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CONTACT HYPERSURFACES IN UNIRULEDSYMPLECTIC MANIFOLDS ALWAYS SEPARATECHRIS WENDLAbstrat. We observe that nonzero Gromov-Witten invariants withmarked point onstraints in a losed sympleti manifold imply restri-tions on the homology lasses that an be represented by ontat hyper-surfaes. As a speial ase, ontat hypersurfaes must always separateif the sympleti manifold is uniruled. This removes a superuous as-sumption in a result of G. Lu [Lu00℄, thus implying that all ontatmanifolds that embed as ontat type hypersurfaes into uniruled sym-pleti manifolds satisfy the Weinstein onjeture. We prove the mainresult using the Cieliebak-Mohnke approah to de�ning Gromov-Witteninvariants via Donaldson hypersurfaes, thus no semipositivity or virtualmoduli yles are required. Contents1. The statement 11.1. Main result and onsequenes 11.2. Reolletions on Gromov-Witten theory 31.3. Disussion 51.4. Aknowledgments 62. Some preparations 62.1. De�ning the Gromov-Witten pseudoyle 62.2. Donaldson hypersurfaes transverse to a ontat hypersurfae 123. The proof 16Appendix A. The forgetful map is a pseudoyle 20Referenes 231. The statement1.1. Main result and onsequenes. In this note, we prove the following.Main theorem. Suppose (M;!) is a losed sympleti manifold and V �M is a real hypersurfae that is pseudoonvex for some hoie of !-ompatiblealmost omplex struture on M . Then the rational Gromov-Witten invari-ants of (M;!), de�ned in the sense of [CM07℄ (see x2.1.1 and x2.1.2), satisfyGW(M;!)0;m;A(PD[V ℄ [ �1; �2; : : : ; �m;�) = 0for all m � 3, A 2 H2(M), �1; : : : ; �m 2 H�(M ;Q) and � 2 H�(M0;m;Q).2010 Mathematis Subjet Classi�ation. Primary 57R17; Seondary 53D45, 53D35.Researh supported by a Royal Soiety University Researh Fellowship.1

2 CHRIS WENDLReall that a real hypersurfae V in an almost omplex manifold (M;J)is pseudoonvex (also sometimes alled J-onvex) if the maximal J-invariant subbundle � � TV is a ontat struture whose anonial on-formal lass of sympleti strutures tames J j�. As an important speialase, when (M;!) is a sympleti manifold, we say V � M is a ontattype hypersurfae if ! an be written in a neighborhood of V as d� forsome 1-form � whose restrition to V is a ontat form. In that ase, Vis J -onvex for any hoie of !-tame almost omplex struture J that pre-serves the ontat struture on V , and without loss of generality one analso arrange J to be !-ompatible.We will show in x1.2 below that the main theorem has the followingimmediate onsequene:Corollary 1.1. Suppose (M;!) is a losed sympleti manifold that is sym-pletially uniruled (see De�nition 1.5). Then every ontat type hypersur-fae in (M;!) is separating.Some motivation to prove suh a result omes from the Weinstein onje-ture, whih asserts that any losed ontat type hypersurfae in a sympletimanifold has a losed orbit of its harateristi line �eld. There is a longhistory of results that prove this onjeture under various assumptions onthe existene of holomorphi urves in the ambient sympleti manifold,f. [HV92,LT00,Lu00℄. However, suh results have often been proved onlyfor separating ontat hypersurfaes, leaving the question without this ex-tra assumption open. Our theorem thus shows that the extra assumption issuperuous, e.g. ombining it with Guangun Lu's result, we obtain:Corollary 1.2 (via [Lu00℄). If (V; �) is a ontat manifold that embeds into asympletially uniruled sympleti manifold as a ontat type hypersurfae,then every ontat form for (V; �) admits a periodi Reeb orbit, i.e. theWeinstein onjeture holds for (V; �).For more on sympleti manifolds to whih this result applies, see [Hyv12℄and the referenes therein.Remark 1.3. Our use of the tehnique of Cieliebak and Mohnke [CM07℄for de�ning the Gromov-Witten invariants via Donaldson hypersurfaes im-poses ertain tehnial restritions on the sope of the above results: (1) Thesetup in [CM07℄ only handles sympleti manifolds with integral ohomol-ogy, i.e. [!℄ 2 H2(M ;Z), due to the need for a sympleti hypersurfaePoinar�e dual to a large multiple of [!℄. One an obviously generalize thisto the assumption that [!℄ is any real multiple of an integral lass, and ofourse every sympleti form admits a small perturbation that has this prop-erty. It is likely moreover that the restrition to integral lasses an be liftedentirely by hoosing sympleti hypersurfaes that approximate the relevanthomology lasses, and indeed, the reent preprint of Ionel and Parker [IP℄laims to de�ne fully deformation-invariant Gromov-Witten invariants forarbitrary [!℄ 2 H2dR(M) using similar tehniques. For simpliity, we shallnonetheless assume wherever neessary that [!℄ is integral, in order to re-main fully onsistent with [CM07℄. (2) Following [MNW13℄, one an de�nea real hypersurfae V in a sympleti manifold (M;!) to be weakly on-tat if there exists an !-tame almost omplex struture J for whih V is
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CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 3J -onvex. This is equivalent to the ondition required in our main theoremif dimV = 3, but in higher dimensions it appears to be more general. It isvery likely that our main theorem holds under this weaker assumption aswell, and the proof given here will imply this at least in the semipositivease without oupling to gravity (using the standard setup from [MS04℄). Amore general proof will probably be possible in the future using polyfolds(f. Remark 1.6). In the non-semipositive ase, our reliane on the Don-aldson hypersurfae onstrution [Don96℄ neessitates the added restritionthat J is ompatible with !, not just tamed.1.2. Reolletions on Gromov-Witten theory. In this artile, we re-gard the Gromov-Witten invariants of a sympleti manifold (M;!) as anassoiation to eah pair of integers g;m � 0 with 2g + m � 3 and eahhomology lass A 2 H2(M) of a homomorphism(1.1) GW(M;!)g;m;A : H�(M ;Q)
m 
H�(Mg;m;Q) ! Q ;where Mg;m denotes the Deligne-Mumford ompati�ation of the modulispae of Riemann surfaes with genus g and m marked points. LetPD : H�(M ;Q) ! H�(M ;Q)denote the Poinar�e duality isomorphism, or its inverse when onvenient.In the absene of transversality problems, GW(M;!)g;m;A(�1; : : : ; �m;�) is inter-preted as a ount of rigid unparametrized J -holomorphi urves of genus g,for a generi !-tame almost omplex struture J , withmmarked points suhthat for i = 1; : : : ;m, the ith marked point is mapped to a generi smoothrepresentative of PD(�i) 2 H�(M), and the underlying onformal strutureof the domain lies in a generi smooth representative of � 2 H�(Mg;m). Inpratie, the transversality problems that arise in this de�nition require on-siderable e�ort to overome, and the literature ontains various approahes(e.g. [FO99,LT98,Rua99,Sie,CM07,HWZ℄) whih may or may not all de�nethe same invariants.In order to be onrete and also minimize the tehnial apparatus needed,in this paper we shall work with the de�nition provided by Cieliebak andMohnke [CM07℄ for the g = 0 ase, whih uses a Donaldson hypersurfae asauxiliary data and thus requires the sympleti form to represent an inte-gral ohomology lass. The essential details of this setup will be reviewed inx2.1.2, though we shall also attempt to express the main argument in termsthat do not depend on these details. In partiular, the reader who wouldprefer to avoid serious tehnial issues by assuming (M;!) is semipositivemay do so by skipping from x2.1.1 (where we review the main de�nitions inthe semipositive ase) straight to x3. In either ase, the theory is de�ned es-sentially by onstruting a suitably ompati�ed moduli spae MA0;m(M;J)of stable nodal pseudoholomorphi spheres homologous to A, withmmarkedpoints, suh that the natural evaluation/forgetful map(1.2) (ev;�) = (ev1; : : : ; evm;�) :MA0;m(M;J)!Mm �M0;mde�nes a rational pseudoyle in the sense of [MS04, x6.5℄, meaning thatrational intersetion numbers with homology lasses in Mm �M0;m an be

