
MULTI-STEP METHODS FOR SDES AND THEIR APPLICATION

TO PROBLEMS WITH SMALL NOISE ∗

EVELYN BUCKWAR AND RENATE WINKLER†

Abstract. In this paper the numerical approximation of solutions of Itô stochastic differential
equations is considered, in particular for equations with a small parameter ε in the noise coeffi-
cient. We construct stochastic linear multi-step methods and develop the fundamental numerical
analysis concerning their mean-square consistency, numerical stability in the mean-square sense and
mean-square convergence. For the special case of two-step Maruyama schemes we derive conditions
guaranteeing their mean-square consistency. Further, for the small noise case we obtain expansions
of the local error in terms of the stepsize and the small parameter ε. Simulation results using several
explicit and implicit stochastic linear k-step schemes, k = 1, 2, illustrate the theoretical findings.
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1. Introduction. We consider stochastic differential equations (SDEs) of the
form

X(s)
∣
∣
∣

t

t0
=

∫ t

t0

f(X(s), s) ds+

∫ t

t0

G(X(s), s) dW (s), X(t0) = X0, (1.1)

for t ∈ J , where J = [t0, T ] . The drift and diffusion functions are given as
f : R

n × J → R
n , G = (g1, . . . , gm) : R

n × J → R
n×m, respectively. The process

W is an m-dimensional Wiener process on the given probability space (Ω,F , P ) with
a filtration (Ft)t∈J , and X0 is a given Ft0-measurable initial value, independent of
the Wiener process and with finite second moment. We assume that there exists a
path-wise unique strong solution X(·) of (1.1).
The aim of this article is to analyse the mean-square convergence properties of, in
general, drift-implicit linear multi-step methods (LMMs) for the approximation of the
solution of (1.1). An advantage LMMs have in deterministic numerics is that they
require a low number of evaluations of the right-hand side. Thus for problems with an
expensive right-hand side they are often preferable to Runge-Kutta schemes with the
same order of convergence. We recall that in the deterministic case a high order of
convergence is always based on sufficient smoothness of the solution of the differential
equation. In contrast, the solution of an SDE is not smooth in the ordinary sense and
a high order of convergence is achievable only by including more information on the
driving Wiener process, i.e. a sufficient number of multiple stochastic integrals. Our
motivation for considering stochastic multi-step methods (SLMMs) is firstly under-
standing when and why these schemes converge in the mean-square sense. Secondly,
we want to recapture some of the properties of deterministic LMMs for SDEs with
small noise, i.e. SDEs that can be written in the form

X(s)
∣
∣
∣

t

t0
=

∫ t

t0

f(X(s), s)ds+

∫ t

t0

εĜ(X(s), s)dW (s), t ∈ J , X(t0) = X0, (1.2)
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where ε � 1 is a small parameter, and Ĝ = (ĝ1, . . . , ĝm) : R
n × J → R

n×m and its
derivatives are assumed to have moderate values. For this we will derive expansions
of the error in terms of the small parameter ε and the step-size, as has been done for
one-step methods in [17]. Then the small diffusion term makes it unnecessary to use
high order multiple stochastic integrals and Wiener increments will be sufficient if the
step-size is not too small.

Stochastic two-step methods already appear in [16] (for additive noise) and in [12]
(see also the references there). In [2, 3] two-step methods for Itô SDEs are analysed.
Stochastic versions of Adams methods for order up to five have been implemented and
tested for SDEs with additive noise in [7]. Consistency of SLMMs for Stratonovich
SDEs has been considered in [5], in addition stochastic Adams methods have been
implemented as predictor-corrector schemes and tested.
In Section 2 we introduce the class of SLMMs considered and provide necessary defi-
nitions and useful facts. In Section 3 we consider the solvability of the discrete system
and the boundedness of the iterates. We then establish two fundamental results, the
first one concerns the relation between mean-square numerical stability of the SLMM
and Dahlquist’s root condition, and the second one concerns the relation between
mean-square convergence, mean-square numerical stability and mean-square consis-
tency of the SLMM. This mirrors the results and the essential role of zero-stability in
the deterministic analysis of discretisation schemes, see e.g. [6, 9, 11, 13]. In Section
4 we consider two-step-Maruyama methods and give conditions for their mean-square
consistency. These conditions allow to determine the parameters for the stochastic
part from the parameters of the deterministic scheme and reduce to those of the
underlying deterministic schemes when there is no noise. We then apply the two-
step-Maruyama methods to the SDE with small noise (1.2) and derive expansions of
the local error in a manner similar to that in [17]. In Section 5 we provide illustrative
examples. The appendix contains the proof of Theorem 3.2.

2. Definitions and preliminary results. We denote by |·| the Euclidian norm
in R

n and by ‖ · ‖ the corresponding induced matrix norm. The mean-square norm
of a vector-valued square-integrable random variable Z ∈ L2(Ω,R

n) will be denoted
by

‖Z‖L2
:= (E|Z|2)1/2 .

We define a deterministic grid on J as t0 < t1 < . . . < tN = T with (for simplicity)
a constant step-size h := T/N and t` = ` · h, ` = 0, . . . , N . We consider a stochastic
linear k-step method, which for ` = k, . . . , N, takes the form

k∑

j=0

αj X −̀j = h
k∑

j=0

βj f(X −̀j , t −̀j) +
k∑

j=1

Γj(X −̀j , t −̀j) I
t`−j ,t`−j+1 . (2.1)

We set α0 = 1. We require given initial values X0, . . . , Xk−1 ∈ L2(Ω,R
n) such that

X` is Ft`-measurable for ` = 0 . . . , k−1. Every diffusion term Γj(x, t) I
t,t+h is a finite

sum of terms each containing an appropriate function h of x and t multiplied by a
multiple Wiener integral over [t, t+ h], i.e. it takes the general form

Γj(x, t) I
t,t+h =

m∑

r=1

hrj (x, t) I
t,t+h
r +

m∑

r1,r2=0

r1+r2>0

hr1,r2j (x, t) It,t+hr1,r2 + . . . .
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A general multiple Wiener integral is given by

It,t+hr1,r2,...,rj
(y) =

∫ t+h

t

∫ s1

t

. . .

∫ sj−1

t+h

y(X(sj), sj) dWr1(sj) . . . dWrj
(s1), (2.2)

where ri ∈ {0, 1, . . . ,m} and dW0(s) = ds. If y ≡ 1 we write I t,t+hr1,r2,...,rj
. Note that the

integral It,t+hr is simply the increment Wr(t+h)−Wr(t) of the scalar Wiener process
Wr. The term It,t+h denotes the collection of multiple Wiener integrals associated
with the interval [t, t+ h].
We emphasize that an explicit discretization is used for the diffusion term. For β0 = 0,
the SLMM (2.1) is explicit, otherwise it is drift-implicit.
We give two examples of two-step methods.
Example 2.1. The first is a stochastic variant of the implicit two-step BDF method,
which we term BDF2-Maruyama method. For ` = 2, . . . , N, it takes the form

X` −
4

3
X`−1 +

1

3
X`−2 = h

2

3
f(X`, t`)

+

m∑

r=1

gr(X −̀1, t −̀1) I
t
−̀1,t`

r − 1

3

m∑

r=1

gr(X −̀2, t −̀2) I
t
−̀2,t −̀1

r .

Here one has α0 = 1, α1 = − 4
3 , α2 = 1

3 , β0 = 2
3 , β1 = β2 = 0, and

Γ1(x, t) I
t,t+h =

m∑

r=1

gr(x, t) I
t,t+h
r , Γ2(x, t) I

t,t+h = −1

3

m∑

r=1

gr(x, t) I
t,t+h
r .

Example 2.2. The second example is a Milstein variant of the two-step Adams-
Bashforth-method:

X` −X`−1 = h

(
3

2
f(X`−1, t`−1) −

1

2
f(X`−2, t`−2)

)

+

m∑

r=1

gr(X −̀1, t −̀1) I
t
−̀1,t`

r

+

m∑

r1,r2=1

(gr1)
′
xgr2(X(t`−1), t`−1) I

t`−1,t`
r1,r2 .

