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Nonconvex TVq-Models in Image Restoration: Analysis and a Trust-Region
Regularization–Based Superlinearly Convergent Solver∗
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Abstract. A nonconvex variational model is introduced which contains the �q-“norm,” q ∈ (0, 1), of the gra-
dient of the underlying image in the regularization part together with a least squares–type data
fidelity term which may depend on a possibly spatially dependent weighting parameter. Hence,
the regularization term in this functional is a nonconvex compromise between the minimization of
the support of the reconstruction and the classical convex total variation model. In the discrete
setting, existence of a minimizer is proved, and a Newton-type solution algorithm is introduced and
its global as well as local superlinear convergence toward a stationary point of a locally regularized
version of the problem is established. The potential nonpositive definiteness of the Hessian of the
objective during the iteration is handled by a trust-region–based regularization scheme. The per-
formance of the new algorithm is studied by means of a series of numerical tests. For the associated
infinite dimensional model an existence result based on the weakly lower semicontinuous envelope
is established, and its relation to the original problem is discussed.
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1. Introduction. In many applications of signal and image recovery one is interested in
obtaining solutions with the sparsest or smallest support set, either of the signal directly or of
a related quantity of interest (such as the gradient of an image, for instance), from a limited
number of measurements. This topic is at the core of compressed sensing (see, e.g., [3, 19,
20, 14] and the references therein) or basis pursuit (see, e.g., [9]) and has sparked significant
research activities in the recent past. Mathematically, finding the smallest support set of a
signal or an image requires one to minimize the �0-norm, i.e., the number of nonzero entries
in the solution vector or the related quantity of interest, subject to a constraint reflecting
data fidelity. This problem is of a combinatorial nature, and it is well known that it is
essentially NP-hard [32]. Thus, for practical purposes the �0-norm minimization problem is
usually replaced by a convex relaxation leading to the minimization of the �1-norm which can
be solved efficiently; see the discussion in [14] and, for instance, [42] and the references therein
for further algorithmic developments.
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In image processing one typically aims at recovering an image from noisy data while still
keeping edges in the image. The latter requirement is responsible for the tremendous success
of total variation–based image restoration [41]. In connection with the sparsity requirement
alluded to above, this implies computing a restoration result with gradient sparsity, i.e., a
piecewise constant image with a small number of patches. Hence, rather than minimizing the
support of the image directly, one is interested in minimizing the support of the gradient of
the recovered image. In the context of the convex relaxation mentioned above, this amounts
to minimizing the �1-norm of the gradient of the image subject to data fidelity; see, e.g.,
[4, 26, 33, 27, 24, 42, 2] and the references therein for associated solution algorithms.

There is evidence [6, 38] that replacing the �1-norm by the nonconvex and nondifferentiable
function ‖v‖q�q =

∑
i |vi|q with q ∈ (0, 1), which for the ease of reference we refer to as �q-

norm in what follows, promotes gradient sparsity even better. Moreover, the �q-norm allows
possibly a smaller number of measurements than the �1-norm in compressed sensing. In [35]
(see also the more recent paper [38]) it was shown that nonconvex regularization terms in
total variation–based image restoration yield even better edge preservation when compared
to the convex �1-type regularization. Moreover, it appears that the �q-norm regularization is
also more robust with respect to noise.

Nonconvex and nonsmooth regularization in image restoration (and more generally in
inverse problems) poses significant challenges with respect to both the existence of solutions
of associated minimization problems and, in particular, the development of efficient (i.e.,
locally more than the linearly convergent) solution algorithms. Linearly convergent gradient
projection–type methods for compressed sensing problems minimizing the �q-norm can be
found in [6]. In [8] the latter solver was replaced by a regularized iteratively reweighted least
squares (IRLS) technique. Based on [24], Chartrand extends in [7] the Bregman iteration
which relies on a variable splitting approach combined with a q-shrinkage operation to �q-norm
minimization. The resulting method typically has a linear convergence behavior. In [14], the
IRLS solver for compressed sensing with the �q-norm is shown to converge locally superlinearly.
The result depends on a q-null-space condition, the sparsity of the solution, and a locality
requirement of the initial guess. A different perspective was taken in [38], where, under certain
conditions, more general nonconvex regularization functionals are considered. Concerning the
solver development, a technique based on an interior point method is proposed. The authors
of [38] make the interesting observation that, under the stated conditions, the nonsmooth
and nonconvex regularization functional may be decomposed as the sum of a nonconvex but
smooth part plus a convex and nonsmooth part. Increasing the variable space and rewriting
the problem then yields the minimization of a nonconvex and smooth function subject to linear
or affine equality constraints and nonnegativity constraints, which is equivalent to the original
problem. The reformulated problem may now be tackled by interior point methods [45], which
were very recently shown to compute a local minimizer in compressed sensing in polynomial
time [23]. Clearly, the increase of the variable space and the computational effort implied by
the interior point methods might be considered as disadvantages. In the follow-up work [37]
the interior point solver is replaced by variable splitting techniques resulting in alternating
minimization methods which converge linearly. Unfortunately, the conditions required for
the success of the algorithms proposed in [38] and [37] rule out the �q-norm minimization
and also the modified version of this problem considered in this paper. We also mention the
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development of a smoothing nonlinear conjugate gradient solver in [10] which is based on [38].
In this paper we are interested in expanding the scope of solvers for �q-norm–based reg-

ularization of the gradient of the image to be recovered (we refer to this regularization as
the TVq-regularization as it combines the edge preservation property of total variation reg-
ularization with the sparsity-promoting �q-norm). In particular we are interested in locally
superlinearly convergent methods which are robust with respect to noise. In order to achieve
this, our proposed method considers a Huber-type regularization of the non-Lipschitz �q-
norm and combines a reweighting technique for handling the nonconvexity with primal-dual
semismooth Newton methods for image restoration [4, 26, 27], which exhibit a fast (local)
convergence toward a stationary point. For stabilizing the Newton solver in the presence of
indefiniteness due to the involved nonconvexity, a specific regularization scheme is applied
which modifies the (generalized) Hessian of the underlying variational problem based on a
trust-region technique [12]. The latter technique has the advantage of allowing a transition
of the modified (generalized) Hessian to the true Hessian as the solution is approached and,
thus, enabling the local superlinear convergence properties of the underlying Newton itera-
tion. We point out that in contrast to the IRLS solver of [14] we guarantee global convergence.
Moreover, local superlinear convergence is established without requiring conditions like the
q-null-space property or sparsity conditions concerning the solution.

The rest of the paper is organized as follows. In section 2 we introduce our TVq-model
problem and discuss its regularization by a Huber-type function. The primal-dual Newton
solver is the subject of section 3. In this core section of the present paper, we introduce the
stabilization of Newton’s method (which we call R-regularization) together with the associated
trust-region scheme for deciding on the amount of R-regularization required. Furthermore,
the overall algorithm is defined, and its global as well as local superlinear convergence is
established. Section 4 is devoted to numerical tests showing the efficiency of our new method.
Finally, in section 5 we address the function space setting of the underlying variational problem
and discuss the associated difficulties including a warning example.

2. TVq variational model and its Huberization. We consider the following variational
problem:

(2.1) min
u∈R|Ω|

f(u) :=
∑

(i,j)∈Ω

(
μ

2
|(∇u)ij |2 + α

q
|(∇u)ij |q + λij

2
|(Ku− z)ij |2

)
,

where Ω is a two-dimensional index set representing the image domain. By |Ω| we denote
its cardinality. We have α > 0, 0 < q < 1, 0 < μ � α as the given model parameters.
The matrix K ∈ R

|Ω|×|Ω| is assumed to not annihilate a constant vector; e.g., K might be
a blurring matrix. The vector z ∈ R

|Ω| stands for the given noisy data, and u ∈ R
|Ω| is the

image to be restored. Despite the fact that we refer to u ∈ R
|Ω| as a vector, we denote the

elements of u by uij with (i, j) ∈ Ω. This appears natural as the image domain is given as a
two-dimensional array of pixels. Analogously one has to understand the action of the blurring
operator (matrix) K. Notably we allow situations where the fidelity coefficient λ ∈ R

|Ω|

is possibly spatially dependent (see, e.g., [17, 18]) such that λij > 0 for all (i, j) ∈ Ω and∑
(i,j)∈Ω λij = |Ω|, though λij = 1 for all (i, j) ∈ Ω is taken in the numerics. The discrete

gradient operator ∇ is decomposed as ∇ = (∇x ∇y) such that (∇u)ij = ((∇xu)ij (∇yu)ij),
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where ∇x ∈ R
|Ω|×|Ω| is the discrete derivative in the x-direction and ∇y ∈ R

|Ω|×|Ω| is the
discrete derivative in the y-direction, respectively. The Euclidean norm of (∇u)ij in R

2 is
denoted by |(∇u)ij |. For elements �p ∈ (R|Ω|)2, �px denotes components corresponding to the
x-direction in the above sense and �py components belonging to the y-direction. The discrete
Laplacian Δ is defined as Δ := −∇�

x∇x−∇�
y ∇y. The multiplication of vectors is understood

in the pointwise sense, i.e., (uv)ij = uijvij for u, v ∈ R
|Ω| and (u�p )ij = (uij(�px)ij uij(�py)ij)

for u ∈ R
|Ω|, �p ∈ (R|Ω|)2. Similarly, for u ∈ R

|Ω| and q ∈ R, the power uq is a vector in
R
|Ω| such that (uq)ij = uqij . For u, v ∈ R

|Ω| and γ ∈ R, the max-operation is understood in
a componentwise sense, i.e., (max(u, γ))ij = max(uij , γ) and (max(u, v))ij = max(uij, vij). A
diagonal matrix with its diagonal elements given by the vector u is denoted by D(u). The
characteristic vector χA of the set A ⊂ Ω is defined as (χA)ij = 1 if (i, j) ∈ A and (χA)ij = 0
otherwise. The identity vector �e ∈ (R|Ω|)2 is defined as �eij = (1 1) for all (i, j) ∈ Ω. We use
‖ · ‖ to denote the 2-norm for vectors in R

|Ω| and the spectral norm for matrices in R
|Ω|×|Ω|.

