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Limiting Aspects of Nonconvex TVϕ Models∗
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Abstract. Recently, nonconvex regularization models have been introduced in order to provide a better prior
for gradient distributions in real images. They are based on using concave energies ϕ in the total
variation–type functional TVϕ(u) :=

∫
ϕ(|∇u(x)|) dx. In this paper, it is demonstrated that for

typical choices of ϕ, functionals of this type pose several difficulties when extended to the entire
space of functions of bounded variation, BV(Ω). In particular, if ϕ(t) = tq for q ∈ (0, 1), and TVϕ

is defined directly for piecewise constant functions and extended via weak* lower semicontinuous
envelopes to BV(Ω), then it still holds that TVϕ(u) = ∞ for u not piecewise constant. If, on the
other hand, TVϕ is defined analogously via continuously differentiable functions, then TVϕ ≡ 0 (!).
We study a way to remedy the models through additional multiscale regularization and area strict
convergence, provided that the energy ϕ(t) = tq is linearized for high values. The fact that such
energies actually better match reality and improve reconstructions is demonstrated by statistics and
numerical experiments.
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1. Introduction. Recently introduced nonconvex total variation models are based on em-
ploying concave energies ϕ in discrete versions of functionals of the form

(1.1) TVϕ
c (u) :=

∫
Ω
ϕ(|∇u(x)|) dx (u ∈ C1(Ω)),

which we call the continuous model, or

(1.2) TVϕ
d (u) :=

∫
Ju

ϕ(|u+(x) − u−(x)|) dHm−1(x) (u piecewise constant),
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which we call the discrete model. Here Ω ⊂ Rm is our image domain, and Ju is the jump set of
u, where the one-sided traces u± from different sides of Ju differ. The typical energies include,
in particular, ϕ(t) = tq for q ∈ (0, 1). The models based on discretizations of (1.2) have
been proposed for the promotion of piecewise constant (cartoon-like) images [16, 23, 33, 34],
whereas models based on discretizations of (1.1) have been proposed for the better modelling
of gradient distributions in real-life images [27, 28, 29, 36]. To denoise an image z, one may
then solve the nonconvex Rudin–Osher–Fatemi-type problem

(1.3) min
u

1

2
‖z − u‖2L2(Ω) + αTVϕ(u)

for TVϕ = TVϕ
c or TVϕ = TVϕ

d . Observe that (1.1) is defined rigorously only for differentiable
functions. In contrast to (1.2), it is in particular not defined for piecewise constant discretiza-
tions or images with discontinuities. The functional has to be extended to the whole space
of functions of bounded variation denoted by BV(Ω) (see [24] for its definition) in order to
obtain a sound model in the nondiscretized setting. Alternatively, we may take (1.2), defined
for piecewise constant functions, as the basis and extend it to continuous functions. We will
study the extension of both models (1.1) and (1.2) to BV(Ω). We demonstrate that (1.1)
in particular has severe theoretical difficulties for typical choices of ϕ. We also demonstrate
that some of these difficulties can be overcome by altering the model to better match real-
ity, although we also need additional multiscale regularization in the model for theoretical
purposes.

It is worth noting that in the finite-dimensional setting that has mainly been considered in
the aforementioned previous works, such problems with well-posedness do not surface. This
can also be seen by adaptation of our results, keeping in mind that in a finite-dimensional
subspace of BV(Ω), weak* and strong convergence are equivalent. Infinite-dimensional models,
while more challenging, can be more informative and lead to better understanding of the
model—both finite- and infinite-dimensional. Concepts such as smoothness and jumps are,
after all, not well defined in the discrete setting. Study of these and other properties in
the infinite-dimensional setting can provide valuable information about the behavior of the
associated image processing approaches and their solution approaches [1, 7, 10, 13, 14, 20, 46,
47].

Let us consider the specific difficulties with the discrete model TVϕ
d first. We assume that

we have a regularly spaced grid Ωh ⊂ Ω ∩ hZm (h > 0) and a function uh : Ωh → R. By
{ei}mi=1 we denote the canonical orthonormal basis of Rm. Then we identify uh with a function
u that is constant on each cell k + [0, h]m (k ∈ Ωh). Accordingly, we have

(1.4) TVϕ
d (uh) :=

∑
k∈Ωh

m∑
i=1

hm−1ϕ(|uh(k + ei) − uh(k)|).

This discrete expression with h = 1 is essentially what is studied in [16, 33, 34], although [33]
also studies more general discrete models. In the function space setting, this model has to be
extended to all of BV(Ω), in particular to smooth functions. The extension naturally has to be
lower semicontinuous in a suitable topology, in order to guarantee the existence of solutions to
(1.3). Therefore, one is naturally confronted with the question of whether such an extension
can be performed meaningfully.D
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LIMITING ASPECTS OF NONCONVEX TVϕ MODELS 2583

Let us consider a simple motivating example on Ω = (0, 1) with ϕ(t) = tq for q ∈ (0, 1).
We aim to approximate the ramp function

u(t) = t

by piecewise constant functions. Given k > 0, we thus define

uk(t) = i/k for t ∈ [(i− 1)/k, i/k) and i ∈ {1, . . . , k}.
Clearly we have that uk converges strongly to u in L1(Ω). Using the discrete model (1.4) with
h = 1/k, one has

TVq
d(uk) =

k∑
i=1

(1/k)0 · (1/k)q = k1−q.

We see that limk→∞ TVq
d(uk) = ∞! This suggests that the TVq model based on the “discrete”

functional might allow only piecewise constant functions as solutions. In other words, TVq
d

would induce pronounced staircasing—a property desirable when restoring piecewise constant
images, but less suitable for other applications. In section 3, we will indeed demonstrate that
either u is piecewise constant, or u 	∈ BV(Ω).

In order to highlight the inherent difficulties, let us then consider the continuous model
TVϕ

c , directly given by (1.1) for differentiable functions. In particular, (1.1) also serves as a
definition of TVϕ

c for continuous piecewise affine discretizations of u ∈ C1(Ω). We observe
that if u ∈ C1(Ω) on a bounded domain Ω, and we set uh(k) = u(k) for k ∈ Ωh, then

(1.5) TVϕ
c,h(uh) :=

∑
k∈Ωh

hmϕ(|∇huh(k)|), with [∇huh(k)]i :=
(
uh(k + ei) − uh(k)

)
/h,

satisfies
lim
h↘0

TVϕ
c,h(uh) = TVϕ

c (u).

This approximate model TVϕ
c,h with h = 1 is essentially what is considered in [27, 28, 36].

On an abstract level, it is also covered by [33]. The question now is whether the definition of
TVϕ

c can be extended to functions of bounded variation in a meaningful manner.
To start our investigation, let us try to approximate on Ω = (−1, 1) the step function

u(t) =

{
0, t < 0,

1, t ≥ 0.

Given k > 0, we define

uk(t) =

⎧⎪⎨⎪⎩
0, t < −1/k,

1, t ≥ 1/k,

(kt+ 1)/2, t ∈ [−1/k, 1/k).

Then uk → u in L1(Ω). However, the continuous model (1.1) with ϕ(t) = tq for q ∈ (0, 1)
gives

TVq
c(u

k) = (2/k)q−1.D
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2584 M. HINTERMÜLLER, T. VALKONEN, AND T. WU

Thus TVq
c(u

k) → 0 as k ↗ ∞. This suggests that any extension of TVq
c to u ∈ BV(Ω) through

weak* lower semicontinuous envelopes will have TVq
c(u) = 0, and that jumps in u are mapped

to 0 in general. In section 4 we will prove this rigorously and detect more striking properties.
A weak* lower semicontinuous extension will necessarily satisfy TVq

c ≡ 0.
Despite this discouraging property, after discussing in section 5 the implications of the

above-mentioned results, we find appropriate remedies. Our associated principal approach is
given in section 6. It utilizes the (stronger) notion of area-strict convergence [18, 30], which—
as will be shown—can be obtained using the multiscale analysis functional η from [44, 45]. In
section 7 we also discuss alternative remedies which are related to compact operators and the
space SBV(Ω) of special functions of bounded variation. In order to maintain the flow of the
paper, the pertinent proofs are relegated to the appendices.

To show existence of solutions to the fixed TVϕ
c model involving area-strict convergence,

we require that ϕ be level coercive, i.e., limt→∞ ϕ(t)/t > 0. This induces a linear penalty
to edges in the image. Based on these considerations, one arrives at the question of whether
gradient statistics, such as those in [29], are reliable in dictating the prior term (regularizer).
Our experiments on natural images in section 8 suggest that this is not the case. In fact, the
jump part of the image appears to have different statistics from the smooth part. It seems that
the conventional total variation regularization [40] provides a model for the jump part, which
is superior to the nonconvex total variation model. This statistically validates our model,
which is also suitable for a function space setting. Our rather theoretical starting point of
making the TVϕ

c model sound in function space therefore leads to improved practical models.
Finally, in section 9 we study image denoising with this model and finish with conclusions in
section 10. We begin, however, with notation and other preliminary matters in section 2.

2. Notation and preliminaries. We denote the set of nonnegative reals as R0,+ := [0,∞).
If ϕ : R0,+ → R0,+, then we write

ϕ0 := lim
t↘0

ϕ(t)/t and ϕ∞ := lim
t↗∞

ϕ(t)/t,

implicitly assuming that the (possibly infinite) limits exist.
The notation ‖x‖, without explicit specification of the space or type of norm, stands for

the L2-norm (in finite dimensions the 2-norm).
We write the boundary of a set A as ∂A, and the closure as A. The open ball of radius ρ

centered at x ∈ Rm is denoted by B(x, ρ).
We now introduce some measure theory. For details of the definitions, we refer the reader

to textbooks, including [4, 21, 41]. For Ω ⊂ Rm, we denote the space of (signed) Radon
measures on Ω by M(Ω), and the space of Rm-valued Radon measures by M(Ω;Rm). We use
the notation |μ| for the total variation measure of μ = (μ1, . . . , μm) ∈ M(Ω;Rm), and define
the total variation (Radon) norm of μ by

(2.1) ‖μ‖M(Ω;Rm) := |μ|(Ω):= sup

{
m∑
i=1

∫
Ω
ϕi(x) dμi(x)

∣∣∣∣∣ϕ = (ϕ1, . . . , ϕm) ∈ C∞
c (Ω;Rm)

}
.

Here C∞
c (Ω;Rm) denotes the set of Rm-valued smooth, infinitely differentiable functions ϕ

with compact support suppϕ � Ω. If μ = fLm corresponds to a function f ∈ L1(Ω), then
the definition simplifies to ‖μ‖M(Ω) = ‖μ‖L1(Ω).D
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LIMITING ASPECTS OF NONCONVEX TVϕ MODELS 2585

For a measurable set A, we denote by μ�A the restricted measure defined by (μ�A)(B) :=
μ(A∩B). The restriction of a function u to A is denoted by u|A. On any given ambient space
Rm (k ≤ m), we write Hk for the k-dimensional Hausdorff measure, and Lm for the Lebesgue
measure. We also define the Dirac δ-measure at x by

δx(A) :=

{
1, x ∈ A,

0, x 	∈ A.

Roughly, in the case m = 2 and k = 1, which is of most interest for us, L2 measures the
area of sets in R2, while H1 measures the length of (collections of) curves embedded in R2.
The Dirac δ measures membership of individual points and is different from H0, which would
count the number of points in a set.

If J ⊂ Rm and there exist Lipschitz maps γi : Rm−1 → R with

Hm−1

(
J \

∞⋃
i=1

γi(R
m−1)

)
= 0,

then we say that J is countably Hm−1-rectifiable. Again, with m = 2, this means roughly that
J is contained in a collection of Lipschitz curves, modulo a negligible set. It may, however,
happen that J is merely a point cloud contained in the curves and not a full curve itself.

