from this by elliptic regularity.

Remark 3.15. Since sections inWkP: E?] and its pulled back counterpart need not be
bounded when the weights  are negative, the punctured operators in Propositior_3.T¥ annot

be interpreted in any reasonable way as linearizations of ndinear Cauchy-Riemann operators,

e.g. Wk 5 in this case is not a subspace of a tangent space in any reasdi@ Banach

manifold. For our purposes, the exponential growth conditon is merely a technical convenience
so that we can consider operators with the right index and theright kernel and cokernel while

dealing with honest covering maps instead of branched cover The geometrically meaningful

operators are stillD and' D , on unpunctured domains.

Remark 3.16. SupposeE , and D are independent of but ' moves inM{j  as
varies, e.g. this is the relevant situation for the proof of siper-rigidity. There is then a subtle
but important di erence between what Proposition 814l says éout P and what it says about
P The former is a family of operators whose relationship to eeh other for di erent values of

is not obvious from the de nitions, but the proposition impl ies that they are all in some sense
equivalent to a single operatorD on the closed domain, so they all have isomorphic kernels. No
such thing can be assumed for the pulled back operators: wtal must have the same index
for all , there is nothing in this setup to stop the dimension of its kenel from varying wildly
with

3.3. A digression on representation theory. In preparation for the twisted bundle con-
struction in the next section, we now collect some general fas from representation theory.

3.3.1. Real permutation representations and subrepresentationsGiven a nite set | with d:
II b N elements and a nite group with a homomorphism

:GI(I Sbld:gbl(lg
de ning a transitive group action on |, we denote byR' the real vector space spanned by basis
vectors g ; |, with an inner product such that this basis is orthonormal. We shall use the

boldfacé serﬁbOI to denote the corresponding reald-dimensional representation ofG,

. | .
3.9 :G U AutRbR d such that W e

“

o
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We will be interested in the decomposition ofR! into irreducible G-invariant summands. This
can be understood in terms of its complexi cation

c:G, Autc,C'
de ned by viewing e ; | as a complex basis of'. In general, we say that a complex represen-
tation :G Au{cb is the complexi cation  of a real representation : G AutRbW
if V is isom&lphic to \/\(iI iW such that G acts on the latter by the complex—%ear exten-
sion of its action on W. “Recall from [Ser77,_13.2] that irreducible complex representations
:G U AutcbVd come in three mutually echLFsive types:
“Real type : V admits a complex-antilinear G-invariant involution. Then is the com-

plexi cation of a real irreducible representation :G = Autg W , It follows that is
isomorphic to its dual representation : G Autcbv g an aI?G-equivariant linear
maps W Y W are given by scalar muItipIical%n:

EndGde R:
Complex type : is not isomorphic to its dual representation .G Autcbv
Then :G . Autc vV V is the complexi cation of a real irreducI{llJIe represen-

tation “: G Allﬁ RbW obtained from :G Autcbv by setting W : V and using
the obvious $helusioR AutcbVd € AutRde Yhe algebra of G-equivariant real-linear
maps onW is then
EndGde C:

Quaternionic type : is not of real type but is nonetheless isomorphic to its dual
representation. Then ¢ Autcbv V , is the complexi cation of a real
irreducible representation” : G AlélltR W obtaineg from :G  Autc dey setting
W : V and using the obviouvé inclusion Autgbvd Autgr ng and the algebra of
G-equivariant real-linear maps onW is isomorphic to ﬁ1e quaternions:

We shall also refer to a real irreducible representation asaf real / complex / quaternionic

type " according to which of these three constructions it comes fom. With this classi cation in
mind, we denote the various complex irreducible representions of G by

i K :G " Autcb\/j;de
where K stands for R, C or H depending on the type, and arrange a complete list of pairwis
non-isomorphic irreducible representations in the form

LRi-:s pRy  LCs 1;,Ci--+0 qCr gCr LHs-its npH:
This gives rise to a corresponding complete list

LRy« '3 pRi L,Ci--sy qCr LHi-::y nH
of pairwise non-isomorphic real irreducible representatins
k-G % AutRij;Kd satisfying EndGij;Kd K;
where for eachj, the complexi cation of .k is jr for K R, jc ic for K C, and
i H j;n for K H. Note that the G-equivariant endomorphisms endow eaciW;,x with the

structure of a left K-module such that the representation j g is K-linear.
We recall a standard fact from representation theory:

Proposition 3.17. Every nite-dimensional representation : G Auth of a nite group
G has a uniqueisotypic decomposition , meaning a splittingW “W; 7::" Wy such that:
(1) Foreachi 1;:::;N, W; . W is a G-invariant subspace on which is isomorphic to
a direct sum of copies of a“single irreducible representatig
(2) The irreducible representations corresponding any two dighct subspaces in the splitting
are not isomorphic.
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Since ( itself is a complexi cation of a real representation, everysubspace in the resulting
isotypic decomposition of C' is either identical or orthogonal to its complex conjugate, where
the conjugate always carries the dual representation. Thusve can uniquely decompos€' into
pairwise orthogonal G-invariant complex subspaces

where eachX.r and Xy is of the form Y.k  iYj,x for some real subspace;j; R!, and each
X . c has trivial intersection with R'. Next, observe that every irreducible G-invariant subspace
in C' is either identical to its complex conjugate or intersects f trivially: indeed, any other

option would produce an intersection which is a nontrivial but smaller G-invariant subspace.
We can thus further decomposeX. g and Xj; ¢ into irreducible G-invariant subspaces

XiR Vj,’RkJ; Xjc Vj;cmJ
for some integersk;;m; , 0, where eachVj;r summand in Xj;gr can be assumed of the form
Wj;r iWj R for some irrdtucibleG-invariant real subspaceW;;r . Yj;r. In Xj: 4, the irreducible
G-invariant subspaces cannot be complexi cations since th@orrgsponding representation is not
realizable over R, thus these subspaces have trivial intersection withR' and can instead be
arranged in conjugate pairs:

. ] N
XjiH Vj,'H \kj,’H

for some integers’; | 0. From this decompositioh of - we can immediately read o a corre-
sponding decomposﬁion of . we have
(3.11) R\ Yir it Ypr Yic 0 Ygc Yoo i Yau

where the summands are alG-invariant and pairwise orthogonal, Yj;x  Xj;k R' forK R:H,
and Yjc . Xjc X%jcqR', hence X
FC p AEC iCH '
. ¥dimcXjx K RorH;
dImRYj-K . j .
’ 2dimc Xj;x  ifK C:

These summands admit further (non-unique) decompositiondnto real irreducible G-invariant
subspaces
Kj . m;j . .
YiR Wj;RJ’ Yic Wj;CJ’ Yk Wj;HJ'

3.3.2. The regular case. We now specialize the above discussion to the case

| . G; gbhd: gh;
in which case : G Autg,RC ,is the so-calledregular representation  of G. By a stan-
dard theorem in con{ﬂlex representation theory, the complekcation :G  , Autc,C® ,then
contains every irreducible complex representation j;x : G , Autc,Vjk 4as a{dsubrepresentation

with multiplicity equal to dim ¢ Vj. k. This implies a similaldfact about  that we will make use
of in éa for proving Theorem[D:

Lemma 3.18. The real regular representation : G  Autg,R® , contains every irreducible
representation .k : G " AutRij;Kd of G as a suk%]epresentation with multiplicity equal to
dimK WJ, K- -

Next, recall that the action of G on itself by right multiplication
. . . 1
GU SbGd.gbl{l & gh: hg
commutes with and thus de nes a second permutation representation

.G Y AutRbRGd 19fn  Gng
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which commutes with , giving rise to a representation

(3.12) G G Y AutRbRGd. iy bl Yq W4
By another standard theorem of complex representation thepy, the summands in the isotypic
decomposition [310) ofC® are then invariant under the complexi cation of the ,G G action
(B.12), and they de ne irreducible complex representatiors of G G. In particular, 7therefore
preserves each isotypic component for but does not preserve any further decomposition of
that component into irreducible G-invariant subspaces. For future use, we note one additiorla
fact from complex representation theory: the action ofG G on an isotypic component in C®
corresponding to a given irreducible representation : G = Autc,V ,is isomorphictoV _V ,

; ) % b"d p
with G G acting by -

° CdbVpVdyuVpY b8 dVp dpytfdp Ha’
cf. [Ser??,§6.2].
3.3.3. Non-faithful representations. An important special case of the factorization constructin
in Example [3.5 arises when
G " AUtRde
is an irreducible representation that is not faithful. Choosing H to be any nontrivial normal
subgroup of G contained in its kernel

G{H then inherits an irreducible representation

H :G{H " AutRde'
For example one can takeH  ker , in which case y becomes faithful. Now if : G Sbl d
is a transitive action on the setl of d elements, let

H :G{H " Sbl {Hd
denote the induced action on the setl {H of H -orbits, and consider the corresponding permu-

tation representations

NN

. . . I H .

AN

Lemma 3.19. Under the aséumptions described above,hthe multiplicity of : G =~ Autgr Wd as
a subrepresentation of : G = Autg,R'  matches the multiplicity of  : G{H I;I AuthNdas
a subrepresentation of :@}H Y

Aut RbRI {H d =

Proof. Observe that in terms of the real/complex/quaternionic distinction described in :

and y are necessarily of the same type: indeed, the spaces of limeaaps onW that are G-
equivariant or G, H d—equivariant are the same sinceH acts trivially on W. The multiplicities of
both are there%ré determined in the same way by the multiplcities of the correspondingcomplex
irreducible representations in the complexi cations of and |, respectively, thus it will su ce
to prove a similar statement about complex representations Namely, assume :G = Autc,V
is complex irreducible,H _ ker G is a normal subgroup and y : G,H Autcbvd is the
resulting irreducible repregentatioﬁ ofG{H. By orthonormality of charaétergé,l it will su ce to

prove

X A X H' O HN
where the inner product of characters : G Y C is given in general by
. . 1 '; C.
x NG P e
719G
For eachi I, let G;j . G denote the stabilizer subgroup fori under the G-action on | via

Since the Ection is trﬁwsitive, the orbit-stabilizer theorem implies |Gi| | Gl{d' The trace of
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a permutation matrix is the number of elements that it xes, i n other words the number of
stabilizer subgroups that it belongs to, hence for eachy bG’

I gbGi( :

This implies
1 ? ?
(3.13) x ' A G W
[~ il g, Gi
This can be simpli ed since G acts transitively on I, so the subgroupsG; for distinct i | are

all conjugate. By the conjugation-invariance of charactes, this implies that all d of thE’ sums
over G; in (B13) are identical, so plugging in|GiI | Gl{d’ we have

- 1 ’ § .

X ' N G d
%] o,
wherei . | in this expression can be chosen arbitrarily.
To wrh’e down a similar expression forX Y de ne for each i bI

Hi: H X G e G;

which is a subgroup of bothH and G; and is normal in the latter. There is then a natural

inclusion of Gj,H; as a subgroup ofG,H, and it is the stabilizer subgroup of Li2 IDI {H for the
permutation aétion of G{H on I{H. e same computation thus gives
1 ? Hi

X HTOHA Gi # bided lat
I | |L92bGi{Hi

H; H bi%2d
| LgebGi{Hi

Finally, observe that e CIfor eachg, G since both are traces of the same linear
operator acting onV, so one can rep%ace the Iast'%xpression with a sum ovqui, giving

1
X H'OHN G Pd x X
%l g0
3.4. Twisted bundles and splittings of operators. We can now make precise the splitting

of pulled back Cauchy-Riemann type operators that was sketieed in P

3.4.1. Twisted bundles from representations.We associate to any representation : G

AutRdethe family of real vector bundles W VI de ned by v
W s Wi
where G acts onW via and on 3 by deck transformations, so that identi es

N 0
with aS{G- This gives rise to complex vector bundlesEa ;Fa % 3 of rar%< m dimg W,

de ned by

B BprW: R RprW  HomeTg k4 _
Each of the bundlesW has a canonical at structure, i.e. it comes with a well-de ned notion
of constant local sections, thusD b CRRbE d determines a family of Cauchy-Riemann type

operators
. 0;1 .
B dody dod baiBd
such that b b Vd v wheneverv is a constant local section ofW . Since
CRRbEa d it is Flr)edholm in suitable Banach space settings, in partizlar as a bounded linear

operator
-y Kb k 1p;
R W bEa du w bFa d
forany k N, p bl; , and negative exponential weights w with all  , O
su ciently Qnall. \}Ve wiﬁqormulate a precise version of thi s statemént an cBmpute the indéx in
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. Observe that aside from its obvious dependence o depends on our choice of regular

resentation for ' and on the representation , but both of them only up to isomorphism.

If isirreducible with Endg, W K C;H_, then the resulting left K-module structure of
W induces a leftK-module structure on €ach ber of the twisted bundlesE8 and Fa , for which
the twisted operator [y commutes with the action of K, thus its kernel and cokernels are also
left K-modules. Note that if K C, the resulting complex structure on =) and ) is di erent
from the one de ned by J; the latter does not commute with [y unlessD is aJ-linear operator
to start with.

The most important special case of the above construction i 5 where : G
AutRbR' d is the permutation representation associated to our regulalq)resentation of ' . \Me
dene iy K D bR' dy o as above and can identify it canonically with

R Wg.
B By
so that sections ofE8 are written as G-equivariant sections of E8 D R', hence

i
e
i P

i _ . .
for b b =) q Here G-equivariance means that for allz b 85 and g bG’
i :
% blp Pddfd  HfdpC g
hence
i i Co
(3.14) Hd g'bolbgzd forall z b 8% g bG and i bl'

Writing a7 p o I d{G’ this relation gives rise to a bijective correspondence

(3.15) b d K b iEad: byb
bouf'ded  Kfd
and thus natural isomorphisms

k;p; Kp; '
(3.16) W R ay Wt b B

forevery k . O andp 1, where we recall from that the pulled back exponential
weights are ﬁe ned by b bl 8d éB:Z
oor o ko ;
b d b T
with k 1;:::;d_ denoting the branching order of' : 7 at 1 The reason for
using thg’sé articur]ar weights in the isomorphism [3.16) isa{é follows. I:\’Ne observe rst that
if ' 0; st 0; St is a holomorphic covering map of the form,s;t s;mt
and Ztn %dde ned'40L ac%don 0; St via the transformation ,s;t sb'l% ciwdrgnd itéj
iterates, then the map f f : 'gge nes for each integerk ., 0 and p b1 g an igomorphism
from WKP_0; Sld t&%e closed subspace oW"?pbO; d st c&hsisﬁng of Zm-invariant
functions. q% f&?ows that for any exponential weight Eal ﬁmctiongrj on LO; d St is of class
WKP: if and only if f ' is of classwWkP™ . The global consequence of ﬁwese observations is
tbhat for E’ bE8 and the ‘((:.o.rresponding sectionbcl% b = d the WXP: ' _norm of p can be
ounded in terms of the W*:P: -norm of , and vice versa.
Observe that R d 3 also has a well-de ned real bundle metric since acts onR' by
orthogonal transPormat,éns, so endowinge with a Hermitian bundle metric induces a Hermitian
bundle metric on & & bR' d such that the correspondence [[3.15) also preserves?-

products. After writing down a similar correspondence for the bundlesFa and' Ry, we obtain
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an identi cation between the Cauchy-Riemann operators’ [ and [ :

K;p; Da k Lp;
WP bEGd A Wi SP bFad

(3.17) ? ?
kp; 1 B k Lp; ' -

w b Bd A w b d

3.4.2. Splitting the twisted Cauchy-Riemann operator. If W _ R' is any G-invariant subspace

and : G AutRde denotes the resulting subrepresentaﬁon, then we obtain awesponding

subbundie!

B € B B € F)
such that P takes sections ofEa to sections ofFa , acting as the operator [y . Under the
correspondence [(3.5), one can understand this as identifyg bE8 d and bFa d with closed

subspaces

. b ®Bde b Bd b Bde b fad
with a similar de nition for closed subspaces of the relevab weighted Sobolev spaces, such that
"R restricts to a bounded linear operator

kps © R k Lp; © .
w b Bdm W b "Bd
which is conjugate to [y : WP & wk e gqand will thus be Fredholm with any
negative exponential weights that are clt%e enough E) 0." Nowf

R\ W; 1 Wy
is a decomposition of into subrepresentationé i G Y AutRij dforj 1;:::; N, we obtain
a direct sum decomposition *

B B o R
which is equivalent via (3.11) to a decomposifion of [y overa splitting of Banach spaces
k Yk
A g ek -
w b Ea 7 W7 b Ey
j 1
and the corresponding decomposition ofw* Lp: *  * F q Observe that if the subspaces

and ' Ry are L2-orthogonal as a consequence. It is useful to note that whewer two of the
representations ; : G Y AutRbWidand i -G Y AutRij Cllare. isomorphic, the G-equivariant
isomorphism.Wi Y W;~induces bundle isomorpmismfai Y EaJ and Ry U FaJ that identify
Q- with R !', so"these two operators have isomorphic ketnels and cokerge This implies:

Lemma 3.20. Suppose j : G AutRij d for j  1;:::;N is a collection of representations
of G,and :G AutRde is lQnother representation such that

4
N
g K
_ i
j 1
for some integersky;:::;ky . 0. Then there exist isomorphisms
N , kj N , kj
ker g kery ' - and  coker} g cokerly ' -
j 1 i1

In particular, if is the permutation representation : G " AutRbR' d this gives isomorphisms
' 9,'\l poL M : ) gN ;K
kerb R d j/ ) kerl% ‘ and cokerb B d j/ ) cokerl% co
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3.4.3. Non-faithful representations revisited. Here is a proof of Lemma2.16. For the present
discussion we drop the parameter from the notation since it does not play any important role.
Suppose : G Autr Wd is a representation andH ker G is a nontrivial normal
i € €
subgroup of G, giving rise to a representation

H :G{H " AutRdef
and (following Example[3.5) a factorization of " : T, as

T H
Y

By assumption we are using a minimal regular presentation ad thus : G Sbl is injective,
soH acts nontrivially on |, implying degb' H g d. Writing 3 aer , the~obvious projection
map

N N

—

is then an isomorphism of real vector bundles oversand thus gives rise to a canonical iden-
ti cation between the twisted bundles & and B " with their Cauchy-Riemann operators P
and Ry #. To prove the lemma, we now just need to observe that Lemm&34 implies is a
subrepresentation of if and only if 4 is a subrepresentation of ,,, hence the corresponding
twisted operators appear simultaneously as summands in thedecompositions of P and' P
from Lemmal[3.20.

Remark 3.21. In the situation above, one should interpret kerl% as the set of all sections in
ker,’ I% that are pullbacks of sections in kerl% H (interpreted as a subspace of keﬁ‘ %d) via
thebbranched cover TI/I I -

3.4.4. The regular case revisited. Now consider the special case where is the regular represen-
tation G Autr,R® , de ned via
Y b* o
:G " SHCH oflg 9h:
We saw in Example[3.4 that this means' : a7 g are all regular covers isomorphic to
PN YICR and the action of G on 3" p & Gd“{G by deck transformations takes the form

9% N2’ 1b % 8dd
where 71: G Y SbGd is the action of G on itself by right multiplication, ébhd hg 1. The
induced G-action on spaces of sections of ' =) is de ned by

¥ dbBided P Nded  buf N9zt

Recall now from éSB:Z that the permutation representation 1: G . Autg,R® d arising from

7 commutes with nd preserves the isotypic components of . It t|4erefore de nes an action
on B by ber-preserving bundle isomorphisms, and these isomorbisms preserve each of the
subbundles in the splitting

p q n
(3-18) Ea g bEG d’;R J bEG d’;c J bES d’;H
i1 " i

corresponding to the isotypic decomposition [[3.111) of . In particular, this G-action by bundle
isomorphisms gives a lineaiG-action on each of the subspacesde8 diKd bE8 d and there is
a similar action on sections ofF, such that the restriction of to each of these subspaces is
G-equivariant. Its kernel and cokernel thus inherit natural G-actions. Under the correspondence
(B.158), this action on sections ofE8 matches the action by deck transformations on b =) d
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Lemma 3.22. Suppose : G SbGd is de ned by left multiplication, ¢:G AutRde is an
irreducible representation ofcla{] and : G,  Autr.Y , denotes the correspo'ﬂding summand in
the isotypic decomposition (8.11)) of the red@lar representation : G AutRbRGd Then every
irreducible subrepresentation for the naturalG-action on kerl% or cokerl% is isomorphic to g.

Proof. Suppose rstthat ¢ is of either real or quaternionic type, in which case the comfexi -
cation X : Y iY _ CC®ofY _ R®is also an isotypic component for the complexi ed regular
representation”  : & Y Autcbésd We shall denote the restriction of - to X by

B ' G ¥ AutcX 4
andlet ¢:G AuthV denote the underlying complex irreducible representation Regarding
these (:omple%I represengations as real representations ad and V respectively gives rise to

corresponding twisted bundles and Cauchy-Riemann operats on them, along with a natural
linear inclusion of vector bundles

Ea ¥ Ea such that kerl% kerl% X bEad

It will be useful to think of B as acomplexi cation of B . in the following sense. WhiIeEa is
already a complex vector bundle,g; B ,rX naturally carries two complex structuresJ
and i, which commute with each other: the former acts on _ v Ea rRX byJ v and the
latter by iv, using the fact that is a complex represen?atidﬂ an%x is therefoPe naturally
a complex vector bundle. From this perspective,l% is the natural i-complex-linear extension
of Q to its complexi ed domain, and the representations de ned by the G-action on kerl%
and cokerl% will be the complexi cations of the real representations it de nes on kerl% and
cokerl% respectively. In the following we shall use the symbol \ ;" to denote complex tensor
products of vector spaces and bundles with (instead of J ) as the complex structure.

Recall now that as an isotypic component of the complex reg@r representation, X admits a
complex-linear isomorphism toV _;V such thatforall g, G, actsonV ;V as g¢. 1,
while Tﬁ:’d acts asl p O The is%morphismx Y \ o V ~thus gives rise toi-complex bLfl)ﬂdIe

, 4

isomorphisms
N I LA I T |

where we are abusing notation to letV denote the ftrivial bundle over 5 with ber V , and
this identi es B with Q ° D 1. We therefore have

kerly  kerQy ° o vV, cokery ~ cokerly ° o Vv,
with G acting on both by 1 o, hence all irreducible subrepresentations in these spacese
isomorphic to , which is igomorphic to o since the latter is not of complex type. Viewing
these as complexi cations of real representations on kd% and cokerl% as explained above, it
follows via the correspondence between real and complex &ducible representations outlined in
5313]] that all the irreducible real subrepresentations areésomorphic to .

The main dierence if ¢ is of complex type is thatY iY CC is no longer an isotypic
component for ¢, but is instead the direct sum of two 'rsotypﬁ components redted to each
other by complex conjugation

Y iY X % _CS
corresponding to some complex irreducible representation g : G Autc,V , and its non-
isomorphic dual o : G Autcbv d Writing 1 G Autcbxaand g Autcb)gd
for the restriction of {% these subspaces, we can then think ot% ; I% - I% as the
complexi cation of y . Arepeat of the argument above using the isomorphismX V pi \%
and% V ol V then gives ani-complex-linear isomorphism

0 . 0 . .
kerl%, bkerl% p.lebkerl% p'Vd’
with G acting via 1 o on the rst summand and 1 o on the second, and a similar
isomorphism for cokernels. It follows that every irreducide subrepresentation in either kerl% .
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or cokerl} . isisomorphic to one of gor , and the desired result for real subrepresentations
again follows via the correspondence between real and congX representations iné[SZSZI].

Continuing in the setting of Lemma 3232, let K EndGde F;C;Hn and write k

dimgk kerl% o,c dimg cokerl% °, By Lemmal3.18, o with m= " dimg W, so Lemmd3.2D
gives dimk ker% km and dimg coker% cm. Lemma[3.22 meanwhile decomposes the
representation de ned by the G-action on ker as o for some” _ O, so kery} W

Comparing dimensions, we deduce k, and applying the same a’nigument to the cokernel
then likewise identi es the representation de ned by the G-action on cokerly with . The
following consequence is the origin of the codimension forata in Theorem [Dl (cf. B.23).