The symbols λmax(·) and λmin(·) represent the maximal eigenvalue and the minimal eigenvalue
of a matrix, respectively. The constant C may take different values at different occasions.

We start our investigations of (2.1) by establishing the existence of a solution.
Theorem 2.1 (existence of solution). Assume that μ ≥ 0, α > 0, q > 0, λij > 0 for all

(i, j) ∈ Ω, and that

(2.2) Ker∇∩KerK = {0}.
Then there exists a global minimizer for the variational problem (2.1).

Proof. Since f is bounded from below, it suffices to show that f is coercive; i.e., |f(uk)| →
+∞ whenever ‖uk‖ → +∞ for some sequence (uk) in R

|Ω|. We prove this by contradic-
tion. For this purpose, assume that ‖uk‖ → +∞ and that f(uk) is uniformly bounded.
For each k, let uk = skvk such that sk ≥ 0, vk ∈ R

|Ω|, and ‖vk‖ = 1. Then we have
limk→+∞

∑
(i,j)∈Ω

(
α|(∇vk)ij |q/q + λij |(Kvk)ij |2/2

)
= 0, due to the fact that the functions

s �→ |s|q and s �→ |s|2 are both coercive. By compactness, the sequence (vk) has an accumu-
lation point v∗ with ‖v∗‖ = 1 such that v∗ ∈ Ker∇ ∩ KerK. This contradicts our hypothesis
(2.2).

In order to characterize an optimal solution u, we define the active set A(u) := {(i, j) ∈
Ω : |(∇u)ij | �= 0} and the inactive set I(u) := Ω\A(u). Due to the occurrence of the term
involving q in (2.1) with 0 < q < 1 (which we call the TVq-term from now on), the objective
f (which we refer to as the TVq-model) is nondifferentiable on I(u). Therefore, the Euler–
Lagrange equation for characterizing a stationary point is separately posed on A(u) and on
I(u); i.e.,

(2.3)

{
−μΔu+K�λ(Ku− z) + α∇�(|∇u|q−2∇u) = 0 if (i, j) ∈ A(u),

∇u = 0 if (i, j) ∈ I(u).
Since the objective f is nonconvex, the solution to (2.3) is in general not unique.

In order to make the problem numerically tractable, we locally smooth the TVq-term by
a Huber function ϕγ defined by

ϕγ(s) :=

{
1
q |s|q − (1q − 1

2)γ
q if |s| > γ,

1
2γ

q−2|s|2 if |s| ≤ γ.
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Correspondingly, the Huberized variational problem is written as

(2.4) min
u∈R|Ω|

fγ(u) :=
∑

(i,j)∈Ω

(
μ

2
|(∇u)ij |2 + αϕγ(|(∇u)ij |) + λij

2
|(Ku− z)ij |2

)
.

Note that the Huberized functional fγ is continuously differentiable, and the Euler–Lagrange
equation associated with (2.4) is given by

(2.5) ∇fγ(u) = −μΔu+K�λ(Ku− z) + α∇� (max(|∇u|, γ)q−2∇u
)
= 0.

The Huber function [28], as a tool of local smoothing, has been previously applied and
analyzed on convex nondifferentiable variational models in image processing; see, e.g., [43, 27,
16]. For different nonconvex models with either smoothing or continuation we refer to, e.g.,
[34, 10]. Next we study the behavior of our Huberization of the nonconvex TVq-model for
vanishing Huber parameter, i.e., for γ → 0+.

Theorem 2.2 (consistency of Huberization). Let the assumptions of Theorem 2.1 hold true.
Further assume that (uk) is a uniformly bounded sequence with each uk a stationary point of
the Huberized problem (2.4) satisfying (2.5). Then as γk → 0+, there exists a subsequence of
(uk) converging to some u∗ ∈ R

|Ω|, which satisfies the original Euler–Lagrange equation (2.3).
Proof. By compactness, there exists a subsequence of (uk), say (uk

′
), such that (uk

′
)

converges to some u∗ as k′ → +∞. Next we show that u∗ is a solution to (2.3). Since each
(uk

′
) satisfies the Huberized Euler–Lagrange equation (2.5), we have

(2.6) −μΔuk
′
+K�λ(Kuk

′ − z) + α∇�
(
max(|∇uk

′ |, γk′)q−2∇uk
′)

= 0.

Let k′ → +∞ so that γk
′ → 0+. On the active set A(u∗), where |∇u∗| > 0, the first argument

of the max-function in (2.6) is taken in the limit; i.e.,

−μΔu∗ +K�λ(Ku∗ − z) + α∇� (|∇u∗|q−2∇u∗
)
= 0 for (i, j) ∈ A(u∗).

On the inactive set I(u∗), we have ∇u∗ = 0 by definition. Thus we conclude that u∗ satisfies
the Euler–Lagrange equation (2.3).

In particular, if each uk is a global minimizer of the Huberized problem (2.4), with an
argument analogous to that of the proof of Theorem 2.1 we have the coercivity of all (fγk),

uniformly with respect to γk. Therefore the sequence (uk) is uniformly bounded, and the
same conclusion as in Theorem 2.2 can be drawn.

Corollary 2.3. Let the assumptions in Theorem 2.1 hold true. Further assume that (uk) is
a sequence such that each uk is a global minimizer of the Huberized problem (2.4). Then as
γk → 0+, there exists a subsequence of (uk) converging to some u∗ ∈ R

|Ω|, which satisfies the
original Euler–Lagrange equation (2.3).

We note that finding global minimizers for nonconvex problems often represents a challeng-
ing (if not impossible) task. Therefore, the remainder of this section is devoted to designing
and analyzing an algorithm for numerically finding (local) minimizers of (2.4).

We start by noting that the gradient mapping in (2.5), i.e., ∇fγ : R|Ω| → R
|Ω|, is locally

Lipschitz. According to Rademacher’s theorem, ∇fγ is differentiable a.e. Then the generalized
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Hessian of fγ at u [11], denoted by ∂2fγ(u), is defined as the convex hull of ∂2
Bfγ(u), where

∂2
Bfγ(u) consists of all matrices in R

|Ω|×|Ω| that are limits of sequences of the form ∇2fγ(u
k)

with uk → u and ∇fγ differentiable at all uk, i.e.,

∂2
Bfγ(u) := {lim∇2fγ(u

k) : uk → u, ∇fγ is differentiable at uk}.

Moreover, the gradient mapping ∇fγ : R|Ω| → R
|Ω| is semismooth at any u; i.e.,

lim
V (u+ td′) ∈ ∂2fγ(u+ td′),

d′ → d, t → 0+

V (u+ td′)d′ exists ∀d ∈ R
|Ω|;

see [40]. Due to Theorem 2.3 in [40], ∇fγ is directionally differentiable at any u, and for any
V (u+ d) ∈ ∂2fγ(u+ d),

‖V (u+ d)d−∇2fγ(u; d)‖ = o(‖d‖) as ‖d‖ → 0,

where o(t)/t → 0 as t → 0+, and ∇2fγ(u; d) denotes the directional derivative of ∇fγ at u in
direction d. Thus, for any V (u+ d) ∈ ∂2

Bfγ(u+ d) we have

(2.7) ‖∇fγ(u+ d)−∇fγ(u)− V (u+ d)d‖ = o(‖d‖) as ‖d‖ → 0.

In our subsequently defined algorithm, we are in particular interested in the elements of the
(possibly) set-valued mapping ∂2

Bfγ at u, which can be written explicitly as follows:

∇2
Bfγ(u) :=− μΔ+K�λK

+ α∇�D
(
max(|∇u|, γ)q−2(I − (2− q)χA(u)max(|∇u|, γ)−2(∇u)(∇u)�)

)
∇,

where χA(u) is defined by

(χA(u))ij :=

{
1 if |(∇u)ij | > γ,

0 otherwise.

We shall refer to ∇2
Bfγ(u) as the B-Hessian of f at u.

Due to its favorable local convergence properties, we are interested in applying a gener-
alized version of Newton’s method for solving (2.5). In variational image processing it has
turned out that primal-dual Newton schemes are typically superior to purely primal or dual
iterations; see, e.g., [4, 26, 27]. Hence, we reformulate the Euler–Lagrange equation (2.5) by
introducing a new variable �p ∈ (R|Ω|)2, which plays the role of a dual variable, i.e.,

(2.8)

{
−μΔu+K�λ(Ku− z) + α∇��p = 0,

max(|∇u|, γ)2−q�p = ∇u.

This system is the starting point for developing our generalized Newton scheme in the next
section.
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3. Primal-dual Newton method.

3.1. Regularized Newton via reweighted Euler–Lagrange equation. In order to handle
the nonlinear diffusion term (which contains the (q−2)th power of the max-term) in the Euler–
Lagrange equation (2.5), we invoke an approach relying on reweighting. Similar techniques
were previously considered in [44, 5, 36, 8, 14]. In fact, let uk be our current approximation
of a solution to (2.5). Then the reweighted Euler–Lagrange equation is given by

(3.1) −μΔu+K�λ(Ku− z) + α∇�
(
wk max(|∇u|, γ)−r∇u

)
= 0,

with 0 ≤ r ≤ 2− q and the weight wk defined by

wk := max(|∇uk|, γ)q+r−2.

We further introduce a reweighted dual variable

�p = wk max(|∇u|, γ)−r∇u.

As a result, (2.8) may be written as

(3.2)

{
−μΔu+K�λ(Ku− z) + α∇��p = 0,

(wk)−1 max(|∇u|, γ)r�p = ∇u.