4 CHRIS WENDLde�ned. The homomorphism (1.1) is then de�ned, up to a ombinatorialonstant (see (2.4)), by(1.3) GW(M;!)0;m;A(�1; : : : ; �m;�) = [(ev;�)℄ � (PD(�1)� : : :� PD(�m)� �) :Remark 1.4. The Gromov-Witten invariants de�ned in [CM07℄ do not in-volve \oupling to gravity," i.e. they rely on the fat that ev :MA0;m(M;J)!Mm is a pseudoyle, but do not deal at all with the forgetful map � :MA0;m(M;J) !M0;m, assoiating to a J-holomorphi urve its underlyingonformal struture. It is nonetheless true in the ontext of [CM07℄ that(ev;�) is a pseudoyle and hene (1.3) is well de�ned; the proof of this fatis almost already impliit in that paper, and we shall spell out the missingingredients in Appendix A. Note that in the semipositive ase, the standardapproah via domain-dependent almost omplex strutures suÆes to provethat the evaluation map is a pseudoyle, but not the forgetful map|see[MS04, pp. 184{186℄. Thus the simpli�ed version of our arguments (avoidingDonaldson hypersurfaes) for the semipositive ase will be valid only for thesimpli�ed invariants GW(M;!)0;m;A : H�(M ;Q)
m ! Z, whih math (1.1) if �is de�ned as the fundamental lass of M0;m.We now reall the following standard de�nition.De�nition 1.5. A losed sympleti manifold (M;!) is said to be sym-pletially uniruled if it has a nonzero rational Gromov-Witten invariantwith at least one pointwise onstraint, i.e. there exist A 2 H2(M), an integerm � 3 and lasses �2; : : : ; �m 2 H�(M ;Q), � 2 H�(M0;m;Q) suh that(1.4) GW(M;!)0;m;A(PD[pt℄; �2; : : : ; �m;�) 6= 0;where [pt℄ 2 H0(M) denotes the homology lass of a point.Morally, being sympletially uniruled means one an �nd a set of on-straints so that there is always a nonzero ount of onstrained holomorphispheres passing through a generi point.Proof of Corollary 1.1. If V � M is a nonseparating hypersurfae, then[V ℄ 6= 0 2 H�(M ;Q) and one an therefore �nd a ohomology lass �1 2H�(M ;Q) with h�1; [V ℄i = 1. HenePD[V ℄ [ �1 = PD[pt℄:Now if V is also pseudoonvex for some ompatible almost omplex stru-ture, then the main theorem implies that (1.4) annot be satis�ed for anyhoies �2; : : : ; �m; �, hene (M;!) is not uniruled. �Remark 1.6. An earlier version of the present paper made the optimistilaim that the arguments given here an be arried out using the polyfoldtheory of Hofer-Wysoki-Zehnder [HWZ℄. While that is probably true, sub-sequent disussions with Hofer have led to the onlusion that it is not fullyprovable using the tehnology in its present state: in partiular, homologi-al intersetion theory and Poinar�e duality are not urrently well enoughunderstood in the polyfold ontext to justify anything analogous to Equa-tion (3.2). I would like to thank Joel Fish and Helmut Hofer for helpinglarify this point.



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 51.3. Disussion. We now add a few more remarks on the ontext of themain theorem and its orollaries.1.3.1. Nonseparating hypersurfaes. Nonseparating ontat type hypersur-faes do exist in general, though they are usually not easy to �nd. A on-strution in dimension 4 was suggested by Etnyre and outlined in [ABW10,Example 1.3℄: the idea is to start from a sympleti �lling with two boundaryomponents, attah a Weinstein 1-handle to form the boundary onnetedsum and then attah a sympleti ap to form a losed sympleti manifold,whih ontains both boundary omponents of the original sympleti �llingas nonseparating ontat hypersurfaes. At the time [ABW10℄ was written,examples of sympleti �llings with disonneted boundary were known onlyup to dimension 6 (due to MDu� [MD91℄, Geiges [Gei95,Gei94℄ and Mit-sumatsu [Mit95℄), but reently a onstrution in all dimensions appearedin work of the author with Massot and Niederkr�uger [MNW13℄. It seemslikely that these examples an be ombined with the sympleti appingresult of Lisa and Mati� [LM97, Theorem 3.2℄ for Stein �llable ontatmanifolds to onstrut examples of nonseparating ontat hypersurfaes inall dimensions, but we will not pursue this any further here.Note that it is somewhat easier to �nd examples of weakly ontat hy-persurfaes that do not separate: for instane, onsidering the standardsympleti T4 as a produt of two sympleti 2-tori, for any nonseparatingloop  � T2 the hypersurfae  � T2 � T4 admits an obvious foliation bysympleti 2-tori, and this foliation an be perturbed to any of the tightontat strutures on T3 (f. [Gir94℄). Notie that one annot use the sametrik to produe a nonseparating weakly ontat hypersurfae in T2 � S2with any produt sympleti struture, as the latter is uniruled.1 This im-plies the well known fat (see [ET98℄) that the obvious foliation by sphereson S1 � S2 annot be perturbed to a ontat struture.1.3.2. Higher genus. The theorem of Lu [Lu00℄ also establishes the Wein-stein onjeture for separating ontat type hypersurfaes under the moregeneral assumption(1.5) GW(M;!)g;m;A(PD([pt℄); �2; : : : ; �m;�) 6= 0;i.e. one need not assume g = 0. In fat, using the more reent tehnology of\strething the nek" [BEH+03℄, one an give a straightforward alternativeproof of Lu's result whih also shows that any nonseparating ontat hy-persurfae in a manifold satisfying (1.5) must have a losed harateristi.2Note however that in the genus zero ase, this is a weaker statement thanCorollary 1.2: it asserts that a partiular ontat form on (V; �) � (M;!)admits a losed Reeb orbit, but not that this is true for every possible hoieof ontat form. The obvious strething argument does not appear to implythis stronger statement in general exept when V separates M .1Atually, the statement of our main theorem for T2�S2 an be proved by more elemen-tary means without mentioning Gromov-Witten invariants, f. [ABW10, Theorem 1.15℄.2For this heuristi disussion we are ignoring the usual analytial issues of how to de�nethe higher genus Gromov-Witten invariants; de�nitions using the Donaldson hypersurfaeidea have appeared in reent work of Gerstenberger [Ger13℄ and Ionel-Parker [IP℄.