Corollary 3.23. In the setting of Lemmal[3.22, letK EndGde Then the space ofG-
equivariant real-linear maps kerl% Y cokerl% satis es

dimg Homg kerl% ;cokerl% dimg K dimg kerl% o dimg cokerl% 0:

3.5. Setting up the implicit function theorem. We assume throughout this section that
b oS HCHMN dis the minimal regular presentation of"' : "o Suppose
i:GMAutRbWidf i 1;:::;N“

is a complete list of pairwise non-isomorphic real irreduddle representations forG, with
Ki : EndGbWid; and tj: dimgK; I3[1;2;4n:

Recall that all of the data we have been considering dependsnwothly on a parameter

which lives in a connected Banach manifoldP as described at the end of[31. Any N -tuples
of nonnegative integersk b Ki;iii Ky d and ¢ b Ci1;:i1;CN d now determine subsets of this
parameter space
. . l H i . H i . [ ) .
Pbk,cd. bP dimg, kerl% ki and dimg, cokerl% ¢ foralli 1;:::;N’:
Note that P Kk;c ,is automatically empty unlessk; ¢ ind; I% i for all i 1;:::;N, and

these indices do not depend on the parameter. Assuming this condition holds, we would now
like to present P k;c , locally as the zero-set of a smooth map to a nite-dimensionhvector
space, and to compute its derivative in a special case.

We start by translating the conditions de ning Pbk;cd into conditions on the pulled back
operators’, [} for a suitable family of regular covers‘b b 3 with Aut lb d G. This
can be de ned by replacing the homomorphism : G Y Sbl d\/\%lh the action o? G on itself by
left multiplication, i.e. let -

b:GI(I SbGd:gbUbg; bgbhd: gh;
so that b o> 'G; bG; Idd becomes a minimal regular presentation for

b - & GWG)& 3 :LbZ;gdepu b d
or rather for the extension of this map to a branched cover of lsed surfaces as provided by
Lemmal31. In keeping with our usual notational convention, , is a xed smooth surface p
with a xed G-action by deck transformations but a -dependent family of conformal structures
' j , which are xed on the cylindrical ends.
Denote the isotypic decomposition of the regular represetfattion b G Y AUtRbRGd by

N

b sbi;
i1
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where p; ; i for integers *; which are strictly positive by Lemma B.I8. Then by Lemmal3.20

N N .
ker,' 9 kerp 9 kery i -
bb ? d i1 % i1 &
N N .
cokerb‘b P g cokerQyb g cokerQy ' -
i1 i1
S0 bek;cdlmplles
N
(3.19) dim kerb‘b I% d tiiki:
i1
Lemma 3.24. Every P k;c, has a neighborhoodJ P such thatU P, k:;c,is the set
of all LU for which (@E?ho%s. € X brrd

Proof. Since all the operators@y ' are Fredholm and they depend continuously on , we can
assume dimkefy ' dimkerQy " foralli 1;:::;Nif is suciently close to . Thus (3.19)
can only be satis ed’if none of these inequalities are strictwhich means P Kk;csince every
N - b b'~d

i is positive.

Recall from that the weighted Sobolev spacesVkP ! and Wk 1p b 3
are de ned in térms of xed families of trivializations of E near ~ and holomorphic cylindrica
coordinates which allow us to compute Sobolev norms on the ¢yndrical ends. Given P bk; c
choose a neighborhoodJ P that is di eomorphic to a ball and small enough R) satis
Lemmal3.24. By assumptign the bundlest depend smoothly on , which means there is a
well-de ned smooth bundlefy , P with [ ., E . Choosing a suitable connection on

4 “patng of fi - i
the latter, we can use parallel~transport along paths of the érm b btd’ with

t 1 Z )
btd radiating outward from to de ne a smooth family of complex bundti’edl?sgcringrphisms

E E
4
which respect these xed trivializations near  and satisfy Id. These give rise to isomor-
phisms By By covering the di eomorphisms L. 3y o Notice that there are also
natural reafbundie isomorphisms <
d T T ;
I

“—

1
so that d d 1 gives a family of isomorphismsT 3 covering 3 , and they

T
G 0

respect the chosen holomorphic cylindrical coordinate@ otthe ends. These tﬁén induce smooth

families of isomorphisms of complex bundles ovep,

bfybB bhybh
which again are the identity for and are also equivariant with respect to the natural
G-action by bundle isomorphisms covering deck transformatins of | Acting with these on
sections produces -parametrized families of G-equivariant Banach space isomorphisms which
we shall also denote by

kip; ! kip; ! .
(3.20) WER D b B WP b B d
k Lp; ' k Lp; ! .
W > bb By W by B d
Here Id.
We can now use these isomorphisms to de ne for | U a smooth family of G-equivariant
Fredholm operators with xed domain and target spacet,’

. 1 . . kip; ! k L;p; 1 .
(3.21) B : ") FWHKP bbEGdUW b vp B
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such that

¥ N +
X Pbk Cq bU dimker 3 | 1ti iKi
|
In order to present the latter as the zero-set of a smooth maplet us abbreviate
. K;p; ! . . k Lp; ! ! .
X W bbbEGd’ Y ! W bbbFad

so (3.21) de nes a smooth map

U Y LegX 3Y ¢ leB ;
where L GbX 'Y d denotes the Banach space of bounded real-linear map$ Y that are

G-equivariant. Sincelp 'b Ry is Fredholm, we can choose a splitting -

X \% ) kerbb 3 d
such that V is a closed subspace an@ mapsV isomorphically to its image. By
Proposition [3:&3 we can similarly split

Y |mb‘b B d kerb‘b B d
where kerb‘b R d is equivalently the space of all sections inwk 1P b‘b ) d that are L2-
orthogonal to imb‘b B d In terms of these splittings, [ can be written in block form
Dll D12
B D21 p22
where after shrinking U if necessary, we can assume without loss of generality thdd ! : vV
imb‘b P d is invertible for all bU . We can therefore de ne a map -

(3.22) F :U Y Homg kerb'b I% d'kerb'b I% d
a D22 D21 Dll 1D12:
blA b- d

Lemma 3.25. A parameter bU belongs ton dlf and only if F b d 0.

Proof. De ne for each U the Banach space isomorphism

b
1 Dll 1D12 | -
T o P bbb Ky B gg L X g
11
Theng T D21 0 , and sinceD 11 is invertible,
D F b d
kerig ker |8 Ty :On, ker F b d kerF b d

The latter can only have the same dimension as k%rb B d if F b dvanishes.

Observe that by Lemmal3.22, Corollary[3.2B and Schur's lemma
N

(3.23) dimHomg kerb'b I% d kerb'b I% d tikic:

|
The lemma implies via the implicit function theorem that a neighborhood of in P k;c is a
smooth submanifold with the same codimension that appearsn Theorem[D whenever we can
show that the linearization

dF b d:T P % Homg kerb'b I% d;kerb'b I% d
is surjective.
We will need a precise formula for this linearization in the bllowing special case. Suppose we

have a smooth path

P with ,0 and 0 Y TP

‘b dy bd pd b

such that for all btd
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= E (i.e. there is a canonical complex bundle isomorphism);

2 Id;

®i -
We are then free to choose the bundle isomorphisms and consequently the Banach space
isomorphisms [3.20) to be the identity for all Hq SO t,» WhereD  is a

. . %tdE b bel, tinSdni
smooth family of Cauchy-Riemann operators on the xed bund Y . Di erentiating this
family gives a real-linear bundle map -

Ay : BtD ddt 0 bHomRbE F dd
and we then nd that
takes the form
(3.24) Lofd bbb Avg

where is the projection

Yoo impy By Keoh B gy KeMhh B
The local genericity result developed in§ below is geared toward proving that operators such
asL are surjective.

4. Index computation

The goal of this section is to compute the Fredholm index of tle twisted Cauchy-Riemann type
operators introduced in . We will use the notation ofé[ﬂ but dispense with the parameter

since it is not important for the index computation, hence '“: b 1] Hub ) dis a xed branched
cover, andb PN CHE IS is a xed regular presentation. The tomplex vector bundlesE
and F with their restrictions =) and Fyto the punctured domain Fre assumed to have rank
m: rankcE bN’
and we assume
' G " AUtRde
is a (not necessarily irreducible or faithful) répresentaton of G with

n: dmw N:
b

The resulting twisted bundles over fFan be written as

B BorW: B RpeW

in terms of the at real vector bundle W : 3 Wdf aand any Cauchy-Riemann type
operator D bCRRbEdthen gives rise to the twisted op ra%r
[y - bEa din bFa d

We need a bit more notation in order to state a formula for indbl% Recall that while the deck
transformations G Aut act on 45 without xed points, their extensions to biholomorphic
self-maps of s may x some of the punctures, so for eachw and Lw S .

1 . i b b b'de¢

b ¢ Ve can consider the stabilizer subgroup

G : [ g bG | g o
which is necessarily cyclic. Restricting to G then de nes a representation G AutRbW
which splits W into G -invariant subspacesW W W7 such that G acts orJAN trivially

and on Wy as a direct sum of nontrivial representatioris. We de ne the umber

Ny : dimWzg 0O::::n_
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As implied by the notation, this depends onw . but not on the choice of preimage 1bwd'
indeed, sinceG acts transitively on 1w an? two choices of give rise to conjugate IE.’ubgroups
G , and using orthonormality of characters, one can compute

nyZ n dmwWw n i g

G
I~ l9.C
an expression which depends only on the congugacy class @f .

Theorem 4.1. Under the assumptions detailed above, the operator

VYL k Lp;
B W™ BayW 13 d
is Fredholm foranyk N, p and negative exponential weights [owy satisfying

0O w 2 {|G| for alﬂ w bb' Itgqndex is

indbl% g n indbDd m Nw:

w
b

The dimensions and indices in the above statement are all réabut note that if  is irreducible
with K : EndGbW C;Hn, then the integers n and n,, are automatically divisible by
t: dimgK 2:4  hence so is in Let us state the corollary for the faithful case in
terms of the I?—Ifnea? index since it is most useful in this form.

Corollary 4.2 (cf. Lemmal[ZI5) Assume, ; as;:G; ;I;f is the mimimal regular presen-
tation, and that is faithful and irreducible with EndGde b [R;C; Hn‘ Then

debI% do demK Wd dede m| I;
and if K R, then the inequality is strict unless all branch points of have branching order2.

Proof. By Lemma[3.3, the stabilizer subgroupsG are nontrivial for all s, and the conclu-
sion about branch points of order 2 will hold if and only if all of them are i%morphic toZ,. Now
if is faithful, it follows that all nontrivial elements g G for s also act nontrivially on W,
hence the decomposition ofV into G -invariant subsBaces conlféins at least a 1-dimensionéK -
linear subspace on whichG acts nontrivially, giving ny, , dimgK for all w . This implies
the upper bound, and in the caseK R, itis an equalit§7 if and only if n, — 1 forallw
meaning eachG acts onW as the n 1 fold direct sum of the trivial representation plus aL'FeaI
1-dimensional nontrivial representation, which is required to be faithful. But the only nontrivial
faithful real 1-dimensional representation of any nite group is the nontrivial representation
of Z», henceG Zo.

Remark 4.3. Doan and Walpuski have recently shown that an index formula guivalent to that
of Theorem[4.]1 can also be derived from Kawasaki's orbifold Rmann-Roch theorem [[Kaw79].
From this perspective, branch points are regarded as orbifid singularities instead of punctures;
see([DWb, Appendix 2.B].

The remainder of this section is devoted to the proof of Theoem[4.1, which we shall break
down into ve steps.

Step 1. Some notation
It will be convenient rst to complexify the representation. We dene V: W iW and the
complex representation ‘
such that xY for all g, G. Note'that for w  and w s, the trivial

B g, " 10te . bVde S

representation @:‘G onV is the cd?nplem cation of the taraI real relﬁresent{ﬂlgn on W, so the
splitting W~ W W explained above complexi es to a splittingV. V. V1, whereV € \%
is the largest complex subspace on whicls acts trivially, allowing us to write

ny dimcVy n dimegV:
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The complexi ed representation now gives rise to a complex at bundle V b 85 Vd{G,
corresponding twisted bundles

(4.1) B : EapRV ; Ry FapRV ;

and a twisted Cauchy-Riemann operator

W kips k Lp; .
R W bE8 dy w bFa d
The following point is important to understand: the tensor products in (&) are real, thus =)

and each inherit two complex structuresJ and i, whereJ comes from the complex structure
of E and i from that of V: they commute with each other and are de ned by

‘]b pvd: J pv; |b pvd: p|v:
In this sense, can be regarded as the-complex-linear extension ofl% to complexi cations
of the latter's domain and target space|this notion of \comp lexi cation” ignores the fact that

these spaces already have native complex structure3 and treats them asreal vector spaces,
which is appropriate sincey need not beJ-complex linear. We therefore obtain the relation

. 1. .
mdbl% d E'ndb% d

and we shall compute in by regarding as a real-linear Cauchy-Riemann type operator
d

on the complex vector bundle B ;J Since rank: rankc E dimgV  2mn, the punctured
Riemann-Roch formula from [Sch9!3,§3.3] (or equivalently [Wene, Lecture 5]) gives
(4.2) indbl% d 2mn bad 2c; A=) ;‘]d czifiw w g

w
b

where is an arbitrary choice of asymptotic trivialization , and CZBAW wy , Z are Conley-

Zehnder indices that depend on certain asymptotic operatas A, to be discussed below and the

exponential weight 2 ,,G,;0,associated to each puncturev . . The main di culty

of the calculation is in choosing a suitable asymptotic trivialization in WRiCh both c; bEa 7 J dand
czfiw  wqcan be computed.

Denote
dr: degO d |Gl;
1
and for eachw b and b bWd€ s, let
k b[l""’dTﬂ

denote the branching order of at , meaning is ak -to-1 map on a small punctured neigh-

borhood of . We can then choose punctured neighborhoodsl, aand U 3 of w and

respectively, with holomorphic cylindrical coordinates ACH b 9; od Ston egch such that
bs;td bk s; k td

in coordinates onU . In these coordinates, anyg , G necessarily preserves the entl and

takes the form gbs;td s;t j,k dfor somej . 0O;7::k 1n' This means that G is a cyclic

group of orderk”, and R has a tanonical gene,%lforg bG such that

g bs;td bs;t 1{k d onU:
In addition to the cylindrical coordinates, let us choose conplex trivializations of E on each
of the corresponding neighborhoods of , thus giving an iderti cation

: 1
4.3) E6|Uw L0, ad S Ew
for eachw . For any choice Lw s, this also gives us an identi cation of U
b b bide e
with
. 1 N~ .



TRANSVERSALITY AND SUPER-RIGIDITY FOR HOLOMORPHIC CURVES 45

- . l . -
where the action of G Zrx on L0, od S b Ew pR Vd is determined by

g bs’td’ pV bs,t 1{kd D bgdv.
This picture can now easily be extended to the \circle compat cation" of the punctured surface:
let ;and 55 denote the compact surfaces with boundary obtained by repleing each cylindrical
end L0; d Stin aand 55 respectively by the compact topological manifoIdLO; St. The
connec?ed components of cand _os are then in bijective correspondence Wlthqﬁe punctures
w_ or s respectively, andPthe choice of cylindrical coordinates idnti es each of these
cohﬁponentﬁNith S!. We shall denote the boundary components accordingly by, ; S* for w b

or , hence
b S

1. 1.
b b3
The covering map : & ghow extends to a continuous covering map

ceS 2
4
which restricts on the boundary components to
st sl ot Kkt
|s* W~ bd  bU
and eachg G also extends naturally to a continuous deck transformationg : 55 = o5 Of
such that if Iﬁb d 7 then g maps St Y SlI via the canonical di eomorphism con%osed with

a translation. The identi cations (4.3) and (4.4) then yiel d obvious extensions ofgy and By as
topological vector bundles
= n 2 B n 2
and we have
E B RV We:
Step 2: Asymptotic operators on the twisted bundle

With the essential notation in place, we can now discuss asyptotic operators. Recall that
after choosing a suitable Hermitian inner product onk; over the cylindrical ends, any Cauchy-
Riemann type operator R onky Eyvith reasonable asymptotic behavior determines real-linear

%
operators <

Aw: b%|5vlvd " b%|5vlvcf

foreachw . , see e.g. [Wenl(, _2.1]. These can be regarded as unbounded self-adjoint op¢oas
on Lzbglsvlvd with dense domamH®* & s: , and we sayA,, is nondegenerate whenever its
kernel'is trivial, in which case it determines aConley-Zehnder index

czif wg 2
relative to any choice of complex trivialization of Esi. Inthe case Wherel% is the restriction

to aof some operator D CRRbE on , the operators A,, are very simple and were already
computed in é13]: they arlé each the so-calledrivial asymptotic operator

where  is a well-de ned di erential operator on %lsvlv since the bers are all canonically identi-
ed witﬁ Ew. This operator is degenerate, but the'introduction of negaitve exponential weights

w Oidenti es [y with another Cauchy-Riemann type operator whose correspoding asymp-
totic operators are A w,» Which are nondegenerate for any,, , 0 su ciently small.

Denote by '

Aw' 2 ISt d v b2 ISt d

the asymptotic operators associated toly for eachw . These are easiest to understand by
considering the pulled back Cauchy-Riemann operato

. Lp; ; .
B WR o Bgyu Yt b R
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whose asymptotic operators we will denote by

At b By b Bap
for s The relation B b d P for sections b bEa d gives rise to the
following relation between asymptotic operators:
1
(4.5) A bf d kK A,f for f b B ISk and b oVt
This can be proved via a local computation as inéB]: writing bs;td bks;ktd in suitable
holomorphic cylindrical coordinates and R b B db ds idtdfor some matrix-valued

function B s;t  after a choice of trivialization for % over the end nearw, A, is represented in
this trivialization by the operator iI§ Bbg;td y de nition. The corresponding trivialized
formula for [ then comes from

% b dg;td l% Sty
B kaks;ktd b dﬁ;td b ds |dtd;

hence [y appears in trivialized form as the sum of _ with the zeroth-order term kB  ks; kt
The trivialized formula for A is thus iB‘ ka8;ktd, which explains the factor of k

appearing in (4.5).

For the following discussion, x w and 91 1de The de nition of [} implies that
I% acts o.n sections _ v b b Ealo RVdsuch at b I% db p V_d I% D v whenever
Vg Y V is constant. From this, one deduces that for any sectiorf D \% b B pR Vlsl

wheref”is an arbitrary smooth map S?t " E, andv:St " V is constant, we have
Now to write down a formula for A,,, we can use the natural identi cation of & ISk with

the space ofG -equivariant loops in E, pR V,

(4.6) A

i 1. 1) .
B |Sv1v FngbS,EWpRVd Fbt 1{kd g Fbtdforalltbs :
Acting on G -equivariant loops F, (&5) and (4.8) imply
1
4.7) A, F k—J B;F,

where it is understood that J ; acts on the tensor product by taking F  f D v to b‘] B‘f dp Y
wheneverv is locally constant?

Step 3: Trivializations and Conley-Zehnder indices
This is the step in which it is helpful to be working with the complexi cation B rather than
directly with 3 . In order to choose a suitable trivialization and compute Ay wy
we shall rst split A, into a direct sum of operators onJ-complex line bundles. Observe that
Bisy SL E, is already canonically trivial, so any complex basis ofE,, gives a splitting of
A, over an m-fold direct sum of isomorphic J-complex bundles of rank 2,

m
B |SV1V L -

where

L s, c rv.iG

b~ p~"d
and the generator of G Zy acts by g bt;f Vg t L1k ;f D Note that L
carries two commuting complex structures,J anoPi, whicl?1 act én the" rst and second factor of
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the tensor product respectively. Further: V admits a complex basis,vi;:::; Vs 4 consisting of
eigenvectors of 9 ¢ and we can then de ne integersp; b I0; S ¢ 1n forj "1;:::;n by
N Py

Here we can identifyV 1 V as the subspace spanned by all; such that p; , 0. Identifying V
with C" via this eigenba%is yields a splitting ’

L Ly it Ly
where forj 1;:::;n, ’ ’

. 1 N .

Ly S b C pR COI Zy ;
with the generator 1, Zy actingby 1 {;f v t 1,k ;f _ €Pik v  This bundle again
: rlﬁ ; b J) (3 b . é 'p d

carries the two commuting complex structuresJ and i acting on the rst and second factors
of the tensor product respectively; it has complex rank 2 wih respect to either one. Finally,
since J acts i-complex-linearly on C _r C, we can nd eigenvectors f C _Rr C such that

Jf if , so the splitting C pR C " Cf Cf gives a splitting of J- A:hd ipcomplex vector
bundles ‘
Lo L Ly

with

1 - .
(4.8) L;. b S Cd Zy ;
where the generator 1 7y acts by 1 if  t 1.k @2k fgq BothL; andL; are
complex line bundles overS?, carrying two complex structures J and i, which satisfy J i on
L;. but J i on L - This splitting of bundles gives a splitting of A, in the form

n m

where forj  1;:::;n, A. actson

_ i 1. 2ip ;i 1)
b g f ng > Cy f 1{k q &€ fbtdfor all t bS
by 1
A f k—i B,f:
Sincel; are complex line bundles, . A; wq €an be computed in terms of winding

numbers of eigenfunctions ofA;. , using the relation proved in [HWZ95, Theorem 3.10]. In
particular, if (as will turn out to be true in our case) all eig enspaces oAj; have real dimension 2,

then
where f;, b bLJ'; d is any nontrivial eigenfunction of A;. w Wwith the largest possible

negative eigenvalue. AZ, -equivariant function f : St Y Csatises Aj. f f if and only if
it is a complex multiple of -

. ik t. J .
(4.11) f g © ; Y 2%
Observe that since 0 , 2 dID 2 .k, every eigenvalue thus satis es w  0; this

proves that the perturbed asymptotic operatorsA ;. are all nondegenerate and thus establishes

the Fredholm property for R . Now to apply (.10), we need to nd the unique eigenvalue
2 g pj{k qfor” bZ such that

2‘E—jwoz
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Since0 2 {dI, this condition is equivalent to

Pi :
a k. L
so choosing the appropriate’ bZ and plugging in (4.11) leads to the formulas
o f1 ifp O
(4.12) bbdt e 2l md ifp, O

Bd’
Let . forj 1;:::;n denote a choice of]-complex trivializations of Lj; such that

wind i\ f; 4 wind i f5i 0 oL

and denote by , the resulting J-complex trivialization of
(4.13) B g L.

By (4.10), we now have

cz i wyg ez wyg L
and thus by (4.9), .y bAW Wy 2mn. Note that, a priori, this construction of , depends on
an arbitrary choice 1bw but the fact that 5 A,,  wturns out to be independent of
this choice tells us thaﬁ’ w IS uniquely determined up to homotopy. Performing this congruction
for all puncturesw _ , we will denote the resulting asymptotic trivialization o f =) simply by .
We've proved:

Lemma 4.4. For the asymptotic trivialization described above and each punctures b
CZbAW wy 2mn.

Step 4: The relative rst Chern number
It remains to compute c¢; Ea ;Jd Consider the pullback Ea rV. The rst factor
in this tensor product has a canonical homotopy class of asyptotic trieializations, which we
shall denote by 0, as it is the pullback of an asymptotic trivialization ¢ for B satisfying
c1°b c1,E  Moreover, the second factor is globally trivial, thus =) carries a canonical
asymptotic trivialization, denoted by , such that

Gp Bgq dmrV ¢ b Bq 2n deg 4 ¢ ° Ry 2ndr cyF g
If denotes the pullback of to an asymptotic trivialization o f & , we then have

1 1
“fod g% b Bd g %b Ba 9p

(4.14) 1
2n E — ;
g 39%9p  d
where deg b Z denotes the sum over all punctures s of the degrees of the transition
maps St GLb njfh; Cd that change to . We can cor#pute the latter for each w, and
([;[E[g 1b\}4|d§ s as a sum of winding numbers over a line bundle decompositionr‘ml&@ous to
), namely

m
B o B o _SI Lj Lj ;
1 ‘
where pulling back (£38) via the projection : St Y Sl{Zk gives the trivial line bundle
st G

I‘J';
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with the pulled back trivialization ; such that the special eigenfunctiond j; in (£.12) have
zero winding ast traversesS?t. The restriction of to B st is now the direct sum of the

standard ftrivializations on each of the factors L o thus

n

i
There is an important sublety here: recall that J i on L. . hence the orientation induced
by J onL; is the opposite of the obvious one, and the sign of Winglbfj; d must be reversed

accordingly, giving
%0 ifp O
p k ifp | 0;
windsy fj; 4 P
Plugging this into (4.15)), we have

windsy fj; 4

deg | wy m ’ b ky mk dimcVr

Summing over all LS and plugging into (4.14) then gives
m ?
c 2n ¢, E — k dimcVr
19 d Fd q c
b S

Since dimc V1 ny, is independent of 1w foreachw ,and o 1
N b b"d b b
implies:

k dy, this

bVd

Lemma 4.5. clea d 2n Cled m o

nW-
"

Step 5: Conclusion of the proof
Finally, we combine Lemmas 4.4 and’4}5 and plug into[{412) to btain

indbl% d 2mn bad 4n Cled 2m Nw 2mnI |

w
b

2 mn b d 2n Cled m Nw

w
b

and thus

2

indbl% d "M ypyg 2(:1bEde m Nw:

w
b
The expression in brackets is in%Dd, so this completes the proof of Theorenii4l1.

