Preview

Greedy Algorithm
And
Edmonds Matroid Intersection Algorithm

Paul Wilhelm

wilhelm@math.hu-berlin.de

Institut für Mathematik
Humboldt-Universität zu Berlin

June 29, 2010
Greedy Strategy

example from (Oxley 2006, p. 63)
Greedy Strategy

example from (Oxley 2006, p. 63)

Weight Function

\[w : E \rightarrow \mathbb{R} \]

\[\forall X \subseteq E \quad w(X) = \sum_{e \in X} w(e) \]
Introduction Greedy Strategy

Greedy Strategy

example from (Oxley 2006, p. 63)

Example

Find the cheapest railroad network which connect all cities.
Greedy Strategy

Example from (Oxley 2006, p. 63)

Example

Find the cheapest railroad network which connect all cities.

Task

Find a minimum weight spanning Tree.
Greedy Strategy

example from (Oxley 2006, p. 63)

Kruskal’s Algorithm

- start with empty set
- while you can add an edge:
 - add the cheapest edge such that no cycle appear
Greedy Strategy

example from (Oxley 2006, p. 63)

Kruskal’s Algorithm

- start with empty set
- while you can add an edge:
 - add the cheapest edge such that no cycle appear
Greedy Strategy

example from (Oxley 2006, p. 63)

Kruskal’s Algorithm

- start with empty set
- while you can add an edge:
 - add the cheapest edge such that no cycle appears
Greedy Strategy

example from (Oxley 2006, p. 63)

Kruskal’s Algorithm

- start with empty set
- while you can add an edge:
 - add the cheapest edge such that no cycle appear
Greedy Strategy

- Example from (Oxley 2006, p. 63)

Kruskal’s Algorithm

- Start with empty set
- While you can add an edge:
 - Add the cheapest edge such that no cycle appears

No unique solution, depends on implementation!
choose minimum or maximum and add or delete

generalize to arbitrary independent systems (many combinatorial optimization problems)

find optimal solution iff it is a matroid
Greedy Algorithm

- Choose minimum or maximum and add or delete
- Generalize to arbitrary independent systems (many combinatorial optimization problems)
- Find optimal solution iff it is a matroid
Greedy Algorithm

- choose minimum or maximum and add or delete
- generalize to arbitrary independent systems (many combinatorial optimization problems)
- find optimal solution iff it is a matroid
What If Not A Matroid?

- every independence system is a finite intersection of matroids
- Edmond’s algorithm find an optimal solution for an intersection of two matroids
Edmond’s Matroid Intersection Algorithm

What If Not A Matroid?

- every independence system is a finite intersection of matroids
- Edmond’s algorithm find an optimal solution for an intersection of two matroids
Oxley 2006