For this method one has

α0 = 1, α1 = −1, α2 = 0, β0 = 0, β1 =
3

2
, β2 = −1

2
, Γ2(x, t) I

t,t+h ≡ 0

and

Γ1(x, t) I
t,t+h =

m∑

r=1

gr(x, t) I
t,t+h
r +

m∑

r1,r2=1

(gr1)
′
xgr2(x, t) I

t,t+h
r1,r2 .

We will consider mean-square convergence of SLMMs in the sense discussed in Milstein
and others [1, 16, 20]. Note that in the literature the term strong convergence is
sometimes used synonymously for our expression mean-square convergence.
Definition 2.3. We call the SLMM (2.1) for the approximation of the solution of
the SDE (1.1) mean-square convergent if the global error X(t`) −X` satisfies

max
`=1,...,N

‖X(t`) −X`‖L2
→ 0 as h→ 0,
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we say it is mean-square convergent with order γ (γ > 0) if the global error
satisfies

max
`=1,...,N

‖X(t`) −X`‖L2
≤ C · hγ ,

with a grid-independent constant C > 0 .

In the following we will define what we understand by local errors. We would like
to point out that for the analysis of one-step schemes essentially two different but
related concepts are used in the literature. In the first one the local error is defined
as the defect that is obtained when the exact solution values are inserted into the
numerical scheme. In the second one the local error is defined as the difference after
one step of the exact and the numerical solution started at an arbitrary deterministic
value. These concepts differ in the way the error is transported to the end of the
integration interval, in the first via the numerical method, in the second via the exact
solution. The second definition has been used in the fundamental work of Milstein in
[15, 16], where for the first time the relation between local and global errors of one-step
methods for SDEs has been clarified. However, only the first definition extends easily
to multi-step methods, hence we will use it here. For comparison of these principles
in the deterministic setting see [10, Chapters II.3,III.4].
Definition 2.4. We define the local error of the SLMM (2.1) for the approximation
of the solution of the SDE (1.1), for ` = k, . . . , N , as

L` :=

k∑

j=0

αjX(t −̀j)− h

k∑

j=0

βjf(X(t −̀j), t −̀j)−
k∑

j=1

Γj(X(t −̀j), t −̀j) I
t`−j ,t`−j+1 .

(2.3)

We aim to conclude mean square convergence from local properties of the SLMM by
means of numerical stability in the mean-square sense. Numerical stability concerns
the influence of perturbations of the right-hand side of the discrete scheme on the
global solution of that discrete scheme. Sources of perturbations may be the local
error, round-off errors or defects in the approximate solution of implicit schemes. The
mean-square stability estimate of the global error is based on the mean square norm
and on the conditional mean of the perturbations. In the case of one-step schemes
this appears e.g. in [1, 20], we refer in particular to the discussion in [16, Chapter
1.4]. We remark that in the case of k-step schemes the conditional mean has to be
taken with respect to the σ-algebra Ft`−k

.

In our analysis we thus consider the following discrete system, the perturbed form of
(2.1), for ` = k, . . . , N

k∑

j=0

αjX̃`−j = h

k∑

j=0

βjf(X̃`−j , t`−j) +

k∑

j=1

Γj(X̃ −̀j , t −̀j) I
t`−j ,t`−j+1 +D`, (2.4)

with initial values X̃` = X`+D`, ` = 0, . . . , k−1. We suppose that the perturbations
D` are Ft`-measurable and that D` ∈ L2(Ω,R

n).
Remark 2.5. It is useful to represent the perturbations in the form

D` = R` + S` =: R` +
k∑

j=1

Sj,`−j+1, ` = k, . . . , N,

where each Sj,` is Ft` measurable with E(Sj,`|Ft`) = 0 .

(2.5)
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The representation (2.5) is not unique. One extreme possibility is R` = D`, S` = 0,
another, more useful one, is given by

R∗
` = E(D`|Ft`−k

), S∗
` = D` −R∗

` ,

S∗
j,`−j+1 = E(D` −R∗

` −
∑k
i=j+1 S

∗
i,`−i+1|Ft`−j+1

), j = k, k − 1, . . . , 1 .
(2.6)

This construction guarantees the required measurability conditions in (2.5). We also
note that this decomposition is orthogonal in L2(Ω), i.e.

‖D`‖2
L2

= ‖R∗
`‖2
L2

+

k∑

j=1

‖S∗
j,`−j+1‖2

L2
. (2.7)

As an example one obtains for k = 3

R∗
` = E(D`|Ft`−3

)

S∗
3,`−2 = E(D` −R∗

` |Ft`−2
)

S∗
2,`−1 = E(D` −R∗

` − S∗
3,`−2|Ft`−1

)

S∗
1,` = D` −R∗

` − S∗
3,`−2 − S∗

2,`−1.

Now we give the precise definition of mean square stability and consistency that we
consider in this paper.

Definition 2.6. We call the SLMM (2.1) numerically stable in the mean-

square sense if there exist constants h0 > 0 and S > 0 such that for all stepsizes
h < h0 and for all Ft` measurable perturbations D` ∈ L2(Ω,R

n) (` = 0, . . . , N) and
all their representations (2.5), the following inequality holds

max
`=0,...,N

‖X` −X̃`‖L2
≤ S

{

max
`=0,...,k−1

‖D`‖L2
+ max
`=k,...,N

(‖R`‖L2

h
+

‖S`‖L2

h1/2

)}

, (2.8)

where (X`)
N
`=1 and (X̃`)

N
`=1 are the solutions of the SLMM (2.1) and the perturbed

discrete system (2.4), respectively.
We refer to S as the stability constant and to (2.8) as the stability inequality.
Definition 2.7. We call the SLMM (2.1) for the approximation of the solution of
the SDE (1.1) mean-square consistent if the local error L` satisfies

h−1 ‖E(L`|Ft`−k
)‖L2

→ 0 for h→ 0, and h−1/2 ‖L`‖L2
→ 0 for h→ 0.

We call the SLMM (2.1) for the approximation of the solution of the SDE (1.1)
mean-square consistent of order γ (γ > 0), if the local error L` satisfies

‖E(L`|Ft`−k
)‖L2

≤ c̄ · hγ+1 , and ‖L`‖L2
≤ c · hγ+ 1

2 , ` = 1, . . . , N ,

with constants c , c̄ > 0 only depending on the SDE and its solution.
We remind the reader that consistency is only concerned with the local error. In
the case that we disregard other sources of errors in (2.4) we only have to deal with
perturbations D` = L`.
Lemma 2.8. The SLMM (2.1) is mean-square consistent of order γ , if

‖R`‖L2
≤ c̄ · hγ+1 , and ‖S`‖L2

≤ c · hγ+ 1
2 , ` = 1, . . . , N ,
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for any representation (2.5) of the local error D` = L`. The SLMM (2.1) is mean-
square consistent of order γ , if and only if

‖R∗
`‖L2

≤ c̄ · hγ+1 , and ‖S∗
` ‖L2

≤ c · hγ+ 1
2 , ` = 1, . . . , N ,

where the representation (2.6) is chosen for the local error D` = L`.

Proof. First, let L` = R` + S` =: R` +
∑k
j=1 Sj,`−j+1 be a representation (2.5) with

‖R`‖L2
≤ c̄ · hγ+1 , and ‖S`‖L2

≤ c · hγ+ 1
2 , ` = k, . . . , N . By the conditions

E(Sj,`|Ft`) = 0 we conclude

‖E(L`|Ft`−k
)‖L2

= ‖E(R`|Ft`−k
)‖L2

≤ ‖R`‖L2
≤ c̄ · hγ+1.

Further, we have, for h ≤ 1,

‖L`‖L2
= ‖R` + S`‖L2

≤ ‖R`‖L2
+ ‖S`‖L2

≤ c̄ · hγ+1 + c · hγ+ 1
2 ≤ (c̄+ c) · hγ+ 1

2 .