5. Petri's condition

5.1. The main local result.  Standard proofs of transversality results via the Sard-Smée the-
orem (cf. [FHS95/MS12]) typically require some kind of unigie continuation lemma, which for
J-holomorphic curves usually means the similarity principle. In this section we will establish
a local result about Cauchy-Riemann type operators that plgs this role in the proof of Theo-
rem[Dl It combines the usual unique continuation property with an additional \quadratic" local
condition that can be achieved under generic zeroth-order grturbations.

For any pair of smooth real vector bundleskE and F over the same manifoldM , one can de ne
the Petri map

tdp Bdy BEpFd  bp dfd’ Pdp Pd
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Since we plan to discuss purely local conditions, let us amehthis by xing a point p b M and
considering the space ofjerms of smooth sections atp,

Edt Ed
where ; 7 Ed represent the same element of , E if and only if they match on some
neighborho&j ol?p. The Petri map then descends to alocal Petri map at p,

rEdp P dpy PoEp Fd

It is easy to see that is never injective, e.g. its kernel cortains f f for any two
sections bEd’ Fd with a smooth function f : M R. IP will soR'\etimes become
injective, thever, if fRe Homain is restricted to certain srpaceléI of solutions to linear PDEs. To
express this properly, let us assumed : bE F (is a linear partial di erential operator
with smooth coe cients, and D : bF d Eé‘ls it% f%rmal adjoint with respect to a choice of
bundle metrics on E;F and volume fornjﬂont}\/l . For any point p, M, both operators descend
to linear maps on the spaces of germs of smooth sections p,twh‘?:h we will denote by

Dp: prdI/I prd; Dp: prdI/I prd'
We will also assumeD and D uniquely determine (via extension or restriction) linear maps
D'XbEdMYde’ D :X de|/|YbEd
where X, E, Y E., Y bF d and X“bF are vector spaces of sections (or equivalence classes of
sections de ned almost everywhere) opthe respective bundk; in typical examples, these will be
Sobolev spaces, sometimes with exponential weight condiths if M is a nhoncompact manifold

with cylindrical ends. Let us add two conditions of a local naure, both of which are satis ed
for a wide class of elliptic operators, including those of Cachy-Riemann type:

(regularity) Every section in kerD _ X Ed or kerD X Fd is smooth.
(unique continuation at p) The n%psbkerD kerlfIO an% kerD Y kerD, that
send each section to its germ ap are injective. * -

The terminology in the following de nition is adapted from t he work of Doan and Walpuski
[DWhb], who borrowed it in turn from algebraic geometry (see eg. [ACGH85]).

De nition 5.1. SupposeD : X Ed YbF is a dierential operator with formal adjoint
D : X bF Y bEd satisfying tl%e C&Hditions speci ed above, andp b U e M. We say that

D satis es d v

(1) Petri's condition , if the restricted Petri map ker D _ kerD bE F ,is injective;
(2) Petri's condition over U if there is no nontrivial elgmentt %rD Eerlg such that
btd b bE D deanishes identically onU; b P
(3) the local Petri condition at p if the map kerD D kerD, = Fd is injective;
(4) Petri's condition to in nite order at p if there is no nonﬁlf\l/ial etierﬁentt kerD,
kerD, such that dd has vanishing derivatives of all orders atp. P

Every condition on the list in De nition S.1dmplies the prev ious one; note that the implication
b3 bzd in particular follows from our regularity and unique contin uation assumptions. The
rsq R/vo conditions are global in nature, as ker D and kerD depend on the global properties
of D, including the choice of domainsX E ;and X F . These kernels will always be nite
dimensional in the cases we consider, so that it seems unsuiging (if non-obvious) that Petri's
condition might hold. In contrast, the third and fourth cond itions are much stronger and more
surprising because keD  and kerD , are in general in nite dimensional, but the local conditions
are also more powerful, e.g. it will be extremely useful to oberve that they are preserved under
pullbacks via branched covers of the base.

Remark 5.2. As de ned above, the global versions of Petri's condition mg in general depend
not only on the operator D but also on the auxiliary geometric data (bundle metrics andvolume
form) used to de ne D , but the local conditions are independent of these choices.Indeed,
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wheneverD; and D, are two operators arising as formal adjoints ofD via di erent choices
of the geometric data, there is a smooth bundle automorphism : F F that maps local
solutions of D ; 0 to local solutions of D, 0, so that 1 D . E E D F identi es

the two di erent versions of ker € kerDp D kerD. P U

Remark 5.3. Itis clear from the de nition that the set of points p, M at which the local Petri
condition is not satis ed is open. We will see in that Petri's co'ﬁdition to in nite order can
sometimes be shown to hold at all points in a dense subset of 5@ regionU _ M, so it follows
in this situation that the local Petri condition also holds at all points in U.

It should be emphasized that whenever we refer to the above daition, we will be regarding
all vector spaces ageal vector spaces so that }3 " means the real tensor product, even in cases
where D happens to be complex linear. The only exception is Exampl&_5 below, which is a
digression from the main topic at hand.

Example 5.4. Elliptic operators over 1-dimensional domains satisfy sorathing much stronger
than the Petri condition to in nite order, because by local u niqueness of solutions to ODEs, any
linearly-independent set of local sections in keD or kerD is also pointwise linearly independent.
For similar reasons, any Cauchy-Riemann type operatoD : bEd bF that splits over a
direct sum of complex line bundles with nonpositive rst Chern numb@rs over a closed surface
must satisfy the global Petri condition over arbitrary subsets U _ . The reason for this is that
on aline bundleE with ¢, E o 0, the similarity principle &Jarantees that global solutions
to D 0 are either trivial or nowhere vanishing, so that globally linearly-independent sets of
solutions are also linearly independent at every point. Ths property might not hold for the
formal adjoint D , but since solutions toD 0 satisfy unique continuation, any expression of
the form o ; c! ip | with a nontrivial set of coe cients ¢/ = R and linearly-independent sets
[ kean and '  kerD _is still guaranteed to be nonzero at every point outside a disrete
sub@et. Example@below shows however that the local Petigondition in this situation is not
always satis ed.

Example 5.5. Complex-linear Cauchy-Riemann operators over a Riemann gstace satisfy the
complex version of Petri's condition to in nite order at every point, i.e. the de nition above is
satis ed if real tensor products are replaced by complex tesor products. One can prove this by
choosing holomorphic trivializations and writing elements of kerD and kerD locally as Taylor
series inz or z respectively: it then turns out that for any nontrivial t kerD _c kerD , the
Taylor series inz and z for the resulting section of E _ ¢ F at a given po,ﬁt is alvbjays nontrivial.
We omit the details since we will not need this fact. P

Example 5.6. If we regard the standard Cauchy-Riemann operatorD on a trivial line
bundle and its formal adjoint D as real-linear operators, then theydo not satisfy the
local Petri condition at any point. A I%cal counterexample is given by

1piz ipz zpi izplbkeerRkerB:

It follows that the local Petri condition is also not satis e d by any Cauchy-Riemann type operator
that splits 0 a complex-linear summand.

Example 5.7. Here is an example of a Cauchy-Riemann type operator that dagnot split o

any complex-linear summand but still fails to satisfy the local Petri condition: take E and F
to be the trivial complex line bundle over C, with standard bundle metrics and the standard
area form, and considerD : , D , Wwhere :C C is complex conjugation.
Using coordinatess it b C, gne can assgciate to every b b 1:10I solutions b kerD and
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bkerD de ned byﬂ

i itd: es >l %t 37 iS1 ;

S ity e ® L%t 5 iS1
Identifying the bers C with R? so that the bers of E g F become the space of real 2-by-2
matrices, the products b p qare now constant secﬁons okt pR F:

1 S1 2

b p df "d s1 2 1

Such products span the 3-dimensional space of real matrices the form 2 , thus any four

a

b
such products must be linearly dependent, and the dependemcrelation gives rise to nontrivial
elements in ker by choosing four distinct values of b b 1 1d

Remark 5.8. An earlier version of this paper (see AppendiXD.R) claimed hat every Cauchy-
Riemann type operator whose complex-antilinear part is inertible at a point p satis es Petri's
condition to in nite order at p, but Example contradicts that.

The operators in Examples[5.6 and’5]7 are rather special, andur main objective in this
section is to prove that such counterexamples cannot ariseof generic Cauchy-Riemann type
operators. To set up the result, assume now that is a Riemannsurface with a Hermitian bundle
metric _ ; on T . We will not require to be compact since the discussion wil | be purely
local, but xa point p, and an open neighborhood U of p with compact closure. Fix also
a complex vector bunEﬂeE with a Hermitian bundlg metric, let F  Homc,T ;Ed, and
denote by CRRbE the spaclé of real-linear Cauchy-Riemann type operator® : bEd de
We shall x aspecic D CRRbEdand de ne the space of all Cauchy-Riemann type gl:)erators
D that match D outsidéDOfU:

CRRbE ; U;Dxd: D bCRRbEd D Dy 0 on SU(:
This is an a ne space over the Fechet space of smooth sectins of Hong, E; F | that vanish
outside U, so in particular it is a complete metric space. For everyD CRRb d D will denote
the formal adjoint of D determined by the bundle metrics onE and -
For any b prd we de ne the vanishing order of at p by

ordb Py Sup k b[On)\
Fort — pEqp ppfg We will then say that t vanishes to order Kk if t can be written as a
nite sm ? opj i ~ j such that

N all derivatives of at p up to order k vanish( :

ordb i+ Py ordbj Py * k for everyj.

The usual unique continuation results imply that for every D CRRbE nontrivial local solu-
tions to the equations D OorD 0 satisfy ord Py at every point. One can easily
prove from this that nontrivial elements t IDkeer D kerD, afso cannot vanish to in nite order
(see Proposition[5.1P).

The machinery developed in the next two subsections will prae:

Theorem 5.9. For every ~ bN’ there exists an integerk * " and a Baire subset
reg = .- S
CRR bE y U, D X d € CRRbE y U, D X d

The inspiration for this example comes from the asymptotic f ormulas in [HWZ96SieQ8]: in particular on the
cylinder R St with coordinates s;t , a translation-invariant Cauchy-Riemann type equation B tdd bs;t
0 always has solutions of the form ' s;t e® f t, where f is an eigenfunction of the asymptotic operator
ig hB btdwith eigenvalue R. Inthe asymptotic setting one requires solutions to be periodic in t, in which
case t i

e eigenvalue can only l-l’ake a discrete set of values, but periodicity is not necessary in Example[5.7, and
can therefore be chosen much more freely.
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with the following signi cance: for every D CRF;{reng UiDx 4 if 1;:::; -~ kerDp and
Lo kger are ‘-:[uples of local solutions such thatt : ci1ip ip e g D e g
does not vanish to order, then f b P D F 4does not vanish to orderk.

In light of unigue continuation, we now set

Cersng ;U D d: FNCRéreng - U;D de CRRbE “U;D q
and obtain: ®
Corollary 5.10. There exists a Baire subset
CRRYE UiD x4 ¢ CRRyE; UiD x g
such that everyD b CRLfng ;U;D d satis es Petri's condition to in nite order at the point
p U

This result can be extended in various ways. For instance, th regular setCR’Reg E; U;Dy
de ned above dependsa priori on the choice of a pointp . U, but one can also nd a Baire
set of operators such that Petri's condition to in nite order R satis ed simultaneously at every
point in U. More generally, one can consider smooth families of operats parametrized by a
nite-dimensional manifold and prove that for generic families, every operator in the family
satis es these conditions. In , we will prove that the normal Cauchy-Riemann operators
of J-holomorphic curves can®all be assumed to satisfy Petri's aalition to in nite order in
regions whereJ can be perturbed generically. One of the advantages of focusy on purely
local conditions is that once we establish this result for somewhe injective curves, it carries
over immediately to their multiple covers, which will be a crucial ingredient in the proof of
Theorem[D.

The aforementioned extensions of Corollary 5.70 are all b&sl on the Sard-Smale theorem,
but Theorem 5.3 itself requires (aside from unique continuéion) only nite-dimensional analysis
and linear algebra. Indeed, the conditions de ning each of he spacesCRF;reng - U;D 4 4in the
statement of the theorem depend only on thek-jet of D . CRr,E ; U;D x ,at p for some nite
k N, and this data varies in a nite-dimensional smootﬁ’ manll?old. The idea behind the proof
is |?oughly to show that the set of jets of operators not satisfing the desired conditions lives in
\walls" whose codimensions can be assumed arbitrarily larg by making k larger. These walls
are not submanifolds in general, but are what we call Cg -subvarieties," whose local structure
is nice enough to apply Sard's theorem as if they were manifds. (The necessary background
on Cg -subvarieties is reviewed in Appendix'C.) The main technica work behind the proof is
then to estimate the ranks of certain large matrices that deermine the codimensions of these
subvarieties.

The rest of this section will proceed as follows. | , we introduce a general formalism for
studying di erential operators via jet spaces at a point, and explain how results such as Theo-
rem[5.9 can be reduced to a speci c technical lemma on estimatg the ranks of certain nite-
dimensional linear transformations. We will then address his problem for Cauchy-Riemann

operators in , leading to the proof of Theorem[5.9. The extension to a mult about nor-
mal Cauchy-Riemann operators of holomorphic curves for gegric J will be stated and proved
in , and will then give an important application of Petri's condition to global transver-

sality problefns as arising in TheoreniD.

5.2. Jet space formalism.  The contents of this subsection are not speci ¢ to Cauchy-Rémann
operators, but may be relevant in principle to any linear partial di erential operator with smooth
coe cients.

5.2.1. Germs, jets, and the vanishing order ltration. Fix a smooth n-dimensional manifold M
with a smooth vector bundle E Y M of real rank m b N. For a chosen pointp b M, we continue

to denote hy -
Eat oFd
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the vector space of germs of smooth sections & de ned near p. This space has a natural
[tration

(1) fd pfd . oFd. pEd.
where foreachk  Zwedene pE dk ¢ pE ¢S the space of germs of sections whose derivatives

up to order k Pat p all vanish. For k 0O this is a vacuous condition, hence prdk PE ot
For eachk bz we de ne the space ofk-jets of sections at p by

BE: pEd pEq ]
We will typically abuse notation by using a single symbol sut as to represent a section in
E ,itsgermin pr and its k-jet in J";E; when there is need for more clarity in the notation,
we will sometimes write the natural quotient projections as
B ke
Ed9 pfdyy E
so that the k-jet of a section bEdat p can be denoted byJF',‘ bJ";E. The jet space inherits
from (B.I) a nite lItration
(5.2) JE pIE pIEq . LpIeEg LpIEL Oy
where for each” _ k, bJF',‘Ed ! is the kernel of the quotient projection J, : JXE =~ J,E
There is an obvious isomorphism of) JE with the ber Ep, and the spaceslglidfor k Oare
all trivial. If we choose local coordinates x1;:::; X, for M identifying p with 0, R", together
with a trivialization of E near p, then Jg for eachk | Z becomes naturally iderj'_rﬁ ed with the
vector space ofR™-valued Taylor polynomials of degrBe at mostk,
. m.
(5.3) I(x C; c bR :
| |o
The notation for the ltration above has been chosen so that under this identi cation, bJ,‘;Ed
becomes the space of Taylor polynomials of degree at moktthat are also Oblx )
Given two vector spacesv V9 v v2 :iiandW WO w!? WZ ;11 with
ltrations, we will say in general that a linear ma'p T:V W presérves the ltrafions if
TbV”d€W” for everyn* 0. v

5.2.2. Di erential operators and formal adjoints. Since we are mainly interested in Cauchy-
Riemann type operators, for simplicity we shall only consicr di erential operators of order 1 in
the following discussion, though the jet space formalism aald easily be extended beyond this.
Given a second smooth vector bundle~ M of real rank ° . N and a rst-order linear
partial di erential operator D : E Y F'%with smooth coe ciE’nts, D descends to a map
k /= b k 1 ;
e g y p o that sends kerJy € pHE ¢ INto ker Jp € p g for eachk bZ, thus it also
descends to a linear map
.1k k 1p.
D :J,E " Jp F
Let us denote by -
B prE;Fd€Hom _prd'_prd.
the vector space consisting of all germs ap of linear di erential operators bEd F  of
order at most 1 with smooth coe cients. The vector space of linear maszr';E Y Jl'g 1IIEJ tﬂat
are induced by operators inprE; F dWiII then be denoted by -

ngE;Fd€Hom JSE; I TR
and we will again abuse notation by using a single symbol suchsD to denote a global di erential
operator bEdk|/| de, its germ in prE; Fd and the map in DF',‘bE;Fd that it determines.
Observe thatDpBE; F dis a nite-dimensional vector space isomorphic to thebn 1d—fold product

ofJ[')‘ lHombE;F . indeed, if we x local coordinates X1;:::; Xy 4identifying a neighborhood
of p with the n-disk D" of some radius |, 0, along with local trivializations of E and F over
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the same neighborhood, then eaci b prE; F d is represented by an operatorCg B n. Rmd

- v
n. -
Cg B 'R OIof the form
?n
(5.4) D a4 b
i1 B
for some smooth functionsay;:::;an;b: D" Homme;R‘ For a given E ,the k 1r

and these are equivalent to bundle map de ned near p.

jet of D at pis thus determined by theQIE( * 1E—jets of the functions as;::: tbﬂbb gt thatbpointsI
We will also consider a subset Y

I.'L),pr;Fd € prE;Fd'
which is assumed to have the property that for any givenD [, E;F , another operator
D1, DpE;F ti b “Pb d
Tb Ph— dsa IS es
Dr, BpyFiFy o D1 D AforsomeA = pHomEF 44

ie. Q,pr; F d is an a ne space over prombE; F dd The space of masz,‘jE
by operators D b I.'prE; F d then de nes a subset
K 2. K e -
[prE,Fd € prE’Fd
which is naturally an a ne space over the nite-dimensional vector spaceJ[,‘ 1HomE; F
In order to bring formal adjoints into this picture, we need t o make choices of bundle metrics
for E and F and a volume form onM near p; these choices will often be referred to collectively

as the geometric data . It will be useful to x geometric data once and for all at the p oint p
itself, while allowing it to vary at other points near p. Concretely, x a pair of inner products

¥ J"; IF induced

—

O X , AEp on Ep; hp X , AFp on Fp;
along with a nontrivial alternating multilinear n-form
n .
P i T, M:
Let us denote by S?E E E M the vector bundle of symmetric bilinear formsg E Y
R. The space ofk-jets gf buﬁdle rjﬁletrics on E which match g, at p is then ‘ -

K Lo k o2 0 ) .
Jp mbEd' ngpSE Jpg 9 ;

and it is naturally an a ne space over the nite-dimensional vector space kerJS € JF'J‘ S°E
We similarly de ne the a ne spaces

K i K o2 0 )

Jp med : hbJp SE Jph hp

and )
K cd K 0 .
Jp VbMd : bJp "T M Jp o

which consist respectively ofk-jets of bundle metrics onF matching h, at p and k-jets of volume

forms on M matching , at p. We will again abuse notation by using a single symbol such as

gor, . to denote a global bundle metric onE that matches g, at p, or the germ of such a
.X . -. . k . . . k k

metric near p, or its k-jetin J5 mE . ; similar remarks apply to Jg med andJg v\M .

Any choice of smooth bundle metricsg ' \E on E and h x N on F and a volume
form r—b nbMéj assigns to each di erentigﬁ operator D : bEd y Q:d a formal adjoint
D Fy n B 4 Satisfying the relation -
» »
X;D N XD : 2E for all IDC@bEd' bC@de'

M M
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Fix local coordinates and trivializations near p to write D again in the form (5.4). The chosen
bundle metrics and volume form can be written in terms of the sandard Euclidean inner product
;5 and volume formdx; ::: dx, as
X' A v v
' N x ;G)\; N x ;H)\; FXmviiivan

for some smooth functionsF : D" R, G:D" End R™ jand H : D" End,R , where
F is everywhere nonzero ands anddH take valueléI in the spaces of symm&ric positive-de nite
matrices. Note that the condition de ning D does not change if the sign of is reversed,
so without loss of generality let us assumé= | 0. One can then compute a local formula for
D :Cng”;RdMCQbD”;Rmdas ’

? 1.T _ 1 T ’ Ty . AT
(5.5) D be adeg G b'H | aJHB‘bIan ijaJHd
We observe from this formula that the germ D Dp F; E jat p is determined by the corre-
sponding germs of the geometric datag;h; and b pr F . Moreover, if the rst-order
terms @ in D are xed, then for any Fd the bk 1 jet of(E) at p is determined by the
bk 1d—jet of g, the k-jets of and h, lBn(s)the bk 1d—je of the zeroth-order term bin D. It

follows that the correspondence assigning to each I@,pr; F ,with germs of geometric data
g;h; the germ of a formal adjoint D prbF; Ed delé’cends to a well-de ned map
= k 1 k k K e g -
(5.6) [p,pr,Fd Jp mbEd Jp med Jp VbM d prF,Ed
All the spaces involved in this map are nite-dimensional manifolds, and the map is smooth.

5.2.3. Unique continuation in tensor products. If V. V® vt vz :iiandwW WO
wl w2 , rare two vector spaces with ltrations, then V D W inherits a natural ltration

: 0 1 2
VoW gV W VoW v W e

where for eachn | 0,

x
n. 0 n 1 n 1 n 0.
prWd'prdeVpW q "'prWd

Lemma 5.11. Given two Itered vector spacesV and W, if t b b\/ 0 Wd” is nontrivial, then

for somer bN’ t can be written as
;

2

t Vi W
- J p ]
for two linearly-independent setsvy;:::;v, . V andws;:::;w, W suchthatforallj 1;:::;r,
we have b b
Vi kai and w; bW‘j where ki Y n

Proof. Supposet o | 1V

is linearly dependent, so thgre exist constantxy;:::; ¢ with o i G Vi 0 and not all of the ¢
are zero. After reordering the set, we can assume without l@sof generality that c; 0 and, for
everyj 2::in;rwith g 0,k | ki Writing vi o | G v; then gives

1 % i 2¢
>r q
t Vi i where ClW) —Wg!
i 2 'p L L "o '
For eachj 2:::;r,wenowhave’; n ki _n kg “q,thusw; W1 _ Wi and
therefore \y; W i, hence the shortened sum a?so satis es the desired conditi@. One can

apply a simiI(Jﬁ procedure to shorten the sum if insteadwsy;:::;w; is linearly dependent, and
repeating this enough times produces two sets that are bothihearly independent.

Let us say that a di erential operator D Dy E;F ,has the strong unique continuation
property if there exists no nontrivial solution I:‘kerD such that b pr dk for every k bN'
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Proposition 5.12. If D prE;F and D prF;Ed both have the strong unique con-

tinuation property, then thE’re exists no nontrivBI elemert t b kerD D kerD such thatt
k
P g D o q for everyk b N.

