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Abstract. A novel class of variational models with nonconvex �q-norm-
type regularizations (0 < q < 1) is considered, which typically out-
performs popular models with convex regularizations in restoring sparse
images. Due to the fact that the objective function is nonconvex and non-
Lipschitz, such models are very challenging from an analytical as well as
numerical point of view. In this work a smoothing descent method with
provable convergence properties is proposed for computing stationary
points of the underlying variational problem. Numerical experiments are
reported to illustrate the effectiveness of the new method.

1 Introduction

In signal or image recovery from sparse data, it has been observed that models
based on nonconvex regularization typically outperform convex ones. In partic-
ular, variational models relying on �q-norm-type regularization with q ∈ (0, 1)
are of interest [3,9,16]. Due to the particular choice of q, the associated func-
tional ‖v‖q

q :=
∑

i |vi|q turns out to be nonconvex, nondifferentiable and not even
locally Lipschitz continuous, and it is not a norm in the usual sense. These prop-
erties imply several challenges from an analytical as well as numerical point of
view in the treatment of such problems. In fact, analytically generalized deriv-
ative concepts are challenged [7] and, thus, the first-order optimality descrip-
tion becomes an issue. Concerning the numerical solution of general nonsmooth
minimization problems, we mention that while convex problems are rather well
understood [13,14,19] nonconvex ones are still challenging [1,14]. For nonconvex
and non-locally-Lipschitz problems, the literature on methods based on gen-
eralized derivatives is rather scarce. However, taking the particular format of
the underlying nonsmoothness into account and possibly applying tailored (van-
ishing) smoothing concepts, in [4,6,9,12,15,16] solvers of the associated mini-
mization problems in sparse signal or image recovery were developed recently.
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In view of these references, we note that [6,15] requires conditions for the success-
ful analysis which ultimately rule out the �q-norm-type regularization, [9] needs
a sparsity assumption, and [4] provides a method based on Bergman iterations
and specific shrinkage-procedures, but does not include a convergence analysis.
In [12] a regularized nonsmooth Newton technique is proposed which relies on
some kind of local smoothing.

Motivated by smoothing methods (see for example [6]), in this work, for solv-
ing the problem (1) below, we present a descent algorithm combining a Huber-
type smoothing (which we call Huberization in the sequel) with elements of the
nonsmooth Newton solver from [12]. In fact, the smoothing method provides a
mechanism which allows us to drive the Huber-type smoothing of the �q-norm to
zero, thus, genuinely approaching, along a subsequence, a stationary point of the
�q-norm-type problem. From the gradient of the Huberized objective, a suitable
descent direction for that objective is computed by the so-called R-regularized
nonsmooth Newton method [12]. By this procedure, a variable-metric-type scal-
ing is applied to the steepest descent direction, thus, improving the convergence
behavior of the overall method. Moreover, convergence of the algorithmic scheme
towards a stationary point of (1) is established.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
nonconvex TVq-model in finite dimension and establish the existence of a solu-
tion and the necessary optimality condition. A smoothing descent method and
its convergence analysis are presented in Sect. 3. Finally, the proposed method
is implemented for various image processing tasks and the results are reported
in Sect. 4.

2 Nonconvex TVq-Model

The nonconvex TVq-model considered in this paper is formulated as follows:

min
u∈R|Ω|

f(u) :=
∑

(i,j)∈Ω

(
μ

2
|(∇u)ij |2 +

α

q
|(∇u)ij |q +

1
2
|(Ku − z)ij |2

)

. (1)

Here, Ω is a two-dimensional discrete image domain with |Ω| being the number
of pixels in Ω, u ∈ R

|Ω| represents the digital image which is to be reconstructed
from observed data z ∈ R

|Ω|, ∇ ∈ R
2|Ω|×|Ω| is the gradient operator, |(∇u)ij |

denotes the Euclidean norm of (∇u)ij in R
2, K ∈ R

|Ω|×|Ω| is a continuous linear
operator (which, for instance, might describe blurring), and α > 0, 0 < q <
1, 0 < μ � α are user-chosen regularization parameters. In particular, if q = 1
and μ = 0, then (1) corresponds to the conventional (convex) total variation
(TV-) model according to Rudin, Osher and Fatemi [18].