6 CHRIS WENDLIt seems unlikely moreover that our main result would hold under themore general assumption (1.5)|ertainly the method of proof given be-low does not work, as it requires the fat that the relevant holomorphiurves in M an always be lifted to a over (sine S2 is simply onneted).However, it was pointed out to me by Guangun Lu that due to relationsamong Gromov-Witten invariants (see [Lu06, x7℄), ertain onditions onhigher genus invariants will imply that (M;!) is also uniruled, e.g. this isthe ase whenever there is a nontrivial invariant of the formGW(M;!)g;m;A(PD([pt℄); �2; : : : ; �m; [pt℄) 6= 0:The reason is that this invariant ounts urves with a �xed onformal stru-ture on the domain, so one an derive holomorphi spheres from them bydegenerating the onformal struture to \pinh away" the genus.Remark 1.7. Note that in the above formulation of the Weinstein onjeturefor losed ontat hypersurfaes, the ambient sympleti manifold need notbe losed, e.g. every ontat manifold is a ontat hypersurfae in its own(nonompat) sympletization. As was shown in [ABW10℄, there are manyontat manifolds that do not admit any ontat type embeddings into anylosed sympleti manifold|as far as I am aware, all ontat manifoldsthat are urrently known to admit suh embeddings are also sympletially�llable.1.4. Aknowledgments. I would like to thank Guangun Lu for ommentson a preliminary version of this paper, Kai Cieliebak for feedbak on the ap-pendix, and Patrik Massot, Helmut Hofer, Joel Fish and Jean-Paul Mohsenfor useful onversations. The question onsidered here was originally broughtto my attention by a talk of Cl�ement Hyvrier about his paper [Hyv12℄ atthe Sixth Workshop on Sympleti Geometry, Contat Geometry and In-terations in Madrid, February 2{4, 2012, funded by the ESF's CAST pro-gramme. My approah to the proof owes a slight debt to an observationmade by an anonymous referee for the paper [ABW10℄. Likewise, my un-derstanding of Cieliebak-Mohnke transversality owes a substantial debt tothe CNRS-funded Summer Shool on Donaldson Hypersurfaes that tookplae in La Llagonne, June 17{21, 2013.2. Some preparationsIn this setion, we shall review some ruial de�nitions, starting in x2.1with the onstrution of the Gromov-Witten pseudoyle in both the semi-positive and general ases. In x2.2, we will also prove a simple result aboutDonaldson hypersurfaes that is needed to arry out our appliation to on-tat hypersurfaes in the non-semipositive ase.2.1. De�ning the Gromov-Witten pseudoyle. We will now reviewthe de�nitions of the moduli spaes that determine the pseudoyle (1.2).We begin with the semipositive ase in x2.1.1 before addressing the generalase in x2.1.2.



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 72.1.1. The semipositive ase. Reall that a losed 2n-dimensional sympletimanifold (M;!) is alled semipositive if there are no spherial homologylasses A 2 �2(M) satisfying!(A) > 0 and 3� n � 1(A) < 0:In partiular, this is always satis�ed if n = 2 or 3. Under this ondition, onean de�ne integer-valued Gromov-Witten invariantsGW(M;!)0;m;A : H�(M ;Q)
m ! Zfor any m � 3 and A 2 H2(M) by the following presription explainedin [MS04℄. (The original onstrution of these invariants is due to Ruan[Rua96℄.)Let J� (M;!) denote the spae of smooth !-tame almost omplex stru-tures on M , and de�neJS2 := �J 2 �(pr�2 EndR(TM)) j J(z; �) 2 J� (M;!) for all z 2 S2	 ;where pr2 : S2 �M ! M denotes the projetion. We all JS2 the spaeof smooth !-tame domain-dependent almost omplex strutures (where the\domain" is S2). Given J 2 JS2 , a smooth map u : S2 ! M is said to beJ-holomorphi if for all z 2 S2,(2.1) du(z) + J(z; u(z)) Æ du(z) Æ i = 0;where i is the standard omplex struture on S2 = C [f1g. For any m � 3and A 2 H2(M), we an then de�ne the moduli spaeMA0;m(M;J) = f(u; z)g ;where u : S2 ! M is a J -holomorphi map with [u℄ = A, and z =(z4; : : : ; zm) is an ordered (m � 3)-tuple of pairwise distint points in S2 nf0; 1;1g. Setting (z1; z2; z3) := (0; 1;1), the evaluation map is thende�ned by ev = (ev1; : : : ; evm) :MA0;m(M;J)!Mm;evj(u; z) = u(zj) for j = 1; : : : ;m:The forgetful map � : MA0;m(M;J) ! M0;m is likewise de�ned by asso-iating to (u; z) the equivalene lass of onformal strutures on S2 with mmarked points positioned at (0; 1;1; z4; : : : ; zm). Note that sine we have�xed the positions of the �rst three marked points, there is no need to divideout reparametrizations.Under the semipositivity ondition, one an show using standard indexomputations (see [MS04℄) that ev : MA0;m(M;J) ! Mm is a pseudoyleof dimension 2(n� 3) + 21(A) + 2m for generi hoies of J 2 JS2 , and forsuh hoies, the orresponding Gromov-Witten invariant (without ouplingto gravity) an be omputed for �1; : : : ; �m 2 H�(M ;Z) as(2.2) GW(M;!)0;m;A(�1; : : : ; �m) = [ev℄ � (PD(�1)� : : :� PD(�m)) 2 Z:As mentioned already in Remark 1.4, the forgetful map is generally not apseudoyle for this de�nition of the moduli spae, and we shall thereforeignore oupling to gravity in our disussion of the semipositive ase.

8 CHRIS WENDLThe generiity requirement in (2.2) implies that one annot generallyassume J to be domain-independent. It will be important for our appliationhowever that one an do the next best thing: �x any J1 2 J� (M;!), whihwe shall refer to heneforward as the referene almost omplex struture.We an regard J1 as an element of JS2 with onstant dependene on z 2 S2,and the tangent spae at J1 to the Fr�ehet manifold JS2 is thenTJ1JS2 = �Y 2 �(pr�2 EndR(TM)) j Y (z; p)J1(p) + J1(p)Y (z; p) = 0for all (z; p) 2 S2 �M	:After hoosing a smooth family of metris on the manifolds of omplexstrutures at points in M , we an write any J 2 JS2 in some C0-smallneighborhood of J1 as J(z; p) = expJ1(p) Y (z; p) for some C0-small setionY 2 TJ1JS2 . Generiity then allows us to onlude the following:Lemma 2.1. There exists a sequene Yk 2 TJ1JS2 onverging to 0 in C1suh that (2.2) holds with the Gromov-Witten pseudoyle ev :MA0;m(M;J)!Mm de�ned for any J = expJ1 Yk. �2.1.2. The Cieliebak-Mohnke approah. We now onsider (M;!) to be anarbitrary losed 2n-dimensional sympleti manifold that satis�es [!℄ 2H2(M ;Z) but is not neessarily semipositive. The purpose of this setionis to summarize the relevant details of the reipe from [CM07℄ for de�ningthe Gromov-Witten invariants.As auxiliary data, we hoose an !-ompatible almost omplex strutureJ0, and a so-alled Donaldson hypersurfae of degree D 2 N:ZD � (M;!) sympleti, suh that PD[ZD℄ = D[!℄:The existene of ZD for large D � 0 is provided by a deep theorem ofDonaldson [Don96℄, and we an assume moreover that ZD is nearly J0-holomorphi, in the sense that its K�ahler angle (see [Don96, p. 669℄) isarbitrarily small if D is suÆiently large. It follows in partiular that forany � > 0, if D > 0 is suÆiently large, one an �nd J1 2 J� (M;!) withkJ1 � J0kC0 < � suh that ZD is J1-holomorphi. We shall assume in thefollowing that suh a J1 2 J� (M;!) has been hosen and is �xed.For an integer k � 0, suppose T is a k-labelled tree, i.e. a tree togetherwith a partition of f1; : : : ; kg assigning some subset to eah vertex � 2 T .We shall write �E� whenever T ontains an edge onneting the verties�; � 2 T , and denote by �j 2 T the vertex assoiated to j 2 f1; : : : ; kg bythe labelling. Then if S� denotes a opy of S2 for eah � 2 T , we an regarda nodal urve with k marked points modelled on T as a tuplez = �fz�� 2 S�g�E� ; fzj 2 S�jgj2f1;:::;kg�suh that for eah � 2 T , all the points in this tuple lying on S� (the speialpoints) are distint. We assoiate to z the nodal Riemann surfae�z := a�2T S��z�� � z��;where eah omponent S� is assumed to arry the standard omplex stru-ture i. The nodal urve z (or equivalently the nodal Riemann surfae �z)is alled stable if for eah vertex � 2 T , there are at least three speial