Second, let the SLMM (2.1) be mean-square consistent of order γ, i.e. ‖E(L`|Ft`−k
)‖L2

≤ c̄ · hγ+1 , and ‖L`‖L2
≤ c · hγ+ 1

2 , ` = k, . . . , N . Because of R∗
` = E(L`|Ft`−k

)
we then, obviously, have ‖R∗

`‖L2
≤ c̄ · hγ+1, and, further

‖S∗
` ‖L2

= ‖L`‖L2
− ‖R∗

`‖L2
≤ ‖L`‖L2

≤ c · hγ+ 1
2 .

For further reference we state the following definitions and results.
Definition 2.9. A function f : R

n × J → R
n satisfies a uniform Lipschitz

condition with respect to x, if there exists a positive constant Lf , such that

|f(x, t) − f(y, t)| ≤ Lf |x− y|, ∀x, y ∈ R
n, t ∈ J . (2.9)

A function Γ : R
n × J → R

n×mΓ satisfies a uniform Lipschitz condition with
respect to x, if there exists a positive constant LΓ, such that

‖Γ(x, t) − Γ(y, t)‖ ≤ LΓ|x− y| ∀x, y ∈ R
n, t ∈ J . (2.10)

Let Cs,s−1 denote the class of all functions from R
n × J to R

n having continuous
partial derivatives up to order s − 1 and, in addition, continuous partial derivatives
of order s with respect to the first variable.
Let CK denote the class of functions y from R

n × J to R
n that satisfy a linear

growth condition in the form

|y(x, t)| ≤ K(1 + |x|2) 1
2 , ∀y ∈ R

n, t ∈ J . (2.11)

Definition 2.10. The characteristic polynomial of (2.1) is given by

ρ(ζ) = αkζ
k + αk−1ζ

k−1 + . . .+ α0. (2.12)

The SLMM (2.1) is said to fulfil Dahlquist’s root condition, if
i) The roots of ρ(ζ) lie on or within the unit circle;
ii) The roots on the unit circle are simple.

Lemma 2.11. (A discrete version of Gronwall’s lemma) Let a`, ` = 1, . . . , N , and
C1, C2 be nonnegative real numbers and assume that the inequalities

a` ≤ C1 + C2
1

N

`−1∑

i=1

ai, ` = 1, . . . , N,
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are valid. Then we have max
`=1,...,N

a` ≤ C1 exp(C2).

To estimate the multiple integrals (2.2) we will use the following lemma (cf. Lemma
2.1 and 2.2 in [16]).

Lemma 2.12. For any function y belonging to the class CK , and any t ∈ J , h > 0,
such that t+h ∈ J , we have that

E(It,t+hr1...rj
(y)|Ft) = 0 if ri 6= 0 for some i ∈ {1, . . . , j}, (2.13)

‖E(It,t+hr1,...,rj
(y)|Ft)‖L2

≤ ‖It,t+hr1,...,rj
(y)‖L2

= O(hl1+l2/2), (2.14)

where l1 is the number of zero indices ri and l2 the number of non-zero indices ri.

3. Global properties of stochastic LMMs. In this section we will first es-
tablish the solvability of the recurrence equations (2.4) (and thus of (2.1)), then we
will discuss numerical stability and mean-square convergence of the SLMM (2.1). The
former characterizes the robustness of a numerical scheme with respect to small per-
turbations, such as rounding errors. As a property of the numerical scheme alone,
it is not a priori giving evidence on the approximation power of the scheme (which
may very well approximate a different problem than intended). However, numerical
stability and consistency together yield convergence of the numerical solution to the
exact solution. In order to distinguish this stability concept from others, it is some-
times called zero-stability or in honour of Dahlquist, also D-stability. It should not
be mistaken for properties like asymptotic stability, which guarantee that for fixed
step-sizes (and long or unbounded time-intervals) qualitative properties of the exact
solutions like damping behaviour in dissipative systems are preserved by the discrete
approximations. For further discussions we refer the reader to the deterministic litera-
ture (see e.g. [6, 13, 14]). In the stochastic literature mean-square numerical stability
for one-step-schemes has been considered in [1, 3, 4, 8, 19, 20]. In the first four of
these works only perturbations in the initial data have been treated.
We now turn to the solvability of the recurrence equations. If in (2.1) and (2.4) the
parameter β0 = 0, the discrete systems are explicit and every iterate X̃`, ` ≥ k, can
be obtained explicitly, i.e. the recurrence equations (2.1) and (2.4) obviously have
unique solutions. In the case of implicit systems we need to consider the solvability
of the systems of nonlinear equations (2.1) and (2.4). In addition, we have to verify
that the mean-square norm of the iterates exists. (The straightforward extension to
fully implicit systems would serve as an example were the mean-square norm of the
iterates does not exist.)
Theorem 3.1. Suppose that β0 6= 0 and the drift-coefficient f satisfies (2.9) and
assume that 2 h β0 Lf < 1. Then the perturbed discrete scheme (2.4) and, in
consequence, the SLMM (2.1) have a unique solution. If, in addition the coefficients
Γj satisfy (2.10), then the mean-square norm of the iterates exists.
Proof. The proof of the existence of unique solutions of the perturbed discrete system
(2.4) (and thus of (2.1)) follows the line of proofs used in the deterministic analysis
of multi-step schemes. The idea is to express (2.4) as

X̃` = hβ0f(X̃`, t`) + B̃` , (3.1)

where

B̃` := −
k∑

j=1

αjX̃`−j + h

k∑

j=1

βjf(X̃`−j , t`−j) +

k∑

j=1

Γj(X −̀j , t −̀j) I
t`−j ,t`−j+1 + D̃`
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is a known Ft` -measurable random variable, when we suppose that X̃`−j are known
Ft`−j

-measurable random variables for j = 1, . . . , k. We can then view (2.4) as a
fixed-point equation in x

x = hβ0f(x, t`) + b`

and apply the contraction mapping principle. We refer e.g. to [9, Thm.6.1.1] for more
details.
It remains to show that the second moments of the iterates exist. We start from the
assumption E|X̃`−j |2 < ∞ , j = 1, . . . , k on the initial values. Recursively, we

conclude that E|X̃`|2 < ∞ , ` = k, . . . , N by comparing X̃` with the solution of
the fixed-point equation (3.1) for B̃` = 0, i.e., with the solution of the deterministic
implicit equation x = hβ0f(x, t`), and applying Lipschitz continuity arguments. For
more details we refer to [20, Thm.5].

We now formulate our main theorem on numerical stability. The proof is given in the
appendix.
Theorem 3.2. The stochastic linear multi-step method (2.1) is numerically stable
in the mean-square sense for every continuous f and Γj satisfying (2.9) and (2.10),
respectively, if and only if its characteristic polynomial ρ(ζ) (2.12) satisfies Dahlquist’s
root condition given in Definition 2.10.

With the powerful notion of numerical stability in the mean-square sense, together
with mean-square consistency the mean-square convergence follows almost immedi-
ately.
Theorem 3.3. A mean-square consistent SLMM (2.1) for the approximation of the
solution of SDE (1.1) is mean-square convergent for all continuous f and Γj satisfying
(2.9) and (2.10), respectively, if and only if it is numerically stable in the mean-square
sense. If, in addition, it is mean-square consistent with order γ > 0 , then the SLMM
(2.1) is mean-square convergent with order γ .
Proof. First, let us assume that the mean-square consistent numerical method (2.1)
is mean-square convergent. Then the necessity of stability can essentially be proved
as in the deterministic case. Set f ≡ 0, Γj ≡ 0, X0 = 0. Then (2.1) reduces to
∑k

j=1 αjX`−j = 0, l = k, k + 1, . . ., a deterministic homogeneous difference equation,
and stability follows by standard arguments, see e.g. [9].
Second, let us assume that the numerical method (2.1) is mean-square stable and
consistent with order γ > 0 . Then mean square convergence with order γ follows by
applying the stability estimate (2.8) to {X̃` := X(t`)} related to the perturbations
{D` := L` = R∗

` + S∗
` }.