We say that a function u : Ω → R on an open domain Ω ⊂ Rm is of bounded variation (see,
e.g., [4] for a thorough introduction), denoted u ∈ BV(Ω), if u ∈ L1(Ω), and the distributional
gradient Du, given by

Du(ϕ) :=

∫
Ω

divϕ(x)u(x) dx (ϕ ∈ C∞
c (Ω)),

is a Radon measure. This is equivalent to asking that

TV(u) := |Du|(Ω) <∞,

where the total variation of u is defined by setting μ = Du in (2.1). We can then decompose
Du into

Du = ∇uLn +Dju+Dcu,

where ∇uLn is called the absolutely continuous part, Dju the jump part, and Dcu the Cantor
part. We also denote the singular part by

Dsu := Dju+Dcu.

The density ∇u ∈ L1(Ω;Rm) corresponds to the classical gradient if u is differentiable. The
jump part may be written as

Dju = (u+ − u−) ⊗ νJuHm−1�Ju,

where the jump set Ju is countably Hm−1-rectifiable, νJu(x) is its normal, and u+ and u− are
one-sided traces of u on Ju. These are defined by the condition

lim
ρ↘0

1

ρm

∫
B±(x,ρ,ν)

|u±(x) − u(y)| dy = 0

D
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2586 M. HINTERMÜLLER, T. VALKONEN, AND T. WU

being satisfied for some normal vector ν ∈ Rm and the associated half-ball

B±(x, ρ, ν) := {y ∈ B(x, ρ) | ±〈y − x, ν〉 ≥ 0}.

The remaining Cantor part Dcu of Du vanishes on any Borel set which is σ-finite with respect
to Hm−1; in particular, |Dcu|(Ju) = 0. We declare u an element of the space SBV(Ω) of special
functions of bounded variation if u ∈ BV(Ω) and Dcu = 0.

We define the norm

‖u‖BV(Ω) := ‖u‖L1(Ω) + ‖Du‖M(Ω;Rm).

We say that a sequence {ui}∞i=1 ⊂ BV(Ω) converges weakly* to u in BV(Ω), denoted by
ui ∗⇀ u, if ui → u strongly in L1(Ω) and Dui ∗⇀ Du weakly* in M(Ω;Rm). If, in addition,
|Dui|(Ω) → |Du|(Ω), we say that the convergence is strict. The weak* convergence of Dui to
Du may in this case be expressed as∫

Ω
divϕ(x) dui(x) →

∫
Ω

divϕ(x)u(x) dx for all ϕ ∈ C∞
c (Ω;Rm).

It means roughly that we have convergence when we “test” the sequence by a sensor—the
test function ϕ. We may, however, not have convergence on those aspects of the image u that
cannot be sensed by such sensors. In particular, weak* convergence does not imply strong
convergence, or even strict convergence. Strict convergence helps avoid annihilation effects.
For example, the step functions ui = χ[−1/i,1/i], with Dui = δ−1/i − δ1/i and |Dui|(Ω) = 2,
converge weakly to zero, but not strictly.

Finally, we say that a functional F : BV(Ω) → R is weak* lower semicontinuous if ui ∗⇀
u implies F (u) ≤ lim inf i→∞ F (ui). This is an essential property for showing existence of
minimizers of F : If ui is an infimizing sequence, F (ui) ↘ inf F > −∞, then u is a minimizer,
provided that F is weak* lower semicontinuous.

3. Limiting aspects of the discrete TVϕ model. We begin by rigorously defining and
analyzing the discrete TVϕ model (1.2) in BV(Ω). This model is used in the literature to
promote piecewise constant solutions to image reconstruction problems. For our analysis we
consider the following class of energies ϕ.

Definition 3.1. Define Wd as the set of increasing, lower semicontinuous, subadditive func-
tions ϕ : R0,+ → R0,+ that satisfy ϕ(0) = 0 and ϕ0 = ∞.

Example 3.1. Examples of ϕ ∈ Wd include ϕ(t) = tq for q ∈ [0, 1). Note that this choice
is the only one in Wd of the classes considered, for example, in [34]. The logistic penalty
ϕ(t) = log(αt + 1) in particular, while subadditive, has ϕ0 = α < ∞. The fractional penalty
ϕ(t) = αt/(1 + αt) likewise has ϕ0 = α <∞. As we will later see, these classes are, however,
admissible for the continuous model TVϕ

c .

Definition 3.2. Denote by pwc(Ω) the set of functions u ∈ BV(Ω) that are piecewise con-
stant in the sense Du = Dju. We then write |Dju| = θuHm−1�Ju, where

θu(x) := |u+(x) − u−(x)|.D
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Definition 3.3. Given an energy ϕ ∈ Wd, the “discrete” nonconvex total variation model is
defined by

T̃Vϕ
d (u) :=

∫
Ju

ϕ(θu(x)) dHm−1(x) (u ∈ pwc(Ω)),

and we extend this to u ∈ BV(Ω) by defining

TVϕ
d (u) := lim inf

ui ∗⇀u,
ui∈pwc(Ω)

T̃Vϕ
d (ui),

with the convergence weakly* in BV(Ω), in order to obtain a weak* lower semicontinuous
functional.

The functional T̃Vϕ
d in particular agrees with (1.4). Our main result regarding this model

is the following.

Theorem 3.4. Let ϕ ∈ Wd. Then

TVϕ
d (u) = ∞ for u ∈ BV(Ω) \ pwc(Ω).

The proof is based on the SBV compactness theorem [2]; alternatively, it can be proved
via rectifiability results in the theory of currents [49], as used in the study of transportation
networks, e.g., in [37, 43].

Theorem 3.5 (SBV compactness [2]). Let Ω ⊂ Rm be open and bounded. Suppose ϕ,ψ :
R0,+ → R0,+ are lower semicontinuous and increasing with ϕ∞ = ∞ and ψ0 = ∞. Suppose
{ui}∞i=1 ⊂ SBV(Ω) and ui ∗⇀ u ∈ SBV(Ω) weakly* in BV(Ω). If

sup
i=1,2,3,...

(∫
Ω
ϕ(|∇ui(x)|) dx +

∫
Jui

ψ(θui(x)) dHm−1(x)

)
<∞,

then there exists a subsequence of {ui}∞i=1, unrelabelled, such that

ui → u strongly in L1(Ω),(3.1)

∇ui ⇀ ∇u weakly in L1(Ω;Rm),(3.2)

Djui ∗⇀ Dju weakly* in M(Ω;Rm).(3.3)

If, moreover, ψ is subadditive, then

(3.4)

∫
Ju

ψ(θu(x)) dHm−1(x) ≤ lim inf
i→∞

∫
J
ui

ψ(θui(x)) dHm−1(x).

Proof. For the proof of (3.1)–(3.3), we refer the reader to [2, 4]. As the SBV compactness
theorem is typically stated, concavity of ψ is required for the lower semicontinuity result (3.4).
The fact that subadditivity and ψ(0) = 0 suffice follows from [4, Theorem 5.4]; see also [2].
There we use the fact that

β := ψ0 = ϕ∞

D
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in the application of the theorem to the functional

F (u) :=

∫
Ω
ϕ(|∇u(x)|) dx +

∫
Ju

ψ(θu(x)) dHm−1(x) + β|Dcu|(Ω).

An alternative approach for the whole proof of the SBV compactness theorem is to map BV(Ω)
into a space of Cartesian currents and use [49].

Proof of Theorem 3.4. Given u ∈ BV(Ω), let ui ∈ pwc(Ω) satisfy ui ∗⇀ u weakly* in
BV(Ω). Then the SBV compactness theorem shows that ∇u = ∇ui = 0 and Dcu = 0. Thus
u ∈ pwc(Ω).

Remark 3.1. The functions ϕ(t) = αt/(1+αt) and ϕ(t) = log(αt+1) for α > 0, considered
in [34] for reconstruction of piecewise constant images, do not have the property ϕ(t)/t → ∞
as t ↘ 0. The above result therefore does not apply, and indeed TVϕ

d defined using these
functions will not force u with TVϕ

d (u) < ∞ to be piecewise constant, as the following result
states.

Proposition 3.6. Let ϕ : R0,+ → R0,+ be continuously differentiable and satisfy ϕ(0) = 0.
Then the following hold.

(i) If ϕ0 <∞ and ϕ is subadditive, then there exists a constant C > 0 such that

TVϕ
d (u) ≤ C TV(u) (u ∈ BV(Ω)).

(ii) If ϕ0 > 0 and ϕ is increasing, then for every M > 0 there exists also a constant
c = c(M) > 0 such that

cTV(u) ≤ TVϕ
d (u) (u ∈ BV(Ω), ‖u‖L∞(Ω) ≤M).

Proof. First we prove the upper bound. To begin with, we observe that

(3.5) ϕ(t) ≤ ϕ0t.

Indeed, since ϕ is subadditive, we have

lim
δ↘0

ϕ(t+ δ) − ϕ(t)

δ
≤ lim

δ↘0

ϕ(δ)

δ
= ϕ0 <∞.

Thus ϕ′(t) ≤ ϕ0. As ϕ(0) = 0, it follows that ϕ(t) ≤ ϕ0t.

Now, with u ∈ BV(Ω), we pick a sequence {uk}∞k=1 in pwc(Ω) converging to u strictly in
BV(Ω); for details see [12]. Then by (3.5) we have

T̃Vϕ
d (uk) ≤ ϕ0TV(uk) (k = 1, . . . ,∞).

Then, by the definition of TVϕ
d (u) and the strict convergence,

TVϕ
d (u) ≤ lim inf

k→∞
T̃Vϕ

d (uk) ≤ lim inf
k→∞

ϕ0TV(uk) = ϕ0TV(u).

The claim in (i) follows.D
ow

nl
oa

de
d 

11
/1

2/
15

 to
 1

41
.2

0.
24

4.
88

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIMITING ASPECTS OF NONCONVEX TVϕ MODELS 2589

Let us now prove the lower bound in (ii). First of all, we observe the existence of c > 0
with

(3.6) ϕ(t) ≥ ct (0 ≤ t ≤ 2M ).

Indeed, by the definition of ϕ0, there exists t0 > 0 such that ϕ(t) > (ϕ0/2)t for t ∈ (0, t0).
Since ϕ is increasing, we have ϕ(t) ≥ ϕ(t0) ≥ (ϕ0/2)t0 for t ≥ t0. This yields c = ϕ0t0/(4M ).

Assuming that ‖u‖L∞(Ω) ≤M <∞, we now let {uk}∞k=1 ⊂ pwc(Ω) approximate u weakly*
in BV(Ω). We may assume that

(3.7) ‖uk‖L∞(Ω) ≤ 2M,

because if this did not hold, then we could truncate uk, and the modified sequence {uk2M}∞k=1

would still converge to u weakly* in BV(Ω) with T̃Vϕ
d (uk2M ) ≤ T̃Vϕ

d (uk). Thanks to (3.6) and
(3.7), we have

cTV(uk) ≤ T̃Vϕ
d (uk) (k = 1, . . . ,∞).

By the lower semicontinuity of TV(·), we obtain

cTV(u) ≤ lim inf
k→∞

TV(uk) ≤ lim inf
k→∞

T̃Vϕ
d (uk).

Since the approximating sequence {uk}∞k=1 was arbitrary, the claim follows.

4. Limiting aspects of the continuous TVϕ model. We now consider the continuous
model (1.1) or (1.5). Both are common in works aiming to model real image statistics. We
initially restrict our attention to the following energies ϕ.

Definition 4.1. We denote by Wc the class of increasing, subadditive, continuous functions
ϕ : R0,+ → R0,+ with ϕ∞ = 0.

Example 4.1. Examples of ϕ ∈ Wc include in particular ϕ(t) = tq for q ∈ (0, 1), as well
as the fractional penalty ϕ(t) = αt/(1 + αt) and the logistic penalty ϕ(t) = log(αt + 1) for
α > 0.

Definition 4.2. Given an energy ϕ, we start with the C1 model (1.1), which we now denote
by

T̃Vϕ
c (u) :=

∫
Ω
ϕ(|∇u(x)|) dx (u ∈ C1(Ω)).