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 9points; note that this is atually a property of the labelled tree T , so we anequivalently say z is stable if it is modelled on a stable k-labelled tree. Inthis ase, z represents an element [z℄ of the Deligne-Mumford spae M0;k.There is a natural stabilization map z 7! st(z) that makes any nodal urvez into a stable nodal urve st(z) by removing verties with fewer than threespeial points and plaing marked points on neighboring verties as nees-sary; this determines a holomorphi surjetion on the orresponding nodalRiemann surfaes st : �z ! �st(z):For eah � 2 T , denote by JS� a opy of the spae JS2 of domain-dependent almost omplex strutures de�ned in the previous setion, andlet JT := Y�2T JS� :For J 2 JT , a nodal J-holomorphi map with k marked points isa pair (z;u), where z is a nodal urve with k marked points modelled onT , and u : �z ! M is a ontinuous map whose restrition to eah sphereS� � �z is smooth and J -holomorphi (in the sense of (2.1)) with respetto the S�-dependent almost omplex struture determined by J .Reall next that sineM0;k+1 is a smooth manifold for any k � 2, we anonsider M0;k+1-dependent almost omplex struturesJ 2 �(pr�2 EndR(TM)) suh that J([z℄; �) 2 J� (M;!);where as usual we denote the projetion pr2 :M0;k+1�M !M . For k � 3,this has a onvenient interpretation using the anonial projetion� :M0;k+1 !M0;kwhih forgets the last marked point and stabilizes the result. Namely, for anynodal urve z with k marked points, ��1([st(z)℄) an be identi�ed anoniallywith the nodal urve �st(z), i.e. we parametrize ��1([st(z)℄) via the positionof the extra marked point. Thus if z is modelled on the k-labelled tree T , wean assoiate to z and the family J above a �z-dependent almost omplexstruture Jz 2 JT ; Jz(z; �) := J([st(z); st(z)℄; �);where we use [st(z); st(z)℄ as shorthand for the element of ��1([st(z)℄) 2Mk+1 orresponding to st(z) 2 �st(z) under the above identi�ation. Fortehnial reasons, it is important to onsider only families J that are o-herent in the sense de�ned in [CM07, x3℄, and we shall denote the spaeof smooth M0;k+1-dependent !-tame almost omplex strutures satisfyingthis ondition byJk+1 = �J :M0;k+1 ! J� (M;!) j J is oherent	 :For our purposes, all that we will need to know about the oherene ondi-tion is stated in the following lemma, whih follows immediately from thede�nition in [CM07, x3℄.Lemma 2.2. For any J 2 Jk+1, if z is a nodal urve modelled on thek-labelled tree T , then for eah � 2 T , the restrition of the family�z ! J� (M;!) : z 7! Jz(z; �)

10 CHRIS WENDLto S� depends only on z 2 S� and the speial points of z on S�. �We an now de�ne the moduli spaes needed for the Gromov-Witteninvariants. Given an integer m � 0 and A 2 H2(M), let` := A � [ZD℄ = D!(A) 2 N:We may easily assume ` > 3 by making D 2 N suÆiently large (in generalit will be muh larger). Choose J 2 J`+1 with the property thatJ([z℄; �) � J1 in a neighborhood of ZD, for all [z℄ 2M0;`+1:Using the anonial projetion �m : M0;m+`+1 ! M0;`+1 that forgets the�rst m marked points and then stabilizes, we an assoiate to J a oherentM0;m+`+1-dependent almost omplex struture ��mJ . Then for any nodalurve z modelled on an (m+`)-labelled tree T , we regard a map u : �z !Mas J -holomorphi if it satis�es the Cauhy-Riemann equation (2.1) for the�z-dependent almost omplex struture (��mJ)z. Given homology lassesfA� 2 H2(M)g�2T suh that X�2T A� = A;the pair (T; fA�g) is alled a weighted tree, and it is alled stable if everyvertex � 2 T with A� = 0 has at least three speial points, i.e. marked pointsplus adjaent verties. We de�ne fMfA�gT (M;J ;ZD) to be the spae of pairs(z;u) as above suh that [ujS� ℄ = A� for eah � 2 T and u maps eah ofthe last ` marked points into ZD. Note that sine ZD is J -holomorphi (asJ mathes J1 near ZD), all isolated intersetions of u with ZD are positive;in partiular, whenever z has no nodes and A 6= 0, the relation ` = A � [ZD℄implies that either the image of u is ontained in ZD or the intersetions ofu with ZD our only at the last ` marked points. The former is exludedunder suitable assumptions on J and for suÆiently large D 2 N, due to[CM07, Propositions 8.13 and 8.14℄.Remark 2.3. The lass of holomorphi urves de�ned above has the ruialproperty that all isolated intersetions with ZD are positive, not only theguaranteed intersetions at the last `marked points. Sine the ount of theseintersetions is ontrolled topologially, positivity provides the neessarylower bound on the number of marked points on omponents of nodal urves,guaranteeing that suh urves have stable domains (see [CM07℄ for details).We write (z;u) � (z0;u0) if there exists a biholomorphi isomorphismbetween the nodal urves z and z0 suh that u and u0 are orrespond-ingly related by reparametrization. We then de�ne the moduli spae ofJ-holomorphi urves modelled on (T; fA�g) asMfA�gT (M;J ;ZD) = fMfA�gT (M;J ;ZD)Æ �;along with the evaluation map,ev = (ev1; : : : ; evm) :MfA�gT (M;J ;ZD)!Mm;whih evaluates u at its �rst m marked points. If m � 3, we an also de�nethe forgetful map � :MfA�gT (M;J ;ZD)!M0;m;