Next, at uk we define the active set Ak := {(i, j) ∈ Ω : |(∇uk)ij| > γ}. Given a current
approximation (uk, �p k), we apply a generalized linearization to (3.2) and obtain the generalized
Newton system

(3.3)[ −μΔ+K�λK α∇�

−C̃k(r)∇ D((mk)2−q�e )

] [
δuk+1

δ�p k+1

]
=

[
μΔuk −K�λ(Kuk − z)− α∇��p k

∇uk − (mk)2−q�p k

]
,

where

mk := max(|∇uk|, γ),(3.4)

C̃k(r) := I − rD(χAk(mk)−q�p k)

[
D(∇xu

k) D(∇yu
k)

D(∇xu
k) D(∇yu

k)

]
.(3.5)

After eliminating δ�p k+1, we are left with the linear system

(3.6) H̃k(r)δuk+1 = −gk,

where

H̃k(r) := −μΔ+K�λK + α∇�D((mk)q−2�e )C̃k(r)∇,(3.7)

gk := −μΔuk +K�λ(Kuk − z) + α∇�((mk)q−2∇uk).(3.8)
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Note that gk = ∇fγ(u
k) in (2.5). Upon solving (3.6) for δuk+1, we compute δ�p k+1 according

to (3.3), i.e.,

(3.9) δ�p k+1 = (mk)q−2(∇uk + C̃k(r)∇δuk+1)− �p k.

Assuming that δuk+1 is a descent direction for fγ at uk, i.e., (gk)�δuk+1 < 0, we update
uk+1 := uk + akδuk+1 and �p k+1 := �p k + akδ�p k+1 with a suitable step size ak and then go to
the next Newton iteration.

Note that Hk := H̃k(2 − q) is the B-Hessian in the nonreweighted primal-dual Newton
method [44, 27]. We observe that the reweighting procedure is, in fact, equivalent to a regu-
larization of the B-Hessian of the nonreweighting approach, which we call the R-regularization
in the rest of this paper. In order to see this, let

Rk := α∇�D(χAk(mk)−2�p k)

[
D(∇xu

k) D(∇yu
k)

D(∇xu
k) D(∇yu

k)

]
∇.

Then the Newton system (3.6) becomes

(3.10) (Hk + βRk)δuk+1 = −gk,

with β = 2− q − r.
Subsequently we consider variable β, i.e., β = βk, and a slight modification of the R-matrix

to guarantee (i) well-definedness of the Newton iteration defined below, (ii) the aforementioned
descent property, and (iii) ultimately the local superlinear convergence of our overall algorith-
mic scheme. For the latter, we show in the proof of Theorem 3.10 that limk→+∞ βk = 0.
Thus, the R-regularization vanishes for k → +∞.

3.2. Infeasible Newton technique. Next we study feasibility properties of the iterates of a
generalized Newton method relying on (3.6) and definiteness of H̃k(r). For this discussion, we
return to the reweighted Euler–Lagrange equation (3.1) with 0 ≤ r ≤ 1 (or 1− q ≤ β ≤ 2− q).
In particular, assuming that �p k = |∇uk|q−2∇uk on Ak, we have that

(3.11) C̃k(r) = I − rD(χAk(mk)−2�e )

[
D(|∇xu

k|2) D(∇xu
k∇yu

k)
D(∇xu

k∇yu
k) D(|∇yu

k|2)
]
� 0,

where “�” indicates positive semidefiniteness of a matrix. Therefore, we conclude that

H̃k(r) = −μΔ+K�λK + α∇�D((mk)q−2�e )C̃k(r)∇ � 0;

i.e., H̃k(r) is positive definite, since −μΔ + K�λK � 0 under hypothesis (2.2). In general,
however, H̃k(r) may be indefinite during generalized Newton iterations.

In the following, we derive a sufficient condition for r (or β) such that the system ma-
trix H̃k(r) is positive definite; see Theorem 3.2 below. This property of H̃k(r) is useful in
guaranteeing that a descent direction δuk is computed in each Newton iteration. Moreover,
it constitutes an iteration-dependent regularization scheme.

For this purpose, we propose two modifications of the system matrix H̃k(r). First, we
replace �p k by �p k

+, where

�p k
+ :=

χAk(mk)q−1�p k

max((mk)q−1, |�p k|) + (1− χAk)�p k.
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Note that the modified �p k
+ satisfies its feasibility condition on Ak, i.e.,

(3.12) |(�p k
+)ij | ≤ |(∇uk)ij|q−1, whenever (i, j) ∈ Ak.

Second, we replace C̃k(r) by its symmetrization denoted by C̃k
+(r), i.e.,

C̃k
+(r) :=

C̃k(r) + C̃k(r)�

2
= I − rD(χAk(mk)−q)

·
[

D((�p k
+)x∇xu

k) D(12((�p
k
+)x∇yu

k + (�p k
+)y∇xu

k))
D(12 ((�p

k
+)x∇yu

k + (�p k
+)y∇xu

k)) D((�p k
+)y∇yu

k)

]
.(3.13)

Accordingly, the system matrix H̃k(r) in (3.6) is replaced by H̃k
+(r) with

(3.14) H̃k
+(r) := −μΔ+K�λK + α∇�D((mk)q−2�e )C̃k

+(r)∇,

and the regularizer Rk is replaced by Rk
+ with

Rk
+ :=α∇�D(χAk(mk)−2)

·
[

D((�p k
+)x∇xu

k) D(12((�p
k
+)x∇yu

k + (�p k
+)y∇xu

k))
D(12 ((�p

k
+)x∇yu

k + (�p k
+)y∇xu

k)) D((�p k
+)y∇yu

k)

]
∇.(3.15)

Lemma 3.1. Assume that 0 ≤ r ≤ 1 (or 1 − q ≤ β ≤ 2 − q) and the feasibility condition
(3.12) holds true. Then the matrix C̃k

+(r) given in (3.13) is positive semidefinite.

Proof. By reordering, it suffices to show that each 2-by-2 block

[C̃k
+(r)]ij = I − rχAk(mk)−q

[
(�p k

+)x∇xu
k 1

2((�p
k
+)x∇yu

k + (�p k
+)y∇xu

k)
1
2((�p

k
+)x∇yu

k + (�p k
+)y∇xu

k) (�p k
+)y∇yu

k

]

is positive semidefinite. For the ease of notation, the subscripts ij are frequently omitted for
the remainder of this proof.

We distinguish two cases with respect to (i, j). First, consider the case where (i, j) /∈ Ak.
Then we have [C̃k

+(r)]ij = I, and the assertion holds immediately.

In the second case where (i, j) ∈ Ak, we have

[C̃k
+(r)]ij=

[
1− r|∇uk|−q(�p k

+)x∇xu
k − r

2 |∇uk|−q((�p k
+)x∇yu

k + (�p k
+)y∇xu

k)
− r

2 |∇uk|−q((�p k
+)x∇yu

k + (�p k
+)y∇xu

k) 1− r|∇uk|−q(�p k
+)y∇yu

k

]
.

This 2-by-2 block has nonnegative eigenvalues, since its diagonal elements are nonnegative
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and its determinant satisfies

(1− r|∇uk|−q(�p k
+)x∇xu

k)(1− r|∇uk|−q(�p k
+)y∇yu

k)

(3.16)

− r2

4
|∇uk|−2q|(�p k

+)x∇yu
k + (�p k

+)y∇xu
k|2

= 1− r|∇uk|−q((�p k
+)x∇xu

k + (�p k
+)y∇yu

k)− r2

4
|∇uk|−2q|(�p k

+)x∇yu
k − (�p k

+)y∇xu
k|2

= 1− r|∇uk|−q((�p k
+)x∇xu

k + (�p k
+)y∇yu

k)− r2

4
|∇uk|−2q

·
[
(|(�p k

+)x|2 + |(�p k
+)y|2)(|∇xu

k|2 + |∇yu
k|2)− |(�p k

+)x∇xu
k + (�p k

+)y∇yu
k|2
]

= −r2

4
|∇uk|2−2q|�p k

+|2 +
[
1− r

2
|∇uk|−q((�p k

+)x∇xu
k + (�p k

+)y∇yu
k)
]2

≥ −r2

4
|∇uk|2−2q|�p k

+|2 +
[
1− r

2
|∇uk|1−q|�p k

+|
]2

= 1− r|∇uk|1−q|�p k
+| ≥ 0.

In deriving the above inequalities, we have used the assumption that 0 ≤ r ≤ 1, the feasibility
condition (3.12), and the Cauchy–Schwarz inequality.

The following theorem is an immediate consequence of Lemma 3.1 and the structure of
H̃k

+(r).
Theorem 3.2 (sufficient condition for descent property). Suppose the assumptions of Lem-

ma 3.1 are satisfied. Then the following statements hold true:
1. The matrix H̃k

+(r) is positive definite.

2. We have the following estimate on the spectrum of H̃k
+(r):

λmin(H̃
k
+(r)) ≥ λmin(−μΔ+K�λK),

λmax(H̃
k
+(r)) ≤ λmax(−(μ+ 3αγq−2)Δ +K�λK).

3. We obtain from (3.6) a descent direction δuk+1 satisfying

− (gk)�δuk+1

‖gk‖‖δuk+1‖ ≥ λmin(H̃
k
+(r))

λmax(H̃k
+(r))

≥ ε̄d :=
λmin(−μΔ+K�λK)

λmax(−(μ+ 3αγq−2)Δ +K�λK)
.

3.3. Superlinear convergence by adaptive regularization. Using the results in [44, 5],
one readily finds that the R-regularized version of the generalized Newton method with fixed
β, which results in the reweighting approach, is linearly convergent.

In this section, we propose a new adaptively R-regularized version of the generalized
Newton method that attains superlinear local convergence. This requires an appropriate
update strategy for β > 0. For this purpose, we propose a trust-region–type scheme; see, e.g.,
[39, 12] for comprehensive discussions of trust-region methods. Given a current iterate uk,
these methods typically model fγ locally by a quadratic function hk : R|Ω| → R with

(3.17) hk(d) := fγ(u
k) + (gk)�d+

1

2
d�Hk

+d.
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Here we let Hk
+ := H̃k

+(2− q); see (3.14). Now consider the minimization of hk subject to the
trust-region constraint, i.e.,

minimize hk(d) over d ∈ R
|Ω|(3.18)

subject to
1

2
d�Rk

+,εd ≤ 1

2
(σk)2.(3.19)

Here σk > 0 represents the trust-region radius, and

(3.20) Rk
+,ε := Rk

+ + εI

is defined with an arbitrarily fixed regularization parameter 0 < ε � α. The existence of a
solution to (3.18)–(3.19) hinges on the interplay of Hk

+ and Rk
+,ε.