4. Two-step-Maruyama schemes. In this section we consider linear two-step-
Maruyama schemes, thus we have for ` = 2, . . . , N

2∑

j=0

αjX`−j = h
2∑

j=0

βjf(X`−j , t`−j) +
2∑

j=1

γj

m∑

r=1

gr(X`−j , t`−j) I
t`−j ,t`−j+1

r . (4.1)

For sufficiently smooth drift and diffusion coefficients f, g1, . . . , gm Theorem 3.2 ap-
plies and the two-step scheme (4.1) is mean square stable if the coefficients α0, α1, α2

satisfy Dahlquist’s root condition. Then the scheme (4.1) is mean-square convergent
of some order γ, if it is mean-square consistent of that order. Thus we will be con-
cerned with mean-square consistency of the above scheme and derive order conditions
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in terms of the coefficients α0, α1, α2, β0, β1, β2, γ1, γ2. In general, the mean-square
order of convergence will be not higher than 1

2 , since the only information about the
driving noise process that the Maruyama-type schemes include are the Wiener incre-
ments. We note that the simple Euler-Maruyama method would suffice to obtain the
same order of convergence. However, convergence is an asymptotic property, i.e. it
holds for h→ 0 and a result concerning the order of convergence may not provide suf-
ficient information about the size of the actual error that arise for reasonable choices
of the step-size. In particular when one considers equations with a small noise term
as in Equation (1.2), one may find that the influence of the noise is not dominant
and properties of the methods in the deterministic setting are recovered to a certain
extent.
From the deterministic theory we know that for linear k-step methods

k∑

j=0

αjx`+j = h

k∑

j=0

βjf(x`+j , t`+j), applied to x′(t) = f(x(t), t),

the local error is of order p+ 1 for sufficiently smooth functions f if

k∑

j=0

αj = 0 and
k∑

j=0

αjj
q = q

k∑

j=0

βjj
q−1 for q = 1, . . . , p.

In the first part of this section we derive consistency conditions for the two-step scheme
(4.1) applied to the general SDE (1.1). We establish a representation of the local
error L` in terms of certain multiple stochastic integrals obtained by the Itô-Taylor
expansion. It turns out that consistency is guaranteed under the above conditions for
deterministic order 1 and additional conditions that determine the method parameters
γ1 and γ2.
In the second part of this section we consider the application of the scheme (4.1) to
SDEs with small noise, i.e. SDEs that can be written in the form (1.2) with a small
parameter ε in the diffusion coefficient G(x, t) = εĜ(x, t). We follow ideas of [17] and
develop the local error in powers of the stepsize h and the small parameter ε. The
expansion yields the deterministic conditions for order two and we discuss for which
choices of ε and h the stochastic component in the error estimates becomes small
compared to these order 2 terms.

4.1. Two-step schemes for general SDEs. To analyse the local error L` of
the scheme (4.1) for the SDE (1.1) and to achieve a suitable representation (2.5) we
want to derive appropriate Itô-Taylor expansions, where we take special care to sepa-
rate the multiple stochastic integrals over the different subintervals of integration. We
introduce operators Λ0 and Λr, r = 1, . . . ,m, defined on C2,1 and C1,0, respectively,
by

Λ0y = y′t + y′xf +
1

2

m∑

r=1

n∑

i,j=1

y′′xixj
grigrj , Λry = y′xgr , r = 1, . . . ,m, (4.2)

and remind the reader of the notation for multiple Wiener integrals (2.2). Using these
operators the Itô formula for a function y in C2,1 and the solution X of (1.1) reads

y(X(t), t) = y(X(t0), t0) + It0,t0 (Λ0y) +

m∑

r=1

It0,tr (Λry), t ∈ J . (4.3)
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Applying the Itô-formula (4.3) on the corresponding intervals to the drift coefficient
f as well as to the diffusion coefficients gr yields for s ∈ [t`−j , t`−j+1], j = 1, 2

f(X(s), s) = f(X(t`−j), t`−j) + I
t`−j ,s
0 (Λ0f) +

m∑

r=1

I
t`−j ,s
r (Λrf), (4.4)

gr(X(s), s) = gr(X(t`−j), t`−j) + I
t`−j ,s
0 (Λ0gr) +

m∑

q=1

I
t`−j ,s
q (Λqgr). (4.5)

We trace back the values of the drift coefficient to the point t`−2 to obtain

f(X(t`−1), t`−1) = f(X(t`−2), t`−2) + I
t`−2,t`−1

0 (Λ0f) +

m∑

r=1

It`−2,t`−1

r (Λrf), (4.6)

f(X(t`), t`) = f(X(t`−2), t`−2) + I
t`−2,t`−1

0 (Λ0f) + I
t`−1,t`
0 (Λ0f)

+

m∑

r=1

It`−2,t`−1

r (Λrf) +

m∑

r=1

It`−1,t`
r (Λrf). (4.7)

For the general SDE (1.1) we have the following result.
Lemma 4.1. Assume that the coefficients f, gr, r = 1, . . . ,m of the SDE (1.1) belong
to the class C2,1 with Λ0f,Λ0gr,Λrf,Λqgr ∈ CK for r, q = 1, . . . ,m. Then the local
error (2.3) of the stochastic 2-step scheme (4.1) allows the representation

L` = R◦
` + S◦

1,` + S◦
2,`−1, ` = 2, . . . , N, (4.8)

where R◦
` , S

◦
j,`, j = 1, 2 are Ft`-measurable with E(S◦

j,`|Ft`−1
) = 0 and

R◦
` =

[ 2∑

j=0

αj

]

X(t`−2) +
[

2α0 + α1 −
2∑

j=0

βj

]

hf(X(t`−2), t`−2) + R̃◦
` ,

S◦
1,` =

[

α0 − γ1

] m∑

r=1

gr(X(t`−1), t`−1)I
t`−1,t`
r + S̃◦

1,`,

S◦
2,`−1 =

[

(α0 + α1) − γ2

] m∑

r=1

gr(X(t`−2), t`−2)I
t`−2,t`−1

r + S̃◦
2,`−1

with

‖R̃◦
`‖L2

= O(h2), ‖S̃◦
1,`‖L2

= O(h), ‖S̃◦
2,`−1‖L2

= O(h). (4.9)

Corollary 4.2. Let the coefficients f, gr, r = 1, . . . ,m, of the SDE (1.1) satisfy the
assumptions of Lemma 4.1 and suppose they are Lipschitz continuous with respect to
their first variable. Let the coefficients of the stochastic linear two-step scheme (4.1)
satisfy Dahlquist’s root condition and the consistency conditions

2∑

j=0

αj = 0, 2α0 + α1 =

2∑

j=0

βj , α0 = γ1, α0 + α1 = γ2. (4.10)

Then the global error of the scheme (4.1) applied to (1.1) allows the expansion

max
`=2,N

‖X(t`) −X`‖L2
= O(h1/2) + O(max

`=0,1
‖X(t`) −X`‖L2

) .
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Proof. (of Corollary 4.2) By Lemma 4.1 we have the representation (4.8) for the local
error. Applying the consistency conditions (4.10) yields

R◦
` = R̃◦

` , S◦
1,` = S̃◦

1,`, S◦
2,`−1 = S̃◦

2,`−1, ` = 2, . . . , N.

As the scheme (4.1) satisfies Dahlquist’s root condition, it is numerically stable in the
mean-square sense. Now the assertion follows from the estimates (4.9) by means of
the stability inequality.

Proof. (of Lemma 4.1) To derive a representation of the local error in the form (4.8) we
evaluate and resume the deterministic parts at the point (X(t`−2), t`−2) and separate
the stochastic terms carefully over the different subintervals [t`−2, t`−1] and [t`−1, t`].
This ensures the independence of the random variables. It does make the calculations
more messy, though. By rewriting

2∑

j=0

αjX(t`−j) = α0

(
X(t`)−X(t`−1)

)
+(α0+α1)

(
X(t`−1)−X(t`−2)

)
+

(
2∑

j=0

αj
)
X(t`−2),

we can express the local error (2.3) as

L` = α0

(
X(t`) −X(t`−1)

)
+ (α0 + α1)

(
X(t`−1) −X(t`−2)

)
+

2∑

j=0

αjX(t`−2)

−h
2∑

j=0

βjf(X(t`−j), t`−j) −
2∑

j=1

γjG(X(t`−j), t`−j)∆W`−j+1.