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 11whih forgets both the map u and the last ` marked points of z, and thenstabilizes the resulting nodal urve with m marked points. The top stratumis the omponentMA0;m+`(M;J ;ZD) :=MfA�gT (M;J ;ZD); where jT j = 1;onsisting of equivalene lasses [(z;u)℄ suh that z has no nodes; in thisase u : S2 ! M is simply a pseudoholomorphi sphere, for some domain-dependent almost omplex struture determined by J and the positions ofits last ` marked points. The union of the spaes MfA�gT (M;J ;ZD) for allstable weighted trees (T; fA�g) withP�A� = A arries a natural topologyas a metrizable Hausdor� spae, the Gromov topology, and we denote byMA0;m+`(M;J ;ZD) � [(T; fA�g) stableMfA�gT (M;J ;ZD)the losure of MA0;m+`(M;J ;ZD) in this spae.If m � 3, then for suitable hoies of J 2 J`+1 mathing the referenestruture J1 near ZD,(2.3) (ev;�) :MA0;m+`(M;J ;ZD)!Mm �M0;mis a pseudoyle of dimensiondimMA0;m+`(M;J ;ZD) = 2(n� 3) + 21(A) + 2m;and the resulting rational Gromov-Witten invariantsGW(M;!)0;m;A : H�(M ;Q)
m 
H�(M0;m;Q) ! Q ;GW(M;!)0;m;A(�1; : : : ; �m; �) =1`! [(ev;�)℄ � (PD(�1)� : : :� PD(�m)� �)(2.4)are independent of all hoies. If one exludes the forgetful map and � 2H� �M0;m� from this statement, then it is simply the main result of [CM07℄(and is also valid for any m � 0). We will explain in Appendix A how thearguments of Cieliebak and Mohnke an be modi�ed to inlude the forgetfulmap in the disussion.As alluded to above, the onstrutions in [CM07℄ require some extra as-sumptions on J 2 J`+1 in order to de�ne the Gromov-Witten invariants, butthe details of these assumptions will not onern us beyond the followinganalogue of Lemma 2.1. Reall that we have �xed a referene almost omplexstruture J1 for whih the Donaldson hypersurfae ZD is J1-holomorphi.We an trivially regard J1 as an element of J`+1 with onstant dependeneon M0;`+1. Then any other element of J`+1 that is C0-lose to J1 an bewritten as J = expJ1 Yfor some Y 2 TJ1J`+1, where the latter is the Fr�ehet spae of oherent (see[CM07, x3℄) smooth setions of pr�2 EndR(TM)!M0;`+1 �M satisfyingY ([z℄; p)J1(p) + J1(p)Y ([z℄; p) = 0 for all ([z℄; p) 2M0;`+1 �M:

12 CHRIS WENDLLemma 2.4. There exists a sequene Yk 2 TJ1J`+1 onverging to 0 in C1suh that (2.4) holds with the Gromov-Witten pseudoyle (2.3) de�ned forany J = expJ1 Yk. �2.2. Donaldson hypersurfaes transverse to a ontat hypersurfae.In order to apply the Gromov-Witten invariants of [CM07℄ to a situationinvolving pseudoonvex hypersurfaes, we need the following additional fatabout Donaldson hypersurfaes.Proposition 2.5. Suppose (M;!) is a losed 2n-dimensional sympletimanifold with [!℄ 2 H2(M ;Z), J0 is an !-ompatible almost omplex stru-ture, and V � M is a losed (2n � 1)-dimensional J0-onvex hypersurfaewith indued ontat struture� = TV \ J0(TV ) � TV:Then for all D 2 N suÆiently large, there exists a Donaldson hypersurfaeZD � (M;!) of degree D that intersets V transversely in a ontat sub-manifold of (V; �). Moreover, for any � > 0, if D 2 N is suÆiently large,then one an �nd ZD with the above property and an !-tame almost omplexstruture J1 on M suh that(1) ZD is J1-holomorphi;(2) V is J1-onvex with � = TV \ J1(TV );(3) kJ1 � J0kC0 < �.The proposition is a straightforward appliation of Mohsen's relative ver-sion [Moh℄ of an estimated transversality result of Donaldson and Auroux[Don96, Aur97℄. To explain this, we must reall some details from theasymptotially holomorphi methods of Donaldson and Auroux, as usedby Mohsen.We �rst need to de�ne a quantitative measurement of the distane ofa real subspae of a omplex vetor spae from being omplex. Suppose(E; J) is a �nite-dimensional omplex vetor spae with Hermitian innerprodut g, and write jvj := pg(v; v) for v 2 E. Then for any real-linearsubspae E0 � E of even dimension, de�ne�g(E0;E; J) := maxv2E0; jvj=1dist �Jv;E0�= maxv2E0; jvj=1�minw2E0 jJv � wj� :It will be useful to note that this de�nition depends on the Hermitian metrionly up to positive resaling, i.e.(2.5) �g(E0;E; J) = �g(E0;E; J) for all  > 0:It also depends ontinuously on all the data, thus if B is a ompat spaeand (E; J) ! B is a omplex vetor bundle of �nite rank with Hermitianbundle metri g, then for any real subbundle E0 � E of even rank, we ansimilarly de�ne �g(E0;E; J) := maxp2B �g(E0p;Ep; J) � 0:



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 13Observe that if ! is any sympleti struture on (E; J) that tames J , thenany suÆiently small perturbation of a omplex subbundle is automatiallyalso a sympleti subbundle, thus we have the following.Lemma 2.6. Suppose B is a ompat spae and (E; J) ! B is a omplexvetor bundle of �nite rank, equipped with a Hermitian bundle metri g. Ineah of the following statements, assume E0 � E is a real subbundle of evenrank.(a) E0 is a omplex subbundle of (E; J) if and only if �g(E0;E; J) = 0.(b) For any C0-open neighborhood UJ of J in the spae of smooth om-plex strutures on E, there exists a number  > 0 suh that everyE0 � E with �g(E0;E; J) <  is a omplex subbundle of (E; J 0) forsome J 0 2 UJ .() For any sympleti struture ! on E ! B that tames J , there existsa number 0 > 0 suh that every E0 � E satisfying �g(E0;E; J) < 0is a sympleti subbundle of (E;!). �In order to relate the above de�nition to questions of estimated transver-sality, we de�ne (following [Moh℄) for any real-linear map A : V ! Wbetween �nite-dimensional Eulidean vetor spaes, the surjetivity mod-ulus Surj(A) := min�2W �nf0g k� Æ Akk�k � 0:Lemma 2.7. The surjetivity modulus has the following properties.(a) Surj(A) > 0 if and only if A is surjetive, and in this aseSurj(A) � sup� 1kBk ���� B :W ! V is a right inverse of A� :(b) For any two real-linear maps A;B : V !W ,Surj(A+B) � Surj(A)� kBk:() Suppose (V; J; g) and (V 0; J 0; g0) are �nite-dimensional Hermitianvetor spaes and A = A1;0 + A0;1 : V ! V 0 is real-linear, whereA1;0 and A0;1 denote the omplex linear and antilinear parts respe-tively. Then(2.6) �g(kerA;V; J) � 2 kA0;1kSurj(A) :Proof. The �rst two properties are proved by straightforward omputations.The following proof of the third property was explained to me by Jean-PaulMohsen.Let V �kerA = f� 2 V � j �jkerA = 0g, whih is preisely the spae of dualvetors on V of the form f� = �ÆA 2 V � j � 2W �g. Now suppose v 2 kerAand jvj = 1. The distane of Jv from kerA is the norm of its seond part

14 CHRIS WENDLunder the orthogonal deomposition V = (kerA)� (kerA)?, henedist(Jv; kerA) = maxw2(kerA)?nf0g jhw; Jvijjwj = max�2V �kerAnf0g j�(Jv)jk�k= max�2W �nf0g j� Æ A(Jv)jk� Æ Ak :Now, using the fat that Av = 0 and that A1;0 ommutes while A0;1 anti-ommutes with the omplex strutures, we haveA(Jv) = A1;0Jv +A0;1Jv = J 0A1;0v � J 0A0;1v = �2J 0A0;1v;hene jA(Jv)j � 2kA0;1k, implyingdist(Jv; kerA) � max�2W �nf0g 2k�k � kA0;1kk� Æ Ak = 2 kA0;1kSurj(A) : �Next, assume (M;!) is a losed sympleti manifold with [!℄ 2 H2(M ;Z),and J0 is an !-ompatible almost omplex struture. This determines thesequene of Riemannian metrisg := !(�; J �); gD := D � g for D 2 NonM . Let L!M denote a omplex line bundle with 1(L) = [!℄, equippedwith a Hermitian metri h ; i and a Hermitian onnetionr whose urvature2-form is �2�i!. For D 2 N, we also onsider the D-fold tensor powerL
D ! M , with its indued Hermitian metri and Hermitian onnetion,also denoted by h ; i and r respetively; the latter has urvature �2�iD!.For setions s :M ! L
D, we denote by �s and ��s respetively the omplexlinear and antilinear parts of the ovariant derivative rs. We will alwaysde�ne C0-norms of rs and related tensors with respet to the metris gDon TM and h ; i on L
D, e.g.krs(p)kgD := maxX2TpMnf0g jrXsjjXjgD for p 2M;krskgD := supp2M krs(p)kgD ;where jXjgD := pgD(X;X) for X 2 TpX and jvj := phv; vi for v 2 L
Dp .The surjetivity modulus of rs(p) at points p 2 M will also be de�nedrelative to this hoie of metris, whih we shall indiate via the notationSurjgD(rs(p)) := min06=�2HomR(L
Dp ;R) k� Æ rs(p)kgDk�k :This means SurjgD(rs(p)) = 1pD Surjg(rs(p)).The next two de�nitions are essentially due to Auroux [Aur97℄, thoughwe have made minor modi�ations to �t them into the framework of [Moh℄.