Lemma 3.3. The matrix Hk
+ is positive definite on {d ∈ R

|Ω| : d�Rk
+,εd ≤ 0}.

Proof. Suppose d ∈ R
|Ω| satisfies d �= 0 and d�Rk

+d ≤ −ε‖d‖2 < 0. Then we have

d�Hk
+d = d�(−μΔ+K�λK)d+ α(∇d)�D((mk)q−2�e )∇d− (2− q)d�Rk

+d > 0,

which proves the assertion.

Theorem 3.4. There exists a solution to the trust-region subproblem (3.18)–(3.19).

Proof. Note that the objective is at most quadratic and the feasible set is nonempty and
closed. It suffices to show that hk(dl) → +∞ for any feasible sequence (dl) with ‖dl‖ → +∞.
We shall prove this by contradiction. Let such a sequence (dl) be given, and assume oppositely
that (hk(dl)) is uniformly bounded from above. For each l, we write dl = slvl such that sl ≥ 0,
vl ∈ R

|Ω|, and ‖vl‖ = 1. By compactness, there exists a subsequence of (vl), say (vl
′
), such that

vl
′ → v∗ for some v∗ ∈ R

|Ω|. The constraint (3.19) yields that (vl
′
)�Rk

+,εv
l′ ≤ (σk)2/(sl

′
)2.

Letting l′ → +∞, we get (v∗)�Rk
+,εv

∗ ≤ 0. It follows from Lemma 3.3 that (v∗)�Hk
+v

∗ > 0.

Thus we must have hk(dl
′
) → +∞ as l′ → +∞, which contradicts our assumption.

Given the current iterate uk, we aim to determine a search direction dk by approximately
solving the trust-region subproblem. A classical argument in the convergence analysis of trust-
region methods requires that the search direction dk yield a reduction in the model function
hk proportional to the decrease implied by the Cauchy point [12].

The Cauchy point is defined by dkC := −tkgk, where tk minimizes the one-dimensional
problem

tk := argmin{hk(−tgk) : t2(gk)�Rk
+,εg

k ≤ (σk)2 ∧ t ≥ 0}.
Let tk∗ := ‖gk‖2/((gk)�Hk

+g
k) be the critical point, provided that it exists. The Cauchy point

can be explicitly computed through the following three cases:

1. Suppose (gk)�Hk
+g

k ≤ 0. By Lemma 3.3, we have (gk)�Rk
+,εg

k > 0. The Cauchy

point lies on the boundary of the trust region, i.e., dkC = −(σk/
√

(gk)�Rk
+,εg

k)gk, and

(3.21) hk(0)− hk(dk) =
σk‖gk‖2√
(gk)�Rk

+,εg
k
− (σk)2(gk)�Hk

+g
k

2(gk)�Rk
+,εg

k
≥ σk‖gk‖2√

(gk)�Rk
+,εg

k
.
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2. Suppose (gk)�Hk
+g

k > 0 and (tk∗)2(gk)�Rk
+,εg

k ≤ (σk)2. Then we have dkC = −tk∗gk =

−(‖gk‖2/((gk)�Hk
+g

k))gk, and

(3.22) hk(0) − hk(dk) =
‖gk‖4

2(gk)�Hk
+g

k
≥ ‖gk‖2

2λmax(H
k
+)

.

3. Suppose (gk)�Hk
+g

k > 0 and (tk∗)2(gk)�Rk
+,εg

k > (σk)2. Then, similarly to the

first case, we have dkC = −(σk/
√

(gk)�Rk
+,εg

k)gk. In particular, σk((gk)�Hk
+g

k)/√
(gk)�Rk

+,εg
k < ‖gk‖2. Therefore, we have

(3.23) hk(0)− hk(dk) =
σk‖gk‖2√
(gk)�Rk

+,εg
k
− (σk)2(gk)�Hk

+g
k

2(gk)�Rk
+,εg

k
≥ σk‖gk‖2

2
√

(gk)�Rk
+,εg

k
.

The search direction dk is said to satisfy the Cauchy point–based model reduction criterion if

(3.24) hk(0) − hk(dk) ≥ C‖gk‖2ηk

for some constant C > 0, where

(3.25) ηk :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σk√
(gk)�Rk

+,εg
k

if (gk)�Hk
+g

k ≤ 0,

1

λmax(Hk
+)

if (gk)�Rk
+,εg

k ≤ 0,

min

(
σk√

(gk)�Rk
+,εg

k
,

1

λmax(Hk
+)

)
otherwise.

Due to Lemma 3.3, ηk is well defined. It is easily seen that (3.21)–(3.23) satisfy the criterion
(3.24) with C = 1/2.

Now we turn to the computation of an approximate solution to the trust-region subproblem
(3.18)–(3.19). In Theorem 3.5, we shall characterize this solution dk∗ by

(Hk
+ + βk

∗R
k
+,ε)d

k
∗ = −gk,(3.26)

βk
∗
(
(dk∗)

�Rk
+,εd

k
∗ − (σk)2

)
= 0,(3.27)

Hk
+ + βk

∗R
k
+,ε � 0(3.28)

for some βk∗ ≥ 0. Its proof essentially adopts that of [39, Theorem 4.1] under our context.

Theorem 3.5. The trust-region subproblem (3.18)–(3.19) has a global solution dk∗ if and only
if dk∗ is feasible and there exists a scalar βk∗ ≥ 0 such that (3.26)–(3.28) are satisfied.

Proof of “if” part. Suppose there exists βk∗ ≥ 0 such that (3.26)–(3.28) hold. Then by
Lemma 4.7 in [39], dk∗ minimizes ĥk : R|Ω| → R, where

ĥk(dk) := (gk)�dk +
1

2
(dk)�(Hk

+ + βk
∗R

k
+,ε)d

k = hk(dk) +
βk∗
2
(dk)�Rk

+,εd
k − fγ(u

k).
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If follows from ĥk(dk) ≥ ĥk(dk∗) that

hk(dk) ≥ hk(dk∗) +
βk∗
2
((dk∗)

�Rk
+,εd

k
∗ − (dk)�Rk

+,εd
k)

=hk(dk∗) +
βk∗
2
((σk)2 − (dk)�Rk

+,εd
k) ≥ hk(dk∗).

Since dk is arbitrary but feasible, the assertion follows.
Proof of “only if” part. Suppose now that dk∗ is the global solution of the trust-region

subproblem (3.18)–(3.19).
• Case 1: (dk∗)�Rk

+,εd
k∗ < (σk)2. The second-order necessary conditions of the uncon-

strained problem imply that

∇hk(dk∗) = Hk
+d

k
∗ + gk = 0,

∇2hk(dk∗) = Hk
+ � 0.

We get the desired conclusion with βk∗ = 0.
• Case 2: (dk∗)�Rk

+,εd
k∗ = (σk)2. In particular we have Rk

+,εd
k∗ �= 0, and therefore the

linear independence constraint qualification (see, e.g., [39]) is fulfilled at dk∗ . By the
second-order necessary condition, there exists βk∗ ≥ 0 such that

(3.29) Hk
+d

k
∗ + gk + βk

∗R
k
+,εd

k
∗ = 0

and

(3.30) v�(Hk
+ + βk

∗R
k
+,ε)v ≥ 0

for any nonzero vector v ∈ R
|Ω| with v�Rk

+,εd
k∗ = 0.

It remains to show (3.30) for any nonzero vector v with v�Rk
+,εd

k∗ �= 0. Let such a

vector v be given. In particular we have Rk
+,εv �= 0. Define

(3.31) dk := dk∗ −
2v�Rk

+,εd
k∗

v�Rk
+,εv

v.

Then it is easy to check that (dk)�Rk
+,εd

k = (σk)2. Since hk(dk) ≥ hk(dk∗), we have

hk(dk) ≥ hk(dk∗) +
βk∗
2
((dk∗)

�Rk
+,εd

k
∗ − (dk)�Rk

+,εd
k).

From this and (3.29), we infer that

1

2
(dk − dk∗)

�(Hk
+ + βk

∗R
k
+,ε)(d

k − dk∗) ≥ 0.

Thus in view of (3.31) we have shown (3.30) for any nonzero vector v with v�Rk
+,εd

k∗ �=
0, which completes the proof.
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Based on the above observation concerning hk and using a complementarity function (see,
e.g., [25]), we can equivalently formulate (3.26)–(3.28), with an arbitrarily fixed scalar c > 0,
as follows:

(Hk
+ + βk

∗R
k
+,ε)d

k
∗ = −gk,(3.32)

βk
∗ −max

(
βk
∗ +

1

2c
((dk∗)

�Rk
+,εd

k
∗ − (σk)2), 0

)
= 0,(3.33)

Hk
+ + βk

∗R
k
+,ε � 0.(3.34)

From this formulation, we propose an adaptively regularized Newton iteration which converges
globally and locally at a superlinear rate.

Algorithm 3.6 (adaptively regularized Newton method).

Require: input parameters 1 − q ≤ βmax ≤ 2 − q, c > 0, 0 < ρ1 ≤ ρ2 < 1, 0 < κ1 < 1 < κ2,
0 < ε � α, 0 < εd ≤ ε̄d, 0 < τ1 < 1/2, τ1 < τ2 < 1.

1: Initialize the primal and dual variables (u0, �p 0), the regularization scalar β0 ≥ 0, and the
trust-region radius σ0 > 0. Set k := 0.

2: repeat {outer loop}
3: Generate Hk

+, R
k
+,ε, and gk.

4: repeat {inner loop}
5: Solve (Hk

+ + βkRk
+,ε)d

k = −gk for dk.

6: if −(gk)�dk/(‖gk‖‖dk‖) < εd then
7: Set βk := βmax and return to step 5.
8: end if
9: if βk = βmax and (dk)�Rk

+,εd
k > (σk)2 then

10: Set σk :=
√

(dk)�Rk
+,εd

k and go to step 15.
11: end if
12: Update βk := βk + ((dk)�Rk

+,εd
k − (σk)2)/(2c).