In order to extend this to u ∈ BV(Ω), we take the weak* lower semicontinuous envelope

TVϕ
c (u) := lim inf

ui ∗⇀u,
ui∈C1(Ω)

T̃Vϕ
d (ui).

In the definition, the convergence is weakly* in BV(Ω).
We emphasize that it is crucial to define TVϕ

c through this limiting process in order to
obtain weak* lower semicontinuity. This is useful in showing the existence of solutions to
variational problems with the regularizer TVϕ

c in BV(Ω)—or a larger space, as there is no
guarantee that TVϕ

c (u) <∞ would imply u ∈ BV(Ω).D
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2590 M. HINTERMÜLLER, T. VALKONEN, AND T. WU

We may say the following about the TVϕ
c model.

Theorem 4.3. Let ϕ ∈ Wc, and suppose that Ω ⊂ Rm has a Lipschitz boundary. Then

TVϕ
c (u) = 0 for u ∈ BV(Ω).

The result is intuitively obvious when one considers the convex envelope of the energy
ϕ, which has to be zero. The rigorous verification of the result will, however, demand some
amount of work. We note that this could be done using classical quasi-convexification ar-
guments (see [6, Theorem 11.3.1]), using the integral sense of quasi convexity common in
variational analysis, not the simple maximum sense common in optimization. The rigorous
computation of the quasi-convex envelope of x �→ ϕ(‖x‖), for all of the energies that we con-
sider, would appear to be nearly as much work as a more informative direct argument. We
therefore provide a self-contained proof, which will also provide new quantitive estimates for
other energies. These will be provided in Proposition 4.6 later in this section.

The main ingredient of the proof of Theorem 4.3 is Lemma 4.5, which will utilize the
following simple result.

Lemma 4.4. Let ϕ ∈ Wc. Then there exist a, b > 0 such that

ϕ(t) ≤ a+ bt (t ∈ R0,+).

Proof. Since ϕ∞ = 0, we can find t0 > 0 such that ϕ(t)/t ≤ 1 for t ≥ t0. Thus, because ϕ
is increasing, we have ϕ(t) ≤ ϕ(t0) + t for every t ∈ R0,+.

Lemma 4.5. Let ϕ ∈ Wc, and suppose that Ω ⊂ Rm is bounded with Lipschitz boundary.
Then

(4.1) TVϕ
c (u) ≤

∫
Ω
ϕ(|∇u(x)|) dx (u ∈ BV(Ω)).

Observe the difference between Lemma 4.5 and Theorem 3.4. The former shows that in
the limit of T̃Vϕ

c , the singular part is completely free, whereas the latter shows that in the

limit of T̃Vϕ
d , only the jump part is allowed at all!

Proof. We may assume that ∫
Ω
ϕ(|∇u(x)|) dx <∞,

because otherwise there is nothing to prove. We let u0 ∈ BV(Rm) denote the zero-extension
of u from Ω to Rm. Then

Du0 = Du− ν∂Ωu
−Hn−1�∂Ω

for u−, the interior trace of u on ∂Ω, and ν∂Ω, the exterior normal of Ω. In fact [4, section
3.7], there exists a constant C = C(Ω) such that

‖ν∂Ωu−Hn−1�∂Ω‖M(Rm;Rm) ≤ C‖u‖BV(Ω).

We pick some ρ ∈ C∞
c (Rm) with 0 ≤ ρ ≤ 1,

∫
ρ dx = 1, and suppρ ⊂ B(0, 1). We then define

the family of mollifiers ρε(x) := ε−nρ(x/ε) for ε > 0, and define by convolution and restriction
of domain

uε := (ρε ∗ u0)|Ω.D
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Then uε ∈ C∞(Ω), and uε → u strongly in L1(Ω) as ε↘ 0. As |Duε|(ω) ≤ |Du0|(Ω), it follows
that uε

∗⇀ u weakly* in BV(Ω); see, e.g., [4, Proposition 3.13]. Thus

TVϕ
c (u) ≤ lim inf

ε↘0
T̃Vϕ

c (uε).

In order to obtain the conclusion of the theorem, we just have to calculate the right-hand side.
We have

|∇uε(x)| =

∣∣∣∣∫
Rm

ρε(x− y) dDu0(y)

∣∣∣∣ ≤ ∫
Rm

ρε(x− y) d|Du0|(y)

≤
∫
Rm

ρε(x− y)|∇u0(y)| dy +

∫
Rm

ρε(x− y) d|Dsu0|(y).

(4.2)

We approximate the terms for the absolutely continuous and singular parts differently. Start-
ing with the absolutely continuous part, we let K be a compact set such that Ω+B(0, 1) ⊂ K,
and define

g0(x) := |∇u0(x)| and gε(x) :=

∫
Rm

ρε(x− y)|∇u0(y)| dy.

Then gε → g0 in L1(K), and gε|(Rm \K) = 0 for ε ∈ (0, 1). By the L1 convergence, we can
find a sequence εi ↘ 0 such that gεi → g0 almost uniformly. Consequently, given δ > 0, we
may find a set E ⊂ K with Lm(K \ E) < δ and gεi → g0 uniformly on E. We may assume
that each εi is small enough such that

(4.3) ‖gεi − g0‖L1(K) ≤ δ.

Lemma 4.4 provides for some a, b > 0 the estimate

(4.4) ϕ(t) ≤ a+ bt.

From the uniform convergence on E, it follows that for large enough i, we have

ϕ(gεi(x)) ≤ ϕ(1 + g0(x)) ≤ v(x) := a+ b(1 + g0(x)) (x ∈ E).

Since E ⊂ K is bounded, v ∈ L1(E). The reverse Fatou inequality on E gives the estimate

(4.5) lim sup
i→∞

∫
E
ϕ(gεi(x)) dx ≤

∫
E

lim sup
i→∞

ϕ(gεi(x)) dx ≤
∫
E
ϕ(g0(x)) dx.

On K \ E, we obtain the estimate
(4.6)∫

K\E
ϕ(gεi(x)) dx ≤

∫
K\E

ϕ(g0(x)) + ϕ(|gεi(x) − g0(x)|) dx (by subadditivity)

≤
∫
K\E

ϕ(g0(x)) dx+ aLm(K \E) + b‖gεi − g0‖L1(K) (by (4.4))

≤
∫
K\E

ϕ(g0(x)) dx+ (a+ b)δ (by (4.3)).
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Combining the estimates (4.5) and (4.6), we have

lim sup
i→∞

∫
Ω
ϕ(gεi(x)) dx ≤

∫
K
ϕ(g0(x)) dx + (a+ b)δ.

Since δ > 0 was arbitrary, and we may always find an almost uniformly convergent subsequence
of any subsequence of {gε}ε>0, we conclude that

(4.7) lim sup
ε↘0

∫
Ω
ϕ(gε(x)) dx ≤

∫
K
ϕ(|∇u0(x)|) dx =

∫
Ω
ϕ(|∇u(x)|) dx.

Let us then consider the singular part in (4.2). We observe that
∫
Rm ρε(x−y) d|Dsu0(y)| =

0, for x ∈ Rm \K. If we define

fε(x) := ε−m|Dsu0|(B(x, ε)) (x ∈ K),

then by Fubini’s theorem

∫
K
fε(x) dx = ε−m

∫
K

∫
K
χB(x,ε)(y) d|Dsu0|(y) dx = ε−m

∫
K

∫
K
χB(y,ε)(x) dx d|Dsu0|(y)

≤ ωm|Dsu0|(K).

(4.8)

Here ωm is the volume of the unit ball in Rm. Moreover, by the Besicovitch derivation theorem
(discussed, e.g., in [4, 32]), we have

lim
ε↘0

fε(x) = 0 (Lm-a.e. x ∈ K).

Because Lm(K) < ∞, Egorov’s theorem shows that fε → 0 almost uniformly. Thus, for any
δ > 0, there exists a set Kδ ⊂ K with Lm(K \Kδ) ≤ δ and fε → 0 uniformly on Kδ.

Next we study K \Kδ. We pick an arbitrary σ > 0. Because ϕ(t)/t → 0 as t→ ∞, there
exists t0 > 0 such that ϕ(t) ≤ σt for t ≥ t0. In fact, because ϕ is lower semicontinuous and
ϕ(0) = 0, if we choose

t0 := inf{t ≥ 0 | ϕ(t) < σt},
then ϕ(t0) = σt0. Thus, because ϕ is increasing,

(4.9) ϕ(t) ≤ ϕ̃(t) := σ(t0 + t) (t ∈ R0,+).

Choosing ε ∈ (0, 1) such that fε ≤ δ on Kδ, and using ρε ≤ ε−mχB(0,ε), we may approximate
(4.10)∫
Rm

ϕ

(∫
Rm

ρε(x− y) d|Dsu0|(y)

)
dx ≤

∫
Rm

ϕ (fε(x)) dx

≤
∫
Kδ

ϕ (fε(x)) dx+

∫
K\Kδ

ϕ̃ (fε(x)) dx

≤
∫
Kδ

ϕ(δ) dx +

∫
K\Kδ

σ (t0 + fε(x)) dx

≤ Lm(K)ϕ(δ) + δσt0 + σωm|Dsu0|(K) (by (4.8)).D
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Thus

lim inf
ε↘0

∫
Rm

ϕ

(∫
Rm

ρε(x− y) d|Dsu0|(y)

)
dx ≤ Lm(K)ϕ(δ) + δσt0 + σωm|Dsu0|(K).

Observe that the choices of σ and t0 are independent of δ. Therefore, because δ > 0 was
arbitrary, using the continuity of ϕ we deduce that we may set δ = 0 above. But then,
because σ > 0 was also arbitrary, we deduce that

(4.11) lim
ε↘0

∫
Rm

ϕ

(∫
Rm

ρε(x− y) d|Dsu0|(y)

)
dx = 0.

Finally, combining the estimate (4.7) for the absolutely continuous part and the estimate
(4.11) for the singular part with (4.2), we deduce that

lim sup
ε↘0

T̃Vϕ
c (uε) = lim sup

ε↘0

∫
Rm

ϕ

(∫
Rm

ρε(x− y) d|Du0|(y)

)
dx ≤

∫
Ω
ϕ(|∇u(x)|) dx.

This concludes the proof of (4.1).
Proof of Theorem 4.3. We employ the bound (4.1) of Lemma 4.5, but still have to extend

it to a possibly unbounded domain Ω. For this purpose, we let R > 0 be arbitrary and apply
the lemma to uR := u|B(0, R). Then

TVϕ
c (uR) ≤

∫
Ω
ϕ(|∇uR(x)|) dx ≤

∫
Ω
ϕ(|∇u(x)|) dx.

But uR
∗⇀ u weakly* in BV(Ω) as R ↗ ∞; indeed, L1 convergence is obvious, and for any

ϕ ∈ C∞
c (Ω;Rm), we have suppϕ ∈ B(0, R) for large enough R, so that DuR(ϕ) = Du(ϕ).

Therefore, because TVϕ
c is weakly* lower semicontinuous by construction, we conclude that

(4.12) TVϕ
c (u) ≤

∫
Ω
ϕ(|∇u(x)|) dx.

Given any u ∈ C1(Ω), we may find uh ∈ pwc(Ω) (h > 0) strictly convergent to u in
BV(Ω) [12]. But (4.12) shows that

TVϕ
c (uh) = 0.

By the weak* lower semicontinuity of TVϕ
c we conclude that

TVϕ
c (u) ≤ lim inf

h↘0
TVϕ

c (uh) = 0 (u ∈ C1(Ω)).

Another referral to lower semicontinuity now shows that TVϕ
c (u) = 0 for any u ∈ BV(Ω).

Similarly to Proposition 3.6 for TVϕ
d , we have the following more positive result.

Proposition 4.6. Let ϕ : R0,+ → R0,+ be lower semicontinuous and satisfy ϕ(0) = 0. Then
the following hold.