The SDE (1.1) implies the identities

X(t`−1) −X(t`−2) =

∫ t`−1

t`−2

f(X(s), s)ds+

m∑

r=1

∫ t`−1

t`−2

gr(X(s), s)dWr(s)

= hf(X(t`−2), t`−2) + I
t`−2,t`−1

00 (Λ0f) +

m∑

r=1

I
t`−2t`−1

r0 (Λrf)

+

m∑

r=1

gr(X(t`−2), t`−2)I
t`−2,t`−1

r +

m∑

r=1

I
t`−2,t`−1

0r (Λ0gr) +

m∑

r,q=1

It`−2,t`−1

qr (Λqgr),

and, additionally using (4.6),

X(t`) −X(t`−1) =

∫ t`

t`−1

f(X(s), s)ds+
m∑

r=1

∫ t`

t`−1

gr(X(s), s)dWr(s)

= h
{
f(X(t`−2), t`−2) + I

t`−2,t`−1

0 (Λ0f) +

m∑

r=1

It`−2,t`−1

r (Λrf)
}

+ I
t`−1,t`
00 (Λ0f) +

m∑

r=1

I
t`−1t`
r0 (Λrf)

+

m∑

r=1

gr(X(t`−1), t`−1)I
t`−1,t`
r +

m∑

r=1

I
t`−1,t`
0r (Λ0gr) +

m∑

r,q=1

It`−1,t`
qr (Λqgr).
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Inserting this and the expansions (4.6, 4.7) into the local error formula and reordering
the terms, yields

L` =
[ 2∑

j=0

αj

]

X(t`−2) +
[

2α0 + α1 −
2∑

j=0

βj

]

hf(X(t`−2), t`−2) + R̃◦
`

+
[

α0 − γ1

] m∑

r=1

gr(X(t`−1), t`−1)I
t`−1,t`
r + S̃◦

1,`

+
[

(α0 + α1) − γ2

] m∑

r=1

gr(X(t`−2), t`−2)I
t`−2,t`−1

r + S̃◦
2,`−1,

where

R̃◦
` = α0

{
hI

t`−2,t`−1

0 (Λ0f) + I
t`−1,t`
00 (Λ0f)

}
+ (α0 + α1)I

t`−2,t`−1

00 (Λ0f)

−hβ0

{
I
t`−2,t`−1

0 (Λ0f) + I
t`−1,t`
0 (Λ0f)

}
− hβ1I

t`−2,t`−1

0 (Λ0f), (4.11)

S̃◦
1,` =

m∑

r=1

(

α0I
t`−1,t`
r0 (Λrf) − hβ0I

t`−1,t`
r (Λrf)

)

+ α0

m∑

r=1

I
t`−1,t`
0r (Λ0gr)

+ α0

m∑

r,q=1

It`−1,t`
qr (Λqgr)), (4.12)

S̃◦
2,`−1 = h(α0 − β0 − β1)

m∑

r=1

It`−2,t`−1

r (Λrf) + (α0 + α1)
m∑

r=1

I
t`−2,t`−1

r0 (Λrf)

+(α0 + α1)

m∑

r=1

I
t`−2,t`−1

0r (Λ0gr) + (α0 + α1)

m∑

r,q=1

It`−2,t`−1

qr (Λqgr). (4.13)

Finally, the estimates (4.9) are derived by means of Lemma 2.12, where the last terms
in (4.12) and (4.13) determine the order O(h).

4.2. Two-step schemes for small noise SDEs. For the numerical integration
of ODEs two-step schemes of order 2 or higher are particularly interesting. They offer
a high order of convergence for low computational cost per step. In this section we
consider the special case of SDEs of the form (1.2) where we have a small parameter ε
in the diffusion coefficients gr = εĝr, r = 1, . . . ,m. Lemma 4.1 provides a representa-
tion for the local error (2.3) of the stochastic linear two step scheme (4.1) applied to
(1.2). Starting from this expression we will further analyse the local error by expand-
ing the term Λ0f appearing in R̃◦

` (4.11). Naturally, this requires more smoothness
of the coefficients. A sufficient condition would be Λ0f ∈ C2,1, for which, in general,
one needs the existence of fourth order derivatives of f with respect to x. However,
for small noise SDES, the term f ′

xf + f ′
t dominates Λ0f . This allows to weaken the

smoothness assumptions again. The expansion of Λ0f also yields additional multiple
Itô-integrals whose conditional expectation vanishes. By moving these terms from
R̃◦
` into the stochastic parts of the representation of the local error we achieve better

estimates. With this analysis we are able to prove that some of the potential of deter-
ministic two-step schemes can be recovered in the special case of small noise SDEs.



MULTI-STEP METHODS FOR SDES 13

To be able to exploit the effect of the small parameter ε in the expansions of the local
error we introduce operators Λf0 , Λ̂0 and Λ̂r, r = 1, . . . ,m defined on C2,1 and C1,0,
respectively, by

Λf0y := y′t + y′xf, Λ̂0y :=
1

2

m∑

r=1

n∑

i,j=1

y′′xixj
ĝriĝrj , Λ̂ry := y′xĝr . (4.14)

In terms of the original definition (4.2) we have

Λ0y = Λf0y + ε2Λ̂0y and Λry = εΛ̂ry. (4.15)

Lemma 4.3. Assume that the coefficients f, ĝr, r = 1, . . . ,m of the small noise
SDE (1.2), as well as Λf0f = f ′

xf + f ′
t belong to the class C2,1 with Λ0f,Λ0ĝr, Λ̂rf,

Λ̂qĝr,Λ0Λ
f
0f, Λ̂rΛ

f
0f ∈ CK for r, q = 1, . . . ,m. Let the stochastic 2-step scheme (4.1)

satisfy the consistency conditions (4.10). Then the local error (2.3) of the method
(4.1) for the small noise SDE (1.2) allows the representation

L` = R3

` + S3

1,` + S3

2,`−1, ` = 2, . . . , N, (4.16)

where R3

` , S
3

j,`, j = 1, 2 are Ft`-measurable with E(S3

j,`|Ft`−1
) = 0, and

R3

` =
[

(4α0 + α1) − (4β0 + 2β1)
]h2

2
(f ′
t + f ′

xf)(X(t`−2), t`−2) + R̃3

` ,

S3

1,` = S̃◦
1,` + S̃3

1,`,

S3

2,`−1 = S̃◦
2,`−1 + S̃3

2,`−1,

where

‖R̃3

` ‖L2
= O(h3 + ε2h2), ‖S̃3

1,`‖L2
= O(εh5/2), ‖S̃3

2,`−1‖L2
= O(εh5/2). (4.17)

The terms S̃◦
1,`, S̃

◦
2,`−1 are given by (4.12, 4.13) in the proof of Lemma 4.1 and satisfy

here

‖S̃◦
1,`‖L2

= O(ε2h+ εh3/2), ‖S̃◦
2,`‖L2

= O(ε2h+ εh3/2). (4.18)

Proof. We have from Lemma 4.1, if the consistency conditions (4.10) are satisfied, the
representation

L` = R̃◦
` + S̃◦

1,` + S̃◦
2,`−1, ` = 2, . . . , N,

where R̃◦
` , S̃

◦
1,`, S̃

◦
2,`−1 are given by (4.11, 4.12, 4.13). Splitting Λ0f = Λf0f + ε2Λ̂0f

immediately yields R̃◦
` = R̃◦f

` + ε2R̂◦
` with

R̃◦f
` := (α0 − β0 − β1)hI

t`−2,t`−1

0 (Λf0f) + (α0 + α1)I
t`−2,t`−1

00 (Λf0f)

+α0I
t`−1,t`
00 (Λf0f) − hβ0I

t`−1,t`
0 (Λf0f) (4.19)

R̂◦
` := (α0 − β0 − β1)hI

t`−2,t`−1

0 (Λ̂0f) + (α0 + α1)I
t`−2,t`−1

00 (Λ̂0f)

+α0I
t`−1,t`
00 (Λ̂0f) − hβ0I

t`−1,t`
0 (Λ̂0f). (4.20)

We note that (4.20) appears with the factor ε2 in the local error representation, thus
yielding the O(ε2h2) term in the estimate of ‖R̃3

` ‖L2
in (4.17) . We concentrate on
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developing R̃◦f
` in more detail. Applying the Itô-formula (4.3) to Λf0f(X(s), s) for

s ∈ [t`−2, t`−1] and integrating yields

I
t`−2,s
0 (Λf0f) = (s− t`−2)Λ

f
0f(X(t`−2), t`−2) + I

t`−2,s
00 (Λ0Λ

f
0f) + ε

m∑

r=1
I
t`−2,s
r0 (Λ̂rΛ

f
0f).