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 15De�nition 2.8. Given onstants C > 0 and r 2 N, we say that a sequeneof setions sD : M ! L
D (for large D 2 N) is C-asymptotially holo-morphi up to order r 2 N if for all D suÆiently large,ksDkgD � C; krmsDkgD � C; krm�1 ��sDkgD � CpDfor eah m = 1; : : : ; r:(2.7)De�nition 2.9. Given a onstant � > 0 and a submanifold V �M , we saythat a sequene of setions sD :M ! L
D (for largeD 2 N) is �-transversealong V if for all suÆiently large D,jsD(p)j < � ) SurjgD �rsD(p)jTpV � � � for all p 2 V .For any (M;!) and J0 as above, Donaldson [Don96℄ onstruts a se-quene of setions sD : M ! L
D that are, for some K; � > 0, K-asymptotially holomorphi up to order 2 and globally �-transverse (i.e. �-transverse along M). It follows via (2.5) and Lemma 2.7() that for suÆ-iently large D 2 N, ZD := s�1D (0) �M are smooth submanifolds with�g(TZD;TM jZD ; J0) = �gD(TZD;TM jZD ; J0)� maxp2ZD 2k��sD(p)kgDSurjgD (rs(p))� 2K=pD� ! 0 as D !1:Thus by Lemma 2.6, the submanifolds ZD � (M;!) are sympleti anduniformly lose to being J0-holomorphi for suÆiently large D. These arethe Donaldson hypersurfaes that we made use of in the previous setion;indeed, they satisfy PD[ZD℄ = 1(L
D) = D1(L) = D[!℄ 2 H2(M).For our purposes, the relevant ase of Mohsen's extension of the Donaldson-Auroux transversality theorem an now be stated as follows.Proposition 2.10 ([Moh, Th�eor�eme 2.2℄). Assume (M;!) is a losed 2n-dimensional sympleti manifold with an !-ompatible almost omplex stru-ture J0, V � M is a losed submanifold of dimension 2n� 1, and � � TVdenotes the J0-omplex subbundle� := TV \ J0(TV ):Then given any K > 0, � > 0 and mmax 2 N, there exist D0 2 N and � > 0suh that the following holds. For any sequene of setions sD : M ! L
D(for large D) whih are K-asymptotially holomorphi up to order 2, thereexists a sequene (for large D) of setions tD : M ! L
D suh that, for allD � D0, the sequene tD is �-asymptotially holomorphi up to order mmax,and the sequene s0D := sD + tD is �-transverse along V , and also satis�esp 2 V and js0D(p)j < � ) SurjgD �rs0D(p)j�p� � �: �Proof of Proposition 2.5. Assume V � M is J0-onvex, and let sD : M !L
D denote the K-asymptotially holomorphi and globally �-transversesequene of setions provided by [Don96℄. Pik � 2 (0; �), and let tD :M ! L
D denote the �-asymptotially holomorphi sequene provided by

16 CHRIS WENDLProposition 2.10, giving rise to the perturbed setions s0D := sD + tD andzero-sets ZD := (s0D)�1(0) � M . Using Lemma 2.7(b), we may assumes0D is also K-asymptotially holomorphi and �-transverse after making thesubstitutions K 7! K + � > 0 and � 7! � � � > 0, and by shrinking � > 0further if neessary, Proposition 2.10 also guaranteesSurjgD �rs0D(p)j�p� � �for all p 2 ZD\V . This implies that for suÆiently large D, ZD � (M;!) isa sympleti submanifold and intersets both V and the distribution � � TVtransversely, hene the submanifold�D := ZD \ V � Vinherits a smooth oriented hyperplane bundle�D := TZD \ � � T�D:Regarding �D as a real subbundle of the omplex vetor bundle (�j�D ; J0),Lemma 2.7() and (2.5) now imply�g (�D; �j�D ; J0) � maxp2�D 2k��s0D(p)j�pkgDSurjgD �rs0D(p)j�p� � 2K�pD ! 0as D ! 1. Sine V is J0-onvex, there exists a ontat form � on Vsuh that � = ker� and d�j� is a sympleti vetor bundle struture thattames J0. Applying Lemma 2.6, we therefore onlude from the above that(�D; d�) is a sympleti subbundle of (�j�D ; d�) for suÆiently large D,implying that �jT�D is ontat, so �D � (V; �) is a ontat submanifold.Moreover, the omplex struture J0j� along �D admits a C0-small pertur-bation to a omplex struture J1 on � along �D for whih �D is J1-invariant.Following the extension proedure of [CM07, x8℄, J1 an then be extendedto an almost omplex struture on M that preserves � along V , preservesTZD and is C0-lose to J0 for suÆiently large D. Note that having J1be C0-lose to J0 implies that J1j� is also tamed by d�j� without loss ofgenerality, thus V is J1-onvex. �3. The proofWe now proeed to the proof of the main theorem.Suppose (M;!) is a losed and onneted sympleti manifold with analmost omplex struture J suh that either of the following onditions aresatis�ed:� (M;!) is semipositive and J is !-tame;� [!℄ 2 H2(M ;Z) and J is !-ompatible.We will assume the Gromov-Witten invariants to be de�ned via the pre-sriptions in x2.1.1 or x2.1.2 aordingly. Suppose V � M is a J-onvexhypersurfae. Arguing by ontradition, we assume there is a nontrivialGromov-Witten invariant of the form(3.1) GW(M;!)0;m;A(PD[V ℄ [ �1; �2; : : : ; �m;�) 6= 0for somem � 3, A 2 H2(M), �1; : : : ; �m 2 H�(M ;Q) and � 2 H�(M0;m;Q).The essential idea of the proof will be show that (3.1) implies the existene