Proof. Givent kerD _kerD nonzero, there are uniquely de ned nite-dimensional subgaces
V _kerD and'W kLPrD such that for any pair of linearly-independent sets 1;:::; . kerD
ang 1;:::;rbke|€D with t o ; i b
S

We claim there existsk N such that no nontrivial Visin pE ¥ and no nontrivial | W
isin pF k. Indeed, ifthere does not exist such afumber fov, ?hen there exist sequences
i Vandk; N with k; and prdkj for every j. SinceV is nite dimensional,
Weti:an normalEe the angltﬁen nd a E’onvergent subsequence | " V whose limit is
nontrivial, but must also belong to « | pr dk’ giving a contradictron. 8Tﬁ’e same argument
works for W. b

Now, xing k = N as in the previous paragraph, suppose prd D pr kK andt 0.
Lemmal[5.11 thef? writest in the form o i i | Wherethe j 518 j are necessarily bases of
and W respectively, but they also satisfy | prdi and j  pfq" with 5 m;, 2k for
eachj. This implies either * k or mj * k't each case, antl is lghus a contradiction

5.2.4. Local rescaling. Every di erential operator is locally equivalent (up to choi ces of coordi-
nates and trivializations) to an arbitrarily small perturb ation of an operator with constant coef-
cients and no lower-order terms. To make use of this observaon, we shall from now on impose
the following additional condition on the a ne space of local operators [prE; F de prE; F d

Assumption 5.13. There exists a choice of coordinates identifying a neighbtioodU . M of p
with D" _ R" and pwith 0 . R", along with local trivializations over U, in which the ét-order

coe cients a : D" " Hom, nr‘;R\din D o3 g b for eachD IDI@,pr;Fdare constant.

Let us x once and for all a neighborhoodU _ M of p with coordinates and trivializations
for which the condition in Assumption h()qu. For every" L0; 12 we then associate
to each D prE;F an operator D Dp,E; FOI such that if I:Ptakes the form D tﬁd

y

° & t?(dé d bbxd ggin the chosen %oor Inates and trivializations, thenD - is given

2

°rdfd | Ab¥ag b PpXgpgd T p 0%k

We can similarly associate to each o E 4 and pF 4 germs of sections -, E and
b pg ¢ Which in coordinates takeb[hel?ordm b b d b brd
‘Bd'° bXd  B'd’ bXd
We then have
D- - "P g

for every D b DplpE; F OIand prd Letting these operators descend to jet spaces, we obtain

. ! : . k E-
for every D b prE, F q2 smooth 1-parameter family of operators D pr bE’ F d( 0, and

linear maps
k ke - .
J,E Y JpE : by
which for " | 0 are isomorphisms sending ke J[‘;E onto kerD - JF',‘E.
Next, x geometric data consisting of bundle ﬁwetrics g ) E o€n E and h x 7 F on F,
and a volume form , such that all three match the xed choices of data Op, hp and , at p.
Using the same coordinates and trivializations overJ, we can write g X G N h 'H 5 and
Fdxy ::: dx,, andthen de ne a smooth 1l-parameter family of geometric cf(aa g he; o
for " 5 0; i’e by Yeplacing the functions G, H and F with

G"t?(d: Gb"xd; H--B(d: Hb"xdf F--bxd: Fb"xd'
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Note that since p corresponds to 0 D" in coordinates, the modi ed geometric data still matches
the xed choices gy;hp; p at p, é-ﬁd we can then descend to jet spaces to obtain smooth 1-
parameter families

’ Jk 1

g 5P
for " LO; 12. Now if D prF; E , denotes the formal adjoint of D I@,pr; F d with respect
to théDgeometric data g;F?; and D prF;E is de ned from D “via the same rescaling
prescription as D+ described above, thg’n we see froni (3.5) thaD . is in fact the formal adjoint
of D+ with respect to the data g-;h-; «. Moreover, Assumption[5.13 implies that the map
DX E;F DX E;F ,induced by Dy, E;F Do E;F ;:D _ D- preservespX E;F , so we

P~ " d Ph—" d . Ph— " d P~ d . P~ d
can now t|4he smooth map (B.8) into the rov% of a commuta |\lr/LL diagram

. K . k
mbEd : h- bJp med, " bJp VbM d

PeEiFy b "MEq W MFyq Iy My —— DR FiEy

BeEiFg b "MEy W MFy I v My —— DpFiEq
where the vertical maps abbreviated by \"" are de ned via the corresondenced I/ID g.. o,
h _ he, ~and D D.. Thecase” 0 is special: since alD [y E;F dﬁave maE:Kllng
ré?—lérder t'é)Klns and the tg’;@ometric data g;h; all match at p, Dg arﬁi D, are uniquely-de ned
operators that depend on the space[prE; F OIand the chosen inner productsg, and hy, but not
otherwise on the specic choices of operatoD I.'prE; F ,or volume form or bundle metrics.

Similarly, the volume form ¢ and bundle metriEsgo and ﬂo are fully determined by the xed
data p, gp and hp.

5.2.5. Right-inverses. Henceforward we impose the following additional assumptio.

Assumption 5.14.  The operators Do : JSE ~ JX 'F and D : J5F ¥ J¥ 1E obtained by
the rescaling procedure iné[5:22| are surjective* *

Remark 5.15. It is not dicult to show that Assumption 5.I41$ satis ed whe never the op-
erators in [Q,pr; F . are elliptic. For Cauchy-Riemann operators in particular, this is virtually
obvious, and we wﬂl write down explicit choices of right-inverses for that case in@.

Lemma 5.16. Under Assumption [5.14, everyD I%ng;Fd is surjective, and so isD

k - - ; K P k k
Dp bF, Edfor every choice of geometric dateg b‘]p mbEd , h bJp med and bJp VbM d-
Proof. Since D~ converges in HonE)Jr';E;Jg lFd to Dg as " 0, surjectivity of Dg implies
for any given D DF',‘bE; F  that D- is also surjective for ail" | 0 suciently small. The
isomorphism ker®  kerD . induced by the correspondence » forall ", O then implies

that D is also surjé@tive. The same argument works for the fo'?rlﬁal ajdints since D . Y D, as

" 0. -
I/I

MSince we are working in nite-dimensional spaces, surjectity allows us to choose right-inverses
Sqk 1 ke Sk 1 k
To:Jp FMJpE, To:Jp EMJpF

for Do and D respectively. We would now like to derive from these similarright-inverses for
other operators that are close toDg and D, along with explicit isomorphisms between the
kernels of nearby operators. To this end, consider an open ighborhood

goiho 0:Dog U Jp "mEy Iy mFy Jg My By EF
which we reserve the right to make smaller as necessary. Gineg;h; ; D U, we will as

usual denote byD the formal adjoint of D with respect to the geometric dgtab i h; Since
DoTo landDyT, 1, we can assume after shrinkingJ that for every bq; h;™; Dd bU’ the
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operators DT o : Jg 'F  J& F andD T, :J5 *E ~ J§ 'E are both close enough to the
identity to be invertible. lﬁﬂs gives rise to right—inverseglfor D and D , de ned respectively by
T: ToPDTog Lokt y JE; T To Toy RN Py SR [ =5
Notice that T and T depend smthth onbg;h; ; Dd u.
For a xed bq; h; ; Dd U, arbitrary operators close to D in [B,')‘bE; F d have the form g :
D AforA J,‘j 1 HombE; F dsmall, and the formal adjoint [ with respect to the geometric
data bg;h; d Is then D A , where A JF'J‘ IHom,F; Ed is the bk 1djet of the berwise
transpose (with respect tog and h) of a 4‘?nooth bungle map E F representingA. If Ais

small enoughf then we can use the same trick again to write down right-inveses ofl and Iy
in the form

I

—

. 1 1 ' j .
bh: TblBTd Tbl ATd T- blCibATci’

BT BT 4 Tt AT 2 T 7 AT |
i o
Shrinking the size of A further if necessary, we can then de ne isomorphisms

g . .

. j j .1k Ke.
.1 [ A 1T AL:IF IR
P A j b Tdb d-“p P

which satisfy

B pa, B A D ad B . B A D;

N

so they restrict to isomorphisms kerD ®°“dkery and kerD  ®“dker[y respectively. The
M heon A ko1 .

operators P ;Adand P ;Addepend smddothly on bothbg,h, X Dd 5 and A bJp HombE,Fd

5.2.6. The universal Petri moduli space. We now consider the subset

k k 1 k k K - k k
V€Jp mbEd Jp med Jp VbMd I%pr’Fd JpEpJpF

consisting of all tuples i9; h; ; D;td such that
t kerD _kerD _ JKE  JKF;
b p € P p PV
where it should be understood thatD is the formal adjoint of D with respect to the geometric
data g;h; . In light of Assumption 5141 and Lemmal[5.16, the obvious progction endowsVK
with a natural vector bundle structure
k k 1 k k Ko -
Vv " Jp mbEd Jp med Jp VbMd [BPbE’Fd
whose ber over i9; h; ; Dd is kerD _ kerD . We will prefer to think of VX rather as afamily
of vector bundles over the space of operator%[')‘bE; F d parametrized by the space of geometric

data \g;h; ng 1 mE 4 Jrla( mF 4 Jrla( VM 4 - Thus for each g;h; , denote
kaq;h; g ibD;td CHI R ka) :

8\We will not need this detail, but it is often possible to choos e To and T so that they have degree 1 with
respect to the vanishing-order ltration, in which case the operators AT, TA,A T and T A also have this
property and are therefore nilpotent. It follows in this cas e that all in nite series appearing in this discussion are
actually nite sums, so A does not really need to be small.
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It will be useful to amend these de nitions in two ways. Given a pair of real vector spaces/
and W, let us say that an elementt V =W hasrank rift o Jr 1V » W; for two linearly-
independent setsvy;:::;vy . V and Wy :.:;w, . W. Note that if V is nﬁe dimensional, then
therankoft V W unde'?the canonical isonlfbrphismv W Home ;W | is just the rank
of the corres'BonBing linear mapV W. As a conse(fl)Jence, whenevey and W are both
nite dimensional, the set of elementidof rankr  Nin V _ W is a smooth submanifold whose
codimension is the dimension of HorH<erT;cok8'Tdfor sPIinear mapT :V Y W of rank r,

giving *

i VW kt r( dimv dimw , dimV imWw
(5.7) dim t bY p rankt r dim dim b dim My bd|m My
ndmv  dimw r2:
With this understood, we can de ne for eachr = N a smooth submanifold
Ke 0 qohe Q- k ) .
Ve bg,h, ; D,td bV rankt r’ ;
which is foliated by the smooth family of smooth submanifolds
K e . 0 e K o e )
Vrbg,h, d: bD’tde bg,h, d rankt r
parametrized by the space of geometric datgg;h; J¥tm = J¥ m Fyq JEvM .
Finally, recalling the ltration by vanishing orders in éfZ:l] we He ne for eacl%‘ b [1; e ;IE)n tﬂe

open subset

VE T gih Dty VAt Ik akE )

f i Ditg VOt BE  BF

which is likewise foliated by a smooth family of submanifolc

K qome - 00 K o k ke ) .
Ve gihs gt Pty Vi gty JpE p JpF
parametrized by the geometric databg; h; E
The Petri map prdp prdI/I Py

D Fddescends for eaclk bZ to a linear map
k. JKE

k k
0 JpF " prE D FOI

that preserves the ltration by vanishing orders. Since the projection map Vl‘ ek h; du JF',‘E
JF',‘F sending bg;h; X D;tOI to t is smooth and also depends smoothly on the geomietric data

i9; h; d K gives rise to a smooth family of smooth maps

K o\/K o h- k S D- Kt .
(5.8) r;‘ .Vr;‘tp,h, dUprEp Fd.bD,td DU t)td
whose zero-set we shall denote by
K el - k 1 i~ K nh- k .
PEEM ¢y g Pt Ve g e O
This is the so-called universal Petri moduli space Our main goal is to prove under suitable
assumptions that it is a Cg -subvariety in Vl‘ bq; h; ,and to establish an e ective lower bound

R N on its codimension. Once this is done, Sard's theorem (see Aendix[C)) will imply that
foralmost every D bl%lp(bE; F d the space

K N-h- - L . K rope )
Pr;\bg,h,,Dd. t bD’tdbPr?‘bg’h’ d
is a Cg -subvariety of codimension at leastR in the manifold
K mbe -y - . k ke °) .
Vr;\bg,h,, Dd' tbkeerkerD rank t r,thpEpJde :
If the codimension R is large enough, this will imply that P l‘ p9; h; ; Dd is empty.
Denote the linearization of the map (5.8) at the point bD;td bp l‘ Ao h; d by

do ﬁ~bg;h; : D;td:TbD?‘th‘bg;h; du Jr'J‘bE o F 4
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where the subscript in \dy" is meant to emphasize that this is a partial derivatve|we di eren-

tiate with respect to bD;td while holding bg; h; d constant. Estimating the rank of d, 'r‘ re-

quires being able to write down a su ciently large space of tangent vectors inT p ;tdvl(f p9; h;

Suppose that g;h; ; D, belongs to the neighborhoodU of ,go; ho; o; Doy chosen inéSﬁ
I

so we have right-inversesT ;T and isomorphisms DA DA that depend smoothly on

bq; h; ; Dd U and a small zeroth-order perturbation A J[')‘ HombE; F d We can use this to
associate to everyA b‘]‘l’( L HombE; F dandt IDkerD D kerD a smooth path

b dmvkbg;h; d:SbuB Al P SA4p bD;SAdotd

which passes throughbD;td at s 0. Observe that if t ° Jr 1ip | for two linearly-
independent sets 1;:::; JF‘)(E and q1;:::; JF'J‘F, then DisA, and D:sa, Map these
to linearly-independent sets whens is close enough to 0, since both operators are then close to
the identity. It follows that if D;td P h; then the path above is in Vrk p9; h; d for

;0 suciently small. Di erentiatingti’t at s 8 then feeding the resulting tangent vector
into dp 'r‘ i9; h; ; D;toI and multiplying the result by 1 for cosmetic purposes, we obtain the
linear map

“he - .+ -1k 1 . k .
Lygih s Ditg: dp THomEF  IpE | Fyg

k .
App “pTARL 1T A gty

This depends smoothly on the dataTtﬁ;h; : D;t“ and is well de ned whenever,g;h; ; D ,is
su ciently close to bgo;ho; 0:Do e rank ofqhis operator is clearly less than or equal to

that of d, 'r‘ bg;h; X D;td We shall abbreviate the special case

. Thee Pyt -7k 1 . k
fort kerDo , kerDg, as this will turn out to be the only case that matters in practice. In
fact, R/e can rPow use the rescaling trick from to reduce the local analysis of the space

P ﬁ‘ bg; h; dto the problem of estimating the rank of L;.
For every " IQ; 1_andq bZ and every choice of the geometric dataog; h; ¢ one can de ne

a di eomorphié?n e

K 4 K b S n- ct
(5.10) " .Vr;~bg,h, d A Vi bg",h", "d bD,td bl(IlB"’t"d’
where the map kerD D ker D % kerD- D ker Dl-- ot blglt" is de ned via
(5.11) D by "o
The scaling factor "9 here is not strictly necessary, but has been added for use irhe proof
of Lemmal5I9 below. We see that - maps P l‘ i h; q bijectively onto P l‘ bg';hu; - for
each" IQ; 12. This map is not de ned for * 0, but the data g, h-, «, D+ and D. do
have Wal-de ned limits as " 0; in particular, Do and D are both operators with constant

coe cients and no zeroth-oro’/elr term in our chosen local coodinates and trivializations. The
following de nition is highly dependent on this choice of coordinates, but so is the map -; there
will be no problem as long as the same choices are used for both

De nition 5.17.  We will say that an element ofJF'§E or J'IgF is homogeneous of degree d if,
under the natural identi cations of these spaces with space of Taylor polynomials determined
by the chosen coordinates and trivializations from Assumpion .13, it is represented by a

homogeneous polynomial of degree. Similarly, we will call an element t o

j
. . b
JXE _ JKF homogeneous of degree d if for every j, the elements | bJ‘I’(E and | bJEF are
homggeneous with degrees adding up td.

Remark 5.18. The homogeneous elements J[')‘E
are xed under the map (5.11) for every " |

D JF',‘F of degreeq are precisely those which
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Lemma 5.19. Suppose that for every homogeneous element ker ¥ _ JXE ~JXF of degree

less than" that also belongs tcker Do kerD y, the linear map Ly : Jg§ * H€ombE; P du ngEp Fyq
has rank at leastR | N. Then for every r bN’ P rk i9; h; d is a Cg -subvariety of Todimension

: k R
at leastR in Vis Ne HH.
Proof. Suppose,D;t, P KX gg:hi qandletq 0”1 denote the largest integer such

b db "bw " d f o . ”

that t bJ,‘;E J,‘;qu. Use this value ofq to de ne the scaling factor in (.11 for the de nition
of the 'ﬁi eomgrphisms « in (B0). Identifying k-jets with Taylor polynomials as in (6.3), we
can write t as a nite sum o ; j  j, where for each individual value ofj, ; kerD is a
polynomial of degree at mostk witﬁ lowest-order term of degreeu; | 0, ; , kerD™ is likewise
a polynomial of degree at mostk with lowest-order term of degreev;”, 0, andu; v; _ g, with

equality u; v; gin at least one case. It follows thatt- JF'§E D J'IgF converges as' 0
to a nontrivial homogenous elementty kerDg = kerD, € I:\’JF',‘E D J'p‘F of degreeq °, and
kbtod 0 since X t- kt. Oforevery", 0. As a consequenceg ;h-; Dt VK
converges as' . 0 to ,go; ho; o;Do;tod VK. Since Li, has rank at leastR by the hypoth'%sis
of the lemma, Klfollows forall”, Osu c|%ntly small that
rank do 'r‘ bg--;hu; --;Du;tud*rankng--;hn; n;Du;tud*R:
Fix " | 0 in this range. Then an arbitrary element bD T;tTd Vl‘ bg; h; d in some small neigh-
borhood of bD;td belongs to P :‘ bg;h; d if and only if "bD T;tTd 0. Since - is a
di eomorphism, the linearization of * :Vl‘;\ Gihy ¥ Jr'J‘bE 0 F 42t Pty has the same
image as the operatord, 'r‘ bg--;hu; " D";t"d and thus has rank at leastR.
5.3. Application to Cauchy-Riemann operators. We shall now apply Lemmal5.I9 for the

speci ¢ case of Cauchy-Riemann type operators. For the resbf this section, assumeM is a
Riemann sun‘aceb o d E is a complex vector bundle of complexrankn = N, F HomeT ;Ed

and [prE; F is the space of germs of real-linear Cauchy-Riemann type opa&tors on E nearp

. This space of operators satis es Assumption[5.13 since oe can always choose trivializatioﬁ’s

and coordinates in which everyD [prE; F d is a zeroth-order perturbationof _: ¢ i . To

de ne formal adjoints, we assume& ; e IS the real part of a Hermitian bungle ﬁ1etric %n E,
is the area form on determined by a Hermitian bundle metric ) onT ,and h X 0N

is the real part of the Hermitian bundle metric determined on F via7}he natural isomorphism

F T E.
pC

Remark 5.20. It is important to keep in mind that the operators D [Q,pr; F ,are in general
real- and not complex-linear, thus throughout this section the symbol|§ Honbv;a/d andVv W
will always refer to real-linear maps and real tensor products unless otherwise note even in
cases where/ and W are both complex. We will use the notation Hom:bV;Wd and V D cW to
specify the complex analogues of these operations.

5.3.1. A digression on real and complex tensor productsSupposeV and W are complex vector

spaces, and letW denote the complex conjugate ofW, i.e. it is the same real vector space,

but with a sign inserted in the de nition of its complex struc ture. There is then a canonical

complex-antilinear isomorphismW Y W de ned by the identity map, and we shall denote it by

W % W w bl{IW'

The spacesV _c¢W andV _ ¢ W are both quotients of the real tensor productV = W, e.g. we

obtain V _¢ \B from V \ﬁ by introducing the equivalence relationiv = w v _ iw, and for
cW Pne relation is'instead iv _ w v _iw. If the resulting qd%tient pr%jections are

V
i ., b . . .
deRoted by .Vp UVPCW nd .Vp % Vch,thenweobtaln an isomorphism
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This discussion carries over verbatim to a pair of complex vetor bundlesE and F over , giving
a bundle isomorphism
The Petri map then ts into a commutative diagram

tEdp b d tEp Fd
(5.12) f
C C .
b tEdp® b dd. BdpS Bad — ° FpcFd bEpcly:
where ¢ : c Fd denotes the obviouscomplex-linear Petri map that

E. .. c F E
is de ned for %ng RNO go%dﬂex P/ec?or bundles. Suppose in paitular that E and F are line
bundles and we have chosen complex trivializations for botlover some regiond. The bundle i
inherits from this a trivialization over U such that the canonical mapF 5 looks like complex
conjugation, andE _cF and E _ ¢ k& likewise inherit natural trivializatighs. The diagram now
allows us to identif)P the real Pet'?i map with

Csg bU;Cd D Csg bU;Cd Y Csg bU;Cd Csg bU;Cd;

f p 9 bW (o T o

5.3.2. The main rank estimate. Fix a holomorphic coordinate chart near p and a corre-
sponding complex local trivialization of E such that the Hermitian bundle methcs onT and E
both match the standard Hermitian inner product at p. The bundle F naturally inherits from
these choices a local trivialization in which its Hermitian bundle metric also appears standard
at p. These choices identify elements o:ﬂr'J‘E with polynomials in z and z,

(5.13)

2

i e m.
o Z’z g, of bC ;
ik
hence
. K . k mhk 1(1?}\( zd-
(5.14) dimcJyE  dimc JpF mbl 2 ‘b k 1dd 3 :
Every D b[E’pr; F d is now identi ed with an operator of the form
. B m . m .
D B A.Cng,C d|/|C8bD’C q
where

s iyandA:D Endg,C™ ., The operator D obtained by rescaling as inéE;Z;ZI
is thenBsirﬁpIy g v b~ d
D : i 2B;
° g gs 'g %
and since the rescaled bundle metricg, hg and area forkh o are all standard in these coordi-
nates, the formal adjoint of Dy with respect to this geometric data is

Do B bg I§d 2—;:
We can therefore choose right-inverse§ o : J¥ 'F  JKE and T : J§ 'E " JXF that are

P
uniquely determined in coordinates by the conditiord -

iz i : m
(5.15) To Zlzc 5= 1zz C; OUJ Dk 1 ch,
b d
and
. 1 oo o
(5.16) T, Zzc 2 1dzJ 1z ¢ 0_ ] LKL chm

These choices determine the mapk; : J[')‘ 1HomE:F du J";bE D FOI in (69). Observe now
that the domain of this operator has a natural splll%ting -

k 1 . k 1 . k

19,m. . .
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If we were to restrict to complex-linear zeroth-order terms A Hom¢ E;F ,, then the per-
turbed operatorsD Do A would always be equivalent toD g under changes of trivialization,
killing any hope that P :‘ ;ho; 0;D ymight be a smaller space thanP l‘ bgo; ho; o;Do 4 For
this reason, we shall restrictL; to the complementary subspace consisting ofk 1 ;jets of
antilinear perturbations. Having done this, the following additional detail becomes relevant: for
A 'Jg 1%CbE;Fdandt °j ip | bkerDOp kerD,, the commutative diagram (5.12)
implies

k
LeAy  © A i ip ToA g
J
KT ToA | o
C OJpCJ
j

ipcToA i

where 'é denotes the map induced ork-jets by the complex Petrimap ¢. SinceToandT g are
complex linear while A and by | are antilinear, the expression on the right hand side is the
result of applying some real—lineg mapto t. o j.cj; the point here is that real-linear
operators of the form are well de ned on the com%lex tensor product whenever and
are either both complexﬁllnear or both complex antilinear. But as mentioned in Example[5.5,D ¢
satis es the complex Petri condition, so the fact that X t, 0 implies that '(‘3 bt 0 and
thus t, 0, so that the expression vanishes automatically. We conclle from this (ﬂscussion
that all interesting information in L is carried by the map

. .1k 13Am . k .

Clearly the rank of k: gives a lower bound for the rank ofL:. The workhorse result behind
Theorem[5.9 is now the following:

Proposition 5.21. For every * N, there exists a constantC- |, 0 that depends on" but not
on k, such that for all t . ker kerDgo . kerD, that are homogeneous elements of degree

NN k Nk 1gem. £ k ;
less than" in JpE D JpF, the operator k¢ :Jp Homch, F dy prE pC Fdsatls es

rank C-k?:
Lemma 5.22. If Proposition 5:211holds in the caserankc E 1, then it holds in general.