For s = t`−1 we obtain an expression for the first integral in (4.19) . Integrating again
we obtain for the second integral in (4.19)

I
t`−2,t`−1

00 (Λf0f) = h2

2 Λf0f(X(t`−2), t`−2) + I
t`−2,t`−1

000 (Λ0Λ
f
0f) + ε

m∑

r=1
I
t`−2,t`−1

r00 (Λ̂rΛ
f
0f).

Both the other integrals are over the interval [t`−1, t`]. In the analogous expressions

for these the term Λf0f(X(t`−1), t`−1) has to be substituted by

Λf0f(X(t`−1), t`−1) = Λf0f(X(t`−2), t`−2)+I
t`−2,t`−1

0 (Λ0Λ
f
0f)+ε

m∑

r=1
I
t`−2,t`−1

r (ΛrΛ
f
0f).

Then we obtain from (4.19)

R̃◦f
` =

[

(α0 + 4α1) − (4β0 + 2β1)
]h2

2
Λf0f(X(t`−2), t`−2) + R̃3f

` + S̃3

1,` + S̃3

2,`,

where

R̃3f
` = (α0 − 2β0)

h2

2
I
t`−2,t`−1

0 (Λ0Λ
f
0f)

+ (α0 − β0 − β1)hI
t`−2,t`−1

00 (Λ0Λ
f
0f) − β0hI

t`−1,t`
00 (Λ0Λ

f
0f)

+ (α0 + α1)I
t`−2,t`−1

000 (Λ0Λ
f
0f) + α0I

t`−1,t`
000 (Λ0Λ

f
0f),

S̃3

1,` = α0ε
m∑

r=1

I
t`−1,t`
r00 (Λ̂rΛ

f
0f) − hβ0ε

m∑

r=1

I
t`−1,t`
r0 (Λ̂rΛ

f
0f),

S̃3

2,` = (α0− 2β0)
h2

2
ε

m∑

r=1

It`−2,t`−1

r (Λ̂rΛ
f
0f) + (α0− β0− β1)hε

m∑

r=1

I
t`−2,t`−1

r0 (Λ̂rΛ
f
0f)

+ (α0 + α1)ε

m∑

r=1

I
t`−2,t`−1

r00 (Λ̂rΛ
f
0f).

We arrive at R̃3

` = R̃3f
` + ε2R̂◦

` . Finally, the estimates (4.17) are derived by means of
Lemma 2.12.

Corollary 4.4. Let the coefficients f, ĝr, r = 1, . . . ,m, of the SDE (1.2) satisfy the
assumptions of Lemma 4.3 and suppose they are Lipschitz continuous with respect to
their first variable. Let the coefficients of the stochastic linear two-step scheme (4.1)
satisfy Dahlquist’s root condition and the consistency conditions (4.10) and

(α0 + 4α1) − (4β0 + 2β1) = 0. (4.21)

Then the global error of the scheme (4.1) applied to (1.2) allows the expansion

max
`=2,...,N

‖X(t`) −X`‖L2
= O(h2 + εh+ ε2h1/2) + O(max

`=0,1
‖X(t`) −X`‖L2

) .

Proof. Lemma 4.3 stated the representation (4.16) for the local error. Applying
the consistency condition (4.21) yields R3

` = R̃3

` and by (4.17) we have ‖R3

` ‖L2
=

O(h3 + ε2h2). The stochastic terms S3

1,`, S
3

2,`−1 are dominated by S̃◦
1,`, S̃

◦
2,`−1 and
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thus are of order of magnitude O(ε2h+εh3/2). As the scheme (4.1) satisfies Dahlquist’s
root condition, it is numerically stable in the mean-square sense. Applying the stabil-
ity inequality (2.8) to the representation (4.16) of the local error yields the assertion.

Remark 4.5. We note that R3

` is responsible for the O(h2) term in the expansion
of the global error. In the limit ε → 0 this is the only remaining term. It reflects the
convergence properties of the scheme in the deterministic setting. On the other hand,
for asymptotically small stepsizes h → 0 and fixed parameter ε, even if it is small,
the term of order O(ε2h1/2) causes the low order 1

2 of convergence. The question
arises for which choices of ε and h the schemes still show the order 2 behaviour.
Thus we are interested in when the term O(h2) dominates the term O(εh + ε2h1/2).
Clearly both these terms depend on the actual coefficients f, ĝr, r = 1, . . . ,m, of the
SDE (1.2) and their derivatives. Assuming moderate function values, the term O(h2)
dominates O(εh + ε2h1/2), if h2 � ε2h1/2, i.e. h � ε4/3, and h2 � εh, i.e. h � ε.
Obviously, in general the second condition is stronger. Summarizing, we can expect
order 2 behaviour if h� ε.
However, even if the chosen stepsize does not satisfy this condition for a given ε,
schemes satisfying the consistency condition (4.21) often show a better performance
than other schemes. The reason is that their error is dominated by O(εh) instead
of O(ε2h1/2), resulting in an order 1 behaviour with the small parameter ε in the
error constant. Again assuming moderate function values, one may expect this for
εh� ε2h1/2, i.e. h� ε2.

5. Test results. We report results for several explicit and implicit stochastic
linear k-step schemes for k = 1, 2, applied to the simple bilinear scalar SDE

X(t) = 1 +

∫ t

0

αX(s)ds+

∫ t

0

βX(s)dW (s), t ∈ [0, 1], (5.1)

with coefficients f(x, t) := αx, G(x, t) = (g(x, t)) = (βx), parameters α, β ∈ R and a
scalar Wiener process W . Its solution is given by the geometric Brownian motion

X(t) = exp
(
(α− 1

2
β2)t+ βW (t)

)
.

Table 5.1 summarizes the methods we have implemented and tested. All methods,
including the one-step schemes, satisfy the consistency conditions (4.10) and all meth-
ods, excluding the Euler schemes, satisfy the consistency condition (4.21). In the
following we present results for α = −1 and different values of the parameter β, which
takes the role of the parameter ε. We plot the achieved accuracy versus the step-
sizes in logarithmic scale. The accuracy is measured as the maximum approximate
L2-norm of the global errors in the time-interval [0, 1]:

max
`=1,...,N

( 1

M

M∑

j=1

|X(t`, ωj) −X`(ωj)|2
)1/2

≈ max
`=1,...,N

‖X(t`) −X`‖L2

where N denotes the number of steps and M the number of computed paths. In our
computations we used M = 100. Lines with slopes −1 and −0.5 are provided in some
figures to enable comparisons with convergence of order 1 or 1/2.
Our first test concerned the effect of applying a method which is not numerically stable
in the mean-square sense, i.e. the coefficients of the method do not satisfy Dahlquist’s
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Method α0 α1 α2 β0 β1 β2 γ1 γ2

unstable method 1 −3 2 0 1
2 −3

2 1 −2

BDF 2 1 −4
3

1
3

2
3 0 0 1 −1

3

explicit Euler 1 −1 0 0 1 0 1 0

implicit Euler 1 −1 0 1 0 0 1 0

trapezoidal rule 1 −1 0 1
2

1
2 0 1 0

Adams-Bashforth 2 1 −1 0 0 3
2 −1

2 1 0

Adams-Moulton 2 1 −1 0 5
12

8
12 − 1

12 1 0

Milne-Simpson 1 0 −1 1
3

4
3

1
3 1 1

Table 5.1

Table 1: coefficients of two-step schemes

root condition. In this case, one of the roots of the characteristic polynomial ρ (2.12)
is 2. Figure 1 shows the behaviour of the error, when the stepsize decreases. We note
that the scale is logarithmic!