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 17of a pseudoholomorphi sphere that touhes V tangentially from the wrongside, thus ontraditing pseudoonvexity.Remark 3.1. In the following we will give a uni�ed argument that appliesto both the semipositive and non-semipositive ases, referring as neessaryto the slightly di�erent sets of de�nitions in x2.1.1 and x2.1.2. For thesemipositive ase, some statements would need to be modi�ed in obviousways by removing all referenes to � 2 H�(M0;m) and the forgetful map(see Remark 1.4).We must now hoose a perturbed almost omplex struture J1 that issuitably adapted to the de�nition of the Gromov-Witten invariants. In thesemipositive ase, it suÆes to set J1 = J . If (M;!) is not semipositive,then we have assumed [!℄ 2 H2(M ;Z) and an therefore �nd a sequene ofDonaldson hypersurfaes ZD of large degrees D 2 N as desribed in x2.1.2.By Proposition 2.5, after making the degree suÆiently large, we an �nd asmooth !-tame almost omplex struture J1 that is arbitrarily C0-lose toJ while making ZD a J1-holomorphi hypersurfae and V simultaneously aJ1-onvex hypersurfae. We shall treat J1 as the referene almost omplexstruture used in Lemmas 2.1 and 2.4.Let J 0 denote a generi domain-dependent or M`+1-dependent pertur-bation of J1 as desribed in x2.1.1 or x2.1.2 respetively, giving rise to themoduli spaeMA0;m(M;J 0) of J 0-holomorphi spheres homologous to A, withthe assoiated evaluation/forgetful pseudoyle(ev;�) = (ev1; : : : ; evm;�) :MA0;m(M;J 0)!Mm �M0;m:In the non-semipositive ase, we are assuming as in x2.1.2 that J 0 mathesJ1 near ZD and the elements of MA0;m(M;J 0) have extra marked pointsonstrained to lie in ZD under evaluation, but these details will play no rolein what follows and we will therefore suppress them in the notation. Theondition (3.1) now means[(ev;�)℄ � � ([V ℄ � PD(�1))� PD(�2)� : : : � PD(�m)� �� 6= 0:Lemma 3.2. There exists a smooth loop` : S1 !MA0;m(M;J 0)suh that (ev1 Æ `)�[S1℄ � [V ℄ 6= 0.Proof. We lose no generality by supposing that the lasses �1; : : : ; �m 2H�(M ;Q) and � 2 H� �M0;m� are eah homogeneous, i.e. they have well-de�ned degrees. By a theorem of Thom [Tho54℄, there are rational numbers0; : : : ; m 6= 0 and smooth submanifolds ��1; : : : ; ��m � M and �� � M0;msuh that 0[ ��℄ = � 2 H�(M0;m;Q);i[��i℄ = PD(�i) 2 H�(M ;Q) for i = 1; : : : ;m:We laim that after generi smooth perturbations of these submanifolds, wemay assume the pseudoyle (ev;�) is weakly transverse to ��1� : : :� ��m� ��

18 CHRIS WENDLin the sense of [MS04, De�nition 6.5.10℄. Indeed, we an perturb ��1 suhthat ev1 is weakly transverse to ��1, so by [MS04, Lemma 6.5.14℄,ev2 jev�11 (��1) : ev�11 (��1)!Mis a pseudoyle of dimension dimMA0;m(M;J 0)� deg�1. After perturbing��2, we may also assume this new pseudoyle is weakly transverse to ��2,whih means (ev1; ev2) is now weakly transverse to ��1 � ��2. Repeating thisproedurem+1 times proves the laim. With this established, we an de�nethe onstrained moduli spaeM0 := (ev;�)�1(��1 � : : : � ��m � ��);so that (ev;�)jM0 is a 1-dimensional pseudoyle, whih means M0 is aompat 1-dimensional submanifold of MA0;m(M;J 0). Now hoose a generismooth perturbation V 0 of V �M suh that��1 t V 0 and ev1 jM0 t V 0:We then have0 : : :m�(ev1)�[M0℄ � [V ℄� =[(ev;�)℄ � � ([V ℄ � PD(�1))� PD(�2)� : : :� PD(�m)� �� 6= 0:(3.2)Any onneted omponent of M0 on whih the above intersetion numberis nonzero is then a smooth loop with the stated property. �In order to apply this lemma in proving the main result, we shall borrowan idea from [ABW10℄. Observe that by (3.1), [V ℄ 2 H�(M ;Q) must benontrivial, so V is nonseparating. One an therefore onstrut a onnetedin�nite over of M , de�ned by utting M open along V to produe a obor-dism with boundary �V t V , and then gluing together an in�nite hain ofopies fMngn2Z of this obordism. Denote for eah n 2 Z the boundary ofthe obordism Mn by �Mn = �V �n t V +n ;then eah V �n has a neighborhood in Mn naturally identi�ed with a suit-able half-neighborhood of V in M , and we use these identi�ations to glueMn to Mn+1 along V +n = V �n+1. This produes a smooth, onneted andnonompat manifold (see Figure 1)fM = [n2ZMn;whih has a natural smooth overing projetion� : fM !Mand is separated by in�nitely many opies of the hypersurfae V , whih weshall denote by Vn := V +n � fM:Let eJ1 := ��J1denote the natural lift of the referene almost omplex struture J1 to theover fM , for whih the hypersurfaes Vn are all eJ1-onvex.
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Figure 1. The over � : fM !M de�ned for a nonseparat-ing hypersurfae V �M .By Lemma 2.1 or 2.4, we an �nd a sequene Jk of generi strutures forwhih Lemma 3.2 holds with J 0 := Jk, produing loops`k : S1 !MA0;m(M;Jk) with (ev1 Æ `k)�[S1℄ � [V ℄ 6= 0 for all k;and we may assume moreover that Jk onverges in C1 as k ! 1 to thedomain-independent almost omplex struture J1. For eah k and eah� 2 S1, `k(�) 2 MA0;m(M;Jk) is an equivalene lass of spheres u : S2 !M satisfying a domain-dependent Cauhy-Riemann equation as in (2.1).Sine S2 is simply onneted, eah of the loops `k an be lifted to fM asa ontinuous family of holomorphi spheres fuk�g�2R, and the nontrivialintersetion of ev1 Æ `k with V implies that evaluation of uk� at the �rstmarked point traes a nonompat path in fM interseting Mn for everyn 2 Z. It follows that for eah k, there exists a parameter value �k� 2 R forwhih the image of uk�k� touhes V0 but not the interior of M1.We now have a sequene of urves uk := uk�k� 2 MA0;m(M;Jk) whihadmit lifts to fM that touh V0 but not the interior of M1. This is notyet a ontradition, beause the Cauhy-Riemann equation satis�ed by eah

20 CHRIS WENDLuk involves a domain-dependent almost omplex struture. As k ! 1,however, Gromov ompatness gives a subsequene of uk onverging to anodal J1-holomorphi sphere, and at least one omponent of this nodal urvelifts to a nontrivial eJ1-holomorphi sphere in fM that touhes V0 tangentiallyfrom below. Sine V0 is a eJ1-onvex hypersurfae, this is a ontradition andthus onludes the proof.Appendix A. The forgetful map is a pseudoyleThe purpose of this appendix is to justify the statement, made in x2.1.2,that for suitably hosen data, the evaluation/forgetful map(ev;�) :MA0;m+`(M;J ;ZD)!Mm �M0;mas de�ned in the setting of Cieliebak and Mohnke [CM07℄ is a pseudoyle,and its rational obordism lass (after dividing by `!) is independent ofthe hoies. This is proved in [CM07℄ for ev : MA0;m+`(M;J ;ZD) ! Mm,without aounting for the forgetful map, though the arguments neessaryfor proving the more general statement are almost already present in [CM07℄,so we shall merely sketh the neessary modi�ations.In the following, we will often refer to holomorphi urves that arry dis-tint sets of ordinary and extra marked points; for urves in the spaeMA0;m+`(M;J ;ZD), this means the �rst m and last ` marked points respe-tively. Reall that the forgetful map � : M0;m+`(M;J ;ZD) ! M0;m isde�ned by forgetting not only the map into M but also the extra markedpoints, and then stabilizing.Remark A.1. Although � maps the top stratum MA0;m+`(M;J ;ZD) intothe top stratum M0;m of M0;m, it will not generally de�ne a pseudoyleMA0;m+`(M;J ;ZD)!M0;m, mainly beause M0;m itself is not ompat.We assume as in x2.1.2 that J0 is a ompatible almost omplex strutureon the losed and onneted 2n-dimensional sympleti manifold (M;!),and ZD � M is a nearly J0-holomorphi Donaldson hypersurfae of largedegree D 2 N. If D is suÆiently large and J 2 J`+1 is hosen appropriately(e.g. it must be C0-lose to J0 and math a referene domain-independentstruture J1 near ZD, whose restrition to ZD is generi), then [CM07℄ showsthat the natural ompati�ation MA0;m+`(M;J ;ZD) of MA0;m+`(M;J ;ZD)onsists of strata MfA�gT (M;J ;ZD) modelled on weighted (m + `)-labelledtrees (T; fA�g) that are `-stable, i.e. they are stable even after removingthe m ordinary (but keeping the ` extra) marked points. Moreover, noneof the nononstant omponents of suh nodal urves are ontained in ZD.The pseudoyle property for (ev;�) is based on the observation that onany stratum MfA�gT (M;J ;ZD) �MA0;m+`(M;J ;ZD) for whih T has morethan one vertex, the restrition of (ev;�) fators as a omposition(A.1) MfA�gT (M;J ;ZD)!MfA�gT 0 (M;J ;ZD)!Mm �M0;m;where the spae in the middle is a smooth manifold that either has dimen-sion at most dimMA0;m+`(M;J ;ZD)�2 or fators through another manifoldthat does. The reason we need this fatorization instead of just onsidering