13: Project βk onto the interval [0, βmax]; i.e., set β
k := max(min(βk, βmax), 0).

14: until the stopping criterion for the inner loop is fulfilled.
15: Evaluate ρk := [fγ(u

k)− fγ(u
k + dk)]/[fγ(u

k)− (fγ(u
k) + (gk)�dk + (dk)�Hk

+d
k/2)].

16: if ρk < ρ1 then
17: Set σk+1 := κ1σ

k.
18: else if ρk > ρ2 then
19: Set σk+1 := κ2σ

k.
20: else
21: σk+1 := σk.
22: end if
23: Determine the step size ak along the search direction dk such that uk+1 = uk + akdk

satisfies the following Wolfe–Powell conditions:

fγ(u
k+1) ≤ fγ(u

k) + τ1a
k∇fγ(u

k)�dk,(3.35)

∇fγ(u
k+1)�dk ≥ τ2∇fγ(u

k)�dk.(3.36)

24: Set δuk+1 := dk and compute δ�p k+1 according to (3.9). Update uk+1 := uk + akδuk+1

and �p k+1 := �p k + akδ�p k+1.
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25: Set βk+1 := βk and k := k + 1.
26: until the stopping criterion for the outer loop is fulfilled.

Concerning the input parameters involved in the above algorithm, we note that these
quantities are presented merely for the generality of the algorithm and do not require partic-
ular tuning for various imaging restoration tasks. Throughout our numerical experiments in
section 4, we shall always fix the parameters as follows: βmax = 1.2−q, c = 1, ρ1 = 0.25, ρ2 =
0.75, κ1 = 0.25, κ2 = 2, ε = 10−4α, εd = 10−8, τ1 = 0.1, τ2 = 0.9.

We observe that Algorithm 3.6 combines a trust-region technique for adjusting the weight
β in the R-regularization (steps 4–14) with a line search method for updating the iterate along
the direction obtained from the approximately weighted R-regularized problem (step 23). We
emphasize, however, that the classical trust-region approach might be used instead of the line
search procedure for globalizing Newton’s method. In Algorithm 3.6, the global convergence is
guaranteed by the Wolfe–Powell line search, while the trust-region–type framework is utilized
to guarantee that dk is a descent direction for fγ at uk and to retain the local superlinear
convergence of Newton’s method. Based on our numerical experience, we prefer the Wolfe–
Powell line search over other, possibly simpler, rules as it appears to better resolve the line
search problem for our nonconvex objective.

Note that our objective fγ is bounded from below and continuously differentiable. More-
over, its gradient ∇fγ(·) is Lipschitz continuous on an open set containing the level set
{u ∈ R

|Ω| : fγ(u) ≤ fγ(u
0)}. Thus Zoutendijk’s theorem (see, e.g., [39]) can be applied

in order to derive global convergence of Algorithm 3.6.

Theorem 3.7 (global convergence). Let uk+1 = uk + akdk such that the Wolfe–Powell con-
ditions (3.35)–(3.36) are satisfied. Then we have limk→+∞ ‖∇fγ(u

k)‖ = 0.

Proof. By Theorem 3.2 in [39], we have
∑+∞

k=0 cos
2 θk‖gk‖2 < +∞, where

cos θk := − (gk)�dk

‖gk‖‖dk‖ .

Since cos θk ≥ εd holds true for every k due to steps 6–8 of Algorithm 3.6 and Theorem 3.2,
we conclude that limk→+∞ ‖∇fγ(u

k)‖ = 0.
Next we study the local convergence of Algorithm 3.6. As a preparatory result, Lemma 3.8

investigates the approximation properties of (Hk
+) with respect to (∇2

Bfγ(u
k)) and the def-

initeness properties of (Rk
+,ε). Lemma 3.9 verifies the convergence of the inner loop, i.e.,

steps 4–14 of Algorithm 3.6. The proofs of these two lemmas are given in Appendix A.
Lemma 3.8. Assume that the primal-dual sequence (uk, �p k) converges to some (u∗, �p ∗)

satisfying the Euler–Lagrange system (2.8). Then the following statements hold true:

1. The modified system matrix Hk
+ approaches asymptotically the B-Hessian ∇2

Bfγ(u
k);

i.e., limk→+∞ ‖Hk
+ −∇2

Bfγ(u
k)‖ = 0.

2. For all sufficiently large k, the matrix Rk
+,ε is strictly positive definite, and its minimal

eigenvalue satisfies λmin(R
k
+,ε) > ε/2.

Lemma 3.9. Assume that Hk
+ and Rk

+,ε are both positive definite, and

0 < ‖gk‖ <

√
c(λmin(H

k
+))

3

(λmax(Rk
+,ε))

2
.
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Then the sequence (βk
l , d

k
l )l∈N generated by the inner iterations, i.e., steps 4–14, of Algo-

rithm 3.6 converges to some (βk∗ , dk∗) satisfying the optimality characterization of the trust-
region subproblem; see (3.32)–(3.34).

Now we are in a position to present our local convergence result.

Theorem 3.10 (local convergence). Let (dk) be generated by Algorithm 3.6, and let the se-
quence (uk, �p k) converge to some (u∗, �p ∗) satisfying the Euler–Lagrange system (2.8). Assume
that all elements in ∂2

Bfγ(u
∗) are strictly positive definite. Then Algorithm 3.6 is locally su-

perlinearly convergent; i.e., for sufficiently large k we have

(3.37) ‖uk+1 − u∗‖ = o(‖uk − u∗‖) for k → ∞.

Proof. Throughout the proof we argue only for sufficiently large k. From our assumption
that all elements of ∂2

Bfγ(u
∗) are strictly positive definite, it follows that all elements in

∂2
Bfγ(u

k), including ∇2
Bfγ(u

k), are strictly positive definite with uniformly bounded (in norm)
inverses; see [31, 22, 29]. Furthermore, due to Lemma 3.8 we have that Hk

+ is also strictly
positive definite.

Since Rk
+,ε � 0 according to Lemma 3.8, we have

−(dk)�gk = (dk)�Hk
+d

k + βk(dk)�Rk
+,εd

k ≥ λmin(H
k
+)‖dk‖2 ≥ 0.

Letting k → +∞, we have ‖dk‖ → 0 since ‖gk‖ → 0 by Theorem 3.7.

Next, we show that limk→+∞ βk = 0. From the semismoothness property (2.7) and
Lemma 3.8, we have that as k → +∞,

|(fγ(uk)− fγ(u
k + dk))− (hk(0) − hk(dk))|(3.38)

=

∣∣∣∣fγ(uk + dk)− fγ(u
k)− (gk)�dk − 1

2
(dk)�Hk

+d
k

∣∣∣∣
≤
∣∣∣∣fγ(uk + dk)− fγ(u

k)− (gk)�dk − 1

2
(dk)�∇2

Bfγ(u
k)dk

∣∣∣∣
+

∣∣∣∣12(dk)�(∇2
Bfγ(u

k)−Hk
+)d

k

∣∣∣∣
= o(‖dk‖2).

For sufficiently large k, all assumptions in Lemma 3.9 hold true. Therefore, we have that

(dk)�Rk
+,εd

k ≤ ν2(σk)2

for some constant ν > 0, since otherwise (3.33) would fail. Lemma 3.9 also implies that dk

will satisfy the Cauchy point–based model reduction criterion (3.24) after sufficiently many



NONCONVEX TVq-MODELS IN IMAGE RESTORATION 1401

inner iterations. In fact, only the last case in (3.25) may occur. So as k → +∞, we have

hk(0)− hk(dk) ≥ C‖gk‖2 min

(
σk√

(gk)�Rk
+,εg

k
,

1

λmax(Hk
+)

)
(3.39)

≥ C‖gk‖min

(
‖gk‖

√
(dk)�Rk

+,εd
k

ν
√

(gk)�Rk
+,εg

k
,

‖gk‖
λmax(Hk

+)

)

≥ C‖gk‖min

(√
λmin(R

k
+,ε)‖dk‖

ν
√
λmax(R

k
+,ε)

,
‖gk‖

λmax(Hk
+)

)

≥ Cλmin(H
k
+)min

( √
λmin(R

k
+,ε)

ν
√

λmax(R
k
+,ε)

,
λmin(H

k
+)

λmax(Hk
+)

)
‖dk‖2.

Combining (3.38) and (3.39), we have that as k → +∞

|ρk − 1| = |(fγ(uk)− fγ(u
k + dk))− (hk(0) − hk(dk))|

|hk(0)− hk(dk)| ≤ o(1) → 0.

Thus the sequence (σk) is uniformly bounded away from 0. Consequently, limk→+∞ βk = 0,
and the Dennis–Moré condition [15] is satisfied; i.e., as k → +∞,

‖(Hk
+ + βkRk

+,ε)d
k −∇2

Bfγ(u
∗)dk‖

‖dk‖ ≤ ‖Hk
+ −∇2

Bfγ(u
∗)‖+ βkλmax(R

k
+,ε) → 0,

as the sequence (λmax(R
k
+,ε)) is uniformly bounded.