(i) If ϕ0 <∞ and ϕ is subadditive, then there exists a constant C > 0 such that

TVϕ
c (u) ≤ C TV(u) (u ∈ BV(Ω)).D
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(ii) If ϕ0, ϕ
∞ > 0 and ϕ is increasing, then there also exists a constant c > 0 such that

cTV(u) ≤ TVϕ
c (u) (u ∈ BV(Ω)).

Remark 4.1. If we assume that ϕ is concave, the condition ϕ0 > 0 in (ii) follows from the
other assumptions.

Proof. The proof of the upper bound follows in exactly the same way as the upper bound
in Proposition 3.6, just replacing approximation in pwc(Ω) by C1(Ω).

For the lower bound, first we observe that there exists t∞ > 0 such that ϕ(t) ≥ (ϕ∞/2)t
(t ≥ t∞). Second, there exists t0 > 0 such that ϕ(t) ≥ (ϕ0/2)t (0 ≤ t ≤ t0). Since ϕ is
increasing, ϕ(t) ≥ ϕ(t0) ≥ tϕ(t0)/t0 (t0 ≤ t ≤ t∞). Consequently

ϕ(t) ≥ ct (t ≥ 0) for c := min{ϕ∞/2, ϕ(t0)/t∞, ϕ0/2}.
Therefore

cTV(u′) ≤ T̃Vϕ
c (u′) (u′ ∈ C1(Ω)).

The claim now follows from the weak* lower semicontinuity of TV as in the proof of Proposition
3.6.

In fact, in cases of interest to us we may prove a slightly stronger result.
Theorem 4.7. Let ϕ : R0,+ → R0,+ be concave with ϕ(0) = 0 and 0 < ϕ∞ < ∞. Suppose

that Ω ⊂ Rm has a Lipschitz boundary. Then

(4.13) TVϕ
c (u) = ϕ∞TV(u) (u ∈ BV(Ω)).

Proof. We first suppose that Ω is bounded. The proof of the upper bound,

(4.14) TVϕ
c (u) ≤

∫
Ω
ϕ(|∇u(x)|) dx + ϕ∞|Dsu|(Ω),

is then a modification of Lemma 4.5. The estimate (4.7) for the absolutely continuous part
follows as before. For the singular part, we observe that (4.9) holds for any σ > ϕ∞. Therefore,
proceeding as before, we obtain in place of (4.11) the estimate

(4.15) lim
ε↘0

∫
Rm

ϕ

(∫
Rm

ρε(x− y) d|Dsu0|(y)

)
dx ≤ σ|Dsu|(Ω).

Letting σ ↘ ϕ∞ and combining (4.7) with (4.15), we get (4.14). As in Proposition 4.6, we
may extend this bound to a possibly unbounded Ω.

If u ∈ C1(Ω), we may again approximate u strictly in BV(Ω) by piecewise constant
functions {ui}∞i=1. By the lower semicontinuity of TVϕ

c and (4.14), we then have

(4.16) TVϕ
c (u) ≤ lim inf

i→∞
ϕ∞|Dsu|(Ω) = ϕ∞|Du|(Ω).

Finally, we observe that by concavity

ϕ(t) ≥ ϕ∞t.

Thus T̃Vϕ
c (u) ≥ ϕ∞|Du|(Ω). We immediately obtain (4.13) for u ∈ C1(Ω). By strictly

convergent approximation, we then extend the result to u ∈ BV(Ω).D
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5. Discussion. Theorems 4.3 and 4.7 show that we cannot hope to have a simple weakly*
lower semicontinuous nonconvex total variation model as a prior for image gradient distribu-
tions. In fact, it follows from [9] (see also [4, section 5.1] and [22, Theorem 5.14]) that lower
semicontinuity of the continuous TVϕ

c model is possible only for convex ϕ. The problem is
that if ϕ∞ is less than ϕ′(t), then image edges are always cheaper than smooth transitions.
If ϕ∞ = 0, they are so cheap that we get a zero functional at the limit for a general class of
functions. If ϕ∞ > 0 and ϕ is concave, then we get a factor of TV as the result. If ϕ is not
concave, we still have the upper bound (4.16); it may, however, be possible that some gradi-
ents are cheaper than jumps. This would in particular be the case with Huber regularization
of ϕ(t) = t. More about the jump set of solutions to Huber-regularized as well as nonconvex
total variation models may be found in [47].

In fact, in [27] Huber regularization was used with ϕ(t) = tq for q ∈ (0, 1) for algorithmic
reasons. For small γ > 0, this is defined as

(5.1) ϕ̃(t) :=

{
tq − 2−q

2 γq, t > γ,
q
2γ

q−2t2, t ∈ [0, γ].

Then ϕ̃(t) ≤ ϕ(t), so that

TVϕ̃
c ≤ TVϕ

c = 0.

The asymptotic behavior of the regularizer at infinity is the crucial feature here, and it also
cannot be altered without changing the edge behavior of the regularizer. Huber regularization
does not alter the asymptotic behavior, and as long as alternative smoothing strategies, such
as those considered in [15], do not, they also provide no change in the results.

In contrast to the continuous TVϕ
c model, according to Theorem 3.4, the discrete model

works correctly for ϕ(t) = tq and generally ϕ ∈ Wd if the desire is to force piecewise constant
solutions to (1.3). As we saw in the comments preceding Proposition 3.6, it does not, however,
force piecewise constant solutions for some of the energies ϕ typically employed in this context.
Generally, what causes piecewise constant solutions is the property ϕ0 = ∞. If one does not
desire piecewise constant solutions, one can therefore use Huber regularization or linearize ϕ
for t < δ. The latter employs

ϕ̃(t) =

{
ϕ(t) − ϕ(δ) + ϕ′(δ)δ, t > δ,

ϕ′(δ)t, t ≤ δ.

Then ϕ(t) ≤ Ct for some C > 0, so that TVϕ
d (u) < ∞ for every u ∈ BV(Ω). We also note

that although this approach defines a regularization functional on all of BV(Ω), it cannot be
used for modelling the distribution of gradients in real images, the purpose of the TVϕ

c model.
In fact, as in the TVϕ

d model, we cannot control the penalization of ∇u beyond a constant
factor.

In summary, the TVϕ
d model works as intended for ϕ ∈ Wd—it enforces piecewise constant

solutions. The TVϕ
c model, however, is not theoretically sound in function spaces. We will

therefore seek ways to fix it in section 6.D
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6. Multiscale regularization and area-strict convergence. The problem with the TVϕ
c

model is that weak* lower semicontinuity is too strong a requirement. We need a weaker type
of lower semicontinuity or, in other words, a stronger type of convergence. Norm convergence
in BV(Ω) is too strong; it would not be at all possible to approximate edges. Strict convergence
is also still too weak, as can be seen from the proof of Lemma 4.5. Strong convergence in L2,
which we could, in fact, obtain from strict convergence for Ω ⊂ R2 (see [31, 39]), is also not
enough, as a stronger form of gradient convergence is the important part. A suitable mode of
convergence is the so-called area-strict convergence [18, 30]. For our purposes, the following
definition is the most appropriate one.

Definition 6.1. Suppose Ω ⊂ Rn with n ≥ 2. The sequence {ui}∞i=1 ⊂ BV(Ω) converges to
u ∈ BV(Ω) area-strictly if the sequence {U i}∞i=1 with U i(x) := (x/|x|, ui(x)) converges strictly
in BV(Ω;Rn+1) to U(x) := (x/|x|, u(x)).

In other words, {ui}∞i=1 converges to u area-strictly if ui → u strongly in L1(Ω), Dui ∗⇀ Du
weakly* in M(Ω;Rn), and A(ui) → A(u) for the area functional

A(u) :=

∫
Ω

√
1 + |∇u(x)|2 dx+ |Dsu|(Ω).

It can be shown that area-strict convergence is stronger than strict convergence, but weaker
than norm convergence. Here we recall from section 2 the definitions of strict convergence
and the singular part Dsu of Du.

In order to state a continuity result with respect to area-strict convergence, we need a few
definitions. Specifically, we denote the Sobolev conjugate

1∗ :=

{
n/(n− 1), n > 1,

∞, n = 1,

and define

uθ(x) :=

{
θu+(x) + (1 − θ)u−(x), x ∈ Ju,
ũ(x), x 	∈ Su.

In [39] (see also [30]), the following result is proved.
Theorem 6.2. Let Ω be a bounded domain with Lipschitz boundary, p ∈ [1, 1∗] if n ≥ 2 and

p ∈ [1, 1∗) if n = 1. Let f ∈ C(Ω ×R× Rn) satisfy

|f(x, y,A)| ≤ C(1 + |y|p + |A|) ((x, y,A) ∈ Ω × R× Rn),

and assume the existence of f∞ ∈ C(Ω × R×Rn), defined by

(6.1) f∞(x, y,A) := lim
x′→x
y′→y
A′→A
t→∞

f(x′, y′, tA′)
t

.

Then the functional

F(u) :=

∫
Ω
f(x, u(x),∇u(x)) dx +

∫
Ω

∫ 1

0
f∞
(
x, uθ(x),

dDsu

d|Dsu|(x)

)
d|Dsu|(x)
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LIMITING ASPECTS OF NONCONVEX TVϕ MODELS 2597

is area-strictly continuous on BV(Ω).

We now apply this mode of convergence to nonconvex total variation, restricting our
attention to the following class of functions.

Definition 6.3. We denote by Was the set of functions ϕ ∈ C(R0,+) such that ϕ∞ exists,
and for some c, C > 0 and b ≥ 0 the following estimates hold true:

(6.2) ct− b ≤ ϕ(t) ≤ C(1 + t) (t ∈ R0,+).

Example 6.1. Let ϕ be any of the functions in Example 4.1. They do not satisfy the lower
bound in (6.2). If, however, we pick some cut-off M > 0, then ϕM ∈ Was for the high-value
linearization

ϕM (t) :=

{
ϕ(t), t ≤M,

ϕ(M) + ϕ′(M)(t−M), t > M.

Corollary 6.4. Suppose ϕ ∈ Was. Then the functional

TVϕ
as(u) :=

∫
Ω
ϕ(|∇u(x)|) dx + ϕ∞|Dsu|(Ω) (u ∈ BV(Ω))

is area-strictly continuous on BV(Ω).

Proof. Letting f(x, y,A) := ϕ(A), we verify (6.1). The claim is therefore immediate from
Theorem 6.2 with p = 1. Note that we do not need the lower bound in the definition of Was

just yet.

But how could we obtain area-strict convergence of an infimizing sequence of a variational
problem? In [44, 45] the following multiscale analysis functional η was introduced for scalar-
valued measures μ ∈ M(Ω). Given η0 > 0 and {ρε}ε>0, a family of mollifiers satisfying the
semigroup property ρε+δ = ρε ∗ ρδ, η can be defined as

η(μ) := η0

∞∑
	=1

∫
Rn

(|μ| ∗ ρ2−i)(x) − |μ ∗ ρ2−i |(x) dx (μ ∈ M(Ω)).

If the sequence of measures {μi}∞i=1 ⊂ M(Ω) satisfies supi η(μ) < ∞ and μi ∗⇀ μ weakly*
in M(Ω), then we have |μi|(Ω) → |μ|(Ω). In essence, the functional η penalizes the type of
complexity of measures such as two approaching δ-spikes of different sign, which prohibits
strict convergence. In Appendix A, we extend the strict convergence results of [44, 45] to
vector-valued μ ∈ M(Ω;RN ), in particular, the case μ = DU for U the lifting of u as defined
in Definition 6.1.

In order to bound in BV(Ω) an infimizing sequence of problems using TVϕ
as as a regularizer,

we require slightly stricter assumptions on ϕ. These can usually, and particularly in the
interesting case ϕ(t) = tq, be easily satisfied by linearizing ϕ above a cut-off point M with
respect to the function value. This will force ϕ∞ > 0, which is not required for continuity
with respect to area-strict convergence in its own right. We will later see that such a cut-off
can be justified by real gradient distributions and also argued in numerical experiments.D
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2598 M. HINTERMÜLLER, T. VALKONEN, AND T. WU

Now we may prove the following result, which shows that area-strict convergence and the
multiscale analysis functional η provide a remedy for the theoretical difficulties associated
with the TVϕ

c model.