CONTACT HYPERSURFACES IN UNIRULED MANIFOLDS SEPARATE 21MfA�gT (M;J ;ZD) itself is that the latter sometimes has arti�ially large di-mension, due to the presene of multiple extra marked points in the sameonstant omponent. But sine these extra marked points play no role inde�ning the evaluation and forgetful map, we an �x this problem by re-moving them, whih leads to the fatorization above. The remainder of thisappendix will be onerned with the de�nition and essential properties ofMfA�gT 0 (M;J ;ZD).As in [CM07℄, we will use the term ghost tree to mean a maximal subtreeT 00 of a weighted tree (T; fA�g) with the property that A� = 0 for all � 2T 00. Similarly, a ghost bubble on a nodal J -holomorphi urve [(z;u)℄ 2MfA�gT (M;J ;ZD) is the onstant holomorphi urve obtained by restritingu to any omponent S� � �z with A� = 0. We shall de�ne the manifoldMfA�gT 0 (M;J ;ZD) roughly as the spae of nodal urves that one obtains fromelements of MfA�gT (M;J ;ZD) by forgetting all but one of the extra markedpoints on eah ghost tree and stabilizing as neessary, but keeping all otherinformation, inluding the onformal strutures on the ghost bubbles withtheir ordinary marked points. This an be de�ned more formally as follows.Suppose `0 � ` is the number of extra marked points on verties � 2 T withA� 6= 0 plus the number of ghost trees in T that have at least one extramarked point. Then we assoiate to T a stable (m+ `0)-labelled tree T 0 viathe following proedure:(1) On eah ghost tree in T , keep all ordinary marked points and the�rst extra marked point (if any) but remove all other extra markedpoints;(2) Stabilize by removing any verties that now have fewer than 3 speialpoints and adjusting neighboring edges aordingly. (Note that sineT is stable, this step an only a�et verties � 2 T with A� = 0.)By Lemma 2.2, any oherent almost omplex struture J 2 J`+1 determinesfor every nodal urve z modelled on T a �z-dependent almost omplexstruture Jz whose restrition to eah omponent S� � �z depends onlyon the speial points on S�. It follows that if z is modelled on T 0, then Juniquely determines a domain dependent almost omplex struture on anyomponent S� � �z with A� 6= 0 (f. the disussion preeding Corollary 5.9in [CM07℄). We an extend this to a �z-dependent almost omplex strutureJz 2 JT 0by setting JzjS� for eah � 2 T 0 with A� = 0 to math the �xed domain-independent referene almost omplex struture J1. In this way, we anspeak of nodal J-holomorphi maps (z;u) modelled on the weighted (m+`0)-labelled tree (T 0; fA�g); note that the de�nition of Jz on omponents S�with A� = 0 plays no role here sine u is neessarily onstant on suhomponents. Denote by fMfA�gT 0 (M;J ;ZD) the spae of suh maps for whihthe `0 extra marked points are all mapped into ZD, and denote its quotientby the group of biholomorphi isomorphisms byMfA�gT 0 (M;J ;ZD) := fMfA�gT 0 (M;J ;ZD)= � :

22 CHRIS WENDLThere is a natural projetionMfA�gT (M;J ;ZD)!MfA�gT 0 (M;J ;ZD)de�ned by forgetting ` � `0 of the extra marked points and then ollaps-ing onstant omponents as neessary in order to stabilize the domain.Sine all the ordinary marked points are retained in this proess, the fa-torization (A.1) of (ev;�) is well de�ned. The pseudoyle property nowmostly follows from the following lemma, whose proof is exatly the sameas [CM07, Lemma 5.6, Prop. 5.7 and Cor. 5.8℄.Lemma A.2. For generi J , if e(T 0) denotes the number of edges in thetree T 0, then MfA�gT 0 (M;J ;ZD) is a smooth manifold withdimMfA�gT 0 (M;J ;ZD) = 2(n� 3) + 21(A) + 2m� 2e(T 0)= dimMA0;m+`(M;J ;ZD)� 2e(T 0): �We must still deal with the possibility that T has more than one vertexbut T 0 has only one, in whih ase MfA�gT 0 (M;J ;ZD) an be regarded as aspae of smooth (non-nodal) urvesMA0;m+`0(M;J ;ZD) onstrained to sendtheir `0 extra marked points into ZD.3 This spae has dimension equal tothat of MA0;m+`(M;J ;ZD), but we laim that for generi J , if T has morethan one vertex, then urves in MA0;m+`0(M;J ;ZD) that arise in this wayfrom elements ofMfA�gT (M;J ;ZD) lie in a subset of odimension at least 2.The ruial point here is that suh a urve will never belong to the opensubset MA;�0;m+`0(M;J ;ZD) �MA0;m+`0(M;J ;ZD)onsisting of urves whose intersetions with ZD at the `0 extra markedpoints are all transverse, and for generi J , [CM07, x6℄ shows that theomplement of this subset is a �nite union of smooth submanifolds hav-ing dimension at most dimMA0;m+`0(M;J ;ZD) � 2. To see that urves inMA;�0;m+`0(M;J ;ZD) are exluded, observe that the urves in question arisepreisely in situations where removing the relevant extra marked points fromghost bubbles in T makes all of them unstable|in partiular, (T; fA�g) mustin this ase onsist of the following:� A unique vertex �0 that has all m of the ordinary marked pointsand A�0 = A 6= 0;� One or more ghost trees that eah have no ordinary marked pointsbut at least two of the extra marked points.The resulting urve in MA0;m+`0(M;J ;ZD) is not ontained in ZD but has`0 marked points at whih it must interset ZD, and if all of these `0 inter-setions are transverse, then the fat that A � [ZD℄ = ` > `0 implies theremust be additional intersetions separate from the extra marked points.But sine these urves are assumed to arise from objets in the losure of3Sine tehnially J belongs to J`+1 and not J`0+1, the de�nition of J-holomorphiityfor urves inMA0;m+`0(M;J ;ZD) is a bit subtle and must be understood in the same senseas the preeding disussion ofMfA�gT 0 (M;J ;ZD).
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