It follows from the semismoothness property (2.7) that

fγ(u
k + dk)− fγ(u

k)− τ1∇fγ(u
k)�dk

= (1− τ1)∇fγ(u
k)�dk +

1

2
(dk)�∇2

Bfγ(u
k)dk + o(‖dk‖2)

= (dk)�
[
(τ1 − 1)(Hk

+ + βkRk
+,ε) +

1

2
∇2

Bfγ(u
k)

]
dk + o(‖dk‖2)

=

(
τ1 − 1

2

)
(dk)�∇2

Bfγ(u
k)dk + o(‖dk‖2) ≤ 0

and

∇fγ(u
k + dk)�dk − τ2∇fγ(u

k)�dk = (dk)�∇2
Bfγ(u

k)dk + (1− τ2)∇fγ(u
k)�dk + o(‖dk‖2)

= (dk)�[(τ2 − 1)(Hk
+ + βkRk

+,ε) +∇2
Bfγ(u

k)]dk + o(‖dk‖2)
= τ2(d

k)�∇2
Bfγ(u

k)dk + o(‖dk‖2) ≥ 0

for sufficiently large k since ‖dk‖ → 0 as k → +∞. Hence the Wolfe–Powell conditions
(3.35)–(3.36) are satisfied for ak = 1, i.e., uk+1 = uk + dk, for all sufficiently large k.
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Let dkN := −∇2
Bfγ(u

k)−1gk. Note that

‖dk − dkN‖ = ‖∇2
Bfγ(u

k)−1(∇2
Bfγ(u

k)dk + gk)‖
= ‖∇2

Bfγ(u
k)−1(∇2

Bfγ(u
k)− (Hk

+ + βkRk
+))d

k‖ ≤ ‖∇2
Bfγ(u

k)−1‖o(‖dk‖) = o(‖dk‖),

since (‖∇2
Bfγ(u

k)−1‖) is uniformly bounded as uk → u∗ for k → +∞. As a consequence, we
have

‖uk+1 − u∗‖ = ‖uk + dk − u∗‖ ≤ ‖uk + dkN − u∗‖+ ‖dk − dkN‖ = o(‖uk − u∗‖).
We have used that ‖uk + dkN − u∗‖ = o(‖uk − u∗‖) (see, e.g., [29, Theorem 8.5]) and that
‖dk‖ = O(‖uk − u∗‖). From this we conclude that Algorithm 3.6 is locally superlinearly
convergent.

The assumption of Theorem 3.10 relates to second-order sufficient optimality conditions
for smooth problems. Although such assumptions typically occur in the optimization literature
(also in the context of nonsmooth problems), they are difficult to check in an algorithm.

4. Numerics. In this section we present numerical results obtained by our primal-dual
Newton method. Throughout this section, Ω denotes the m-by-n pixel domain, i.e., Ω =
{(i, j) ∈ Z

2 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. We discretize the gradient operator by (∇u)ij =(
(ui+1,j − ui,j)/ω (ui,j+1 − ui,j)/ω

)
with ω =

√
1/|Ω|. We set uij = 0 whenever (i, j) /∈

Ω. Unless otherwise specified, the following parameters are used in our experiments: q =
0.75, μ = 10−4α, γ = 0.1.

The trust-region subproblem (3.18)–(3.19) is solved only approximately. In fact, from
our numerical experience one inner iteration seems sufficient for Algorithm 3.6 in practice.
The outer loop is terminated once the residual norm ‖∇fγ(u

k)‖ (see formula (2.5)) has been
reduced by a factor of 10−7.

In step 5 of Algorithm 3.6, an R-regularized Newton system needs to be solved. In a
denoising problem, i.e., when K = I, the linear system can be efficiently solved by sparse
Cholesky factorization. For problems where K is a dense matrix or not even explicitly for-
mulated as a matrix, we utilize the conjugate gradient method with residual tolerance 0.05.
We remark that in our convergence analysis in section 3, step 5 is treated as exact equation
solving. Nevertheless, in the numerical realization, whenever the matrix Hk

+ + βkRk
+,ε is de-

tected to be indefinite or (near-)singular, we immediately activate the sufficient condition for
descent property (see Theorem 3.2), i.e., utilize step 7 of the algorithm.

All experiments were performed under MATLAB R2009b on a 2.66 GHz Intel Core Laptop
with 4 GB RAM. The CPU time reported in the tables below is measured in seconds.

4.1. Test on “two circles” image. The 64-by-64 image “two circles” in [38] is used as
our first test example (see Figure 1(a)) in the context of a denoising problem. This image
is corrupted by white Gaussian noise of zero mean and 0.1 standard deviation as shown
in Figure 1(b). We choose the regularization parameters α = 2 × 10−3 and μ = 0 in the
experiments.

Dependence on initial guess. Three different choices of initial guesses are considered,
namely the observed data, the zero vector, and a randomly chosen initial guess. The corre-
sponding restored images are displayed in Figure 2, and the corresponding statistics are given
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(a) Original image. (b) Degraded image.

Figure 1. “Two circles” image.

(a) u0 = z. (b) u0 = 0. (c) Randomly chosen u0.

Figure 2. Dependence on initial guess.

Table 1
Dependence on initial guess.

Initial guess Objective value PSNR CPU

u0 = z 42.0354 30.2395 3.06

u0 = 0 42.0385 30.2438 3.02
Random u0 42.0373 30.2048 3.19

in Table 1. We observe that the convergence behavior is stable with respect to the choice
of the initial guess, in terms of both restoration quality and computational cost. Due to the
nonconvex nature of the variational problem, our iterative algorithm is expected to terminate
at a stationary point. In our experiments, the qualities of the obtained stationary points are
almost equally good, in terms of objective value and PSNR (peak signal-to-noise ratio), and
all three restorations require about 3 seconds. In what follows, we shall choose the observed
data as our initial guess if not otherwise specified.

Dependence on Huber parameter γ. In the discrete variational model (2.4), the non-
differentiable TVq-penalty term is locally smoothed by the Huber function ϕγ with Huber
parameter γ. In Table 2, we show the results of numerical tests for four different choices of
γ. It is observed that the convergence behavior of our algorithm is insensitive with respect
to the choice of γ, once γ is sufficiently small. Clearly, with respect to γ there is a trade-off
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Table 2
Dependence on Huber parameter γ.

Huber parameter γ 1e1 1e0 1e-1 1e-2 1e-3

# Newton iter. 5 28 37 40 43
PSNR 25.3644 29.7011 30.12 30.1489 30.1489
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Figure 3. Infeasible Newton technique.

between the convergence speed and the restoration quality. As γ goes to zero, one obtains
higher restoration quality, but at the same time the computational cost increases. From our
experience, γ = 0.1 is practically a reasonable choice in general.

Infeasible Newton technique. We note that in contrast to the primal-dual algorithm (for
q = 1) in, e.g., [4], our algorithm allows violations of the feasibility condition (3.12) during
the Newton iterations. Yet toward the convergence of the algorithm we expect the feasibility
condition (3.12) to hold true for (uk, �p k), as established in the proof of Lemma 3.8 in Ap-
pendix A. This is illustrated in Figure 3. In plot (a) the number of infeasible pixels (i, j) ∈ Ω,
where |(∇uk)ij | > γ and |(�p k)ij ||(∇uk)ij |1−q ≥ 1 + εp, is plotted for each Newton iteration.
Here εp = 10−6 is introduced to compensate for round-off errors. In plot (b), the residual norm
‖∇fγ(u

k)‖ is shown for each Newton iteration. It is observed that the number of infeasible
pixels decreases to zero as the algorithm converges.

Globalization by Wolfe–Powell line search. In Algorithm 3.6, after the search direction dk

is computed, the Wolfe–Powell line search is performed, where we aim to find an approxima-
tion of the solution to the one-dimensional problem fk∗ := minak>0 fγ(u

k + akdk). Here we
utilize an implementation according to [39, Algorithms 3.5–3.6]. Essentially, we begin with
an initial step size ak equal to 1. If either this step size is acceptable or the interval [0, 1]
contains an acceptable step size (which we refer to as Case 1), we directly proceed to the zoom
procedure [39], which successively reduces the size of the interval until an acceptable step size
is found. Otherwise (which we refer to as Case 2), we keep increasing ak until we find either
an acceptable step size or a solution interval that contains the acceptable step size. Once the
solution interval is found, we proceed to the zoom procedure as in Case 1. In Table 3 and
Figure 4, we provide an example of the Wolfe–Powell line search for each of the two cases:
zoom only (see the upper part of Table 3), and first increase ak and then zoom (see the lower
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Table 3
Wolfe–Powell line search history.

Case 1: zoom only

ak 1 0.04 0.084 0.122 0.156 0.188

f(uk + akdk)− fk
∗ 5.26e-3 9.57e-5 6.97e-5 4.13e-5 1.14e-5 4.06e-7

Case 2: increase ak and then zoom

ak 1 2 4 2.217 2.393 2.539 2.662

f(uk + akdk)− fk
∗ 3.27e-4 1.62e-4 1.01e-3 1.1e-4 6.05e-5 1.7e-5 5.89e-7

0.0312 0.0625 0.125 0.25 0.5 1

27.026

27.027

27.028

27.029

27.03

27.031

27.032

f(
uk +

ak dk )

ak

(a) Case 1: zoom only.

1 1.4142 2 2.8284 4
27.1192

27.1194

27.1196

27.1198

27.12

27.1202

27.1204

27.1206

27.1208

f(
uk +

ak dk )

ak

(b) Case 2: increase ak and then zoom.

Figure 4. Wolfe–Powell line search. In each figure, the solid line is a plot of the function ak �→ fγ(u
k +

akdk), and the circled points are plots of the data in Table 3.

part of Table 3). We remark that backtracking-only line search rules, e.g., the backtracking
Armijo rule (see, e.g., [39]), do not perform well in our context. A backtracking-only line
search rule would terminate with ak = 1 in the example for Case 2, which poorly resolves the
line search problem and therefore causes more (outer) Newton iterations.

Comparison with existing algorithms. In Table 4, we compare Algorithm 3.6 with two
existing algorithms, namely the BFGS quasi-Newton method (see, e.g., [39]) and the lagged-
diffusivity fixed-point method [44]. For a given tolerance with respect to the residual norm,
we implement each candidate method with three different choices of the Huber parameter γ.
The CPU time is reported in the corresponding entry. It is observed that our method always
outperforms the other two methods, in particular when the problem becomes increasingly
ill-conditioned as γ is reduced. We remark that the BFGS quasi-Newton method suffers from
the strongly nonlinear nature of the underlying problem. The lagged-diffusivity fixed-point
method performs reasonably well at early iterations, but becomes less competitive once higher
accuracy is concerned.

4.2. Test on “Shepp–Logan phantom.” Our second testing image is the Shepp–Logan
phantom contaminated by white Gaussian noise of zero mean and 0.05 standard deviation.