α=−1, β=0.01
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−2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6
log(h)

unstable method

lo
g(

||e
rr

or
||_

L
2)

Figure 1: Simulation results for the SDE (5.1) with the unstable scheme

In Figure 2 we show the effect of applying the stable methods to deterministic ODES,
i.e. with β = 0. Clearly the orders of these methods are reflected by the slope of
the lines in the diagram. They reach from 1 for the Euler schemes over 2 for the
trapezoidal rule, the two-step BDF and Adams-Bashforth methods, 3 for the two-
step Adams-Moulton method to 4 for the Milne-Simpson method. We note that the
achievable accuracy is restricted by the machine precision. Additionally, especially
the Milne-Simpson method is affected by a phenomenon called weak instability, see
e.g. [10].



MULTI-STEP METHODS FOR SDES 17

α=−1, β=0
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Figure 2: Simulation results for the SDE (5.1) for α = −1 and β = 0 (deterministic case)

Figures 3 to 6 show simulation results for an ensemble of 100 computed paths using
the parameter α = −1 and several values for β. The results illustrate the observations
made in Remark 4.5. We see in all figures except Figure 6 that the error of the other
schemes is smaller than that of the Euler schemes. The error appears to be of the size
max(βh, ch2), c being an error constant particular to the scheme. Figure 6 relates
to the case where there is no small parameter in the diffusion coefficient. Here the
order h1/2 term dominates the error for all chosen stepsizes. Furthermore, due to the
larger noise and the small number of paths, the statistical error in the approximation
is visible.

For the Euler methods one clearly observes the dominating deterministic order 1
behaviour in Figures 3 and 4. The asymptotic mean-square order 1/2 becomes visible
for larger values of the noise parameter β in Figures 5 and 6, in the former only for
small values of the stepsize h.
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α=−1, β=0.01
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Appendix A. Proof of Theorem 3.2.

Proof. Necessity: This part can be proved as in the deterministic case, i. e. we take
the equation X ′(t) = 0, then f and Γj satisfy obviously (2.9) and (2.10). We then
follow in principle the proof of [9, Thm.6.3.3].
Sufficiency: Since the SLMM (2.1) contains the stochastic part related to the Γj ,
we can not rely on the theory of difference equations and the representations of their
solutions. Instead, we will follow the route of rewriting the k-step recurrence equa-
tion as a one-step recurrence equation in a higher dimensional space (see e.g. [10,
Chap.III.4][18, Chap.8.2.1]).
ForX` and X̃` being the solutions of (2.1) and (2.4), respectively, let the n-dimensional
vectorE` be defined as the differenceX`−X̃`. We have with E0, . . . , Ek−1 ∈ L2(Ω,R

n)
for ` = k, . . . , N, the recursion

E` = −
k∑

j=1

αj E`−j + h
k∑

j=0

βj ∆f`−j

︸ ︷︷ ︸

=:∆φ`

+
k∑

j=1

∆Γj,`−j I
t`−j ,t`−j+1

︸ ︷︷ ︸

=:∆ψ`

−D`, (A.1)

where
∆f`−j := f(X`−j , t`−j) − f(X̃`−j , t`−j)

∆Γj,`−j := Γj(X`−j , t`−j) − Γj(X̃`−j , t`−j).

We rearrange this k-step recursion in the space L2(Ω,R
n) to a one-step recursion in

L2(Ω,R
k×n). Together with the trivial identities E`−1 = E`−1, . . . E`−k+1 = E`−k+1

we obtain







E`
E`−1

...
E`−k+1








︸ ︷︷ ︸

=: E`

=








−α1I · · · · · · −αkI
I 0

. . .
. . .

I 0








︸ ︷︷ ︸

=: A








E`−1

E`−2

...
E`−k








︸ ︷︷ ︸

=: E`−1

+








∆φ`

0
...
0








︸ ︷︷ ︸

=: ∆Φ`

+








∆ψ`

0
...
0








︸ ︷︷ ︸

=: ∆Ψ`

+








−D`

0
...
0








︸ ︷︷ ︸

=: D`

or, in compact form

E` = AE`−1+∆Φ`+∆Ψ`+D` , ` = k, . . . , N and Ek−1 = (−Dk−1,−Dk−2, . . . ,−D0)
T ,

where E` ∈ L2(Ω,R
k×n), ` = k − 1, k, . . . , N . The vector Ek−1 consists of the per-

turbations to the initial values. We now trace back the recursion in E` to the initial
vector Ek−1. For ` = k, . . . , N we have

E` = AE`−1 + ∆Φ` + ∆Ψ` + D`
= A(AE`−2 + ∆Φ`−1 + ∆Ψ`−1 + D`−1) + ∆Φ` + ∆Ψ` + D`
= A2E`−2 + (∆Φ` + A∆Φ`−1) + (∆Ψ` + A∆Ψ`−1) + (D` + AD`−1)

...

= A`−k+1Ek−1 +
`−k∑

i=0

Ai∆Φ`−i +
`−k∑

i=0

Ai∆Ψ`−i +
`−k∑

i=0

AiD`−i

= A`−k+1Ek−1 +
∑̀

i=k

A`−i∆Φi +
∑̀

i=k

A`−i∆Ψi +
∑̀

i=k

A`−iDi .
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A crucial point for the subsequent calculations is to find a scalar product inducing a
matrix norm such that this norm of the matrix A is less than or equal to 1 (see e.g.
[10, Chap.III.4,Lemma 4.4]. This is possible if the eigenvalues of the Frobenius matrix
A lie inside the unit circle of the complex plane and are simple if their modulus is
equal to 1. The eigenvalues of A are the roots of the characteristic polynomial ρ (2.12)
and due to the assumption that Dahlquist’s root condition is satisfied they have the
required property. Then there exists a non-singular matrix C with a block-structure
like A such that ‖C−1AC‖2 ≤ 1, where ‖ · ‖2 denotes the spectral matrix norm that is
induced by the Euclidian vector norm in R

k×n. We can thus choose a scalar product
for X ,Y ∈ R

k×n as

〈X ,Y〉∗ := 〈C−1X , C−1Y〉2
and then have |.|∗ as the induced vector norm on R

k×n and ‖ · ‖∗ as the induced
matrix norm with ‖A‖∗ = ‖C−1AC‖2 ≤ 1. We also have

〈X ,Y〉∗ = X T C−TC−1Y = X T C∗Y with C∗ = C−TC−1 = (c∗ijIn)i,j=1,...,k.

Due to the norm equivalence there are constants c∗, c∗ > 0 such that

|X |22 ≤ c∗|X |2∗ and |X |2∗ ≤ c∗|X |2∞ ∀X ∈ R
k×n ,

where |X |22 =
∑

j=1,...,k |xj |2, |X |∞ = maxj=1,...,k |xj | for X = (xT1 , . . . , x
T
k )T .