Proof. ForrankcE m N, the chosen trivializations furnish local splittingsE  E; ::: En
and F Fi oo Fmbthat are respected byDg and D, i.e. both are m-fold direct sums
of identical operators given by _ or respectively. Their chosen right-inversesTo and T,
also respect these splittings. L& us Benote the resultingittings of the kernels by kerDg
Ky it KmandkerD, Li ::: Lpm, sothatkerDg kerD, splits into m? identical
factors of the form K; _ L;. Similarly, ’JF',‘bE Fd splits into' m? identical factors of the form
g Fi Fig and the Petrimap K230 JgF  JpF FdsendngEipJgF,- to Jg ] ipFig
for everyi and j. A homogeneous element ker X lEerDo kerD, of degreeq ° is now
de ned by its m2 componentst;; _ ker X bRig Lig &t least ohe of which must be a nontrivial
homogeneous element of degreg call this component t,,. Now consider the restriction of k¢
to the subspace

J¥ 1Homchu;de€Jg *Home E;F 4
de ned as the bk 1 ;jets of bundle mapsA : E  F that annihilate E; forall i u and have
image inF,. Since tﬁre bundle metricsgg and hg IQre standard in our chosen trivializations, A
then belongs to the corresponding subspacael')‘ lHomch\,; Eud € J"; 1Homch; Ed Composing
our restriction of |y with the natural projection J,‘;bE Fd Y .J,‘;bEu D dethen produces an
operator J¥ 1Homchu; Fug ¥ ngEu 0 C Fy4that matches the rank 1 case ofly;, and its rank
gives a lower bound for the rank oflyt.
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The remainder of this subsection is devoted to proving the rakc E 1 case of Proposi-
tion B.271.

We shall write everything in the chosen coordinates and trivalizations so that elements of
JXE, JXF and ngE 0 cF Lare now identi ed with complex-valued polynomials of degres at most
k in the variables z and z. The holomorphic polynomials form kerD o, while the antiholomorphic
polynomials form kerD ;. Using (5.13) to compute the kernel of the Petri map, it turns out that

arbitrary elements of ker * _ JXE _ JF now take the formd

€ p
-"k . . . .
t an, 2 _z2" izl _iz" izl 2" 2 iZ" R:
) mop p o2 P
jn 0
whereaj, ;b R are real coe cients subject to the condition o ; | qan o , qbn Ofor

everyq 0;::7k, andR is an arbitrary sum of homogeneous elements that have degregreater
than k and therefore vanish automatically under K. For Proposition we are interested only
in homogeneous elements of some degree less tharso let us x an integer g o * and write

q1l

t a 2 2911 izl _jz9 1] izl 4t jz4 1]

N p bz p

j 0
where aj;j R are now subject to the conditionso [ ga o ! g 0 and we explicitly

j
assume that Iﬁt least one of these coe cients is nonzero. Theaion of an antilinear bundle map

A b bHomch; F ddon a section b bEd(:an be written in trivializations as

 dfd’  dHd
for some complex-valued function , thus the map A : JF'§E Y
A ? wz'z¥
u vnk 1

JF'§ 1F can be written as

for some coecients , , C. The transposeA : JSF J"; 'E is given by exactly the
same formulalhere we aretiaking transposes of the 1-by-1 Kkatices uv and thus leaving them
unchanged, as the antilinearity of A makes the transpose the appropriate transformation here
instead of the Hermitian adjoint. With this data in place and the explicit formulas given in

(515) and (5.18) for T and T ,, we now obtain an explicit formula for btbAd ngbE pC Fdas

g1
btbAd | cJ'UV ZUzv 4 cJqUV.Zu azv

where we have de ned
G: & b bC for j 0;::5;9 Lt
Two immediate remarks are in order: rst, the second summatbn in this formula stops atk g
instead ofk 1 because all terms inA with degree larger thank g produce terms ink that
have degree greater thark and thus vanish in J,‘;bE pC Fd Along the same lines, we notice that
wheneverA is given by a homogeneous polynomial of degree, is likewise homogeneous
. . . . . . . k . k
Wlth degreen g, indicating a natural splitting of the map k: : Jg HomeE, F dy prE 0 CFd
into factors ’ -
04 ... :

b bPY i BP

where foreachn  0;:::;k q, bp”d is de ned on the space of homogeneous degreepolynomials

in J[')‘ THomc,E: F d (Strictly speaking, there are additional factors de ned on homogeneous
polynomials ol? higher degree, but we will ignore them becauesthey are trivial.)

9This seems a good moment to remind the reader that all tensor products in this section are real tensor
products unless the symbol \p c" is used.
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For each individualn  0;:::;k g the map Lp'd takes the form

bf
s g1 G g1 G
and " L B ZUzv q -1 ZU azVv
bAd u v on i OV ) 1 j 0 u-aq
To simplify this expression, we can writec p %G 1y qu as a column vector and de ne
for integers u; v X 0 the complex numbers
: 1 1 : 1 1 .
v - v i Vg ¢ and u - U g a1 G
so that now
bpndbAd uv vziz" A uz" 92"
u v n

If we now identify the homogeneous degreen part of A with the vector in C" ! given by
b MmO n LLiIL ong and use the monomials

as a complex basis for the homogeneous degree g part of Jp H

F 4 then pp'dis represented
by the g a 1d-by- 1d complex matrix

p°

n

(5.18) p'd 0

n

In this matrix, all entries not written explicitly are under stood to be 0.

Lemma 5.23. For any set of distinct positive integersiy;:::;iqg, the matrix
1 1
11 qQ 7 1
1 1
g Q g 1
is invertible.

Proof. This follows from the well-known formula for so-called Cauchy determinants
1 1 qi 1
21 W 1 Wq _ I #o4g Wig

det

: ‘. : q ;
1 1 T bZi W q

see e.g.[[PS98, pp. 92 and 279].

Since at least one of the coe cientsa; or Iy is nonzero, the vectorc Cq cannot be annihilated
by g linearly independent vectors, so we conclude:

Corollary 5.24. In the matrix (&18), at mostq 1 of the entries ¢;:::; , can be zero.
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This result implies that at most @ 1 columns of the matrix (518) need to be eliminated in
order to produce a matrix whose columns are all linearly indpendent, hence ifn . q 1, we
have A

rankc bp”d* n a1
If k * 2q, then summing this estimate forn q;:::;k qgives

1
rankcbtkl 2 ok 29 1 Ebk 2q 1dL})< 2q Zd'

and thus

rank bt * b_k 2q _1dl5( 2q 2d_ bk 2 ldl5< 2 2d_
whenever k 2°. This estimate might not be satis ed for k underneath this threshold, but
since that isﬁjnly nitely many cases, we can now just choose &onstant C- | 0 small enough
to achieve C-k? _ rank k for those cases andC-k? bk 2 1d6< 2 '2d forall k , 2.
With this, the prgof of Proposition 5.2Tlis complete.mi A

5.3.3. Proof of Theorem [5.9. Consider the Cg -subvarieties P l‘ bg;h; d e Vr‘f\bg;h; q from

in the specic setting of local Cauchy-Riemann type ogrators D b [Q,pr;Fd with
rankc E m. For any given operator D I%ng;Fd we know from Lemmal[5.16 that
D : JKE ¥ J¥ 'F andD :J§F ¥ JX 1E are both surjective, thus (5.12) gives

" dimkerD dimkerD  dimJXE dimJk 'F

mbk 1d6< 2d mkbk 1d Zmbk 1d;

and plugging this into (5.7),
(5.19) dim V£ Qihi s Dy 4mk 1y r2:
Next, combining Proposition with Lemmal5.19 gives:

Proposition 5.25. For every * N, there exists a constantC. | 0 such that for all integers
~ k . . k . . . _ .. . .
k and all r b N, P £ bg,h, de Vr;\ bg,h, d is a Cg -subvariety of codimension at least
Cck2.
Sard's theorem (see Propsitio_C.B) now provides a Baire siuget
kireg . C o k =.
o bE,F ;T dg%PbE’Fd

such that for all D ,'freg EF:r>, Pk (g:h; ; D4 is a Cg -subvariety in VK (gih ;D

it or b g hg P Py . vk P
of codimension at leastC-k=. Since this codimension grows quadratically withk while the
dimension of Vﬁ‘ bg;h; X Dd grows only linearly, we conclude that for any xed r;" b N, the
spaceP :‘ h; ; D 4is empty for all k su ciently large.

To conclude the proof of Theorem5.D, we choose for each N somek , ° large enough so
that P & g;h; ; D y forevery D bra;‘f”eng;F g andhen de ne*CRF;reng ;UiDx 4
to be the set of all operators inCRgfE ; U; D dwhosek-jets at p belong to [Bg”eng; F: \d
5.4. Petri's condition is satis ed for generic J. We now return to the setting of éz and
consider the moduli spaceM 4, A; J ,of unparametrized closed] -holomorphic curvesu : b o d

M;J ,of genusg , 0 homologous toA  H, M d in a symplectic manifold bM;! of dimensimﬁ

En with J J bM;! U Jy HereB IP/I iSs an open subset with compact g]osureJ < isa
xell compatiblg almost complex structure; and all J bJ bM;! y U qare assumed to match
J, outside of U.

Theorem 5.26. There exists a Baire subset] 9 _J bM;! :U;Jx ,such that for allJ J "9
and everyu , M 4 A;J dWith parametrization u:, ;] M; J d the normal Cauchy-RiE’mann
operator D CRRbNu satis es Petri's condition to in nite order on an open and de nse set of
points in u 1B n particular, DN satis es the local Petri condition at every point in u % U

u b~d
(cf. Remark .



68 CHRIS WENDL

We will deduce Theorem[5.26 from the results of the previousiugsection after showing essen-
tially that the natural map from the universal moduli space of simple holomorphic curves with
one marked point to the space ofk-jets of normal Cauchy-Riemann operators at the marked
point is always a submersion. Up to some technical details 8t to be addressed, the next lemma
implies this. Recall that a point z in the domain of a smooth map v : M is called
an injective point if dv,z_ : T, TVbZdM is injective and z, v Ly Zdd For a simple
J-holomorphic curve, the complem&]lt of the set of injective pihts is a discrete set.

Lemma 5.27. Assumed . J M;! ; U;Jy d andv:, ;j bM J dis a simple J-holomorphic
curve with generalized nd?maﬁ bundleN, ."'v TM dbe ne(gl Iés the ! -symplectic complement of
the generalized tangent bundler, _ v TI@I. Given any A 0;1b ; Endr, Ny OIwith support
contained in the set of injective poiﬁts inv lbUd’ there exists smobth famiR/ of almost complex
structures

J I Ml U dy -

(" b b dnpb * d
such thatJo J, J b1 Jbv Zd for all and z, and the resulting family of normal
Cauchy-Riemann operatorsg\’)'; thE?Rb v OIfor v de ned with respect toJ satis es
5 DY}, N T Y Tvj A
for N, , where Y : J o Endc, TM:J r is any connection on M, and
N :vbI'I\P MOE\IV denotes thg projlectioﬁ’ alct))ngT\,.b dd

Proof. If [J s any smooth path in J bM;! ;U ywith Jg J,J Vq J Vg forall and
Y : J, o, thenY v, O, hencer Y s well de ned alongv indepengently oPany connection.

B "I :
For b bN"d’ let us write r 'Y in block form as

T TN
Yy Yy Endc,y TM;J

(5.20) ry rNTY rNy pb

dd

with respect to the tangent-normal decompositionv TM T, N,. SinceN, isthe! -symplectic
orthogonal complement of Ty, the fact that J is always !"-compatible then translates into
conditions that constrain r 'Y and r NY separately and another condition that determines
r TNY in terms of r NTY, namely

Lo I\'Tde;Wd Vi TNYde 0

for all B Wy Ty Ny. This means that! -compatibility does not prevent us from freely choosing
r NTY so Iorl?g as we (1) do not mindr TN'Y being determined by this choice, and (2) do this
only in regions wherev has no double points, so that the splitting of TM into T, N, is
unambiguous. Now using the de nition of the normal Cauchy-Riemann operator, one computes
that for any b bN"d’ N - )

D, o T Y Tv I
On a region wherev has neither critical points nor double points and its image les in the
perturbation domain U, we can therefore choose the normal derivatives of along v to make
the above expression matchA.

To prove Theorem[5.26, we will use the FloerC--topology (cf. [Flo88,
perturbed data. Given any Jes bJ bM;! i U N d we de ne

TJ ref ‘J

as the space of smoothldg-antilinear bundle mapsY that vanish outside U and satisfy! , ;Y

Y ; 0; intuitively, this is the tangent space at J.s to the smooth Fechet manifold
b, 'd 4 .

J bJ;! s U J d There is a natural embedding

g5]) to de ne spaces of

bJ;! ;U;JXd€ bEndCbTM;Jrefdd

1

1 1
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which takes aCP-small neighborhood of 0 inTy,J bJ;! ; U; Jx yhomeomorphically to a neigh-
borhood of Jie in J  M;! : U;Jy . Now choose a Riemannian metric orM in order to de ne
the C -norms on éndchM;Jrefddfor each integer * 0, x a sequence of positive numbers
" Y 0, and de ne the C--norm
4 .
(5.22) Y.c : " Yic
) , )
for Y bEndc TM;J et Fixing any | 0O suciently small, this gives rise to a smooth,
separrﬂ’)le and metrizable Banach manifold’
w .' . .
It Iy Y To 3 it iUdc gy Yo o andyYyeo (
which embeds continuously intoJ ,J;! ; U;Jx yand contains arbitrarily Cg -small perturbations

of Jer. Note that since U . M has compact closure, the equivalence classes of the indivdl

C -norms are each indepe‘%dent of auxiliary choices such as cogctions or local trivializations,

but the equivalence class of theC--norm may in fact depend on these choices. This is immaterial
as the choice of the sequenc o carries no geometric meaning in itself; what is important
is rather that the space of sections of clas€- can always be enlarged by making converge to
0 faster. To say this more precisely, let us endow the set

E: isequence§ ( " f 0 “, Oforall ,and lim" 0)
) 8

with a pre-order  de ned by

limsup —

T

oy 1 8
Y8
De nition 5.28.  Given a statement S,"  dependent on a choice of . E, we will say that S,
holds for all " = E with su ciently rapic}3 ecay if there exists "¢ b E such that Sb"d holds

forall " "o.

Lemma 5.29. The C--norms on sectionsY IDTJrefJ bJ;! ;U Jy dhave the following properties:

(1) If " "rin E, then there exists a constantc , 0 such that,Yc. Y,c. forall Y.
_ ! | ; RO 3 1

(2) For any givenY, Y, c. for all E with su ciently rapid decay.

(3) Every countable s}ub}set o% has a IowE’r bound inE with respect to the pre-order

Proof. Property (1) follows easily from the observation that " "7 if and only if there exist
constants C | O and o , N such that " C'rforall |, o. To prove (2), observe that
any nontrivial smooth seﬁ’ion Y vanishing Sutside of U is of classC- for " : 1{ b2 }Y}C d
then apply (1). Finally, " E is a lower bound for the countable subseii "bid; "tPd; Bd; s E

- 1 d) “ﬂ€
whenever" o min ' "bd;:::;"b o for every

Let us discuss the geometric data to be used in formulating tk local Petri condition for a
holomorphic curve. GivenJ  J IOM;! ; U;Jx , the complex vector bundle bTM;J carries
a natural Hermitian metric WIL_r’ose real partis g; : ! b;J If u: b o M; is J-
holomorphic and is immersed at the point , then™ g; can be pulledd blgce to éje ne a
Riemannian metric on near in the confornlfél class ofj, thus giving rise to an area form

w on and compatible bundle metrics g, on N, and hy, on Hom¢, T ;N near , where for
concreteness we are also free to assung, . u TM s the gj-orthogonal complement of T,.
In order to avoid ambiguity, we shall assumg in the followingthat D and D) | are de ned
via these speci ¢ choices of geometric data near any given imersed point ; note that this
would not be a valid global de nition for DN , since the pulled back mé:t'ric on becomes
singular at critical points, but this will not matter since w e only intend to study nite jets of

D[}'d at a speci c immersed point. Recall from Remark[5.2 that Petri's condition does not
Hepend on choices of geometric data. Moreover, while the dhal topological type of N, may
change (because the number of critical points may change) as moves about in its moduli space,
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the germs of DI} and bDEd at an immersed point can still be assumed to depend smoothly
on u.
Let us denote by
M 9?1bA;‘]d € M g;1bA;JO|

the open subset consisting of simple curves with one markedgint such that the marked point
is an injective point with image in U. We will abuse notation and write elements ofM g;1bA;J
as u; whereu : ,j is a specic parametrization and is the marked point.
Usmg tﬁe notation of éfﬁ we t en de ne for eachk;r; bN with ° o k the space

k r

MGE T it g g M e Vi ih sl
wheregy; hy; o are the speci ¢ choices of geometric data determined by and g; as described
in the previous paragraph. The extra termt is an element in the tensor product of thek-jet
versions of keD and ker, DY | at , having rank r and not vanishing to order *. We will be
interested especially in the subset

MET g gt MY M O

To understand the structure of these spaces, we de ne corrg®nding un|versal moduli spaces:

i
g,le"J S ’Jd J J gk db gleJ
S{A N Coy - Kt a.q ).
l*g’]_ lﬁl‘]"d' bul lt’\] d ‘] b "1 bu1 ’ d bM gil lﬁ"]d ’
KE A A B Co Kt a.q )
Ugh ghdngs T itd g 3 ity Mg AL

We shall always choose' = E to have su ciently rapid decay so that, by standard argument s
as in [MS12], U, bA Jo tfs a smooth, metrizable and separable Banach manifold suchhat
the projection Ugle J J s i J d bI/IJ is a smooth Fredholm map whose index is

the virtual dimension of M bA;J It follows that the same is true for l* ‘]"d as the
additional k-jet data t vanes in'a smooth nite-dimensional manifold that depen ssmoothly on
the k-Jet of the operator D)} at the immersed point , and this in turn depends smoothly on
B Y g Y™ I

It will be convenlent to impose an extra condition de ning an open subset ong N
For each™ N, let C- | 0 denote the constant furnished by Proposition[5.2b in , with the
roles of theboundlesE F and point p in that subsection played by N, WCbT ; uOIand b
respectively.

De nition 5.30.  Given J bJ bM ;U Jy dand E, we will say that an element bu, ; ﬁ’
kr " kir;®
Mg I q(ls -regular ifJ bJ and g s 6d d has a neighborhoodO l,{g 1 g\ Jgsuc

k;
that O X Ugt A J- |s a Cg -subvariety of l*glr g J Wlth codlmenS|on at least C: k2

Note that "—regulanty is an open condition by construction, i.e. the st of tuples ATHE t;J
U klr ; such that |s "-regular is open. The important consequence of LemmlafSﬁ?

WI|| be that |ct]I is generaIPy also nonempty.

Lernma 5.31. Any given s ;td bM g';i bA;Jrefd is "-regular for all b E with su ciently
rapid decay.

n H P k, ;\ .
Proof. Observe rst that Jyes bJu for every b E. Now given Atk it d bM g;'l bA,Jrefd, de ne
the Fechet space

cd O
Yor 'Y Toud Mt Uy Y|ubd 0
and for each" bE the Banach space
Lo SEERUT ).
Y . Y bTJref\] bMy [l U!‘]X d Ylub d O and }Y}C 8 ’
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where the latter is regarded as a closed subspace of, J- with the C--topology. Abbreviating
E: NyandF : WCbT :Nuy Lemmal[5.2T provides a surjective linear map

0: Yo, J€ 1 Homg i F g Y bqu LAY §
where Ay denotes (the germ near of) the zeroth-order term determined by Y according to the
formula Ay N Y Tu j. Since the target space of gis nite dimensional, Lemma k.29
implies that it remains surjective when restricted to the subspaceY- for " E with su ciently
rapid decay. EachY Y- now gives rise to a 1-parameter family of almo&t complex stratures
J : Jy  J-de neE’ via (BZ1), which match J,e; along u and satisfy Jg  Jres. This de nes
a smooth ﬁmily Atk 7 J Ug;le; J "d that deforms the normal Cauchy-Riemann operator of
u in the direction of Ay %L’ﬁ leaves the geometric data alongu unchanged. It follows that the
linearization at Atk it J redef the natural projection ma

[S{ N K o« e -t ‘h - -pN.
(5.23) g1 bA,J d y Vi s it J dbl(l%’h“’ uw; Dy ,td
is surjective onto TbDKl ;thrI?‘ pdu; hy; ug and the result then follows from Proposition [5.25.
Applying the Sard-Smale theorem to the projection l*gklr bA; ‘]"d Jo s 4J d blqi/ as
in Proposition we can associate to eact b E and each set of pglsitive IntegerK;r; ith

k * " a Baire subset

J..regbk; r° de J
such that for all 3 3", kir;* 4 M i g\ J 4is a smooth nite-dimensional manifold and the

open set of"-regul£ elements in

k™ A ki AL
Mgl PnJdgeMai fhidg
is a Cg -subvariety of codimension at leastC-k2. The dimension of M g'l g is the Fredholm
. . . k;r;® A . . .
m@ex of the projection .} IOA ‘]_"d J, W.hICI’.I is larger than that of Ug;le, ‘]"d Y J- by
dim Vrk g hu; s Dﬂd Plugging in (éé':[g), this gives 4

; ko A T . 2.
This number grows linearly with k, while the codimensionC-k? grows quadratically, thus for
any xed r;’;g;A, the integer

e K™ A . T . 2 12
(5.24) vir-dim M g1 bA,J d: vir-dim M g;le,J d 4r bn 1d6< 1d r C-k
becomes negative for alk . N su ciently large. Taking the countable intersection of the Baire
setsJuregbk;r; ) dfor all k:r;>;g: A, we obtain:

Corollary 5.32.  Forevery"  E, there exists a Baire subsed"*Y _ J- such that for allJ bJ €9
and any giveng . 0, A sz %and r;” N, the set of"-regular elements inM grl bA;J d is
g

empty wheneverl? is Iarg% enough for the mteger in(5.24) to be negative.

For the proof of Theorem[5.26, we will use a variation on a poplar trick due to Taubes,
presenting the desired set] 9  J M;! ; U;J4 ,as the intersection of an explicit countable
collection of open and dense s%bsets. This depends on the htyi to decompose the relevant
moduli space into a countable union of compact subsets, andsgpreparation, the following lemma
gives a way of doing this for the moduli space of complex struares. Given a smooth oriented
surface , we let J denote the space of smooth complex structures on compatibé with
the orientation, with its natural Cg -topology. For integers g; m * 0, M g:m will denote the

10Strictly speaking, the de nition of V,k in this context depends on the germs near of the vector bundles
Nu and Home T Ny 4 which vary as (u; ;t;J 4moves in N (A 3+ 4 so for the purposes of [5:23),VX should
be replaced with a suitable ber bundle over l,{gkjf‘ g I+ ¢ of which the map in (5.23) is a section. This detalil
makes Iittle di erence for the .present argument, however, s ince the family s 7 J d bUg?le; Judinvolves a xed
curve with a xed marked point and J [im g also xed.
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(uncompacti ed) moduli space of Riemann surfaces with gens g and m marked points; recall
that elements of the latter are equivalence classes of tupd;eb K dwhere b | d is a Riemann
surface of genug and e is an ordered set of m points.

Lemma 5.33. Given integersg;m , 0, x a closed surface of genusg and an ordered set of

m points ( 1000 mp L o Th§n there exists a nested sequence of compact subsets
1. 2 . 3 .