Throughout this paper, we shall assume that

Ker∇ ∩ KerK = {0}. (2)

Under the condition (2), the existence of a solution of (1) is guaranteed by the
following theorem. Its proof can be found in [12].
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Theorem 1 (Existence of Solution). There exists a global minimizer for the
variational problem (1).

Note that due to the presence of the power-q term the objective f in (1) is not
even locally Lipschitz continuous. This causes difficulties when using the Clarke
generalized gradient of f [7] for describing stationarity of a point u. However,
distinguishing smooth and nonsmooth regions of f through the norm of the
gradient of u, stationary points of (1) can still be characterized by the following
Euler-Lagrange-type system:

{
−μΔu + K�(Ku − z) + α∇�(|∇u|q−2∇u) = 0, if (∇u)ij �= 0;
∇u = 0, otherwise.

(3)

The disjunctive nature of the above system, which is due to the nonsmoothness of
f , causes severe difficulties in the design of solution algorithms. In the following,
we propose a smoothing descent method, which generates a sequence that has
an accumulation point satisfying (3).

3 Smoothing Descent Method

The smoothing descent method proceeds iteratively as follows. In each iteration,
the TVq-objective is smoothed locally around the nondifferentiability by a Huber
function which is controlled through the parameter γ > 0. The Huber function
reads

ϕγ(s) :=

{
1
q sq − ( 1

q − 1
2 )γq, if s > γ,

1
2γq−2s2, if 0 ≤ s ≤ γ,

and the associated Huberized version of (1) is given by

min
u∈R|Ω|

fγ(u) :=
∑

(i,j)∈Ω

(
μ

2
|(∇u)ij |2 + αϕγ(|(∇u)ij |) +

1
2
|(Ku − z)ij |2

)

. (4)

The corresponding Huberized Euler-Lagrange equation is

∇fγ(u) = −μΔu + K�(Ku − z) + α∇� (
max(|∇u|, γ)q−2∇u

)
= 0. (5)

Here the max-operation is understood in a componentwise sense.
Clearly, the Huberized objective fγ is continuously differentiable and bounded

from below. Therefore, (4) can be solved by well-known standard solvers for
smooth minimization problems; see, e.g., [17]. In this work, however, we utilize
a tailored approach by employing the so-called R-regularized Newton scheme
which was very recently proposed in [12]. In order to globalize the Newton iter-
ation, a backtracking Armijo line search is used which is particularly tuned to
the structure of the problem of interest.
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For completeness, we provide a self-contained introduction of the R-
regularized Newton method in the appendix. Essentially, this method is a gener-
alization of the lagged-diffusivity fixed-point iteration [2,5,20], which alleviates
diffusion nonlinearity by using information from the previous iterate. Moreover,
with the aid of the infeasible Newton technique [11], a sufficient condition can
be derived for obtaining a descent direction in each iteration; see Theorem 5
in the appendix. The descent property is important for the Armijo-based line
search globalization; see [17] and the references therein for a general account of
Armijo’s line search rule.

When (4) is solved with sufficient accuracy, for instance with respect to the
residual norm ‖fγk(uk+1)‖, then the Huber parameter is reduced and the current
solution serves as the initial guess for solving the next Huberized problem. The
resulting overall algorithmic scheme is specified next.

Algorithm 1. Smoothing descent method.
Choose 0 < τ < 1, 0 < θ < 1, ρ > 0, γ̄ > 0. Then iterate as follows:

1. Compute a descent direction δuk for fγk at uk, i.e. ∇fγk(uk)�δuk < 0, for the
Huberized problem (4) by the R-regularized Newton method..

2. Perform an Armijo line search, i.e. determine the size ak > 0 such that

fγk(uk + akδuk) ≤ fγk (uk) + τak∇fγk (uk)�δuk, (6)

and set uk+1 := uk + akδuk.
3. If ‖∇fγk(uk+1)‖ ≥ ργk, then set γk+1 := γk; otherwise, set γk+1 := θγk.

4. If γk ≥ γ̄, then set k := k + 1 and return to step 1; otherwise stop.

In our experiments, we shall always fix the parameters τ = 0.1, θ = 0.8, ρ = 0.1.
Next we present the convergence analysis for the smoothing descent method.

For this purpose, we take γ̄ = 0.

Lemma 2. The sequence generated by Algorithm 3 satisfies

lim
k→∞

γk = 0, and lim inf
k→∞

‖∇fγk(uk+1)‖ = 0.