For the special vectors X =(xT , 0, . . . , 0)T and Y =(yT , 0, . . . , 0)T with X ,Y ∈ R
k×n

and x, y ∈ R
n, one has 〈X ,Y〉∗ = c∗11〈x, y〉2 = c∗11x

T y, where c∗11 is given by the
matrix C∗.
We now apply |.|2∗ to estimate |E`|2∗ and, later, E|E`|2∗. We start with

|E`|2∗ ≤ 4
{

|A`−k+1Ek−1|2∗
︸ ︷︷ ︸

1)

+ |
∑̀

i=k

A`−i∆Φi|2∗
︸ ︷︷ ︸

2)

+ |
∑̀

i=k

A`−i∆Ψi|2∗
︸ ︷︷ ︸

3)

+ |
∑̀

i=k

A`−iDi|2∗
︸ ︷︷ ︸

4)

}

.

For the term labelled 1) we have |A`−k+1Ek−1|2∗ ≤ |Ek−1|2∗ , and thus

E|A`−k+1Ek−1|2∗ ≤ E|Ek−1|2∗ . (A.2)

For the term labelled 2) we have

|
∑̀

i=k

A`−i∆Φi|2∗ ≤ (`− k + 1)
∑̀

i=k

|A`−i∆Φi|2∗ ≤ N
∑̀

i=k

|∆Φi|2∗ =
T

h
c∗11

∑̀

i=k

|∆φi|2

≤ h T c∗11 (k+1)
∑̀

i=k

k∑

j=0

|βj ∆fi−j |2 ≤ h T c∗11 (k+1) L2
f

∑̀

i=k

k∑

j=0

β2
j |Ei−j |2

≤ h T c∗11 (k+1) L2
f

{

β2
0 |E`|2 +

∑̀

i=k

{β2
0 |Ei−1|2 +

k∑

j=1

β2
j |Ei−j |2}

}

≤ h T c∗11 (k+1) L2
f

{

c∗ β2
0 |E`|2∗ + Cβ c

∗

`−1∑

i=k−1

|Ei|2∗
}

,

where Cβ = 2 maxj=0,...,k βj . Hence,

E|
∑̀

i=k

A`−i∆Φi|2∗ ≤ h T c∗11 (k+1) L2
f

{

c∗ β2
0 E|E`|2∗ + Cβ c

∗

`−1∑

i=k−1

E|Ei|2∗
}

. (A.3)
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We will now treat the term labelled 3). For that purpose we introduce the notation
∆Ψj,i−j := ((∆Γj,i−jI

ti−j ,ti−j+1)T , 0, . . . , 0)T . Using this we can write

∆Ψi = ((∆ψi)T , 0, . . . , 0)T = ((
k∑

j=1

∆Γj,i−j I
ti−j ,ti−j+1)T , 0, . . . , 0)T =

k∑

j=1

∆Ψj,i−j

and | ∑̀

i=k

A`−i∆Ψi|2∗ = | ∑̀

i=k

A`−i
k∑

j=1

∆Ψj,i−j |2∗.

Every ∆Ψj,i−j is Fti−j+1
-measurable and E(∆Ψj,i−j |Fti−j

) = 0. We can now reorder
the last term above such that we have a sum of terms where each term contains all
multiple Wiener integrals over just one subinterval. The expectation of products of
terms from different subintervals vanishes, hence we obtain

E|
∑̀

i=k

A`−i∆Ψi|2∗

= E|A`−k∆Ψk,0|2∗
+ E|A`−k−1∆Ψk,1 + A`−k∆Ψk−1,1|2∗
...

+ E|A`−2k+1∆Ψk,k−1 + A`−2k+2∆Ψk−1,k−1 + . . .+ A`−k∆Ψ1,k−1|2∗
...

+ E|A0∆Ψk,`−k + A1∆Ψk−1,`−k + . . .+ Ak−1∆Ψ1,`−k|2∗
...

+ E|A0∆Ψ2,`−2 + A1∆Ψ1,`−2|2∗
+E|A0∆Ψ1,`−1|2∗

≤ k
∑̀

i=k

k∑

j=1

E|∆Ψj,i−j |2∗ ≤ k c∗11
∑̀

i=k

k∑

j=1

E‖∆Γj,i−j‖2
E|Iti−j ,ti−j+1 |2

≤ h k c∗11 L
2
Γ

∑̀

i=k

k∑

j=1

E|Ei−j |2 ≤ h k c∗11 L
2
Γ c

∗
∑̀

i=k

|Ei−1|2∗.

Thus, for the term labelled 3), we obtain

E|
∑̀

i=k

A`−i∆Ψi|2∗ ≤ h k c∗11 L
2
Γ c

∗

`−1∑

i=k−1

|Ei|2∗. (A.4)

We will, for a shorter notation, deal with the term labelled 4), i.e. the perturbations
Di in Di, after obtaining an intermediate result. Using (A.2), (A.3) and (A.4) and
setting L0 := L2

f (k + 1) c∗11 T c∗ β2
0 and L := L2

f (k + 1) c∗11 T c∗β + L2
Γ k c

∗
11 c

∗,
we have now arrived at

E|E`|2∗ ≤ 4
{

E|Ek−1|2∗ + hL0E|E`|2 + hL
`−1∑

i=k−1

E|Ei|2∗ + E|
∑̀

i=k

A`−iDi|2∗
}

, ` = k, . . . , N.
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If necessary we choose a bound h0 on the stepsize such that 4 h L0 <
1
2 holds for all

h < h0 and conclude that

E|E`|2∗ ≤ 8 E|Ek−1|2∗ + 8 E|
∑̀

i=k

A`−iDi|2∗ + 8 L T
1

N

`−1∑

i=k−1

E|Ei|2∗.

We now apply Lemma 2.11 with a` := 0, ` = 1, . . . , k − 2 and a` := E|E`|2∗, ` =
k − 1, . . . , N , and obtain the intermediate result

max
`=k−1,...,N

E|E`|2∗ ≤ Ŝ
{

E|Ek−1|2∗ + max
`=k,...,N

E|
∑̀

i=k

A`−iDi|2∗
}

, Ŝ := 8 exp(8LT ) . (A.5)

It remains to deal with the term labelled 4), i.e. the perturbations Di in Di. We
decompose Di, and, analogously, Di into

Di = Ri + Si = Ri +
k∑

j=1

Sj,i−j+1, Di = Ri + Si = Ri +
k∑

j=1

Sj,i−j+1,

where Sj,i−j+1 is Fti−j+1
-measurable with E(Sj,i−j+1|Fti−j

) = 0 for i = k, . . . , N and
j = 1, . . . , k.
Then E〈A`1Sj1,i1 ,A`2Sj2 ,i2〉∗ = 0 for i1 6= i2, and by similar computations as above
we obtain

E|
∑̀

i=k

A`−iDi|2∗ ≤ 2 (`−k+1)
∑̀

i=k

E|A`−iRi|2∗ + 2 k
∑̀

i=k

k∑

j=1

E|A`−iSj,i−j+1|2∗

≤ 2
∑̀

i=k

(T

h
E|Ri|2∗ + k

k∑

j=1

E|Sj,i−j+1|2∗
)

.

Inserting this into the intermediate result (A.5) we obtain

max
`=k−1,...,N

E|E`|2∗ ≤ Ŝ
{

E|Ek−1|2∗ + 2
∑̀

i=k

(T

h
E|Ri|2∗ + k

k∑

j=1

E|Sj,i−j+1|2∗
)}

,

and thus max
`=k−1,...,N

E|E`|2

≤ c∗Ŝ
{

c∗ max
`=0,...,k−1

E|E`|2 + 2 c∗11 max
`=k,...,N

(T 2

h2
E|R`|2 +

kT

h

k∑

j=1

E|Sj,`−j+1|2
)}

.

Taking the square root yields the final estimate

max
`=k−1,...,N

‖E`‖L2

≤
√

c∗Ŝ







√
c∗ max

`=0,...,k−1
‖E`‖L2

+
√

2c∗11 max
`=1,...,N




T

h
‖R`‖L2

+

√
√
√
√
kT

h

k∑

j=1

‖Sj,`−j+1‖2
L2











≤ S






max

`=0,...,k−1
‖E`‖L2

+ max
`=1,...,N




‖R`‖L2

h
+

√
∑k

j=1 ‖Sj,`−j+1‖2
L2√

h










,

which completes the proof.
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