Theorem 6.5. Suppose Ω ⊂ Rn is bounded with Lipschitz boundary, and ϕ ∈ Was. Define
U(x) := (1, u(x)). Then the functional

F (u) := TVϕ
as(u) + η(DU)

is weak* lower semicontinuous on BV(Ω), and any sequence {ui}∞i=1 ⊂ L1(Ω) with

sup
i
F (ui) <∞

admits an area-strictly convergent subsequence.

Proof. Suppose {ui}∞i=1 converges weakly* to u ∈ BV(Ω). Then it follows that {U i}∞i=1

converge weakly* to U ∈ BV(Ω;Rm+1). If lim inf i→∞ η(DU i) = ∞, we clearly have lower semi-
continuity of F . By switching to an unrelabelled subsequence, we may therefore assume that
supi η(DU i) < ∞. It follows from Theorem A.4 in Appendix A that |DU i|(Ω) → |DU |(Ω).
In other words, {ui}∞i=1 converges area-strictly to u. Applying Corollary 6.4 and the weak*
lower semicontinuity of η, we now see that

F (u) ≤ lim inf
i→∞

F (ui).

Thus weak* lower semicontinuity holds true.

Next suppose that {ui}∞i=1 ⊂ L1(Ω) with supi F (ui) < ∞. Since ct − b ≤ ϕ(t) and Ω is
bounded, it follows that supi TV(ui) < ∞. The sequence therefore admits a subsequence,
unrelabelled without loss of generality, which converges weakly* to some u ∈ BV(Ω). Hence,
the fact that {ui}∞i=1 admits an area-strictly convergent subsequence now follows as in the
previous paragraph.

We immediately deduce the following corollary.

Corollary 6.6. Suppose Ω ⊂ Rn is bounded with Lipschitz boundary, ϕ ∈ Was, J : BV(Ω) →
R is convex, proper, and weakly* lower semicontinuous, and J satisfies for some C > 0 the
coercivity condition

J(u) ≥ C(‖u‖L1(Ω) − 1).

Then the functional

(6.3) G(u) := J(u) + αTVϕ
as(u) + η(DU) (u ∈ BV(Ω))

admits a minimizer u ∈ BV(Ω).

Remark 6.1. We can, for example, take J(u) = 1
2‖z − u‖2L2(Ω).

Observe that

η(DU) = η0

∞∑
	=1

η	(DU),
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where, for ε	 > 0,

η	(DU) :=

∫
Rn

(ρε� ∗ |DU |)(x) − |ρε� ∗DU |(x) dx

= |Dsu|(Ω) +

∫
Rn

√
1 + |∇u(x)|2 −

√
1 + |(ρε� ∗Du)(x)|2 dx.

In particular, if u ∈W 1,1(Ω), then we obtain with ∇εu := ρε ∗ ∇u the expression

η	(DU) =

∫
Rn

√
1 + |∇u(x)|2 −

√
1 + |∇ε�u(x)|2 dx

and the estimate

η	(DU) ≤
∫
Rn

√∣∣|∇u(x)|2 − |∇ε�u(x)|2∣∣ dx.
The following proposition shows that, in infimizing sequences, we may ignore terms from η.

This justifies the associated numerical approximation.

Proposition 6.7. Suppose that Ω ⊂ Rn is bounded with Lipschitz boundary, ϕ ∈ Was, and
that J : BV(Ω) → R is as in Corollary 6.6. Let Ki ∈ N+ and εi > 0, i = 1, 2, 3, . . ., satisfy

lim
i→∞

Ki = ∞ and lim
i→∞

εi = 0.

Suppose further that {ui}∞i=1 ⊂ BV(Ω) satisfies

J(ui) + αTVϕ
as(u

i) +

Ki∑
	=1

η	(DU
i) ≤ inf

u∈BV(Ω)
G(u) + εi (i = 1, 2, 3, . . .).

Then we can find û ∈ BV(Ω) and a subsequence of {ui}∞i=1, unrelabelled, such that ui → û
area-strictly, and û minimizes G.

Proof. Let L := infu∈BV(Ω)G(u). Since there is nothing to prove if L = ∞, we may assume
L <∞. Then we have

cTV(ui) − bLn(Ω) ≤ TVϕ
as(u

i).

This yields

J(ui) + αcTV(ui) ≤ αbLn(Ω) + L+ εi.

It follows for a subsequence, unrelabelled, that ui ∗⇀ û weakly* for some û ∈ BV(Ω). By the
weak* lower semicontinuity of η	 (see Theorem A.4), we then have

Kj∑
	=1

η	(DÛ) ≤ lim inf
i→∞

Kj∑
	=1

η(DU i) ≤ L (j = 1, 2, 3, . . .).

It follows that

η(DÛ ) =
∞∑
	=1

η	(DÛ) ≤ L.
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Using Lemma A.3 with μi = DU i and μ = DU , we see that ui → û area-strictly and that

u �→ J(u) + αTVϕ
as(u) +

Kj∑
	=1

η	(DU)

is area-strictly lower semicontinuous for each fixed j = 1, 2, 3, . . . . This shows that G(û) ≤ L.
As a consequence, û minimizes G.

7. Remarks on alternative remedies. We now discuss two alternative approaches to make
the TVϕ

c model work in the limit. These are based on compactifying the differential operator
and on working in SBV(Ω), respectively. As we only intend to demonstrate alternative possi-
bilities, we keep our remarks brief here. Hence the proofs have been placed in the appendices.

Remark 7.1 (compact operators). Area-strict convergence is not the only possibility for
making the TVϕ

c model function; another way to understand the problems with the basic
TVϕ

c model is that the operator ∇ is not compact. One way to obtain a compact operator is
by convolution, as shown in the following result.

Theorem 7.1. Let {ρε}ε>0 be a family of mollifiers, let Ω ⊂ Rn be open, and let ϕ : R0,+ →
R0,+ be increasing, subadditive, and continuous with ϕ(0) = 0. Fix ε > 0, and define Dε :
L1(Ω) → L1(Rn;Rn) by

Dεu := ρε ∗Du.
Then

TVϕ,ε
c (u) :=

∫
Rn

ϕ(|Dεu(x)|) dx (u ∈ BV(Ω))

is lower semicontinuous with respect to weak* convergence in BV(Ω). Moreover,

(7.1) lim
ε↘0

TVϕ,ε
c (u) = T̃Vϕ

c (u) (u ∈ C1(Ω)).

We relegate the proof of this theorem to Appendix B. It should be noted that any u ∈
L1(Ω) satisfies TVϕ,ε

c (u) <∞. In particular,

sup
i

1

2
‖z − ui‖2L2(Ω) + αTVϕ,ε

c (ui) <∞

does not guarantee weak* convergence of a subsequence. For that, an additional TV(ui) term
(with small factor) is required in a TVϕ,ε

c -based variational model in image processing.
Remark 7.2 (the space SBV(Ω) and η). If we apply the η functional of [44, 45] to a bounded

sequence of functions gi ∈ L1(Ω;Rm), then we get strict convergence in this space. It remains
to find whether we get convergence. Then we could regularize ∇u this way, and, working
in the space SBV(Ω), penalize the jump part separately. It turns out that this is possible
if we state the modification η̄ of η in Lp(Rn;Rm) for p ∈ (1,∞). Then strict convergence is
equivalent to strong convergence.

With ε	 ↘ 0, η0 > 0, and p ∈ (1,∞), we define

(7.2) η̄(g) := η0

∞∑
	=1

η̄	(g), η̄	(g) := ‖g‖Lp(Rn;Rm) − ‖g ∗ ρε�‖Lp(Rn;Rm) (g ∈ Lp(Ω;Rm)).
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Then we have the following result, whose proof is relegated to Appendix C.
Theorem 7.2. Let Ω ⊂ Rm be open and bounded. Suppose ψ ∈ Wd, ϕ : R0,+ → R0,+ is

lower semicontinuous and increasing with ϕ∞ = ∞, and

(7.3) ‖g‖Lp(Ω;Rm) ≤ C

(
1 +

∫
ϕ(|g(x)|) dx

)
(g ∈ Lp(Ω;Rm))

for some C > 0, where p ∈ (1,∞) is as in (7.2). Let

F (u) :=

∫
Rn

ϕ(|∇u(x)|) dx + η̄(∇u) +

∫
Ju

ψ(θu(x)) dHm−1(x).

Then F is lower semicontinuous with respect to weak* convergence in BV(Ω). In fact, any
sequence {ui}∞i=1 with supi F (ui) < ∞ admits a subsequence convergent weakly* and in the
sense of (3.1)–(3.3).

8. Image statistics and the jump part. Our studies in the preceding sections have pointed
us to the following questions: Are the statistics of [29] valid when we split the image into
smooth and jump parts? What are the statistics for jump heights, and does splitting the
gradient into these two parts alter the distribution for the absolutely continuous part? When
calculating statistics from discrete images, we do not have the excuse that the jumps would
be negligible, i.e., Lm(Ju) = 0!

In order to gain some insight, here we did a few experiments with real photographs,
displayed in Figures 1–3. These three photographs represent images with different types of
statistics. The pier photo of Figure 1 is very simple, with large smooth areas and some fine
structures. The parrot test image in Figure 2 has a good balance of features. The summer
lake scene in Figure 3 is somewhat more complex, with plenty of fine features.

We split the pixels of each image into edge and smooth parts by a simple threshold on the
norm ‖∇u(k)‖ of the discrete gradient at each pixel k. Then we find optimal α and q ∈ (0, 2)
for the distribution

Pt(t) := Ct exp(−αϕ(t)),

to match the experimental distribution. This in turn gives rise to the prior

Pu(u) = Cu exp

(
−α

∫
Ω
ϕ(|∇u(x)|) dx

)
.

Both Ct, Cu > 0 are normalizing factors. In practice we do the fitting of Pt to the experimental
distribution by a simple least squares fit on the logarithms of the distributions. We will
comment on the suitability of this approach later in this section. In the least squares fit we
keep C as a free (unnormalized) parameter and recalculate it after the fit. Observe that the
normalization constant does not affect the denoising problem (here in the finite-dimensional
setting)

max
f

Pu|f (u|f)Pu(u) ∝ max
u

exp

(
−σ

2

2
‖z − u‖22 − αT̃Vϕ

c (u)

)
.

Here we have the Gaussian noise distribution

Pf |u(f |u) = C ′ exp

(
−σ

2

2
‖z − u‖22

)
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(a) Pier photo (b) Detected edge pixels (red).
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(c) Log-histogram and tq model.
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(d) Separate tq model for edge
part.
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Fit (opt); q=0.42, M=69, α∞=0.050

Fit (emp); q=0.40, M=15, α∞=0.021

(e) Linearized models.

Figure 1. Pier photo: Discrete gradient histogram and least squares models. The image intensity in (a) is
in the range [0, 255], and we have chosen pixels k with |∇u(k)| ≥ 30 as edges (b). The log-histogram of |∇u(k)|
with optimal fit of t �→ tq is displayed in (c). This is done separately for the edge pixels in (d). The linearized
model is fitted in (e) for the cut-off point M = 30 (manual edge detection), M = 69 (optimal least squares fit).
Moreover, we show the empirically best linearized model.

for σ the noise level. This gives the statistical interpretation of the denoising model, that of
a maximum a posteriori (MAP) estimate.

Finally, in the matter of statistics, we note that the TVϕ prior attempts to correctly model
only gradient statistics; the modelling of histogram statistics with Wasserstein distances was
recently studied in [38, 42] together with the conventional total variation gradient prior. It
is also worth remarking that our approach of improving the prior based on the statistics of
the ground-truth is different from recent approaches that optimize the prior based on the
denoising result [8, 11, 17, 25, 26]. These approaches can provide improved results in practice,
but no longer have the simple MAP interpretation. It is definitely possible to optimize the
parameters of the TVϕ model in this manner, but this is beyond the scope of the present,
already lengthy, paper.