Proof. Define the index set

K := {k : γk+1 = θγk}. (7)

If K is finite, then there exists some k̄ such that for all k > k̄ we have γk = γk̄

and ‖∇fγk(uk+1)‖ ≥ ργk̄. This contradicts the fact that the first-order method
with Armijo line search for solving the smooth problem minu fγk̄(u) generates a
sequence (uk) such that lim infk→∞ ‖∇fγk̄(uk)‖ = 0, cf. [10]. Thus, K is infinite
and limk→∞ γk = 0. Moreover, let K = (kl)∞

l=1 with k1 < k2 < ..., then we have
‖∇fγkl (ukl+1)‖ ≤ ργkl → 0 as l → ∞. Hence, lim infk→∞ ‖∇fγk(uk+1)‖ = 0.
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Theorem 3. Assume that the sequence (uk) generated by Algorithm 3 is
bounded. Then there exists an accumulation point u∗ of (uk) such that u∗ ∈ R

|Ω|

satisfies the Euler-Lagrange Eq. (3).

Proof. In view of the result in Lemma 2, there exists a subsequence of (uk),
say (uk′

), such that limk′→∞ ‖∇fγk′−1(uk′
)‖ = 0. Since (uk′

) is bounded, by
compactness there exists a subsequence of (uk′

), say (uk′′
), such that (uk′′

)
converges to some u∗ as k′′ → ∞. We show that u∗ is a solution to (3). On the
set {(i, j) ∈ Ω : (∇u∗)ij = 0}, the conclusion follows automatically. On the set
{(i, j) ∈ Ω : (∇u∗)ij �= 0}, we have that max(|∇uk′′ |, γk′′−1) → |∇u∗| > 0 as
k′′ → ∞. Therefore, it follows from

|∇f(u∗)| ≤ |∇fγk′′−1(uk′′
) − ∇f(u∗)| + |∇fγk′′−1(uk′′

)| → 0, (8)

that u∗ satisfies (3).

4 Numerical Experiments

In this section, we report on numerical results obtained by our algorithm for
various tasks in TVq-model based image restoration. The experiments are per-
formed under MATLAB R2009b on a 2.66 GHz Intel Core Laptop with 4 GB
RAM.

4.1 Denoising

We first test our algorithm on denoising the “Two Circles” image; see Fig. 1. This
image, shown in plot (a), is degraded by zero-mean white Gaussian noise of 7 %
and 14 % standard deviation respectively; see plots (b) and (c). The parameters
q = 0.75, μ = 0 are used in this example. The restored images of two different
noisy images are given in plots (d) and (e). In the following, we use the data set
in (b) to investigate the numerical behavior of Algorithm 3 in details.

Robustness to Initialization. Note that our algorithm is intended to find
a stationary point of the TVq-model (which is often a local minimizer in our
numerical experiments). It is worthwhile to check the quality of such local solu-
tions. In Fig. 2, we implement the algorithm starting from three different choices
of initializations; see the first row. The corresponding restored images are shown
in the second row, which are visually indistinguishable. The energy values of the
restorations in (e), (f), (g), (h) are equal to 29.4488, 29.4499, 29.4497, 29.4594,
respectively, which also indicates that the restorations have small differences in
quality. We remark that choosing a relatively large initial Huber parameter γ0 in
general strengthens the robustness of the algorithm against poor initializations.

Choice of Stopping Criteria. As the stopping criteria (step 4) of Algorithm 3
depends on γ̄, here we suggest an empirical way based on the histogram for
choosing a proper γ̄ in an a posteriori way. As we know, the TVq-model tends
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(a) (b) (c)

(d) (e)

Fig. 1. Denoising: (a) “Two Circles” image. (b) Corrupted with 7 % Gaussian noise.
(c) Corrupted with 14 % Gaussian noise. (d) Restoration of (b) with α = 0.05.
(e) Restoration of (c) with α = 0.12.

to promote a solution with very sparse histogram. This is numerically confirmed
by the histogram plots in Fig. 3. Therefore, it is reasonable to terminate the
algorithm once there is no longer significant change in the sparsity pattern of
the histogram. In our particular example, this suggests that γ̄ = 10−4 is a proper
choice. The same choice of γ̄ will be used in all the following experiments.

