Edge and Vertex Elimination

Matthias Kuhn, Paul Wilhelm

1. Juli 2009
Content

1 Prerequisites
 - computational procedure
 - computational graph
 - linearized graph

2 Edge Elimination
 - Back Elimination
 - Front Elimination

3 Vertex Elimination
 - Markowitz degree
 - Greedy Markowitz
 - Relative Markowitz degree
 - Implementation of relative Markowitz strategy

4 Line-Graph
 - Face-Elimination on the Line-Graph

5 Testproblems
 - Bratu problem
 - Convection Equation
A nonlinear vector function \(F : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is implemented in a program as a sequence of \(L \) assignments of the values of elemental functions \(\varphi_i \).

computational procedure

<table>
<thead>
<tr>
<th>(v_{i-n})</th>
<th>(x_i)</th>
<th>(i = 1, \ldots, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_i)</td>
<td>(\varphi_i(v_j)_{j \prec i})</td>
<td>(i = 1, \ldots, L)</td>
</tr>
<tr>
<td>(y_{m-i})</td>
<td>(v_{L-i})</td>
<td>(i = m-1, \ldots, 0)</td>
</tr>
</tbody>
</table>

where \(j \prec i \) means that \(v_i \) depends directly on \(v_j \) and \(\prec^* \) is the transitive closure of \(\prec \), for example \(0 \prec 1 \prec 2 \implies 0 \prec^* 2 \).

These relations can be visualized as an acyclic graph, so called **computational graph** \(G \).

computational graph

\[
V = \{ i : v_i \in F \} \quad \text{(vertices)}
\]
\[
E = \{ (j, i) : j \prec i \} \quad \text{(edges)}
\]
\[
G = (V, E)
\]
linearized graph

linearized graph: We label each edge of G by the corresponding local partial derivative

$$c_{i,j} \equiv \frac{\partial \varphi_i}{\partial v_j} \quad \text{for} \ (j, i) \in E$$

bipartite graph

A graph G consists of

- independents: v_{i-n} for $i = 1, \ldots, n$
- intermediates: v_i for $i = 1, \ldots, L$
- dependents: v_{L-i} for $i = m-1, \ldots, 0$

A **bipartite graph** is a graph with no intermediates; local partial derivatives are in this case global partial derivatives $\frac{\partial y_i}{\partial x_j}$.

Example - bipartite graph

```
\begin{align*}
&x_1 \quad \quad \quad x_2 \quad \quad \quad x_3 \\
&\downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \\
&y_1 \quad \quad \quad y_2
\end{align*}
```
Back Elimination

Rule

- Back eliminate \(k = (i, j) \in E \) by introducing new edges \(k' = (i', j) \) for all \(i' \prec i \) and \(i' \not\prec j \).
 - Set the edge label to \(c_{k'} = c_k c_{k''} \), where \(k'' = (i', i) \).
- For all \(k' = (i', j) \in E \) update the edge labels to \(c_{k'} = c_{k'} + c_{k''} c_k \).

Example - back elimination of \((i, j)\)
Front Elimination

Rule

- Front eliminate $k = (i, j) \in E$ by introducing new edges $k' = (i, j')$ for all j' with $i \prec j'$ and $i \not\prec j'$.
 Set the edge label to $c_{k'} = c_k c_{k''}$, where $k'' = (j, j')$.
- For all $k' = (i, j') \in E$ update the edge labels to $c_{k'} = c_{k'} + c_{k''} c_k$

Example - front elimination of (i, j)
Elimination of isolated Vertices

Rule
In both cases, front and back elimination, an isolated vertex is removed together with all its remaining incident or emanating edges.

Example - front elimination of (i,j)
Vertex Elimination and Markowitz degree

Rule - Vertex Elimination 1
A Vertex $i \in V$ is eliminated from G by front elimination of all its in-edges.

Rule - Vertex Elimination 2
A Vertex $i \in V$ is eliminated from G by back elimination of all its out-edges.