Our experiments confirm the findings of [29] that some q ∈ (0, 1) is generally a good fit for
the entire distribution, as well as for the smooth part. However, optimal q for the edge part
varies. In Figure 1, actually q = 1.44—larger than one! We have to admit that the number ofD
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(a) Parrot photo (b) Detected edge pixels (red).
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(c) Log-histogram and tq model.
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(d) Separate tq model for edge
part.
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(e) Linearized models.

Figure 2. Parrot photo: Discrete gradient histogram and least squares models. The image intensity in (a)
is in the range [0, 255], and we have chosen pixels k with |∇u(k)| ≥ 20 as edges (b). The log-histogram of
|∇u(k)| with optimal fit of t �→ tq is displayed in (c). This is done separately for the edge pixels in (d). The
linearized model is fitted in (e) for the cut-off point M = 20 (manual edge detection), M = 73 (optimal least
squares fit). Moreover, we show the empirically best linearized model.

edge pixels in this image is quite small, so statistically the result may be considered unreliable.
In Figure 3, with a significant proportion of edge pixels, we still have q = 1.05. These findings
also suggest that on average fitting a single q ∈ (0, 1) to the entire statistic (not split into
edge and smooth parts) may be right, but there is significant variation between images in the
shape of the distribution for the edge part. The smooth parts generally look roughly similar
among our test images.

In order to suggest an improved model for image gradient statistics, in each of Figures 1(e),
2(e), and 3(e), we also fit to the statistics of the linearized distribution Pt(t) = C exp(−αϕ(t))
for

(8.1) ϕ(t) :=

{
tq, 0 ≤ t ≤M,

(1 − q)M q + qM q−1t, t > M.

This is again done by a least squares fit on the logarithm of the distribution. For the “Fit
(man)” curve, we fix the cut-off point M to a hand-picked (manual) edge threshold andD
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(a) Summer photo

(b) Detected edge pixels (red).
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−15
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0

 

 

log−probability
Fit; q=0.87

(c) Log-histogram and tq model.
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−15
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Smooth part
Edge part
Smooth fit; q=0.24
Edge fit; q=1.05

(d) Separate tq model for edge part.
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−15

−10

−5

0

 

 

log−probability

Fit (man); q=0.35, M=30, α∞=0.050

Fit (opt); q=0.40, M=40, α∞=0.049

Fit (emp); q=0.30, M=40, α∞=0.017

(e) Linearized models.

Figure 3. Summer photo: Discrete gradient histogram and least squares models. The image intensity in
(a) is in the range [0, 255], and we have chosen pixels k with |∇u(k)| ≥ 30 as edges (b). The log-histogram of
|∇u(k)| with optimal fit of t �→ tq is displayed in (c). This is done separately for the edge pixels in (d). The
linearized model is fitted in (e) for the cut-off point M = 30 (manual edge detection), M = 40 (optimal least
squares fit). Moreover, we show the empirically best linearized model.
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optimize (q, α). We also optimize over all of the parameters (q, α,M). This is the “Fit (opt)”
curve. We note that the asymptotic α, which we define as

α∞ := lim
t→∞αϕ(t)/t = qM q−1,

is roughly the same for both of the choices, and generally the curves are close to each other.
As α∞ describes the behavior of the model on edges, and for total variation denoising α∞ = α,
we find α∞ to be a parameter that should indeed stay roughly constant between models with
different q and M . It turns out, however, that α∞ as obtained by the simple least squares
histogram fit is in practice bad; it gives a far too high regularization, i.e., a too narrow
distribution. The problem is that the simple least squares fit on the logarithm overemphasizes
the tail of the distribution, on which we have, moreover, very few statistics due to the discrete
nature of the data. This yields a far too high α∞; i.e., the slope of the linear part is too steep
in the figures. Developing a reliable way to obtain the model from the data is beyond the
scope of the present paper, although it is definitely an interesting subject for future studies.
This is why we have also included the curve “Fit (emp),” which is based on an empirical
choice of (α∞,M, q) from our numerical experiments in section 9. There we keep α∞ fixed as
we vary M and q. We will also incorporate the noise level σ2 into α. It turns out that for the
empirically good distribution, q is close to the values found by histogram fitting above, but
α∞ is very different.

9. Numerical reconstructions. Next we provide a numerical solver for the following TVϕ
c

model, possibly including the η terms. We note that our solver is only one option, and not the
focus of the present paper, which is on modelling and analysis. We therefore do not provide an
extensive analysis and comparison to alternative approaches of the solver itself. Compared to
first-order splitting approaches, recently analyzed extensively using the Kurdyka–�Lojasiewicz
property [5, 35], it can be said, however, that our solver can be proved to have theoretically
faster local superlinear convergence [27, 28].

In the finite-dimensional setting, we aim to solve

(9.1) min
u
f(u) :=

∑
k∈Ωh

(
αϕ(|∇u(k)|) +

1

2
|z(k) − u(k)|2

+ η0

N∑
l=1

(√
1 + |∇u(k)|2 −

√
1 + |∇εlu(k)|2

))
.

Here ϕ is given by (8.1), and α, η0 are manually chosen to balance the weights of the respective
terms. For an image u of resolution n1-by-n2, we set h :=

√
1/n1n2, Ωd := [0, 1]2 ∩ (hZ2) and

discretize the gradient by forward differences, i.e.,

∇u(k) := ((u(k + e1) − u(k))/h, (u(k + e2) − u(k))/h) for all k ∈ Ωd,

with homogeneous Dirichlet boundary condition. Each ∇εlu := ρεl ∗ ∇u is defined through
the convolution with a prescribed smoothing kernel ρεl (εl > 0). Here ρεl is specified as a
two-dimensional Gaussian distribution of standard deviation εl centered at the origin.D
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2606 M. HINTERMÜLLER, T. VALKONEN, AND T. WU

To cope with the kink of the nonsmooth ϕ term at zero, we introduce a Huber-type local
smoothing [27, 28] by replacing ϕ in (9.1) with a continuously differentiable function ϕγ with
locally Lipschitz derivative. More specifically, let 0 < γ � M be the smoothing parameter
and ϕγ : [0,∞) → [0,∞) be defined by

ϕγ(t) =

{
ϕ(t) − (ϕ(γ) − 1

2ϕ
′(γ)γ) if t ≥ γ,

ϕ′(γ)
γ2 t2 if 0 ≤ t < γ.

Thus, the resulting Huberized TVϕγ model appears as

(9.2) min
u
fγ(u) :=

∑
k∈Ωd

(
αϕγ(|∇u(k)|) +

1

2
|z(k) − u(k)|2

+ η0

N∑
l=1

(√
1 + |∇u(k)|2 −

√
1 + |∇εlu(k)|2

))
.

For this problem, the first-order optimality condition reads as

(9.3)

⎧⎪⎨⎪⎩ α∇
p+ u− z + η0

N∑
l=1

(
∇


(
∇u√

1 + |∇u|2

)
−∇


εl

(
∇εlu√

1 + |∇εlu|2

))
= 0,

ψ(max(|∇u|, γ))p = ∇u,

where p ∈ (R|Ωd|)2 is an auxiliary variable and ψ : (0,∞) → (0,∞) is defined by ψ(t) :=
t/ϕ′(t). Note that ψ is locally Lipschitz and monotonically increasing, and in the following we
shall denote by ∂ψ a subdifferential of ψ. We remark that the consistency of the Huberized
stationary points induced by (9.3) toward the stationary points of the original model (9.1) was
investigated in the previous works [27, 28]. Moreover, the system (9.3) is not differentiable in
the classical sense. Therefore, in the following we present a generalized Newton-type solver
for computing a stationary point satisfying (9.3).

Given the current iterate (ui, pi), our solver relies on the following regularized linear system
arising from differentiating (9.3) (and further straightforward manipulations; see [27, 28]):

(H i + βiRi)δui = −gi,
with

mi := max(|∇u|, γ),

χi(k) :=

{
1 if |∇u(k)| ≥ γ,

0 if |∇u(k)| < γ,

H i := I + α∇
 1

ψ(mi)

(
I − χi∂ψ(mi)

2mi

(
(pi)(∇ui)
 + (∇ui)(pi)


))
∇

+ η0

N∑
l=1

(
∇
 1√

1 + |∇ui|2
(
I − (∇ui)(∇ui)


1 + |∇ui|2
)
∇
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−∇

εl

1√
1 + |∇ui|2

(
I − (∇ui)(∇ui)


1 + |∇ui|2
)
∇εl

)
,

Ri := εI + α∇
 χi∂ψ(mi)

2ψ(mi)mi

(
(pi)(∇ui)
 + (∇ui)(pi)


)
∇

+ η0

N∑
l=1

∇

εl

1√
1 + |∇ui|2

(
I − (∇ui)(∇ui)


1 + |∇ui|2
)
∇εl ,

gi := ∇fγ(ui) = α∇

( ∇ui
ψ(mi)

)
+ ui − z(9.4)

+ η0

N∑
l=1

(
∇

( ∇ui√

1 + |∇ui|2
)
−∇


εl

( ∇εlu
i√

1 + |∇εlu
i|2
))

.

Here H i represents a (modified) generalized Hessian matrix of fγ at ui, while Ri, with an
arbitrarily fixed 0 < ε � α, serves as a structural Hessian regularization. Note that H i may
not be positive definite at the iterate ui. For this reason, the regularization weight βi is auto-
matically tuned by a trust-region–based mechanism; see steps 8–20 in Algorithm 1. Further,
whenever βi = 1, the regularized Hessian, i.e., H i + βiRi, is positive definite. Consequently,
our βi-update scheme guarantees δui to be a descent direction for fγ at ui, and thus the
overall iterative scheme can be globalized by, e.g., the Wolfe–Powell line search [19]; see step
21 in Algorithm 1. Moreover, following the algorithm development in [27, 28], one can show
that βi asymptotically vanishes as ui approaches a stationary point where a certain type of
second-order sufficient optimality condition is satisfied. Thus, local superlinear convergence
can be attained. The overall algorithm is detailed in Algorithm 1 below. The following param-
eters associated with Algorithm 1 are specified throughout our experiments: c = 1, ρ = 0.25,
ρ̄ = 0.75, κ = 0.5, κ̄ = 2, εd = 10−10, τ1 = 0.1, τ2 = 0.9, γ = 0.001, εr = 0.01. Algorithm 1 is
terminated once ‖∇fγ(ui)‖/‖∇fγ(u0)‖ drops below 10−7.

We report in Figures 4–6 and Table 1 the results of denoising our three test images
using this algorithm with rather high artificial noise levels. We have added Gaussian noise of
standard deviation σ = 30 to all test images. We report both the conventional peak-signal-
to-noise ratio (PSNR) as well as the structural similarity measure (SSIM) of [48]. The latter
better quantifies the visual quality of images by essentially computing the PSNR in local
windows and combining the results in a nonlinear fashion. The range of the SSIM is [0, 1],
the higher the better.

In our computations, we keep α∞ and q fixed and vary M (by altering α as necessary).
For M = ∞, i.e., the original TVq model, we simply take α as our chosen fixed α∞. This is
because ϕ∞ = 0, so the real asymptotic α for the model is always zero. It is quite remarkable
that in our results fine features of the images are always retained very well although higher M
tends to increase the staircasing effect (not applicable to M = ∞). At the optimal choice of
M by PSNR or SSIM, more noise can be seen to be removed than by TV (M = 0). Generally,
we can say that adding the cut-off M improves the results compared to the earlier TVq model
without cut-off (M = ∞). Whether the results are better than conventional total variation
denoising is open to debate. By PSNR and SSIM the results tend to favor the TVϕ model.
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2608 M. HINTERMÜLLER, T. VALKONEN, AND T. WU

Visually oscillatory effects of noise are better removed, but at the same time the staircasing
is accentuated. The best result is in the eye of the beholder.

Algorithm 1. Superlinearly convergent Newton-type method for TVϕγ denoising.