Dependence on image resolution. Our algorithm is implemented to restore the Shepp–
Logan phantom images under different resolutions, namely 64-by-64, 128-by-128, and 256-by-
256. The regularization parameters α = 4×10−4 and μ = 0 are fixed in all three restorations.
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Table 4
Comparison with existing algorithms in terms of CPU time.

BFGS Fixed-point Our method

Tolerance 1e-4 1e-7 1e-4 1e-7 1e-4 1e-7

γ=1e1 5.12 8.64 0.43 1.06 0.33 0.43
γ=1e0 51.21 70.91 3.98 12.54 1.86 2.68
γ=1e-1 >300 >300 4.7 20.02 2.44 3.07

(a) Original image. (b) Degraded image.

Figure 5. 256-by-256 Shepp–Logan phantom. The dash-boxed region in (a) is zoomed in for restored images
in Figure 6.

The algorithm terminates after 62, 64, and 60 Newton iterations for restoring images un-
der resolutions 64-by-64, 128-by-128, and 256-by-256, respectively. This indicates that our
algorithm is stable with respect to the image resolution.

Performance of the TVq-model for different q-values. We compare the performance of our
TVq-model for q =1, 0.75, 0.5, and 0.25 for denoising the 256-by-256 Shepp–Logan phantom;
see Figure 5. For each q, the parameter α is manually chosen in order to obtain the best PSNR
value. The restored images ûq for each q are shown in Figure 6. It is observed from the rescaled
zoom-in views that the TVq-models provide better contrast in restoration as q becomes smaller.
The performance of the TVq-model for different q-choices is also compared quantitatively; see
Table 5. The PSNR values of the restoration from the nonconvex TVq-models (with 0 < q < 1)
are significantly higher than those from the TV-model (with q = 1). In addition, we measure
the gradient sparsity by |Aγ(ûq)|/|Ω|, where Aγ(u) := {(i, j) ∈ Ω : |(∇u)ij | > γ}. It is
observed that in comparison with the conventional TV-model, the sparsity is well enhanced
under the nonconvex TVq-regularizations. Note that the gradient sparsity of the true image
is 0.0503. Furthermore, we compare each solution of the TVq-model, denoted by ûq, with the
solution of the TV-model, denoted by û1, by plugging both solutions into the objective of
the nonconvex TVq-problem. We find that û1 is far from being optimal with respect to the
objective value. This phenomenon is more distinct as q becomes smaller.

4.3. Test on simultaneously blurred and noisy images. Now we apply our algorithm for
simultaneously deblurring and denoising the text image “TVq-model” (see Figure 7) and the
image “cameraman” (see Figure 8). For both images, the blurring kernel is chosen to be a
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(a) q = 1, α = 3× 10−4.
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(b) q = 0.75, α = 4× 10−4.
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(c) q = 0.5, α = 6× 10−4.

 

 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(d) q = 0.25, α = 1.2× 10−3.

Figure 6. Restoration via TVq-models. In each group, the left figure is the restored image ûq, and the right
figure is the rescaled zoom-in of the restored image on the dash-boxed region of Figure 5(a).

Table 5
Performances of TVq-models.

q PSNR |Aγ(ûq)|/|Ω| fγ,q(ûq) fγ,q(û1)

1 37.5709 0.196 – –
0.75 41.0039 0.0578 134.3021 137.6719
0.5 41.0191 0.0531 116.6721 125.6655
0.25 39.9259 0.0503 113.9953 133.6758

two-dimensional truncated Gaussian kernel, i.e.,

(Ku)ij =
∑

|i′|≤3, |j′|≤3

exp

(
−|i′|2 + |j′|2

2|σK |2
)
ui−i′,j−j′,

with σK = 1.5. After blurring, white Gaussian noise of zero mean and 0.05 standard deviation
is added. The restored images are shown in the corresponding figures. It is visually observed
that the nonconvex TVq-model promotes piecewise constant images in the restoration results.
This is expected because q → 0 results in the problem of minimizing the support of the image
intensity.

4.4. Test on tomographic data. Our algorithm can be applied to restoring images from
possibly noisy tomographic data. In Figure 9, the 64-by-64 Shepp–Logan phantom is used
as test example; see plot (a). The tomographic data, or the sinogram, of size 95-by-13 is
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(a) Original image. (b) Observed image. (c) Restored image.

Figure 7. “TVq-model” text image: restoration with α = 5× 10−4.

(a) Original image. (b) Observed image. (c) Restored image.

Figure 8. “Cameraman” image: restoration with α = 2× 10−4.

(a) Original image.
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(b) Noisy sinogram z.

(c) Restored by FBP. (d) Restored by TV. (e) Restored by TVq (q = 0.75).

Figure 9. Restoration from Radon transformed data.
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Table 6
Comparison of restoration methods in terms of PSNR and CPU time.

FBP TV TVq

PSNR 16.5321 26.7974 37.3862
CPU <0.01 1.56 2.64

obtained from applying the two-dimensional Radon transform [30] along the angles of 0, 12,
24, . . . , 180 degrees. Then white Gaussian noise of zero mean and 0.05 standard deviation
is added to the sinogram. The resulting observed data is shown in Figure 9(b). Note that
the matrix K is the discrete Radon transform of size 1235-by-4096, which indicates that the
problem is highly underdetermined.

In our experiments, we consider three candidate methods, namely the filtered back-
projection method (FBP) [30], the total variation model (TV), and the TVq-model, with
q = 0.75, proposed in this work. The corresponding restored images are displayed in Figures
9(c)–9(e), and the comparisons of the three approaches in terms of PSNR and CPU time are
given in Table 6. FBP is implemented using the MATLAB routine iradon. For both TV-
and TVq-methods, we choose the regularization parameter α = 0.001 and the initial guess
u0 = 0 and terminate the algorithm once the residual norm ‖∇fγ(u)‖ is reduced by a factor
of 10−4. It is observed that the computational cost of FBP is very low, but the associated
restoration quality is poor. The TV-method takes about 1.5 seconds and yields a much better
restoration result, but some artifacts remain. Finally, the TVq-method requires more CPU
time than the other two methods (yet less than double the CPU time of the TV-method) but
yields an almost perfect reconstruction.

5. TVq-models in function space: A partial result and a warning example. Often one
aims at studying the variational problem in its original function space setting. In our context,
the infinite dimensional version associated with (2.1) reads as

(5.1) inf
u∈H1

0 (Ω)
f(u) =

∫
Ω
F (x, u,∇u)dx =

∫
Ω

(
μ

2
|∇u|2 + α

q
|∇u|q + λ

2
|Ku− z|2

)
dx,

where α > 0, 0 < q < 1, 0 < μ � α, z ∈ L2(Ω), λ ∈ L∞(Ω) such that λ(x) > 0 a.e. on Ω
and

∫
Ω λ(x)dx = Area(Ω), and K ∈ L(L2(Ω)), a linear and continuous operator from L2(Ω)

to L2(Ω), with KχΩ �= 0.
Obviously, f is coercive; i.e., f(u) → ∞ as ‖u‖H1

0 (Ω) → ∞. Note that the integrand

F (x, u, ξ) is nonconvex in ξ. It is known [1, Theorem 2.1.3] that f is weakly lower semicon-
tinuous on H1

0 (Ω) if and only if F is convex in ξ. As a consequence, f : H1
0 (Ω) → R in (5.1)

is not weakly lower semicontinuous, a usual prerequisite for proving existence of minimizers.
Hence, the direct methods of the calculus of variations cannot be applied.

Nevertheless, there exists a minimizer for a relaxed version of problem (5.1). For this
purpose, we construct a relaxed functional by taking the bipolar [21] of F (x, u, ξ) with respect
to ξ, i.e.,

F̄ (x, u, ξ) := F ∗∗(x, u, ξ) =
{

(αsq−1
∗ + μs∗)|ξ|+ λ

2 |Ku− z|2 if |ξ| < s∗,
F (x, u, ξ) if |ξ| ≥ s∗,
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0 s
*

−s
*

Figure 10. The function s �→ μ
2
|s|2 + α

q
|s|q (in solid line) and its convex envelope (in dashed line).

where the convexity threshold s∗ is given by

s∗(q, μ, α) :=
(
α(1/q − 1)

μ/2

)1/(2−q)

;

see Figure 10 for an illustration of the convex envelope of the scalar function s �→ μ
2 |s|2 +

α
q |s|q. We define f̄(u) :=

∫
Ω F̄ (x, u,∇u)dx. It turns out that f̄ represents the weakly lower

semicontinuous envelope of f(u) under the weak H1
0 (Ω)-topology [13, p. 34], i.e.,

f̄(u) = sup{f̃(u) : f̃(u) ≤ f(u) ∀u ∈ H1
0 (Ω), f̃ is weakly lower semicontinuous on H1

0 (Ω)}.

Concerning the existence of minimizers in H1
0 (Ω) for f̄ and their relations to f , we provide

the following two theorems, which can be found in [1]; see Theorems 2.1.5 and 2.1.6 in this
reference.

Theorem 5.1 (characterization). The relaxed functional f̄ is characterized by the following
properties:

1. For every sequence (uk) that weakly converges to u in H1
0 (Ω), we have f̄(u) ≤ lim inf

f(uk).
2. For every u ∈ H1

0 (Ω), there exists a sequence (uk) that weakly converges to u in H1
0 (Ω),

and f̄(u) ≥ lim sup f(uk).
Theorem 5.2 (main properties). Suppose f : H1

0 (Ω) → R is coercive. Then the following
properties hold:

1. f̄ is coercive and weakly lower semicontinuous on H1
0 (Ω).

2. f̄ has a minimizer in H1
0 (Ω).

3. minu∈H1
0 (Ω) f̄(u) = infu∈H1

0 (Ω) f(u).

4. Every accumulation point of an infimizing sequence for f is a minimizer for f̄ under
the weak H1

0 (Ω)-topology.
5. Every minimizer for f̄ is the limit of an infimizing sequence for f under the weak

H1
0 (Ω)-topology.