\] b y d € \] b y d € \] b' ] d.€ PR € \] b d . K
such that every element oM 4., has a representatlveb K dfor some | bJ b’ d K bN'
Proof. Let :J b d Mgm:]j b b;j; 2,denote the natural projection. Choose for each
i Jd q2 smoaoth skﬂceTj J .5 tlhrough | for the natural action of Di ¢,. ; ,onJ
|é° T; k1ocally parametrizes tﬁe 'Ij()ai(%rruller space of,_ ; nearj. Since Teigwmsl%r space Is
nite dimensional, Tj contains a compact neighborhoodv; _ T; of j, and the image ofV; under

is then a neighborhood obe s dein M g:m. Since th% latter is second countable, we can
then nd a sequenceji;jo;ja;::: b‘] b OIsuch that » N bVid M gm. SetJ b’ d-
Vi, AT Vi -
Proof of Theorem[5.28. For the following de nition, we x a model surface ¢ of genusg and
a point g» along with Riemannian metrics on 4 and M, denoting the various induced
distance fl?nctions by dist_; The Levi-Civia connection then induces connections on the
bundles E Ny and F ﬁomeT g;Nud appearing below, which can be used in de ning
metrics on the jet spaces)®E and JKF. For eachK;" LN, xan integer k: kK;" 4 N > large
enough so that
(5.25) vir-dim M grl g O forall r 1;::::K
With this choice in place, we de ne

K
K a Kt A
NG Mol g
as a set of elementsou; ;td satisfying quantitative versions of the various conditions de ning
the spacesM g'l bA; J q Concretely, we require every element oN X deto be representable as
. . . : ; k e N i

acurveu:p gly , pM; J dWlth marked point L O and t bv”‘ bg“’h“’ Dy dW|th It| 1
such that: -

(1) Domains do not degenerate;j belongs to the compact set] K b g;[ nolfrom Lemmals.33.
(2) Bubbles do not form: sup, ; Idubzd o K.
(3) The marked point does not escapex!istb b . M sUd 1{K.
(4) The marked point remains an injective pom?? R

du L oand it ISWhgUfag L.
|""bdl % K 2, ag o distizg kK

(5) The rank of t does not blow up: rankt o K.
(6) The vanishing order oft does not increase:Writing E N, and F HomeT 9 Ed’
the distance oft LI KE JXF from the subspacebJ"E J"Fd is at least J{K .

p p
Now let . )
reg;K . | . T K .
J reen . JbeM,!,U,JXdNdeH :
To see thatJ 9K s open, suppose the contrary: then there exist sequencds . J bM;! U
and oty bNK J dwith J J J'egK zs . Assuming thebparametrizations
u thg'j dy bM;\JO d satisfy all%f thg’ conditions Iisléec? above, elliptic regulaity combined
with the compactness ofJ ¥ ; and the condition |t | 1 then gives a subsequence con-
verging to an element ofN X ' J . ‘Wwhich is a contradictiorl.
We claim that J 9K is also dense. To see this, recall that the reference structa J,¢; in the
de nition of J- was arbitrary, so it will su ce to prove that for some " b E, J- contains arbitrarily
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C--small perturbations of J.e that are in J "®9K | The argument of the previous paragraph
shows that N ¥ J,¢f is compact, so since'-regularity is an open condition, Lemmal5.31 implies
after taking a lower bound for nitely many choices of " = E that every element of N X b\]refd
- n - . - . K

is "-regular, and so therefore is everything in some opé% neiglarhood of N bJrefd ( Jref
in ng;;l“ Iy Since J® _ J. is a Baire subset, we can choose a sequende Jureg

with J Jref, and we claim that J J %K for all  suciently large. If not, then after
restrictingI to a subsequence, there exi?[s a sequenca ; ;t d N K J which converges by
the compactness argument in the previous paragrap%’ to an emé'_ﬁt ole @ Jr?fd implying that
u; ;t ,is"-regular for large. In light of the assumption vir-dim M grl bA;JOI 0, this
contradicts Corollary 5.32.

The space

reg . reg;K . . .
Jres: KENJ eI Uy

is now a Baire subset. IfJ . J "9 and there exists a simpleJ-holomorphic curveu : , ;]j
M- . of . B . 1 ) . .. b dtu

; genusg with an injective point u bUd at which Petri's condition’is no
satis ed to in nite order, then we can de ne By as™an dlement ofM 9?1bA;J d by calling the
marked point. Since nontrivial elementst  kerD) _ ker, D) . have nite rank and cannot
vanish to in nite order at any point, we can fRen normBlize ?angthus nd an element u; ;t d
N K ‘]d for K su ciently large, which is a contradiction. This proves tha t for J t?] reg, al‘:>
simple curvesv @, ;j d bM;J satisfy Petri's condition to in nite order at ever)Pinjecti ve
point in v 1 Ud which isldan open and dense subset of 1, U . It follows that the condition is
also satis edbfor all multiple coversu v ' at pointsin u U o ly lbUd that are not
branch points and are preimages of injective points; that islikewise an open an((ij dense subset
of u 1bUd
Remark 5.34. The proof above would work equally well to nd generic families of almost
complex structures depending on nitely many parameters sieh that Petri's condition is always
satis ed. The key point is that for the parametric moduli spaces analogous tdM grl bA; J dand

M 'érl bA;J d the codimension of the former in the latter grows quadratially with k, while the

dimension of the larger space grows only linearly, so that tb space analogous tiM g'l IOA;J d
will always turn out to be empty for generic choices ifk is made su ciently large, no matter

how many extra dimensions are added to the original moduli spce by introducing parameters.
The extension to families is important for the bifurcation t heory discussed iné[ZZI].

5.5. A global application. We now give an application of Petri's condition which will be
crucial for the proof of Theorem[D. The setting is as follows:assumeE and F are smooth real
vector bundles over a smooth (not necessarily compact) mafold M, with chosen bundle metrics
' AT X0 N and a chosen volume from on M which are used to de ne L2-pairings

» »

X; TN_2: MX; I}\E; X; TN_Z: MX; T)\F
for ; 7 bEd and ; 7 de The product _; 52 is well de ned for two (not necessarily
smooth Br compactly suﬁ’ported) sections; 7of E whenever the function _ ; HE belongs to
L1 M; and in this case we will say they arel?-orthogonal if _; §.2 0; an analogous

de nition applies for sections of F. Consider a linear partial di erential operator D : bEd

bFdand its formal adjoint D : | F Edde ned via ' D 4.2 D ; 4,2 forall smoo
sections ;  with compact supporl%. Wé' will consider the extensions of boh of these operators
to certain Banach space completions,

D'XbEqude D 'XdemYbEd’

where X, E ;and Y bE are Banach spaces of sections d& in some regularity class de ned
almost everywhere, whiPeY bF OIand X F ,are likewise Banach spaces of sections &f. In this
functional-analytic setting, we impose the following assmptions:
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(1) D and D are Fredholm operators whose kernels consist only of smootbections;

(2) kerD Y de and the L2-product ' L2 is well de ned whenever b Y de and
1, kerD , so in particular it is well de ned whenever both are in kerD ;

B Y d imD  kerD , where the two factors in this splitting are closedL ?-orthogonal

subspaces.
We shall denote the natural projection resulting from the third assumption by
'Y de " kerD :
Remark 5.35. In the setting of , the assumptions above are satis ed for a Cauchy-Rieman

type operator [} : pEGd Y bFad er a punctured Riemann surfaceausing the weighted Sobolev

spacesX bESd: wkp SR and Y bFad: wk e bFad for k b N, p b bl; d and exponential

weights W On"" ; recall that Y is Fredholm it all , are chosen to %e su ciently small.
dioi : Kip; : k Lp;

For the forn?gl adjoint bl% ,. we then de ne X bFao_I'_ W bFaol and Y bEGd' w bESd SO

that Proposition 8.13] provides the necessary splitting ofY bFad

Lemma 5.36. Given the assumptions above, suppodd . M is an open subset such thaD
satis es Petri's condition over U. Assume moreover thatV € bHombE; F ddiS a linear subspace
satisfying the following conditions:

D Y bF for all V and kerD.
2 Thel?e exigts a densE’ subset

U with the following property: for every z and
o Hom.E;; de there exists% HombE; F ddsatisfying d 0 sucilf’that for
evel?y neighborhoodUs . U of z, for some smooth function : M Y L0; 12 with

compact support in Uygatisfying Hd 1
Then the linear mapL :V Y HombkerD ;kerD dde ned by Lb d b d'S surjective.

Proof. Fixbases 1;:::; m ;kerD and 1;::: n bkerD . SinceimD ker is L2—orthogonal
to kerD , we then have
be di; In? i ipL2 forall i 1;:::;m; | 100
and these matrix elements determineL : kerD kerD . Now if L is not surjective, there
exists a nontrivial linear map : ker D Y kerD {v/\}hich is \orthogonal" to every Lb d in the
sense that its matrix elements Y : w1 bR satisfy
! X i ipL? 0

i5j
for every bV' We can rewrite this as
> ij » » >
0 i D \F 1 S
. X N uX' N b p~d ’ p
whereo i i j is regarded as a section oE = F. Since the i are not all zero, this section
is the image of a nontrivial element of keD kgrD under the Petri map, so by assumption,
it does not vanish identically on U. Now chogse a pointz . at which this section is nonzero.
Lemmal5.37 below provides a linearmap ¢: E; ., F; sucﬁ’that the integrand is positive nearz
for any V satisfying ,z 0, and we ca%l] then make the entire integral positive after
multiplying™ by smooth bump functions with su ciently smal | support.

u

We used:

Lemma 5.37. SupposeV and W are real nite-dimensional vector spaces,, ; W _ W Ris
an inner product on W, and T . V _ W is nonzero. Then there exists a linear ma;g): \)é| W
such that  ; 1,7 P v

X'Ab p~dod!

ciiiivn of V, we haveT o J” 1Vj - W; for unique vectorswy;:::;wy

W, which do not all vanish sinceT 0. Choosing : V U W such that v, w; for all |
then glvesx; Ab p 1dl5rd o J-ij;wj)\! 0. /|

S,
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6. Proof of the stratification theorem

We are now in a position to prove TheoremD. The main idea behid the proof is standard,
though some details are less so: we will write down a universanoduli space with a projection
to a suitable Banach manifold of perturbed data whose regulavalues have the property stated
in the theorem. The hard part is of course to prove that the universal moduli space is a
smooth Banach manifold|this follows from the implicit func tion theorem after proving that
some version of the operator de ned in [3.24) is surjectiveand that is where the results of the
previous section on Petri's condition are needed.

Fix Jrer , J M;! ; U;Jx yand consider again the spacd - of Floer C--small perturbations
of Jiet as (!%ns?ructed ina%Sﬁ via a choice of decaying positive sequence _ " o, E. For
each of the choices of ddta in the statement of Theoremh ID, we dee a universal modﬂﬂi space

udJe; g
consisting of pairsbu;deith J bJ « and u belonging to the isosymmetric stratum
M de Cn mgs M ng gmgd 55 mgg
We shall denote elements o de R T ‘mdby u Vv ', where we have chosen parametriza-
tions of the underlying simple curvev : M;J , and the d-fold branched cover'

; . bld b . .
T Iy b ;Jd Recall from that for ever)}dsuch elementu v ', there is a unique
|somoer|sm class of minimal regular presentations fot , giving rise to a regular cover

b bbb ybeld
with automorphism group G : Aut b|b where 4is the punctured surface obtained from
by removing the critical values of ' . 9\/e can then consider theJ-holomorphic curve
1 . . . H 1 N 1
Vot bb’td Y bM,J d and its normal Cauchy-Riemann operatorl%B , dened as in on a

Sobolev space of sections d& : N, over the punctured domain pwith negative exponential
weights close to zero. Recall that its formal adjoint bl%Nd is de ned on a similar Sobolev

space of sections oF : Homc, T ;N , but with corresponding positive exponential weights.
The notation associating to each,u v '} J q udd.; g :;‘md a regular covering map
b of potentially larger degree an correspondm@—ho omorphic curvey v 'y will be used
consistently in the following.

De nition 6.1.  Given integersk;c , 0 and an almost complex structureJ, we de ne the subset

x
d 7.5 ou.. N PP d 7. vun.. . : N : N .
b‘]’ 100 m,k,cd. u M b‘]’ 100 my dlmkerl%B k and dlmcoker%B c)

consisting of all pairsbu;stuch that J bJ-- and u bM de R T k;cd

By the results of , in particular Lemma [3.24, the connected components ofhe sub-
setsM 9 J: 11w k; ¢ for individual values of k and c are precisely the walls described
in Theorem [Dl (see also RemarK™2.14). We would thus be able to gy the standard Sard-
Smale argument toward a proof of TheoreniD if we could show theaU 4 J-; “1::::: " m ; k;coI
UdJd.: 10 myis a smooth Banach submanifold of the correct nite codimensgon on ea§1
component. Whaq we will actually show is that this is true for a certain open subset of
U de W m K Cq which su ces due to the genericity of Petri's condition.

De nition 6.2. Anelementu v ' M%J: 110 m; k;cywill be called Petri regular

if for the regular covering map ',. and cBrrespondingJ-hoIomorp ic curve v . described
above, the operatorl%g' satis es Petri's condition over Y lbUd We will denote the set of Petri
regular curves by
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and de ne the corresponding universal moduli space
d g, o een. S e d g, c een. S e
U b\]", 1,...,m,k,cd€U b\]", 1,...,m,k,cd
to be the set of pairsbu;Jd U de I T k;cd such that u belongs to the moduli space
M d Jo g ke b
b y 1y m y d.

Remark 6.3. The condition de ning M d b‘] ;1000 m ki cyis clearly satis ed by any curve
u v ' forwhich DY satis es the local Petri condition on v g thus by Theorem[5.26, there
; : : O : d 7.~ cenn. d 7.~ oeens
is a Baire subsetinJ IOM,. : U,deforwhlchM b‘] i m k,cd M b‘] L m k,cd

The next several results are aimed at proving that for suitalle choices of the sequencg,
U de W m k;cd is a nite-codimensional Banach submanifold ofU de wqrn ;‘md
Lemma 6.4. For " E with su ciently rapid decay, U de " ‘1;:::;‘md carries a smooth
Banach manifold stru'Bture such that every,Uo Vo ' O;Jod D1 T m gy admits a

udJ.
neighborhoodV € U de W ‘mdwith a smooth family of vg’ctor l%undle isomorphisms

VOTMAI/I v TM; for bu v J V
mapping Ny, isomorphically to Ny.

db

Proof. For each ,ug vo o;Jod U de w3100 my the underlying simple curve vq :
jo M;J | lives in the univer?al moduli spaceU ", J- , de ned in Appendix A] more
b "’Yd 11 b d b’ d
speci csMy in the subset
U pg
of this space de ned by the condition that the ith ma&(ed point should have critical order ~; and
curves are immersed everywhere else. 'Ifhas su ciently rapid decay, then U b‘] udis a smooth

~

U ,J- , whichis shownin LemmdA.3 to be a smooth nite-codimensioml submanifold of U %ﬁd
In particular, we can identify an open neighborhood of the ebment pYo; Jodin U b.J R T \md
with a smooth nite-codimensional submanifold
X L T B J-
€B 55€ J

of the zero-set of the nonlinear Cauchy-Riemann operator, where T denotes a Teichmuller
slice through jo in the space of complex structures on al%l B is a suitable Banach manifold
of mapsv : M.

We claim thlét there exists a neighborhoodVy . X« of jo; Vo; Jo4that parametrizes a smooth
family of bundle isomorphismsv,TM v TM~sendingN,, to Ny. Note that this would be
clearly false if we did not impose the éﬂtical point constrants on v, as e.g.vg might then have
critical points while v is immersed, in which caseN,, and Ny would have di erent topological
types. AssumingN, . v TM is always de ned as the symplectic orthogonal complement of,,

v TM with T, : imdv away from critical points, let us recall from [Wen1Q] how the latter E‘,
de ned at critical points. We have a smooth family of bundlesv TM carrying linearized Cauchy-
Riemann operatorsD,, whose complex-linear partsD$ de ne a smooth family of holomorphic
structures onv TM. The crucial observation is then that dv bHomc T ;v TM s always
a holomorphic section with respect to the holomorphic bundl?structures onv TM and T, so
choosing a smooth family of holomorphic trivializations ard holomorphic coordinates near the
ith marked point, each dv is represented by some holomorphic function of the form

fyd: D y cm; fbidbzd z‘igpidbzd;
where ggd : D C™ is another family of holomorphic functions which depend smothly on
H';V;J d X b& also are nonzero at 0. The main point here is that the critical orders”; do
not vary with v. The span ofgfd 0, thus de nes the bers of T, near each critical point, so we
deduce smooth dependence &f, on j;v;J d X+, and therefore also ofN,,.
0

We can parametrize a neighborhood of lfh M gdod as explained in Exampled=3J6 and“318,
meaning that if ( Wil is the set of critical values of ' 5, we choose a smooth
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family of di eomorphisms : parametrized by B2 which are holomorphic near
and supported on a slightly Iargeklnelghborhood of sucthhat o Idand

2r r .\ e
is a di eomorphism onto an open set. The neighborhood ofuo; JoyinthespaceU 9 J-: “1:::::
can now be identi ed with B?  X. by associating to each,_; ,J;v;J d B b><
Vo ' 04 making U db‘J" AT mda smooth ber bun e over U b ‘1;:::;‘md
Lemma 6.5. The subsetU de i ms ke

Proof. Lemmal6.4 implies that the operatorsl%B and I% can both be understood as varying
continuously with Atk J U Je 1 ms and the dlmen3|ons of their kernels are locally
constant as long as uql moves only in the subsetU 4 J.: 1;:::; " m: k;c, It follows that
the family of Petri maps ge ned on ker D'\I ker DN and then restricted to 1bUd depends
continuously on u; J ud J 100 m [ﬁ C an%l since their domains are nite dimensional,
the |nject|V|ty oft%hese Ifhaps is an open condition.

can now be tinto the general picture from [3of a parametrlzed family of bundles Wlth Cauchy-
Riemann operators. In particular, we chodse the parameter gace P to be the local model of

U de "3 713110 'm g near o; Joy described in the proof of Lemma 6.4 above,
. 2r 2r 1 2r .

P. B X"€B Bbd€B bT B J"d
and in the notation of § associate to each b’ H v;J dd & P the data

: A T bEJdeV,d, D : DI:
If buo;Jod bU de v mo K g then using the setup |né[3:5 we now nd a smooth map

2r

(6.1) F-:B X " Homg kerl%ﬂo,kerbl%Bo
whose zero-set is a neighborhood %UO"]Od in U de i m k;cd
De nition 6.6. We will say that uo,Jo 1 mr kyeyis "-regular if " E has

su ciently rapid decay to satlsfy the concﬁt&ons of Lemmal6.4 and, addltlonally, the Ilrt:éarlza-
tion of the map (B1) at #0 1 Vo, Joddls surjective. GivenJ  J M;! ; U; JX and"  E, an
elementu in the space db DLl ma Kk cd will similarly bgcalﬁed "-regular if J '3 and

Atk J d is "-regular.

In analogy with De nition 5 "-regularity for an element uo Jo i m ke
just means that a nelghborhood ofbuo, Jodln thls spaceis a smooth gé?tach submanlfold with the
\correct" nite codimension in U b‘] ;1,000 'my Itcould be phrased aIternatlver as the con-
dition that ,ug; Jg4is a transverse intersection of the ma R J @N from U d J D T m
to the relevant space ofG- equwarlant Fredholm operators Wlt eH nite- codlmen3|onal sub-
manifold T , dimkerT  dimker I% : expressed in this way,"-regularity is clearly an open
condition anol is independent of the ¢ 0|ces involved (excdpof course for the choice of' E).

Let us de ne the analogous condition for moduli spaces with xed J. Note that if the sim-
ple curve vq is regular for the constrained moduli spaceM g mbA Jo: 1y mqas de ned in
Appendix [A] then the set

Xplogs giVidog X 1TV B( e gotd
is independent of" = E and is a smooth nite- dlmen5|onal submamfold parametnzmg a ne|gh-
borhood of vy in I\l?fgm Jor 1 T m A nelghborhood of uo in M9J: g0 |s
then parametrized by the submanifold B<" X ,Jo B «. We Wllﬁ say that uo
MgmAiJo; 1500 ms K cyis regular in its stratum if regularlty of vgp in the sense abo?e
holds and, additionally, the restricted linearization

2 dF+,0;jo;vo;' o N
TbO;go;vO;‘ OdcbB r JodeLd—%"HomG kerl%B kerbl%Bod
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is surjective. This can also be rephrased as a transverse mtsection condition in the space of
Fredholm operators, and is thus open and independent of choées (including"). Our goal is to
show that all curves satisfy this condition for genericJ.

Lemma 6.7. Ifu v ' M9 15000 m; ke, is Petri regular, then it is "-regular for
N . . b d

all bE with su ciently rad?d decay.

Proof. Clearly bu;Jref b UdJde: 1 m: k;cd for every " E, and we shall assume"

has su ciently rapid (?ecay so that U9 J+; 1;:7:: m 4 is a smooth Banach manifold. By

Lemma [5.27, there is a large space of smooth perturbation¥ = T, J M;! ; U;Jy 4 that
give rise via (521) to smooth 1-parameter families] : Jvy bM;! ;?.J;JX d for which v
remains J -holomorphic, and the normal Cauchy-Riemann operatorD! is perturbed in the
direction of an arbitrary smooth zeroth-order term Ay with support in v 1 U away from the
discrete set of critical and double points ofv. Such a perturbation de nes a tangent vec-
tor bO;Yd Tbu;Jref dU de Wy :;‘mdwhenever" has su ciently rapid decay for Y to be of
classC-. Assuming this for the moment, the resulting perturbation to %E is

N N o :
%g %g b Av;
hence di erentiating F- in the direction bO;Yd produces aG-equivariant linear map LbYd :
N N H
kerl%B " kerbl%B 4 given by (3:24), namely
Lo¥a bbb Avd
in terms of the projection

. k Lp; | : N N N .
W b bNBd 'mb%ﬁ d kerbI%H d y kerbl%B d:
We claim that Y can be chosen to make. bYd equal to any given element

I:‘HomG kerl%a' : kerbl%a' q
Indeed, let us abbreviatetE N, and F  Hom¢, T ;N,, and let Vv lbU denote the
set of injective points of v that are not critical values of Ib and have ignage |n€1;€these form an
open and dense subset of 1bUd Sincel%’g‘ satis es Petri's condition over y lbUd’ Lemmal5.36

then provides for any given a section 4 bHomRb‘b =N lb Faddwith compact support in the
open and dense subsef 1b de¥ lbUd sBeh that

VR I TSRV
forall ker Y , and  kerQ. Note that we are free to assume thé2-product is invariant

under thlB achr#ﬂng via d%ck trahsformations. Then since is G-equivariant, we also have for
everyg, G,
b
. /b 5 g 1. /b 1 ) g 1. ) g 1 :g 1 ) . 5
I N2 x 9 AP Tk x99 T ak x99 h dk? x 0 A
implying that the symmetrization A : ﬁ ° 4 g A also satis es
b

X;/bG A2z oy ; pI

1

for all ; . But the G-invariance of Ag implies Ag " A for some A HomRbEa' Fadd
with compact support in , hence A Ay for some\P Ty d JM;! ;I:U;\PX d and this
proves the claim. We can now choose any nite coIIectiBn of pé’urbations Yi,::0 YN

Tyd (M1 5 U;Jy such that the Lb ig SPan Hong kerl%g' ;kerbl%’g‘d , and choose" b Il::>
so that all of them are of classC-.

By the implicit function theorem, the open set of "-regular elements in
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is a smooth Banach submanifold whose codimension near anyvgin element, u;J ,is given by
the formula in (B.23), and thus matches codin?)uOI as speci ed by De nition e can then
apply the Sard-Smale theorem to the projection

U de.. L ms kg Y NEETEN bl(\l

and thus nd a Baire subset J"®9 _ J. such that for all J = J®9, all "-regular elements of
MdJ: o ke, are regular?n their stratum. b

To turn this into a Baire subset of J \M;! ; U;Jy ,and drop the "-regularity condition, we
now apply another variation on the Tau%es trick that was usedin the proof of Theorem[5.26,
i.e. we exhaust the moduli space of Petri regular curves by aauntable collection of compact
subsets

NKde€Mde;‘1;:::;‘m;k;cdf KN

in order to de ne open and dense subsets of \M;! ; U;Jx ,whose intersection has the desired
properties. As in , leth _ 0 denote the genus ofi-fold branched covers of a genug surface
as determined by the branclﬁng datab and the Riemann-Hurwitz formula. We shall again write
b b by;::: ;broI for somer 0, where each individual b; is a tuple bql;:::;qqid of natural
numbers satisfying o jqi 1t1 d. Now x a closed model surface g of genusg along with an
ordered set of distinct points X1;:11Xmgin g and a continuous functionFg: ¢ 0
that is positive on and, using local complex coordinates z to identify a neighbo'ﬁ‘looosof
eachx; with D€ C so that x; becomes Ob D, satis es

ngzd |zlJ near x; ; J Lime

Similarly, x a closed model surface 1 of genush, an ordered set of distinct points

Toveo. Q... Too... .
T b 1> ’ ]c_lly 1 I 1 [g
in 1, and a continuous functionFy, : | ut 0; ad that is positive on he 7and takes the form
B o1 . S T, C e
thzd |zI near j; ] Loooygy i Liiogr

in suitable local coordinates. We also make arbitrary choies of Riemannian metrics on g,
h and M so as to de ne the various distance functions dis{ ; d and norms referred to below.