Require: c > 0, 0 < ρ ≤ ρ̄ < 1, 0 < κ < 1 < κ̄, εd > 0, 0 < τ1 < 1/2, τ1 < τ2 < 1, 0 < γ � 1,
0 < εr < 1.

1: Initialize the iterate (u0, p0), the regularization weight β0 ≥ 0, and the trust-region radius
r0 > 0. Set i := 0.

2: repeat
3: Generate H i, Ri, and gi at the current iterate (ui, pi).
4: Solve the linear system (H i+βiRi)δui = −gi (inexactly) for δui by the conjugate gradi-

ent (CG) method up to the residual tolerance εr, or detect the nonpositive definiteness
of H i + βiRi during the CG iterations.

5: if H i + βiRi is not positive definite or −((gi)
δui)/(‖gi‖‖δui‖) < εd then
6: Set βi := 1, and return to step 4.
7: end if
8: if βi = 1 and (δui)
Riδui > (ri)2 then
9: Set ri :=

√
(δui)
Riδui, βi+1 := 1, and go to step 13.

10: else
11: Set βi+1 := max(min(βi + c−1((δui)
Riδui − (ri)2), 1), 0).
12: end if
13: Evaluate ρi :=

(
fγ(ui + δui) − fγ(ui)

)
/
(
(gi)
δui + (δui)
H iδui/2

)
.

14: if ρi < ρ then
15: Set ri+1 := κri.
16: else if ρi > ρ̄ then
17: Set ri+1 := κ̄ri.
18: else
19: Set ri+1 := ri.
20: end if
21: Determine the step size ai along the search direction δui such that ui+1 = ui + aiδui

satisfies the following Wolfe–Powell conditions:{
fγ(ui+1) ≤ fγ(ui) + τ1a

i(gi)
δui,
∇fγ(ui+1)
δui ≥ τ2(g

i)
δui.

22: Generate the next iterate:

ui+1 := ui + aiδui,

pi+1 :=
1

ψ(mi)

(
∇ui + ∇δui − χi∂ψ(mi)

2mi

(
(pi)(∇ui)
 + (∇ui)(pi)


)
∇δui

)
.

23: Set i := i+ 1.
24: until the stopping criterion is fulfilled.
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(a) Original. (b) Noisy image.

(c) M = 0. (d) M = 10 (PSNR-optimal).

(e) M = 40 (SSIM-optimal). (f) M = ∞.

Figure 4. Pier photo: Denoising results with noise level σ = 30 (Gaussian) for varying cut-off M , fixed
q = 0.4, and fixed α∞ = 0.0207.
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(a) Original. (b) Noisy image.

(c) M = 0 (PSNR-optimal). (d) M = 15 (SSIM-optimal).

(e) M = 40. (f) M = ∞.

Figure 5. Parrot photo: Denoising results with noise level σ = 30 (Gaussian) for varying cut-off M , fixed
q = 0.5, and fixed α∞ = 0.0253.
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(a) Original. (b) Noisy image. (c) M = 0.

(d) M = 20 (PSNR-optimal). (e) M = 40 (SSIM-optimal). (f) M = ∞.

Figure 6. Summer photo: Denoising results with noise level σ = 60 (Gaussian) for varying cut-off M ,
fixed q = 0.3, and fixed α∞ = 0.00430.
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Table 1
Denoising results of all three test photos. The noise level σ, exponent q, and asymptotic regularization

α∞ are fixed. The cut-off point M varies. We report both the PSNR and the SSIM, with the optimal values
underlined.

Parrot photo: σ = 30, q = 0.5, α∞ = 0.0253

M 0 10 15 30 40 50 60 ∞
PSNR 30.3432 29.9156 29.5876 28.8098 28.3655 28.0398 27.7424 28.6829
SSIM 0.7914 0.7919 0.7922 0.7906 0.7887 0.7854 0.7823 0.7552

Pier photo: σ = 30, q = 0.4, α∞ = 0.0207

M 0 10 20 30 40 50 60 ∞
PSNR 29.0019 29.3959 29.3472 29.0918 28.8988 28.679 28.5327 28.5836
SSIM 0.6737 0.7191 0.7477 0.7556 0.7619 0.7608 0.7593 0.7297

Summer photo: σ = 30, q = 0.4, α∞ = 0.00430

M 0 10 20 30 40 50 60 ∞
PSNR 26.0919 26.2750 26.2851 26.0643 25.7443 25.3627 25.0449 25.2755
SSIM 0.589 0.6175 0.6489 0.6641 0.6644 0.6615 0.6543 0.6175

Table 2
Effect of the η term on the parrot photo. Only the first term η1 of the sum is included, with varying

convolution width ε1 and weight η0. The noise level σ = 30 (Gaussian), cut-off M = 10, exponent q = 0.5, and
asymptotic regularization α∞ = 0.0253 are fixed. Optimal SSIM and PSNR are underlined.

ε1 = 0.5 ε1 = 1 ε1 = 2

PSNR SSIM PSNR SSIM PSNR SSIM

η0 = 0.1α 29.9433 0.8036 29.8023 0.8091 29.6197 0.8085
η0 = α 29.2700 0.8072 28.2237 0.8014 27.5659 0.7970
η0 = 10α 26.8069 0.7939 25.7874 0.7921 24.9003 0.7886

We also tested on the parrot photo the effect of the multiscale regularization term η by
including the first term η1 of the sum for varying weights of η0 and convolution kernel widths
ε1. The results are presented in Figure 7 and Table 2. Clearly large η0 has a deteriorating
effect on both PSNR and SSIM, whereas the effect of the choice of ε1 is less severe. Visually,
large η0 creates an almost artistic quantization and feature-filtering effect. The latter is also
controlled by ε1: Large ε1 tends to remove large features. A particular feature to notice is the
eye of the parrot on the right in Figure 7(a) versus 7(b). It has disappeared altogether in the
latter.

10. Conclusion. We have studied difficulties with nonconvex total variation models in the
function space setting. We have demonstrated that the model (1.2) continues to do what it
is proposed to do in the discrete setting—to promote piecewise constant solutions—for most,
but not all, energies ϕ employed in the literature. Naive forms of the model (1.1), proposed to
model real gradient distributions in images, however, have much more severe difficulties. We
have shown that the model can be remedied if we replace the topology of weak* convergence
by that of area-strict convergence. In order to do this, we have to add additional multiscale
regularization in terms of the functional η into the model, and have to linearize the energy ϕ
for large gradients. The latter is needed to make the model BV-coercive and to have any kind
of penalization for jumps. We have demonstrated through numerical experiments and simple
statistics that this model, in fact, better matches reality than the simple energies ϕ(t) = tq.D
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(a) η0 = 7.071e−03, ε1 = 1.0. (b) η0 = 7.071e−03, ε1 = 2.0.

(c) η0 = 7.071e−04, ε1 = 1.0. (d) η0 = 7.071e−04, ε1 = 2.0.

(e) η0 = 7.071e−05, ε1 = 1.0. (f) η0 = 7.071e−05, ε1 = 2.0.

Figure 7. Effect of the η term on the parrot photo. Only the first term η1 of the sum is included, with
varying convolution width ε1 and weight η0. The noise level σ = 30 (Gaussian), cut-off M = 10, exponent
q = 0.5, and asymptotic regularization α∞ = 0.0253 are fixed.
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Our purely theoretical starting point has therefore led to improved practical models. The η
functional, however, remains a “theoretical artifact.” It has its own regularization effect that,
naturally, does not distort the results too much for small parameters (though it does so for
large parameters). As we show in Proposition 6.7, it can be ignored in discretizations when
not passing to the function space limit.

A data statement of the Engineering and Physical Sciences Research Council. This
is primarily a theoretical mathematics paper, and any data used mainly serves as a demon-
stration of mathematically proven results. Moreover, photographs that are for all intents
and purposes statistically comparable to those used for the final experiments can easily be
produced with a digital camera or downloaded from the Internet; in particular, the parrot
test photo is available in the Kodak Lossless True Color Image Suite.1 For the computations,
we directly applied software developed in an earlier research program. This was funded by
various non-UK agencies, whose rules govern the code.

Appendix A. Vectorial η functional. We now study a condition ensuring the convergence
of the total variation |μi|(Ω) subject to the weak* convergence of the measures μi ∈ M(Ω;Rm)
(i = 0, 1, 2, . . .). Improving a result first presented in [44, 45], we show in Theorem A.4 that
if {f	}∞	=0 is a normalized nested sequence of functions as in Definition A.1, then it suffices to
bound

(A.1) η(μi) :=
∞∑
	=0

η	(μ
i), where η	(μ

i) :=

∫
|μi|(τxf	) − |μi(τxf	)| dx (μ ∈ M(Ω;RN )).

Here we employ the notation τxf(y) := f(y − x). Also, we write |μi(τxf	)| := ‖μi(τxf	)‖2.

Definition A.1. Let f	 : Rm → R (� = 0, 1, 2, . . .) be bounded Borel functions with compact
support that are continuous in Rm \ Sf�; i.e. the approximate discontinuity set equals the
discontinuity set. Also let {ν	}∞	=0 be a sequence in M(Rm) with |ν	|(Rm) = 1. The sequence
{(f	, ν	)}∞	=0 is then said to form a nested sequence of functions if f	(x) =

∫
f	+1(x−y) dν	(y)

(a.e.). The sequence is said to be normalized if f	 ≥ 0 and
∫
f	 dx = 1.

Example A.1. Let ρ be the standard convolution mollifier such that

ρ(x) :=

{
exp(−1/(1 − ‖x‖2)), ‖x‖ < 1,

0, ‖x‖ ≥ 1,

and define ρε(x) := ε−mρ(x/ε). Since ρε+δ = ρε∗ρδ, where ∗ denotes the convolution operation,
we deduce that f	 := ρ2−� and ν	 = ρ2−�−1 form a normalized nested sequence.

We require the following basic lemma for our vectorial case.

Lemma A.2. Let ν ∈ M(Ω) be a positive Radon measure, and let g ∈ L1(Ω;RN ). Then∥∥∥∥∫
Ω
g(x) dν(x)

∥∥∥∥
2

≤
∫
Ω
‖g(x)‖2 dν(x).

1At the time of this writing, the image suite was available at http://r0k.us/graphics/kodak/.D
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Proof. For any x ∈ Ω, we write g(x) = θ(x)v(x) with v(x) = (v1(x), . . . , vN (x)), 0 ≤ θ(x),
and ‖v(x)‖2 = 1. Then we define λ := θν. Now∥∥∥∥∫

Ω
g(x) dν(x)

∥∥∥∥2
2

=
N∑
j=1

(∫
Ω
vj(x) dλ(x)

)2

=
N∑
j=1

λ(Ω)2
(

1

λ(Ω)

∫
Ω
vj(x) dλ(x)

)2

≤
N∑
j=1

λ(Ω)

∫
Ω
|vj(x)|2 dλ(x) = λ(Ω)2.

Here we have used Jensen’s inequality. From this we conclude that

λ(Ω) =

∫
Ω
θ(x) dν(x) =

∫
Ω
‖g(x)‖2 dν(x),

proving the claim.
With the help of the above lemma, in [45] Theorem A.4 below was proved exactly as in

the case of scalar-valued measures (N = 1). Our proof here, however, is slightly different. We
base it on the following more general lemma on partial sums, which we also need for the proof
of Proposition 6.7.

Lemma A.3. Let Ω ⊂ Rm be an open and bounded set, and let {(f	, ν	)}∞	=0 be a normalized
nested sequence of functions. Let {Ki}∞i=1 ⊂ N+ satisfy limi→∞Ki = ∞. Suppose {μi}∞i=0 ⊂
M(Ω;RN ) weakly* converges to μ ∈ M(Ω;RN ) with

(A.2) sup
i

|μi|(Ω) +

Ki∑
	=1

η	(μ
i) <∞

and

(A.3) η(μ) <∞.

Then

(A.4) η	(μ) ≤ lim inf
i→∞

η	(μ
i) (� = 0, 1, 2, . . .).