Markowitz degree
The **Markowitz degree** is the number of multiplications needed to eliminate a vertex i and is equal to

$$mark(i) = |\{i' : i' \prec i\}| \cdot |\{i'' : i \prec i''\}|.$$

In other words: The number of predecessors multiplied with the number of successors.
Greedy Markowitz

- **Aim**: Minimize the total number of multiplications during Jacobian elimination process
- **Approach**: Always select a vertex for elimination that has minimal Markowitz degree

This strategy is not always optimal:

Example - A. Griewank, Evaluating Derivatives 2. Edition, Figure 10.4
Relative Markowitz degree

- "How much will it cost to eliminate this vertex later rather than now?"
- Markowitz degree of a vertex may oscillate as its neighbors are eliminated.
- The number of independents $|X_i|$ and the number of dependents $|Y_i|$ a vertex i is connected to is invariant with respect to vertex-elimination.
- Cost of eliminating a vertex i at last is

$$mark_{ultimate}(i) = |X_i||Y_i|$$

- Subtracting this ultimate Markowitz degree of the current Markowitz degree, we obtain the relative Markowitz degree

$$mark_{relative}(i) \equiv mark(i) - |X_i||Y_i|$$
Implementation of relative Markowitz strategy

- overloaded operators for class Vertex create graph
- class Vertex consists of:
 - value (double)
 - ultimate Markowitz degree (int)
 - relative Markowitz degree (int)
 - list of predecessors and edge-values (= local partial derivatives)
 - list of successors
 - list of independents
 - list of dependents
 - all the above lists are lists of pointers to Vertex objects
- graph is stored as list of Vertex objects
 - graph structure exists only indirect, in the form of pointer stuff in each Vertex object
Implementation of relative Markowitz strategy

- The list of Vertex objects has special ordering
 - Inserting the dependents into the Vertex objects can be done linear
 - Same for computing ultimate Markowitz degree
- Locating the Vertex with minimal relative Markowitz degree is also linear
- Deletion of a Vertex affects only its predecessors and successors
 - Relative Markowitz must only be updated locally
 - Back elimination is used for deletion
- The order of deletion in graph minimization process is taped
 - E.g. reuse the tape in Newton’s iteration
Face-Elimination on the Line-Graph

Line-Graph

\[V' = \bar{E} = \{(j, i) : j < i\} \]
\[\cup \{(-\infty, j - n)\}_{j=1...n} \]
\[\cup \{(l - m + i, \infty)\}_{j=1...m} \]

\[E' = \{(i, j, k) : (i, j) \in E \ni (j, k)\} \] (edges/faces)

\[G' = (V', E') \]

(The vertices of the Line-Graph are the edges of the computational graph, including a '∞' source and sink vertex.)

Now could the value of the derivative \(c \) of each edge in the computational graph saved in the vertices of the Line-Graph. If you could eliminate all intermediate faces the Line-Graph is tripartite the values correspond to the Jacobian.
Face-Elimination on the Line-Graph

Example: $a = 2, \ b = -2$

$x = \sin(a + b + \cos(a + b)), \ y = \cos(a + b + \cos(a + b))$
Face-Elimination on the Line-Graph

An interior edge \((i, j, k)\) of the Line-Graph which connected \((i, j)\) and \((j, k)\) could eliminated, by creating a new vertex \((i, k)\) and connect this to all predecessors of \((i, j)\) and all successors of \((j, k)\). Its derivative is defined by \(c_{i,k} = c_{i,j} \cdot c_{j,k}\).

Example - eliminating \((2, 0) \rightarrow (0, 1)\)
Face-Elimination on the Line-Graph

Elimination rules for eliminating an interior face $(i, j) \rightarrow (j, k)$

1. **Merge/Absorption**: If there exists a Vertex $(\tilde{i}, \tilde{k}) \in G'$ such that its predecessors are equal to the predecessors of (i, j) and its successors are equal to the successors of (j, k), don’t create a new vertex. The vertex (\tilde{i}, \tilde{k}) ’absorb’ the value of the derivative:

 $$c_{i,k}^+ = c_{i,j} \cdot c_{j,k}$$

2. Remove $(i, j, k) \in E'$

3. Remove (i, j) if it is isolated (no successors). Otherwise try to merge. (Set $c_{i,k}^+ = c_{i,j}$, then remove (i, j))