We then dene NX J to consist of every element inM 9 J; "1::::: m; k;c, that admits a
representative of the formu v ' @ ;] i bM J ywith v gij q I\/fj;.] simple and
' b hi b o q2 d-fold holomorphic bran!éhed'cover, such tRatv is ghgcal of order °; at
xj fori 1,7 :;mand' has branching orderb! at ,’ forj L1,:::;gandi 1;:::;r, and the
following quantitative conditions are also satis ed:

(1) Domains do not degenerate:Using the compact sets of complex structures provided by

LemmaB33,j , JX, 4 qandjr, JK 4 o1
(2) Bubbles do nottform:bs(i,JpZdg dvbzID IJJand s(ljjpz d 2 K.
(3) Injective points do not dis&’ppl:ar: 'mgre exists a pBint b 9 such that

1 dist,v, ;v,z 1 1
- i f - 1 .M -
Idvb dx K Zblrglx; “—b—b—d—b—dddistb;zd £ K and dlstbvb d sUd £ K

(4) Critical orders do not increase:

nf 1V Y g inf 9fg L

Zb 9 ngZd * K Zb hS T thZd * K '

(5) Images of branch points do not collide: There exist distinct points w; bid
' biqdb gfori  Ij:::;r such that

, 1 . P
dlstbwi;chHEK forall i;j  L::irwithioo g
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(6) Kernels do not get larger: Writing B: N and By Homch b NBdfor the canonically
. N .\ kip; k 1p;
Szﬂr;eéjsregular cover Y : p " M of v, the operator I%B W bESd " W bFad

1 -
N — o kip; :
3w bklerl]‘f%g } Wi for all b BV

(7) Curves remain Petri regular: For the regular cover W the Petri map : ker %E D
N - -
kerbl%B d y bEap Faol satis es the estimate

1
} Bdcop gk K1Y

where pK 2 L b dist, 4,z M Uy * 1{K) and the norm on the tensor product

uousl% \I?vith u

ker Q0 kerb%qwddis d(? ned via any norms on kerl%a' and kerbl%a' 4 that vary contin-
b bJ; 1,...,m;k;cd
Clearly every element ofM ¢ b.J i mo ks o belongs to someN K bdeor K . N su ciently
b
large. Now de ne
reg;K . R
J "eg e I Mt Uidxy

via the property that J = J 9K if and only if every element of N K | J _is regular in its stratum.

We claim that J e s open inJ bM;! ; U;Jyx + Indeed, supposel J IOM;! ;U J d
is a sequence converging td = J "®9K" as such that for every tHere ‘exists a curve
u N K b.J that is not reguBr in its stratLKIn.8 Given parametrizations u v ' with
v :ID 9 bM J ,and’ b hilT b 9 dsatisfying the conditions above, conditiong1
andlfﬁ imp y|4/|a stan((jiard elliptic reglﬂ:%]ity arguments that there are Cg -convergent subse-
guencesv Vv, j i, "‘andj7 . j3 so that u itself converges to the composition
of aJ-hoIoMorphic ghrvev ‘ol Ml,dJ and another d-fold holomorphic branched cover
i H b :j + Since all conditiéns in the de nition of N X J  are closed, they are also sat-
is eg for thel4imit u. Condition Blthen guarantees thatv has an injective point mapped into U,
conditions[4 and[@ ensure that bothv and ' satisfy the given constraints on critical orders and
branching data, and condition [@ implies via Lemmal6.8 below hat dim ker I%N dim ker %E .
It follows that u M de 15000 m s ke, thus u also belongs toN K | J  and must therefore
be regular in its é:l’ratum. Regularity mustthen also hold for u with  “su ciently large, since
it is an open condition, and this is a contradiction.

The use of condition[6 in the above argument depends on intemgting it in terms of the
injective map induced by I%N on the quotient of its domain by its kernel, and then feeding this

into the following functionalganalytic lemma:

Lemma 6.8. SupposeX and Y are Banach spaces,T : X Y is a sequence of Fredholm
operators converging to a Fredholm operatofT : X Y Y, and tIJQere exists a constantc , 0 such
that “ '

}IY g G e
where , : X X{ kerT is the quotient projection. Then dimker T dimkerT for all n
su ciently Iargéd.I

Proof. One can use the same trick as in the proof of LemmB_3.25 to nd aequence of Banach
space isomorphisms , : X X converging to 1 such that kerT nbkerT for every n
su ciently large. Then if dim Qér Tn dimkerT forall n, we can nd g bounded sequencep,

mikerT ,such that the norm of |, nolin X, kerTp is bounded away from zero. Equivalentl?,
Xn npVn for a bounded sequencer, ke{rT, which then has a subsequence convergent to
somev kerT since dimkerT , imp'R/ing a corresponding subsequencg, Y X and thus
T nXn 8 B The latter contradictsqhe estimate in the hypothesis. A

AN
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We claim that J 9K s also dense inJ M:! : U;Jy . Since the reference structurel e
J M;! ; U;Jy ,can be chosen arbitrarily, it suces to nd some " E and a sequence]

J QQ?K such that J Jres in the C.-topology. The argument used IBbove for openness sths
that N K b\]ref is con%act, and condition[7 implies that every curve inN K J.¢ ,is Petri regular,
so by Lemm , one can choose a lower bound for a nite set ohoices"” E and thus assume
that every curve in N X ref 4 is "-regular. Now pick a sequencel J "9 With J Jret, and
arguing by contradiction, supposeJ J "*¢K “meaning there exisl?s a sequenca =, NX J
such that eachu is not regular in its~stratum. After passing to a subsequencethéD previous
compactness argument shows thati converges to someu . NK J. , implying that u is "-
regular for all  su ciently large. That contradicts the de nfﬁon oP queg and thus proves the
claim.

To conclude,«  J K is now a Baire subset ofl (M:! : U;J, dcontaining almost complex
structures J such fthat every Petri regular curve in M dJ: 5 m ke, is regular in its
stratum. By Theorem B.26, we can intersect this with anotherBaire subset In order to assume
that every curvein M 9, J :°
on the choices of datagf b, G, g m, A, “1;:::; ' m, k, but since there are only countably many
such choices, a further countable intersection of Baire sudets now produces a Baire subset of
almost complex structures for which the result of TheoreniD lolds. The proof of TheoremD is
thus complete.

7. Super-rigidity in dimension four

We now prove the 4-dimensional case of Theorem]A, using intsection-theoretic arguments
that are essentially unrelated to the rest of the paper. Thraighout this section, assumebM; J d
is an almost complex manifold with

dmM 4

The genus zero case is an \automatic" phenomenon, i.e. it d@enot require any genericity
condition except for ensuring that the index 0 simple curve § immersed:

Proposition 7.1.  Every simple immersedJ -holomorphic spherev : ,S?;i M;J of index 0
. . ) - b 'duyb d
in an almost complex4-manifold is super-rigid. -

Proof. Assume' : I;de bSZ;i is ad-fold branched cover andu v ' . Sincev is immersed,
the Riemann-Roch formulglimplies

: ; N 2 .
henceclev 1. Then Cle“d c1,. N"d d, so if kerD[}' is nontrivial, its algebraic
count of zeroes is negative, violating Rwe similarity prindple.

For the genus one case, we use a variant of the \magic trick" ppposed by Hutchings[[Hui] in
the context of Embedded Contact Homology.

Proposition 7.2. A simple immersed J-holomorphic torus v : bT2;j d M; J d of index 0 in
an almost complex4-manifold is super-rigid if and only if all its unbranc%tfco/ers are Fredholm
regular.

Proof. We will assume for most of the proof thatv : ;jd bM;J has unspeci ed genugy | 1.
Sincev is immersed with index 0, it is regular if and only |flﬂs normal Cauchy-Riemann ope?gtor
D! is injective, so given this and the assumption that the same blds for all unbranched covers
u v ', we need to show thatD) is also injective foru v where' : 1;de b ;jd
is any holomorphic branched cover. We will prove this by induction on the degreed : IQje '
thus assume it is true for all covers up to degreadl 1. Note that since indbvd 0, we have

(7.1) indD) bd 2o0Nvg O
and if ' has branch points, then rhas genusgr, 1 by the Riemann-Hurwitz formula.
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By the construction in the proof of Proposition B.1] one can exdow the total space of the

normal bundle : N, with an almost complex structure Jy such that Jy -holomorphic
curvesu bS' 'd " va,JN d correspond to sections = kerD!! along holomorphic branched
covers S; | ;j + If ker DY contains a nontrivial element , the inductive

hypothesis |mpI|es that theléorrespondlngJN -holomorphic curveu is somewhere injective. We
can view v itself as a Jy -holomorphic embedding into N, and u is homologous to itsd-fold
cover, so applying the adjunction formula to both u and v as Jy -holomorphic curves inN,,

u u 22bu d ClbuZTN"d b 2Td 2 g d Zlbv TNVd b 1
d b Vg d Cle"d d Cy TNVd d b d
where U 0 denotes the algebraic count of double points and critical pints of u . Solving

Lo;vebu danc?iplugging in (Z1) to compute CV TNVd b d Cle"d % b d 1 g, we

2
2 g dbd 1d Cy TNVOI2 d bd bl

dbd 1dl} 9% 2d bl 9 2 207 dbd ldl9 ld Zbgr ld
Plugging in g 1 and the fact that gr, 1, this gives a contradiction since g g cannot be
negative. '

Remark 7.3. In the spirit of , the two results above show that the story of super-rigiity
and bifurcations is simpler in dimension four. In the genus ero case bifurcations can be avoided
altogether: since having a critical point is a codimension Zondition (see Appendix[A), index 0
simple curves for generic 1-parameter families of almost coplex structures can be assumed
immersed, and therefore super-rigid by Prop["ZIL. This is ndonger true in the genus one case
since regularity of some unbranched cover might fail under ayeneric homotopy, producing the
birth-death or degree-doubling bifurcations in [Tau96é], but Prop. implies that this is the
only danger|the only bifurcations that can happen involve u nbranched covers withgr 1 and
d b I1; 2n’ and they are already described in[[Tau96a].

Appendix A. Moduli spaces with prescribed orders of critical points

The proposition below is well known to experts, but a proof ofit is dicult to nd in the
literature, so we will sketch one here.

Fix a symplectic manifold M;! _ of dimension 2, n N, and supposeJ Recall
that if . ;j ,is a connected Riemann surface andi : |sba nonconstantJ—
holomorphic curve with a critical point dub d 0, then Rte crlttéalopomt is isolated and has a
well-de ned positive order ,

ordbdu;zd bN;
characterized by the property that ord,du; z " if z is a zero of order” for the section du

Homc T ;u TM ,, where the latter is viewed as a holomorphic section with regect to
natural holomorphlcol:)undle structure on u TM determined by the linearized Cauchy-Riemann
operator, see e.g. [Wen10§3.3]. When b i d is closed, we denote the resulting algebraic count
of critical points by

Zbdud: ordbdu z
s | dFd On

and note that it vanishes if and only if uis immersed Given integersg; m * 0, a homology class

dx

denote the following subset of the moduli space of unparameized J-holomorphic curves homol-
ogous to A with genus g and m marked points: a mapu : b | du bM;J dwith marked points
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1000 m representing an element of M g;mbA;J OIbelongs toM g;mbA;J HRE :;‘mdif and
only if it isl%ritical at all marked points,
ordbdu; iq for | L1:::;m;
and it is immersed everywhere else.

Proposition A.1.  Fix an open subsetU . M with compact closure and a compatible almost
complex structure J 4 bJ IOM;! d There eﬁsts a Baire subset

J reg€ J bM;! ;U;JXd
such thatforallJ J™¥ andallg;m_ 0, A szM OIand b‘l; i ‘md N™, the open subset of
M gm A 5 1000 m qconsisting of g%mewtlfére Injective curves that pgss throudh is a smooth

manifold with dimension equal to its virtual dimension, whee
m

vir-dim M g;mbA;J ; ‘1;:::;‘md vir-dim M gbA;J q b2n‘i Zd'
i1

Corollary A.2.  For generic compatible J in any closed symplectic2n-manifold, all closed,
connected and somewhere injective -holomorphic curvesu with m X 0 critical points satisfy

indbud*2nz bdud 2m.

One well-known consequence of this result is that for genariJ, somewhere injective index 0
curves in almost complex manifolds of dimension at least fouare always immersed. Another
proof of this is given in [OZ09], though it is analytically somewhat more complicated than the
one given below.

It will su ce to prove that the same statement as in Prop. A.1h olds for the slightly larger
moduli space

Mamghd s 1 my
characterized by the condition orddu; j , j forall j  1;:::;m without requiring u to be
immersed outside the marked points. IndeedM gmdJd T :;‘md M g;mbA;J R :;‘md
is an open subset. We shall borrow from Zehmisch [ZehlL5] theotion St holomorphic jets: given
a point p in an almost complex manifold , M; J dand an integerr | 0, aholomorphic r-jet at
p is an equivalence class ad -holomorphic curves '

u:bD ;ideM;Jd
with u,0, p, where D ;i denotes the -disk in C, and two curves are considered equivalent
if their partial derivatives at 0 match up to order r. The nonlinear Cauchy-Riemann equation
implies that the holomorphic r-jet represented byu is determined by the holomorphic part of
its Taylor polynomial of degree r (see [Wena, Prop. 2.99]), and moreover, every holomorphic
Taylor polynomial of degreer is realizable as ther-jet of a local J-holomorphic curve ([Weng,
Theorem 2.100]). Thus the space of all holomorphic-jets at p is a real 2n-dimensional vector
space, and the union of these spaces for gl bM forms a smooth manifold
Jet] My
of real dimension :nbr 1
We shall analyze the local structure ofM ¢:m,A;J ; "1;:::; m 4following a minor modi cation

of the scheme outlined in[[Wena, Chapter 4]. For simplicity, we shall assume in this exposition
that 2g m _, 3, so that we only need to deal withstable marked Riemann surfaces. (For the
nitely many ;ﬁon-stable cases, see Remark’Ab.) Givenb o ;Uoy representing an element
of M gmi A 5 "15:00; Tm 4 With marked points 1,717 m.s choose aTeichmuller slice
through Jo: this means a'smooth,6g 6 2m dimensional family T of complex structures on

that includes jo and parametrizes a neighborhood ofjq_ in the Teichmaller space of complex
structures modulo di eomorphisms that are homotopic to the identity and x . The tangent
spaceT;, T is also required to de ne a closed complement of the image ohe canonical Cauchy-
Riemann operator on T restricted to the space of vector elds vanishing at , cf. [ Wena,
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De nition 4.29]. Moreover, we can arrange forT to have the following two properties (cf. [Wen10,
Lemmas 3.3 and 3.4]):

T is invariant under the action of the group Autb o d of biholomorphic maps on

;jod xing ;
tilhere exists a neighborhood of on which everyj T matchesjo.
Now let r : max[ L0 mey and choose anyk bN and p b bl; gd such that
(A.1) bk rOp |2

so the Sobolev embedding theorem implies that functions oflassWP on are also in C". We
de ne the Banach manifold

B: WP ;M q
and smooth Banach space bundl&E T B with bers

. . K~ 1Lp OAamm i .

dd’
so that
T BI/I E:H';ud Tu J Tu j

de nes a smooth section. We say thafb ijo; ;uodis Fredholm regular if the linearization

Dy joitog: TioT ’ Wk;pbuoTMd y wk Lp Home, T jog o TM:J g
of this section at Ho;uo is surjective, in which case a neighborhood ofj; ug 4 in g 1b0d is a
smooth nite-dimensional manifold, and its quotient by the natural action of Aut . ;jo; can
be identi ed naturally with a neighborhood of b jo; ;uodgin M g;mlﬁ;J To incorporate the
critical point condition, x holomorphic coordinates iden tifying a neig borﬂood of each marked
point ; with the standard unit disk | D;i ; note that this can be done for allj = T at once since
they are assumed to matchjg near . Then since B has a continuous inclusi5h intoCrb M d
there is a well-de ned and smoottH jet evaluation map

. 1 . P \m .
Vg bOdMJetJled s Jety™m Mg

Mgmid s 100 ‘mdif it is Fredholm regular and the jet evaluation map is transverse to the
submanifold i i

Z Jdety My o Jetym M
consisting of m-tuples of jets of constant maps. Note that this condition does not depend on the
chosen holomorphic coordinates near the marked points, as iis equivalent to the condition that
u should have vanishing derivatives up to order’; at ; for eachi  1;:::;m. Whenever the
regularity condition is satis ed, ev lbzd e 1b0dinherits the structure of a smooth submanifold

with real codimension o ; i, so M g;mbA,J AT ;‘md in general becomes an orbifold near
b jo; ;uodewith
dm M g;mbA;J : ‘1;:::;‘md dimM g?mbA;Jd n 7

|
dimMgbA;Jd 2m 2n> Y
i

m

dmM g Ad 2 24

i1

11The smoothness of ev is clear because it is the restriction to 0,ofamapB Jet;!, M d Jet," M
which in the natural Banach manifold charts provided by [El 67]%0Eso\ike a linear Klnap evaauating derivatives op
functions at the xed points . This works because we are choosing to represent elements ¢ M gm ,A;J
by maps with marked points at €;<ed positions; of course there is no actual constraint on the movement of the
marked points, but this freedom is seen in our setup by varyingj in T instead of varying the points 1;:::; m.
This is a notable di erence from the setup in [0Z09]l
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To prove that the constrained regularity condition can be adieved generically, X Jyef
J bM;! ; U;Jx yand a suitable sequence of positive number$ 0, and consider a BanaE’n
manifold J- of eﬂmost complex structures inJ bM;! S URN OIthat Qe C--close toJyes (cf. @).
This gives rise to two universal moduli spaces,
U Jrgs idg 3 J-andu Mgq Al
and

the subspaces de ned via the condition thatu be somewhere injective and pass through. As
is well known, U J "d is a separable and metrizable smooth Banach manifold if converges to
0 fast enough, ang for .. ijo; ;U M g?mbA;‘]Od a neighborhood ofbuo;Jodin U b‘] " g can
be identi ed with the zero-set of a smE’oth section

B:T B JHI{I E:H;U;Jdpuglbud;
where E now denotes the Banach space bundle with bers
) kK Lp Oam i . .
Ed;u;Jd \W Homcbt;r g TM,Jdd.

The tangent spaceTbu U b‘] "d is the kernel of the surjective operator

o;Jod
. Co . k; kK 1p e .

L: DBE)O,uO,JOd.T,-OT’ W pbuoTMleJOJ"U W promeT JUgTM g |

by;;deMJo Tup y Dy Y Tuo Jo;

where D, is the linearized Cauchy-Riemann operator associated tai : b i od 1 bM; J og We
can again de ne the smooth jet evaluation map -

. 1 1 ‘e “m
(A.2) ev: B b0d " Jet, bM d Jet, bM d
and identify a neighborhood of ug; Jo yin & (J~; "1;:::; 'myWith ev 1 7 . The main technical
) . . o . . b-d
ingredient behind Proposition is now the following.

Lemma A.3. If" y 0 fast enough, then the jet evaluation magfA.2) is a submersion.

0 ‘1 P \m H
Proof. We need to show that for any X bTeVbUOdb‘]etJ My 0 Jety" M 44 there exists an
elementby; Y d bkerL with
deVond X:
Let us rst observe that this problem can be solved locally ner the marked points: in fact,
there exists a smooth section b o TM dWith

Dy, 0 near and devbuocI X:

This follows from the local existence theorem forJ-holomorphic curves with prescribed holo-
morphic derivatives at a point, cf. [Wena, Theorr—;m 2.100]. More precisely, choose a smooth path
: ; Jet !, M o Jet™ M with 0 ev,up and 0 X . Then
thebloclal_ exisrtnence thegrg#n prJowdeds for eacﬁlJ b1; d om absmoothbfgrdnily 0133 $o|omorphic
curvesubd: D M de ned on su ciently small disks D _ C such that the holomorphic ;-jet
represented bytlpo'd is ih dfor each . The desired section b buOTM qcan now be constructed
by writing it in our chosen holomorphic coordinates near eab marked point ; as _ ubd ¢ and
then extending it arbitrarily outside these neighborhoods B |
Given as above, we aim now to nd a pairb;Y d IDW"?F’buOTM d Tj,Jd+ such that

LbO; ;YOI LbO;;YOI Dy, 0 and deVond 0;
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in WhIC-h case b0; Y d bTbuO;Jodp b‘]_"d and devbuo;JodlS); 'Y d X ] We will use
the weighted Sobolev spaces described i . Let g , and assume without loss of

generality that u, 1bUd is disjoint from 7 this can be achieved at the cost of shrink ing U
and therefore the spacg of perturbationsl-. As a consequenceY Tup jo how has compact
supportin dorany Y T;,J-. Using the xed holomorphic coordinates on neighborhoods b
marked points ; Wé:’can identify them biholomorphically with half-cylind ers L0; d st
and x trivializatio}?s of uyTW on these neighborhoods to de ne weighted Sobolev ﬁorms and

a bounded linear map
VYL E k 1p: Hom . .

where sections of classW P are required to satisfyeS =~ WKP_0:; d St when expressed
in the chosen trivialization and holomorphic coordinates s!:i Ok;JL 8 St on each cylindrical
end near . As explained in ﬁ] Buo is asymptotic to the trivial asymptotic operator at each
puncture and is thus Fredhofm for any b RSZ Z. We claim that whenever this condition is
satis ed, the linear map
L - wkps

oTM g Tad" |, WK P Home T giupTM

b;delA%uo Y TUO jO

is surjective. The proof is more or less standard: we start wh the casek 1 and note that
since Buo is Fredholm, L has closed range, so it is not surjective if and only if there x@sts a
nontrivial section B_p? L% for1,p 1,9 1 which isL?-orthogonal to the images of
both I%uo and Y Tup jo. Sinceug has an injective point zg E;/vith U foqy U, the
latter irﬁ’ﬂﬁlies that va'?w'l@hes nearzp; this depends on" converging to Bfast enough fB’rTJOJ "
to contain an abundance of bump functions with arbitrarily small support. The former implies
in turn that is a weak solution to the formal adjoint equation Ruo 0 and is therefore
smooth with isolated zeroes, giving a contradiction. The cae of generak . N follows from this
via elliptic regularity, namely Lemma B.I1l. b

With this claim in place, we observe that D, vanishes near and thus restricts to #S
a section of classwk 1P forany |, O, thuswecan nd | WKP u TM, candY  TjJ-
such that ' b b |od b

o’ M| ad dla

LbO; ;Yd Dy, on &
SinceY has compact support in aand Dy, 0 near , this equation implies D, O near .
The continuous inclusion W KP: CO implies that also has a continuous extension over

that vanishes on ; moreover, sim:e (AJ) implies a continuous inclusion wkp Cl, has
a bounded rst derivative on the cylindrical ends, implying via a short comput%‘on that for
1 g 2,theL%norm of its derivative on punctured disk-like neighborhoads of is nite. It
follows that the extension of over the punctures is inW 9 on , and elliptic regularity then
implies that it is smooth everywhere. Finally, the exponential weight condition implies that in
each holomorphic coordinate system identifying the neighbrhood of a marked point ; . with
D such that ; is at the origin, we have b

2
z cz
L EN N _ -
for some constantc | 0. But the choice of | 0 in this discussion was arbitrary, so choosing it
large enough, we can arrange for to have vanishing derivatives of arbitrarily large nite or der
at , proving deVond 0.