In a nutshell, we associate the original nonconvex problem, for which no minimizer may
exist, with a relaxed problem, which admits the existence of a minimizer. However, the
minimizer of the relaxed problem may be far from optimal for the original problem with
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respect to the objective value. This is illustrated by the following example; see [1, p. 36] for
a related example. Note that this example shares the nonconvexity in the ξ-variable with our
TVq-model but otherwise has a different structure in the term involving the derivative.

Example 5.3. Let F (x, u, ξ) := u2 + (|ξ| − 1)2. The Bolza problem is

inf

{
f(u) :=

∫ 1

0

(
(|u′| − 1)2 + u2

)
dx : u ∈ H1

0 (0, 1)

}
.

The integrand F (x, u, ξ) is nonconvex in ξ. We claim that inf f = 0. Indeed, consider the
sequence (uk) defined by

uk(x) =

{
x− l

k if x ∈ ( l
k ,

2l+1
2k

)
−x+ l+1

k if x ∈ (2l+1
2k , l+1

k

) for l = 0, 1, 2, . . . , n− 1.

Then uk ∈ W 1,∞
0 (0, 1) such that 0 ≤ uk(x) ≤ 1

2k for all x ∈ (0, 1), and |(uk)′(x)| =

1 a.e. in (0, 1). Therefore, we have 0 ≤ infu f(u) ≤ f(uk) ≤ 1
4k2

. Thus the claim is veri-

fied. However, there exists no function u ∈ H1
0 (0, 1) such that f(u) = 0. Hence there exists

no solution to the Bolza problem.

Nevertheless, the Bolza problem can be relaxed, using the weakly lower semicontinuous
envelope of f , as follows:

min

{
f̄(u) :=

∫ 1

0

(
(max(|u′| − 1, 0))2 + u2

)
dx : u ∈ H1

0 (0, 1)

}
.

The relaxed problem admits a unique solution u∗ = 0. Obviously the set {x ∈ (0, 1) :
|(u∗)′(x)| < 1} is of positive Lebesgue measure; otherwise u∗ would be a minimizer for
infu f(u). Finally, we notice that f(u∗) = 1. This indicates that u∗ is far from optimal
for the original problem.

6. Concluding remarks. Nonconvex regularization still represents a significant analytical
as well as numerical challenge, but it appears to yield results superior to those obtained by
�1-regularization. The latter is typically chosen as the “closest” convex relaxation of �0-norm
problems. On the numerical side of this work, the proposed semismooth Newton-based solver
combines a trust-region technique for automatic stabilization whenever required due to the
involved nonconvexity. In this context and from our point of view, the result contained in
Lemma 3.3 offers an interesting extension of the available trust-region literature and is a
consequence of the structural features of the variational model under consideration. The
global as well as local superlinear convergence of our overall algorithm is obtained without
further conditions on the problem and its solutions with respect to null space properties
of the involved operators (aside from the minimal requirement for guaranteeing existence
of a solution) or specific sparsity properties of the solution. Our numerical tests support
our theoretical findings and show the effectiveness of our algorithm also in cases where K
represents the Radon transform, which typically occurs in computerized tomography (CT).
We would like to remark that the solution algorithm proposed in the present paper appears
to carry the potential for being extended to more general nonconvex variational problems
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without specific parameterizations. In addition, the algorithmic framework in this paper
can be utilized with other smoothing functions, which depend on the context of particular
applications, instead of the Huber function, without qualitative differences in performance.

In contrast to the classical convex total variation regularization according to Rudin, Osher,
and Fatemi [41], the function space analysis of the TVq-model is troubled by the nonconvexity.
This fact prevents existence of solutions in function space, in general. It is also demonstrated
that the usual way of computing envelopes of the objective under consideration and then
analyzing the enveloped problem guarantees existence, but the solution to the enveloped
problem may be far away from optimal for the original problem.

Appendix A.

Proof of Lemma 3.8.

1. Let Ck := C̃k(2 − q) in (3.11) and Ck
+ := C̃k

+(2 − q) in (3.13). For k → +∞ we have
(uk, �p k) → (u∗, �p ∗) with the latter satisfying the Euler–Lagrange equation (2.8). Further, for
all (i, j) ∈ Ω we have

|�p k
+ − �p k| ≤ |�p k|

∣∣∣∣ (mk)q−1

max((mk)q−1, |�p k|) − 1

∣∣∣∣→ |�p ∗|
∣∣∣∣ max(|∇u∗|, γ)q−1

max(max(|∇u∗|, γ)q−1, |�p ∗|) − 1

∣∣∣∣
= |�p ∗|

∣∣∣∣ max(|∇u∗|, γ)q−1

|�p ∗|max(|∇u∗|, γ)/|∇u∗| − 1

∣∣∣∣ = 0(A.1)

as k → ∞. Moreover, Ck will converge to a symmetric matrix, and therefore Ck
+ = (Ck +

(Ck)�)/2 approaches asymptotically Ck; i.e., limk→+∞ ‖Ck
+ − Ck‖ = 0. Thus, due to the

structures of Hk and Hk
+, we have limk→+∞ ‖Hk

+ −Hk‖ = 0.

Finally, as (uk, �p k) → (u∗, �p ∗), it is easy to see that both Hk and ∇2
Bfγ(u

k) converge to
∇2

Bfγ(u
∗), which yields limk→+∞ ‖Hk − ∇2

Bfγ(u
k)‖ = 0. Thus we conclude that limk→+∞

‖Hk
+ −∇2

Bfγ(u
k)‖ = 0 as desired.

2. Our proof again utilizes the reordered system as in Lemma 3.1. In view of the definition
of Rk

+,ε (see (3.20)) and the structure of Rk
+ (see (3.15)), it suffices to show that for all

(i, j) ∈ Ω, the minimal eigenvalue of the 2-by-2 block

(A.2) χAk(mk)−2

[
(�p k

+)x∇xu
k 1

2 ((�p
k
+)x∇yu

k + (�p k
+)y∇xu

k)
1
2 ((�p

k
+)x∇yu

k + (�p k
+)y∇xu

k) (�p k
+)y∇yu

k

]

goes to zero as k → +∞. The characteristic equation of the 2-by-2 block (A.2) without the
factor χAk is given by

t2 − (mk)−2((�p k
+)x∇xu

k + (�p k
+)y∇yu

k)t

+ (mk)−4

(
(�p k

+)x∇xu
k(�p k

+)y∇yu
k − 1

4
|(�p k

+)x∇yu
k + (�p k

+)y∇xu
k|2
)

= 0.

Note that due to (A.1) we have limk→+∞ �p k
+ = �p ∗ such that (u∗, �p ∗) satisfies (2.8). Therefore,
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as k → +∞, we have

(mk)−4

(
(�p k

+)x∇xu
k(�p k

+)y∇yu
k − 1

4
|(�p k

+)x∇yu
k + (�p k

+)y∇xu
k|2
)

=− (mk)−4

4

[
|(�p k

+)x∇yu
k|2 + |(�p k

+)y∇xu
k|2 − 2(�p k

+)x(�p
k
+)y∇xu

k∇yu
k
]

=
(mk)−4

4

[
|�p k

+|2|∇uk|2 − |(�p k
+)x∇xu

k + (�p k
+)y∇yu

k|2
]
→ 0(A.3)

and

(A.4) (mk)−2((�p k
+)x∇xu

k + (�p k
+)y∇yu

k) → max(|∇u∗|, γ)q−4|∇u∗|2 > 0.

From (A.3) and (A.4), we conclude that the minimal eigenvalue of the 2-by-2 block (A.2)
without the factor χAk goes to zero as k → +∞. Moreover, since (χAk) is uniformly bounded,
the minimal eigenvalue of (A.2) goes to zero as (uk, �p k) → (u∗, �p ∗), which completes the
proof.

Proof of Lemma 3.9. By our assumption, the definiteness condition (3.34) is automati-
cally satisfied. In the case where steps 9–11 of Algorithm 3.6 are active, the inner iterations
terminate with a modified σk such that conditions (3.32)–(3.33) are satisfied. Hence, in what
follows we assume that steps 9–11 are inactive all along the sequence (βk

l , d
k
l )l∈N.

We define the function φ : [0, βmax] → R by

φ(β) = β +
((Hk

+ + βRk
+,ε)

−1gk)�Rk
+,ε(H

k
+ + βRk

+,ε)
−1gk − (σk)2

2c
.

Then by eliminating dk by dk = −(Hk
+ + βkRk

+,ε)
−1gk in step 12 of Algorithm 3.6, we have

the update rule (steps 12–13) as follows:

βk
l+1 = max

(
min

(
φ(βk

l ), βmax

)
, 0
)
.

Note that φ is continuously differentiable, and its derivative is given by

φ′(β) = 1− 1

c
(gk)�(Hk

+ + βRk
+,ε)

−1(Rk
+,ε(H

k
+ + βRk

+,ε)
−1)2gk.

It follows from our assumptions that∣∣∣∣1c (gk)�(Hk
+ + βRk

+,ε)
−1(Rk

+,ε(H
k
+ + βRk

+,ε)
−1)2gk

∣∣∣∣ ≤ (λmax(R
k
+,ε))

2‖gk‖2
cλmin(Hk

+ + βRk
+,ε)

3

≤ (λmax(R
k
+,ε))

2‖gk‖2
c(λmin(Hk

+))
3

< 1.

By the above inequality and the mean value theorem, there exists a constant C ∈ (0, 1) such
that, for any β1, β2 ∈ [0, βmax],

|φ(β1)− φ(β2)| ≤ |β1 − β2| sup
β∈[0,βmax]

|φ′(β)| ≤ C|β1 − β2|;
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i.e., φ is a contractive mapping. As a consequence, the mapping β �→ max (min (φ(β), βmax) , 0)
is also contractive. Thus by the Banach fixed-point theorem (see, e.g., [46, Theorem 1.A]),
we have βk

l → βk∗ as l → +∞ for some βk∗ ∈ [0, βmax]. Accordingly, dkl → dk∗ = −(Hk
+ +

βk∗Rk
+,ε)

−1gk as l → +∞. Moreover, (βk∗ , dk∗) satisfies (3.32)–(3.33), which completes the
proof.
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