4. Also Remove (j, k) if it is isolated (no predecessors). Otherwise try to merge. (Set $c_{i,k}^+ = c_{j,k}$, then remove (j, k))

After finitely many eliminations you got a tripartite Graph.
Face-Elimination on the Line-Graph

Example

now eliminating \((0, 1) \rightarrow (1, 1)\) (and remove)

\[\begin{align*}
(\infty, 2) & \rightarrow (2, 0) \\
&(2, 1) \\
&(0, 1) \rightarrow (1, \sin(1)) \rightarrow (\sin(1), \infty) \\
(0, 1) & \rightarrow (0, 1) \\
(\infty, -2) & \rightarrow (-2, 0) \\
&(0, 1) \\
&(1, 1) \rightarrow (1, \cos(1)) \rightarrow (\cos(1), \infty)
\end{align*}\]
Face-Elimination on the Line-Graph

Example

then eliminate \((2, 0) \rightarrow (0, 1)\) (absorption by \((2, 1)\))

\[
\begin{align*}
(−∞, 2) & \rightarrow (2, 0) \\
(0, 1) & \rightarrow (1, sin(1)) \rightarrow (sin(1), 1)
\end{align*}
\]
Face-Elimination on the Line-Graph

Example

before you can go on you have to merge \((0, 1)\)

\[
\begin{align*}
(0, 1) & \quad \rightarrow \\
(1, \sin(1)) & \quad \rightarrow \\
\text{to} & \quad \rightarrow \\
(\sin(1), \infty) & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
(2, 1) & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
(\infty, 2) & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
(\infty, -2) & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
(0, 1) & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
(1, \cos(1)) & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
\rightarrow & \quad \rightarrow \\
(\cos(1), \infty) & \quad \rightarrow
\end{align*}
\]
Path-Value

Definition

For a face \((i, j) \rightarrow (j, k)\) it’s Path-Value is defined by

\[|\mathcal{X} \rightarrow (i, j)| \cdot |(j, k) \rightarrow \mathcal{Y}|,\]

with \(\mathcal{X} := \{(-\infty, r)\}\) and \(\mathcal{Y} := \{(s, \infty)\}\).

Example

\[
\begin{align*}
(-\infty, 2) & \xrightarrow{0} (2, 0) \xrightarrow{1.2} (0, 1) \xrightarrow{2.1} (1, \sin(1)) \xrightarrow{0} (\sin(1), \infty) \\
(-\infty, -2) & \xrightarrow{0} (-2, 0) \xrightarrow{1.2} (0, 1) \xrightarrow{2.2} (1, 1) \xrightarrow{2.1} (1, \cos(1)) \xrightarrow{0} (\cos(1), \infty)
\end{align*}
\]
Implementation Path-Value Reduction

Implementation

- I needed a class (LGSubVertex) for the sub-vertices of the computational Graph and a class (LGVertex) for the Vertices of the line-graph.

- graph is stored as list of vertices (pointers to objects of class LGVertex).

- graph structur exists also only indirect; every LGVertex contains pointers to its predecessors and successors and its sub-vertices. Also a sub-vertex i contains pointers to all line-graph vertices ($..., i$)

- overloaded operators \implies creation of new LGSubVertex and one (unary operation) or two (binary operation) LGVertex. Because parts of the path-value could computed here therefore I used the variables front-path-value which is computed here and back-path-value which is computed later.
Implementation Path-Value Reduction

Implementation

- every Vertex object contains list of pointers to the in- / dependents.
- the list of Vertices is ordered in a way that for each Vertex in the list its predecessors occur further at the front of the list.
 - After initializing the graph of the computations I have to initialize the sink vertices.
 - inserting the dependents into the Vertices can be done linear to the number of Vertices. Computing the (back-)path-value can done at the same time.
- finding the Vertex with maximal path-value is linear to number of existing Vertices.
- after each face-elimination I have to update the path-values (needed some integer additions and multiplications)
Bratu problem

\[
\begin{align*}
\Delta u - \lambda e^u &= 0 \quad \text{on } \Omega \\
u &= 0 \quad \text{on } \partial \Omega
\end{align*}
\]