The lemma implies that  ,J-; "1;:::; m IS a separable and metrizable smooth Banach
manifold, so we can now apply the Sard-Smale theorem to the mjection

L b‘]"; 1000 md'&l J :bU;Jdblﬂ];
giving a Baire subset ofJ - for which M g;mbA;J D 10000 " m 4is a manifold of the correct dimen-
sion, and the countable intersection of these subsets for?ag, m, A and b‘l; i :;‘md is again
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comeager inJ », proving that there is a Cg -dense subset o M;! ; U;J 4 ,for which the state-

ment of the theorem holds. To turn this into a Baire subset ofJ bM' U d < one can use the
standard Taubes trick (see e.g.[[Wena, 4.4.2]): presentM ¢, A;J ; "1;:11; 'm4as a countable
union of compact subsets, and associate to each one a se ofgudaar almost complex struc-

tures, which is open by construction and dense due to the argunent above, so its intersection is
comeager.

Remark A.4. LemmalA3 implies that for generic J, the jet evaluation map can be made
transverse to any given submanifold, hence this method cand used to understand any moduli
space of holomorphic curves with marked points satisfying @anditions on their derivatives, e.g. the
incidence/tangency conditions studied by Cieliebak-Mohrke [CMO07,[CM18] or McDu -Siegel
[MS].

Remark A.5. The assumption 2y m
discussion above is modi ed as follows:

(1) The automorphism group Aut,. ;jo; 4iSnot nite, butis instead a nontrivial Lie group;
(2) The usual formuladimT 6g 6 2m for the dimension of Teichmuller space is wrong.

In fact, these two di erences cancel each other out in the seresthat

* 3 misses only four special cases, and for these the

dmT dimAutb ijo; d 6g 6 2m;
which is why the stated formulas for the virtual dimensions d the moduli spacesM g.m A;J d
and M g:m A;J 5 "1;::0; 'm 4 remain correct in these non-stable cases. In the cases witregus
zero, Teichmualler space is frivial and there is thus no needo include a Teichmuller slice in the
argument; the only di erence is then the fact that dividing 0 by Aut ;jo; ychanges its
dimension. There is no need to discuss the non-stable ge usne) case here since that case also
hasm 0, and thus does not involve critical point constraints.

Appendix B. Super-rigid curves are isolated

In this appendix we prove the following precise version of te statement that the multiple
covers of a super-rigid curve form an open and closed subset the ambient moduli space.

Proposition B.1.  Suppose M |s a sequence of almost complex manifolds withy

in Cg on some compact suBset containing a super-rigid -holomorphic curveu : b j“

bM J o d Then for su ciently Iarge k, there exists a seauence oy - holomorph?c curve%uk
M Jk with g j and ug in Cg, and if vg is any sequence of smooth

closngk holomorphlc curvgls C?romov corK}erggent to a stable noda] -holomorphic curve with

image contained inu then for all k su ciently large, every vy 8s either a biholomorphic

reparametrization or | mlﬂtlple cover of ug.

Note that this statement belongs to the almost complex categry and makes no reference to
any symplectic structure. Other than that detail, a nearly i dentical statement has been proved
before by Zinger, seel[Zin11, Prop. 3.2]. The proof given belv is essentially the same and is
included mainly for the sake of completeness; it just requies the extra step of introducing an
auxiliary symplectic structure in order to use Gromov's compactness theorem. Recall fron‘gZI]
that if u bM gbA;J dand d * 1andh * 0 are integers, we denote by

hbd; ud € bdA J d
the moduli space of all stable nodald-fold covers ofu with arithmetic genus h.

SupposeJk J is a Cg -convergent sequence of almost complex structures on a mdaid
M, and ; |s a super-rigid curve. Thenu is Fredholm regular with
index 0, so th% m?p?cnbfunc?ﬁen ﬁ'neorem implies the existence of c%rvesuk b ,Jk M J kg
for su ciently large k such that j j and ug u in Cg; these curves arel4m|que up
to b|holomorph|c reparametrization, glnd are also swnplg ad immersed for su ciently large k.
Assumevk bdA J"d is a sequence oflx-holomorphic curves converging to a nodal cover
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g Mpd;u OIfor somed , 0. We will show that if the curves vy are not covers ofuy for all
subcientltf/ Ialsge k, then rescaling the normal bers nearuy ask gives rise to a nontrivial
section in the kernel of the normal Cauchy-Riemann operatoion sMe cover ofi , contradicting
super-rigidity. 8

Choose a convergent sequence df-invariant Riemannian metrics and corresponding Levi-
Civita connections r K. Since the mapsu, are immersed, we can de nely-invariant normal
bundles N, as the orthogonal complements of imdux. These are all isomorphic as real
vector bundle@, so we can identify them all with the real bunde N : Ny u TM carrying
a sequence of complex structures 2 € 8
bN;Jkdl/l b ;Jkd;
and then use the sequence of exponential maps determined by to de ne a Cg -convergent
sequence of immersions

k. N b d M
4
of some xed neighborhoodN b d N of the zero section N onto some neighborhood of
Ukp d such that ug. Let Jk for k 1,2;3;7::; , so that for k su ciently

large, the curvesyvy can be identi ed with Jx-holomorphic curves in the total space ofN, and
eachuy is identi ed with the zero section.

Let vy :u TM N denote the normal projection, so that i, : N I g induces a
connection onf\ léas a real vector bundle), and thus de nes a splitting into horizontal and
vertical subbundlgls

TN HN VN:
This splitting is invariant under the di eomorphisms on N de ned by real scalar multiplication.
For z b and sz, the bers in the splitting admit canonical identi cations

H N T, ; V,. N Ny

K d K d

and we can write Jx with respect to the splitting as

g g Erd Mg d

ka; d ka; d
for some smoothly varying linear maps ,z; 4: Tz T, «Z: 4:N3z Y T, and so forth.
Since uy : b i kd 11 bM;J kg is Jx-holomorphic and thlé bers ofl?\luk are Ji=invariant along uy,

we have

f 0 Ikfd  kfi0 Ikgkifad  kFily O kil O
Now for any constantr , 0, the di eomorphism

r:NI(I N:bz; dbl(lzgrd

transforms Ji to

TPl g kgl
0, the sequence]{k converges inCg on compact subsets of

T Gzt
KE g r‘b‘lbz?d kol g Tkl g s

SO given any positive sequencey
N to
0

. I 2 )
(B.1) 0z g b :
‘b;b d d 8bz,8d ngu8 Hdd

Lemma B.2. A neighborhood of in N admits a symplectic form! that tamesqjg.

NN

Proof. We use a variation on Thurston's method for constructing synplectic forms on brations
(cf. [MS17, Theorem 6.1.4]). For any open subset _ , let bUd denote the space of smooth
1-forms on 1bUd satisfying the following conditio%s:

(i) At any point bZ;Od bU € N C in the zero section,
0;

z
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(i) The restriction of d to bersin 1bUdde nes a symplectic vector bundle structure on
N u taming J
We observe that U, is nonempty whenever there exists a complex trivializationof (N;J
b™d.”. . : b “gd
over U, and moreover, it is Cg -convex in the sense that if g; 1 b bUd’ then

b dlbl d°p b’d
for every smooth function :U LO; 12. It follows that an element of b gcan be constructed
by patching together local consm.lctions via a partition of unity.
Now given b d choose an area form on taming j8 . Then for a su ciently large
constantK | O,
’ I: K d
is a closed 2-form that tamesbg at and hence also in a neighborhood of .

Remark B.3. The above proof did not use any special properties of’ except that the zero
section is pseudoholomorphic and the normal bers along thezero sectiofi are also complex. The
same argument shows that for any embedded closet-holomorphic curve in any almost complex
manifold bM; J a2 neighborhood of the curve admits a symplectic form that tanesJ.

Lemma B.4. Suppose : | is a smooth map, ~is a complex structure on, and
N ,is a smooth sectiormralong . Then the map z z from | into the total space

obe bis a%seudoholomorphic mapy ; N; }° if an%“oRly if ok o 4is
| ’ . | )

holomorphic and l:)kerDﬂ L b o Brid b Ted
8

Proof. Denote by v : | N the smooth map into the total space of N de ned by ViZd -
d N Zd€ N. Then using (B.1)), the equation Tv 4);’ Tv O translates into the two
equaﬁ’ons

4 Zq Jgb Fdd 9 Fd Fa ©
and
b fd Je'sb Fddd b fd 19 g0 Fd% fae g b O
for z . The rst equation says that bl ;|~d b i d is holomorphic, and under this
assunlf’ption, the second matche® |} 0 after observin
8

deb O @ F vl Jog Ty g F

We now prove Proposition[B.1 as follows. Arguing by contradction, assume after taking a
subsequence that the curvesy : bt ;|~kd bM;J k 4 are not covers ofuy for any k ask .
Choose a symplectic form! near the sek Zection inN Ny, as given by Lemma[]BI%', &nd

| 0 8 .
choose | 0. such that ! tames bBN on N TN 2 - Writing VkZg kp kbzddfor
sequences i : | " and b b kg we have

1
Mg : —max| kbzdl ; O
ZbL )
and rg Y 0 by assumption. Then

) Wit Ve iy, pN R
is a sequence of smooth pseudoholomorphic curves in a compaubset of the neighborhood

: _ o .
[ bN I 2, which can be written aswi 2k, kZggWhere k7 « satises

(B-2) n;aLX | kbzdl
b

Note that since vi converges to a nodal curve inM 4, d;u ¢ We can also assume the maps

: 8 . . .
Kol have xed degree d. Then smce\bik 0 and the latter is tamed by ! in the region
under Kbnsideration, Gromov compactness aplélie tovy and yields a subsequence convergent
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to a stable nodal curvew, bM hde 2'4);’ q By Lemma[B.4, each smooth componentv of w
has the form Wi Zqg b bzddwhere Cph ;|~d U i d is holomorphic and Dl'}' 0. We
claim there must be at least one such component for which d ; 0and 0° Indeed, (B2)
implies that there is at least one component with 0. If every such component also satis es
de 0, then is a nonzero constant on this component, as the normal operat DDI

is simply the standard Cauchy-Riemann operator on a trivial bundle when is constant. But
since de% K d, 0, any component with de 0 is necessarily connected by a chain of
nodes to anéither component with de ; 0, and on this component, is nonzero at the nodal
point. This implies the existence of a nontrivial element _kerD)  for some positive degree
holomorphic cover , and thus violates super-rigidity. The |Broof of Proposition Bl is complete.

Appendix C. The Sard-Smale theorem for Cg -subvarieties

The proof of Petri's condition in 5 requires a version of the Sard-Smale theorem for objects
that are not Banach manifolds but‘are almost as nice in some aalytically quanti able sense.
The results in this appendix are easy consequences of stardaresults in the analysis of smooth
Banach manifolds, but expresed in a slightly more general imework.

SupposeX is a smooth Banach manifold andY _ X is a subset. Givenk ;, N, we will say
that Y is a Cg -subvariety of codimension at Ieasﬁ k if for every x Yb there exists a
neighborhoodU _ X of x, a nite-dimensional vector spaceV and a smoB’th mapf : UV

: I
such that: -
WY _ U f Lo
(2 ra%( o 5d * E.d
Proposition C.1. If Y _ X is a Cg -subvariety of codimension at leask, then for everyx =Y,
there exists a smooth Banach submanifolgf € X of codimensionk such that a neighborhood of
X in Y is contained in Y .

Proof. Given x . Y, we haveY _ U f 10, for some open neighborhook U _ X and
smooth map f :'i’J V, with V § nite-dimensional vector space and dimimd d k. Then
we can choose a IiKIear map :V R whose restriction to imdf 54 Vis SUI’jeC'[I\ié- onto RX,
hence o P Ty X RX is surjective. De ne Y . X to be aneighborhood ofx in b f d 1 Od
The impliciyf(unction tléeorem implies that this is a€Banach submanifold of codimensionk if lghe
neighborhood is taken su ciently small.

The discussion so far makes sense under a very unrestrictivie nition of the term \Banach
manifold," e.g. in [Lan99], such objects need not even be Hador. In practice, of course,
the Banach manifolds one encounters in applications are tyjgally at least metrizable (hence
Hausdor and paracompact) and separable. The latter is the ondition required for the Sard-
Smale theorem[[Sma65]. We will need the following standard ibof general topology:

Lemma C.2. If X is a paracompact and separable topological space, then eyespen cover of
X has a countable subcover.

The following is the main result of this appendix. The proof d Theorem[5.9 uses the special
case in which all manifolds are nite dimensional, so the Frelholm assumption is automatic and
only the nite-dimensional version of Sard's theorem is neded. The in nite-dimensional version
with the Sard-Smale theorem is required for the proof of Thecem [5.286.

Proposition C.3. AssumeU and Z are separable and metrizable smooth Banach manifolds,
U Z is a smooth Fredholm map, andX € U is a Cg -subvariety of codimension at

least k EN. For eachz Z, denote

b
MiFa:  HaeYi  Xdd X xMFaeMid
and let Z"®® _ Z denote the Baire subset consisting of regular values of. Then there exists
a further Baife subsetz’® _ Z such that for all z I:‘Zreg v Zy%, X 7y is a Cg -subvariety of
codimension at leastk in M Hd
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Proof. Supposex I:‘X, so by assumption, there exists a neighborhood

Xmb€U;

a nite-dimensional vector spaceVy and a smooth mapfy : Ux =V such that f, 1bod X Uy

and rankol‘xt%d k. After possibly shrinking Uy to a smaller H@ighborhood ofx, we can u§% the
argument in the Proof of Proposition[C. to nd a linear map  : Vi .. R¥ suchthat 0, RKis

a regular value of , fy : Uy ¥ R and 4 b

- . 1
Goip x Txg PV
is a smooth Banach submanifold of codimensiok containing X _ Uy.

SinceU is metrizable and separable X also has both of thede properties, thus Lemma_Cl2
implies that we can nd a sequence xn@g , of points in X such that everyx . X lies in at least
one of the neighborhooddJy, . Let Zﬂe e Z denote the set of regular valueB of the projection

l-éxn M Z;
The latter is a smooth Fredholm map since X\; is a smooth nite-codimensional submanifold
of U . The Sard-Smale theorem thus implies thatz ;™ e Z is a Baire subset, and consequently,

zieo. € Zpe9 2
n 1

is also a Baire subset.

Now forany z Z% Z™ andx X z, pick n N suchthatx Uy, and consider the

: X b”bd b b
restricted map
O M Hd Uy, Y Vy, X fx,
whose zero-set is a neighborhood of in X e Regularity and the implicit function theorem
imply that &, . U and M d U are transverse submanifolds, so that O is also a regular
value of 4, gn M,z Uy, Rk 1t follows that xn Ao X i TxM  Z RX is surjective,
b (?( "N b d bdin

and thus rankdgw;(d % K < <

The results of this discussion combine to yield the followily useful consequence:

Corollary C.4. In the setting of Proposition [C.3, if the smooth Fredholm map : U Z
: : ; . N
satises indd 54 k for all x bU , then X Zq 'S empty for genericz bZ' -

Appendix D. History of errors

This appendix has been added (at the suggestion of an anonymse referee) in the interest of
transparency: its purpose is to clarify more precisely whatwent wrong with previous attempts
to prove Theorem[A, and how those attempts are related to the poof in this paper. There were
at least two claims of proofs of super-rigidity that were puHbicized and then withdrawn before
| ever started thinking about the problem, but since it is not my place to comment on those, |
will only discuss the attempts that | have been involved in.

D.1. Analytic perturbation theory. The original version of [GW17] was a preprint under a
di erent title [GW],/which claimed a proof of Theorem ATalso i n dimension four) for embedded
index O curves that are fully contained in the perturbation domain U . M. The ideas behind
that argument were almost totally disjoint from those of the present paﬁer, excepting the super-
cial feature that both derive originally from (separate) i deas developed in Taubes's work on the
Gromov invariant. The literature on the Gromov invariant co ntains two quite di erent methods
to prove transversality for the doubly covered tori that must be counted: one (from [Tau96a])
is based on a splitting of Cauchy-Riemann type operators wih respect to irreducible represen-
tations, and gives rise to dimension-counting arguments tat provided the original inspiration
for this paper. The other, from [Tau96b, Proof of Prop. 7.1, Sep 7], is in some respects more
novel: it is based on a Weitzenbeck formula for Cauchy-Rienann type operators and analytic
perturbation theory. In the setting of [Tau96b], where one needs to prove that aZ,-equivariant
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index 0 Cauchy-Riemann type operatorD : bEd Fdon a trivial line bundle E . T2 can
always be perturbed equivariantly to one that is m%rtigle, these two ingredients comgkne in the
following way:

(1) The Weitzenback formula implies that for any complex-antilinear bundle isomorphism
A :E _ F, the deformed operatorD : D A is invertible for all 0.

(2) Since l41e deformed operatorsD depend analytically on the parametef = R, analytic
perturbation theory as in [Kat95] implies that the set R, D isnot ianrtibIe is ei-
ther R or is discrete. The rst possibility has already lgeelﬁ ru'led it via the Weitze?lbock
formula, so it follows that D is invertible for all 0 in some neighborhood of 0.

This technique has the appealing feature that it does not cae how symmetric the perturbation
term A bmc E;F s, thus it can work equally well for simple holomorphic curves and
multiple E’overs. The preprint [GW] was motivated by the insight that both parts of the argument
can be made to work somewhat more generally: the operatod can have negative index if we
talk about injectivity of D instead of invertibility, and E can also be a higher-rank bundle ifA
is required to satisfy an extra condition which, for topologcal reasons, can be assumed without
loss of generality. Applying the argument to normal CauchyRiemann operators of branched
covers then produces the following result:

Lemma D.1 ([GW17]). SupposedimM _ 4, J J bM;! ;U Jx ¢ Vip g bM;J d is an
embedded closed -holomorphic curve of inﬁiexo W‘:l)h image contained inU, and KI v ' “where
B b ;l ;j yis a holomorphic branched cover of degred A N between closed connected

Riemanndslgr aces. Then there exists a smooth-parameter family I'ﬁ J bM;! Uy das 4
such thatJy J, v and u are J -holomorphic for every , and the'?esulting normal gé’uchy-
Riemann operators Dl'}'; for u with respect toJ are injective for all 0.

A proof of generic super-rigidity would follow via relatively straightforward topological argu-
ments if one instead had the following stronger statemen]

Lemma(?) D.2. In the setting of LemmalD.1, the family of almost complex strutures _J

I Mt U Ik drigp © g O be chosen so that for some neighborhodd, jof * in the moduf?
space ofd-fold holomorphic branched covers, the normal Cauchy-Rientan operators D). . are
injective for all Oand' IbOb' q

Unfortunately, Lemma D.Ildoes not imply LemmalD.2, as analyfc perturbation theory gives
no obvious way to control the size of the range of parameter aes b d On for which
injectivity is guaranteed as ' varies in the moduli space of branched Rovers.“Shis detail wa
overlooked in [GWI]; the crucial gap in our argument was poined out by lonel and Parker.
What can still be salvaged from Lemma[D.1, and eventually apgared as the main result of the
published paper [GW17], is a result similar to Theorem B abou transversality for unbranched
covers: in the unbranched case there is no distinction betwven Lemmas[D.1 and D.2 because
the moduli space that' lives in is discrete.

| currently believe the proof of Theorem[A originally attempted in [GW] to be unsalvageable.
There are also strong philosophical arguments for preferng the approach of the present paper
over analytic perturbation theory: notably, the use of the Weitzenbeck formula requires a more
global class of perturbations U must be contained in the perturbation domain U . M rather
than merely intersecting it), and the whole strategy seems empletely unsuitable For studying
the wall-crossing phenomena mentioned i . On the other hand, the Weitzenbeck argument
(minus analytic perturbation theory) has Been usefully exdoited by other authors in certain
special settings where geometric information removes theaed to assume  0; seel[LPOY,1P18].

n

12The question mark in the statement indicates that | do not kno w whether Lemma [D:2is true, and | do not
have a strong enough opinion about it to call it a conjecture.
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D.2. Earlier versions of the present paper. The main ideas behind the proofs of Theo-
rems[A{Dlhave changed very little since the rst version of this paper appeared on the arXiv,
but one important technical detail has changed a lot: the proof that generic Cauchy-Riemann
type operators satisfy Petri's condition/ The intuition from the beginning had been that Petri's
condition was the main analytical lemma needed for the proofof Theorem[D (on which Theo-
rems[A{Clall depend), and that it should hold due to unique cortinuation except for some special
class of non-generic Cauchy-Riemann type operators. Up toersion 3 on the arXiv [Wenc], a
much more naive approach to this lemma was taken, in which theword \generic" was given a
precise characterization:

(False) Lemma D.3  ([Wenc, Corollary 5.2 and Lemma 3.11]) SupposeE;F are complex
vector bundles andD : bEd Fd is a Cauchy-Riemann type operator sugh that the bundle
map D %1 bHomc E;F gi@en%y the complex-antilinear part ofD de nes an invertible map
E, Y F, at some pointz b Then D satis es Petri's condition to in nite order at z.

It is relatively easy to show (see[[Went, Lemma 6.2]) that thehypothesis on invertibility of
complex-antilinear parts is generic, i.e. all normal Caucl-Riemann operators ofJ-holomorphic
curves satisfy it for generic (and necessarily non-integrale) J. The bene t of this condition is
that it forces ker D bE and kerD bF to be totally real subspaces, meaning that any
real-linearly indeper?dent set of vectors%n one of these spas is also complex-linearly indepen-
dent. The original reason to believe in Lemmd_D.B was the eleentary observation mentioned
in Example 53 that for complex-linear Cauchy-Riemann type operators, which can always be
expressed locally as the standard one, the complex versiorf Betri's condition (involving com-
plex tensor products) does hold to in nite order at every point; a proof of this may be found
on page 48 of[[Wenc]. LemmaD.J3 was thus an attempt to t real-lnear Cauchy-Riemann type
operators into a complex-linear context with the aid of the totally real hypothesis. The proof
was destroyed by a careless mistake in linear algebra: Equans (5.3) and (5.4) in [Wenc] de ne
certain functions and  that are meant to be in kerD and kerD respectively because they
are linear combinations of functions in those spaces, but ifact, the coe cients in those linear
combinations are complex rather than real, whileD and D are only real-linear. Similarly,
the claim in the nal paragraph of that proof that certain lin ear combinations icij i and
° cl j satisfy linear Cauchy-Riemann or anti-Cauchy-Riemann eqgations does not hold, again

because the coe cientsc! are complex instead of real. These errors were noticed by Daaand
Walpuski while working on their own alternative exposition of the super-rigidity proof [DWhb].
Example [5.7 was found later, showing that Lemmd D.B is in factfalse.

After Lemma D.3lfell apart, the intuition remained that the f ailure of the local Petri condition
for a Cauchy-Riemann type operator should be overdeterming in some sense, and the jet space
approach in the current [5 was then developed to make this intuition precise. Lemmd 8
has now been replaced By Corollary_5.10, whose proof is congiély di erent from what was
attempted in [Wenc]|, and has an additional advantage over tle earlier approach in that the jet
space formalism can potentially be applied to more generallasses of operators beyond Cauchy-
Riemann ( has been written with this in mind). A more detailed informal discussion of the
x may be found in the blog post [Wend].

For completeness, | should mention a somewhat serious but mefatal error that was also
pointed out by Doan and Walpuski but corrected between arXiv versions 2 and 3 of this paper.
The de nition of the walls appearing in Theorem Dl was slightly wrong in earlier versions,
because it was overlooked that in the splitting of the normal Cauchy-Riemann operator D
into summands '%D' . corresponding to irreducible representations i, the kernels and cokernels
of these summands are always modules over the equivariant damorphism algebra R, C or

13The term \Petri's condition” did not appear in the rst three versions of this paper on the arXiv, but the
same notion was there under the label of \unique continuatio n for tensor products" and has sometimes also been
advertised as \quadratic unique continuation". The curren t terminology was introduced by Doan and Walpuski
[DWh] after the rst version of this paper appeared.
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H) of ;, and this structure must be respected in talking about their dimensions. The result
was a mistake in [Wenb, Theorem D] that was hard to spot, becase the statement looked the
same as in the current version, but its meaning was di erent. The source of the problem was an
erroneous representation-theoretic dimension calculuan in [Wenb|, Corollary 3.23], which was
stated without proof. A corrected version of that result appears in this version as Corollary"3.2B,
with a proof given in the preceding paragraph.
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