If also |μi| ∗⇀ λ in M(Ω), then λ = |μ|. Moreover, provided that the weak* convergences hold
in M(Rm;RN ) (resp., M(Rm)), then

(A.5) η	(μ) = lim
i→∞

η	(μ
i) (� = 0, 1, 2, . . .).

Proof. Let us suppose first that μi ∗⇀ μ and |μi| ∗⇀ λ weakly* in M(Rm;RN ) (resp.,
M(Rm)) rather than just within Ω. We denote by Ef the discontinuity set of f , while
Sf stands for the approximate discontinuity set. Fubini’s theorem and the fact that Sf is
an Lm-negligible Borel set imply that

∫
λ(Sτxf�) dx = 0. This and the nonnegativity of λ

show that λ(Sτxf�) = 0 for a.e. x ∈ Rm. Since by assumption Ef ⊂ Sf , it follows that
λ(Eτxf�) = 0, so that (see, e.g., [3, Proposition 1.62]) μi(τxf	) → μ(τxf	) for a.e. x ∈ Rm.D
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Likewise |μi|(τxf	) → λ(τxf	) for a.e. x ∈ Rm. Since supi |μi|(Ω) < ∞, and Ω is bounded, an
application of the dominated convergence theorem now yields

(A.6) lim
i→∞

∫
|μi(τxf	)| dx =

∫
|μ(τxf	)| dx.

By the lower semicontinuity of the total variation, recalling that∫
|μi|(τxf	) dx = |μi|(Rm),

this shows (A.4) under the assumption that the weak* convergences are in M(Rm).
Observe then that since {(f	, ν	)}∞	=0 is a nested sequence of functions, {η	(μ)}∞	=0 forms

a decreasing sequence (for any μ ∈ M(Ω)). Indeed, as f	(x) =
∫
f	+1(x − y) dν	(y) and

ν	(R
m) = 1 with ν	 ≥ 0, using Lemma A.2 we have∫

‖μ(τxf	)‖2 dx =

∫ ∥∥∥∥∫ μ(τx+yf	+1) dν	(y)

∥∥∥∥
2

dx

≤
∫ ∫

‖μ(τx+yf	+1)‖2 dν	(y) dx =

∫
‖μ(τxf	+1)‖2 dx.

Referring to (A.1), it follows that

(A.7) η	(μ) ≥ η	+1(μ).

To show λ = |μ|, that is, |μi| ∗⇀ |μ|, we need only show that |μi|(Ω) → |μ|(Ω). To see the
latter, we choose an arbitrary ε > 0 and write

(A.8) |μ|(Ω) − |μi|(Ω) = η	(μ) − η	(μ
i) +

∫
|μ(τxf	)| − |μi(τxf	)| dx.

Since η	 ≥ 0, using (A.7) in (A.2) and (A.3), we now observe that taking � large enough and
i	 such that Ki� ≥ �, we have

sup{η	(μ), η	(μ
i�), η	(μ

i�+1), η	(μ
i�+2), . . .} ≤ ε.

Employing this in (A.8), we deduce for any large enough � and all i ≥ i	 that

∣∣|μ|(Ω) − |μi|(Ω)
∣∣ ≤ 2ε+

∣∣∣∣∫ |μ(τxf	)| − |μi(τxf	)| dx
∣∣∣∣ .

The integral term tends to zero as i→ ∞ by (A.6). Therefore

lim
i→∞

∣∣|μi|(Ω) − |μ|(Ω)
∣∣ ≤ 2ε.

Since ε > 0 was arbitrary, we conclude that λ = |μ|. Moreover, (A.5) now follows from (A.6).
This concludes the proof of the lemma under the assumption that the weak* convergences are
in M(Rm).D
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If this assumption does not hold, we may still switch to a subsequence for which μik ∗⇀ μ̄
weakly* in M(Rm;RN ) for some μ̄ ∈ M(Rm;RN ). But, since Ω is open, necessarily μ̄�Ω = μ.
Moreover, an application of the triangle inequality gives

η	(μ) = η	(μ̄�Ω) ≤ η	(μ̄) ≤ lim inf
k→∞

η	(μ
ik).

As this bound holds for every subsequence, we deduce (A.4). Likewise, we have |μik | ∗⇀ λ̄
weakly* in M(Rm) for a common subsequence. Again λ̄�Ω = λ. Since by the previous
paragraphs |μ̄| = λ̄, this implies λ = |μ|.

Theorem A.4. Let Ω ⊂ Rm be an open and bounded set, and let {(f	, ν	)}∞	=0 be a normalized
nested sequence of functions. Suppose the sequence {μi}∞i=0 in M(Ω;RN ) converges weakly*
to a measure μ ∈ M(Ω;RN ) and satisfies supi |μi|(Ω) + η(μi) < ∞. If also |μi| ∗⇀ λ, then
λ = |μ|. Moreover, each of the functionals η and η	 (� = 0, 1, 2, . . .) is lower semicontinuous
with respect to the weak* convergence of {μi}∞i=0.

Proof. Only lower semicontinuity of η demands a proof; the rest is immediate from Lemma
A.3 with Ki = i, for instance. Also, lower semicontinuity of η follows simply from Fatou’s
lemma and (A.4).

Appendix B. Proof of Theorem 7.1. Here we prove our result on the remedy by resorting
to compact operators.

Lemma B.1. Let Ω, Ω′ be open domains, and suppose K : BV(Ω) → L1(Ω′;Rm) is a
compact linear operator. Let ϕ : R0,+ → R0,+ be lower semicontinuous. Then

F (u) :=

∫
Ω′
ϕ(‖Ku(x)‖) dx

is lower semicontinuous with respect to weak* convergence in BV(Ω).
Proof. If {ui}∞i=1 ⊂ BV(Ω) converges weakly* to u ∈ BV(Ω), then it is bounded in BV(Ω).

Therefore, by the compactness of K, the sequence {Kui}∞i=1 has a subsequence, unrelabelled,
which converges strongly to some v ∈ L1(Ω′;Rm). By the continuity of K, which follows from
compactness, necessarily v = Ku. Now [22, Theorem 5.9] shows that

F (u) ≤ lim
i→∞

F (ui).

Lemma B.2. Let ρ ∈ C∞
c (Rn) and Ω ⊂ Rn be bounded and open. Suppose μi → μ weakly*

in M(Ω;Rm). Then ρ ∗ μi → ρ ∗ μ strongly in L∞(Rn).
Proof. Let K be a compact set such that Ω + suppρ ⊂ K. We have

‖ρ ∗ μi‖L∞(K;Rm) ≤ ‖ρ‖L∞(Rn)|μi|(Ω)

and

‖∇(ρ ∗ μi)‖L∞(K;Rn×Rm) = ‖(∇ρ) ∗ μi‖L∞(K;Rn×Rm) ≤ ‖∇ρ‖L∞(Rn;Rn)|μi|(Ω).

Thus {ρ ∗ μi}∞i=1 is uniformly bounded and equicontinuous. It follows from the Arzelá–Ascoli
theorem that ρ ∗ μi converges uniformly (i.e., in L∞(K;Rm)) to some v ∈ Cc(K;Rm).D
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Let ϕ ∈ L1(K;Rm). Then by the weak* convergence we have∫
Rn

〈ϕ(x), (ρ ∗ μi)(x)〉 dx =

∫
Rn

〈(ϕ ∗ ρ)(x), dμi(x)〉

→
∫
Rn

〈(ϕ ∗ ρ)(x), dμ(x)〉 =

∫
Rn

〈ϕ(x), (ρ ∗ μ)(x)〉 dx

as i→ ∞, so that ρ ∗ μi → ρ ∗ μ weakly in L∞(K;Rm). Then it holds that ρ ∗ μ = v, and the
convergence is strong. Because suppw ⊂ K for w = ρ∗μ or w = ρ∗μi, the claim follows.

Proof of Theorem 7.1. Suppose {ui}∞i=1 is a bounded sequence in BV(Ω). We may extract
a subsequence, unrelabelled, such that {ui}∞i=1 is weakly* convergent in BV(Ω) to some u ∈
BV(Ω). Then by Lemma B.2,

Dεu
i → Dεu strongly in L∞(Ω;Rm).

Weak* lower semicontinuity now follows from Lemma B.1.
Let then u ∈ C1(Ω). The estimate

(B.1) lim sup
ε↘0

TVϕ,ε
c (u) ≤ T̃Vϕ

c (u) (u ∈ C1(Ω))

follows from the proof of Lemma 4.5. By subadditivity we also have

T̃Vϕ
c (u) − TVϕ,ε

c (u) ≤
∫
Ω
ϕ(‖(ρε ∗ ∇u)(x) −∇u(x)‖) dx.

Writing gε(x) := ‖(ρε∗∇u)(x)−∇u(x)‖, we have gε(x) → 0 in L1(Rn). We may again proceed
as in the proof of Lemma 4.5 to show

lim sup
ε↘0

(
T̃Vϕ

c (u) − TVϕ,ε
c (u)

) ≤ 0.

This together with (B.1) proves (7.1).

Appendix C. Proof of Theorem 7.2. We now prove our result on the remedy based on
the SBV space.

Proposition C.1. Let η̄ and p ∈ (1,∞) be as in (7.2). Suppose gi ⇀ g weakly in Lp(Ω;Rm),
and that supi η̄(gi) <∞. Then gi → g strongly in Lp(Ω;Rm).

Proof. Let K be a compact set such that Ω + suppρ1 ⊂ K, and set M := supi η̄(gi). We
observe that η̄ is lower semicontinuous with respect to weak convergence in Lp. Therefore
η(g) ≤ M . As in the proof of Lemma A.3, we observe that η̄	 ≥ η̄	+1, from which it again
follows that

(C.1) η̄	(h) → 0 as �→ ∞ uniformly for h ∈ {g, g1, g2, g3, . . .}.

We then observe that as in Lemma B.2, we have

(C.2) ρε� ∗ gi → ρε� ∗ g strongly in L∞(K;Rm)D
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for each � ∈ {1, 2, 3, . . .}. Thus, it holds that

‖gi‖Lp(Ω;Rm) − ‖g‖Lp(Ω;Rm) ≤ η	(g
i) − η	(g) + ‖ρε� ∗ gi − ρε� ∗ g‖Lp(K;Rm).

Given δ > 0, thanks to (C.1), we may find � such that

‖gi‖Lp(Ω;Rm) − ‖g‖Lp(Ω;Rm) ≤ 2δ + ‖ρε� ∗ gi − ρε� ∗ g‖Lp(K;Rm).

With � fixed, we thus get by (C.2) that

lim sup
i→∞

‖gi‖Lp(Ω;Rm) − ‖g‖Lp(Ω;Rm) ≤ 2δ.

Since δ > 0 was arbitrary, and using weak lower semicontinuity of ‖ · ‖Lp(Ω;Rm), we deduce

lim
i→∞

‖gi‖Lp(Ω;Rm) = ‖g‖Lp(Ω;Rm).

But for p ∈ (1,∞), strict convergence implies strong convergence [22]. This concludes the
proof.

Proof of Theorem 7.2. If {ui}∞i=1 is weakly* convergent in BV(Ω), we may—without loss
of generality—assume that supi F (ui) < ∞, for otherwise lower semicontinuity is obvious.
Then by the SBV compactness theorem, Theorem 3.5, the convergences (3.1)–(3.4) hold for
a subsequence. This also shows weak* convergence if it did not hold originally. Moreover, by
the same theorem, u �→ ∫

Ju
ψ(θu(x)) dHm−1(x) is lower semicontinuous with respect to this

convergence. By (7.3) we may further assume {∇ui}∞i=1 is weakly convergent in Lp(Ω;Rm).
Proposition C.1 now shows strong convergence of {∇ui}∞i=1 in Lp(Ω;Rm). The functional F
is lower semicontinuous with respect to all of these convergences, which yields lower semicon-
tinuity with respect to weak* convergence in BV(Ω).
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