After discretization of this problem on a \(n \times n \)-grid we get:

\[
Au + \lambda e^u = F(u) = 0
\]

with the difference operator \(A \):

\[
Au_{i,j} = (u_{i,j-1} + u_{i,j+1} + u_{i-1,j} + u_{i+1,j} - 4u_{i,j})/h^2
\]

The relative Markowitz strategy is used to get \(F'(u) \), needed for the Newton-step, in a Newton-iteration to compute the root of \(F(u) \).
Convection Equation

Convection equation

\[
\begin{align*}
\Delta u - \lambda e^u &= 0 \quad \text{on } \Omega_1 \\
v \cdot \nabla w - \Delta w &= 0 \quad \text{on } \Omega_2 \setminus \Omega_1 \\
\text{div}(v) &= 0 \quad \text{on } \Omega_2 \setminus \Omega_1
\end{align*}
\]

boundary conditions:

\[
\begin{align*}
w &= u \quad \text{on } \partial \Omega_1 \\
\frac{\partial w}{\partial \vec{n}} &= \frac{\partial u}{\partial \vec{n}} \quad \text{on } \partial \Omega_1 \text{ with the normal vector } \vec{n} \\
v &= 0 \quad \text{on } \partial \Omega_1 \\
w &= 0 \quad \text{on } \partial \Omega_2
\end{align*}
\]

This set of equations somehow describes the flow of heat from the domain \(\Omega_1 \) surrounded by a fluid in \(\Omega_2 \) due to convection. \(v \) is a 2D vector field defined on \(\Omega_2 \). \(u \) is a scalar field on \(\Omega_1 \) and \(w \) is the extension of this same scalar field in \(\Omega_2 \).
Results for Bratu-Problem
Results for Bratu-Problem

Forward

<table>
<thead>
<tr>
<th></th>
<th>mults</th>
<th>mult * 5</th>
<th>adds</th>
<th>adds * 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>derivative</td>
<td>2116</td>
<td>10580</td>
<td>2645</td>
<td>13225</td>
</tr>
<tr>
<td>function</td>
<td>1587</td>
<td>7935</td>
<td>2645</td>
<td>13225</td>
</tr>
<tr>
<td>sum</td>
<td>18515</td>
<td></td>
<td></td>
<td>26450</td>
</tr>
</tbody>
</table>

Reverse

Length of Tape = 5386

<table>
<thead>
<tr>
<th></th>
<th>mults</th>
<th>mult * 5</th>
<th>adds</th>
<th>adds * 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>derivative</td>
<td>2116</td>
<td>12696</td>
<td>7406</td>
<td>44436</td>
</tr>
<tr>
<td>function</td>
<td>1587</td>
<td></td>
<td>2645</td>
<td></td>
</tr>
<tr>
<td>sum</td>
<td>14283</td>
<td></td>
<td></td>
<td>47081</td>
</tr>
</tbody>
</table>
Markowitz

<table>
<thead>
<tr>
<th></th>
<th>integer-mults</th>
<th>integer-adds</th>
</tr>
</thead>
<tbody>
<tr>
<td>marko degree</td>
<td>25392</td>
<td>17986</td>
</tr>
<tr>
<td>for 3 iterations</td>
<td>46552</td>
<td>39146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>mults</th>
<th>adds</th>
<th>mults (3 iterations)</th>
<th>adds (3 iterations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>derivative</td>
<td>7935</td>
<td>529</td>
<td>23805</td>
<td>1587</td>
</tr>
<tr>
<td>function</td>
<td>1587</td>
<td>2645</td>
<td>4761</td>
<td>7935</td>
</tr>
<tr>
<td>sum</td>
<td>9522</td>
<td>3174</td>
<td>28566</td>
<td>9522</td>
</tr>
</tbody>
</table>

Pathlength

path length: 49197 (int-mults) + 153410 (int-adds)

<table>
<thead>
<tr>
<th></th>
<th>mults</th>
<th>adds</th>
</tr>
</thead>
<tbody>
<tr>
<td>derivative</td>
<td>7935</td>
<td>529</td>
</tr>
<tr>
<td>function</td>
<td>1587</td>
<td>2645</td>
</tr>
<tr>
<td>sum</td>
<td>9522</td>
<td>3174</td>
</tr>
</tbody>
</table>