Miscellaneous Numerical Behavior. We further demonstrate the numerical
behavior of the algorithm in Fig. 4. All data points in the plots are taken from
those iterations with k ∈ K; see (7) for the definition of K. As γk decreases, our
algorithm is well behaved in terms of objective value, PSNR, and residual norm.
Qualitatively a similar numerical behavior is observed in the experiments that
follow.

4.2 Deblurring

In Fig. 5 we test our algorithm in the context of deblurring the 256-by-256
phantom image depicted in plot (a). The original image is blurred by a two-
dimensional truncated Gaussian kernel yielding



A Smoothing Descent Method for Nonconvex TVq-Models 125

(Ku)ij =
∑

|i′|≤3, |j′|≤3

exp
(

−|i′|2 + |j′|2
2|σK |2

)

ui−i′,j−j′ .

Then white Gaussian noise of zero mean and 0.05 standard deviation is added to
the blurred image; see (b). We apply our algorithm with q = 0.75, α = 0.01, μ =
10−6, and u0 = z. In plot (c) the restored image is shown. Its PSNR-value is
27.6672.

4.3 Compressed Sensing

We also apply our algorithm to a k-space compressed sensing problem; see Fig. 6.
The observed data z is constructed as follows: z = SFutrue, where F is the 2D
discrete Fourier transform and S is a 20 % k-space random sampling matrix. We
reconstruct the image by solving our TVq-model with q = 0.75, α = 0.001, μ =
10−6, and u0 = 0. The corresponding restored image is shown in (e). This result
is compared with the reconstruction obtained from the inverse Fourier transform
in (c) and the reconstruction obtained from the TV-model in (d) with q = 1, α =
0.02, μ = 10−6. In our implementation of the TV-model, α is chosen in order to
obtain an image with optimal PSNR. The (convex) TV-model, here as well as in
Sect. 4.4, is solved by a primal-dual Newton method [11] with Huber parameter γ̄.
We remark that many other algorithms in the literature may also work efficiently
in the same context. In the left part of Table 1, we provide the comparison of the
three candidate methods with respect to PSNR and CPU time. It is observed

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Initialization test: (a) Observed image as initial guess. (b) Tikhonov regularized
image as initial guess. (c) Rotated image as initial guess (d) Random initial guess.
(e), (f), (g), and (h) are the restorations from (a), (b), (c), and (d) respectively.
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(f) γk ≈ 10−5.

Fig. 3. Histogram of uk+1 (k ∈ K).
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Fig. 4. Numerical behavior (k ∈ K): (a) TVq-energy f(uk+1). (b) PSNR(uk+1).
(c) Residual norm ‖∇fγk (uk+1)‖.

that the inverse Fourier transform is computationally cheap but only yields a
poor result. The TV method takes about 6 seconds but still cannot recover the
image to fine details. Our TVq method takes about double the CPU time of TV
and provides an almost perfect reconstruction.

4.4 Integral-Geometry Tomography

In Fig. 7, we apply our algorithm to integral-geometry tomography. The given
data z in (b), also known as the sinogram, is constructed by taking the 2D Radon
transform of the underlying image every 15 degrees (out of 180 degrees). The
matrix K in this example is a discrete Radon transform of size 1235-by-4096.
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(a) (b) (c)

Fig. 5. Deblurring: (a) 256-by-256 Phantom. (b) Noisy blurred image; PSNR=21.7276.
(c) Restored image; PSNR=27.6672.

(a) (b)

(c) (d) (e)

Fig. 6. Compressed sensing: (a) 64-by-64 Phantom. (b) 20 % k-space random sampling.
(c) Direct reconstruction by FFT. (d) Reconstruction by TV-model. (e) Reconstruction
by TVq-model.

We utilize our TVq-model with q = 0.75, α = 0.001, μ = 10−6, and u0 = 0.
The restoration is shown in plot (e). This result clearly is superior to the one
shown in plot (c), which is obtained by filtered backprojection, and the one
shown in plot (d), which is obtained from the TV-model with q = 1, α = 0.02,
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Fig. 7. Integral-geometry tomography: (a) 64-by-64 Phantom. (b) Sinogram. (c) Recon-
struction by filtered backprojection. (d) Reconstruction by TV-model. (e) Reconstruc-
tion by TVq-model.

μ = 10−6. In our implementation of the TV-model, α is chosen in order to obtain
an image with optimal PSNR. In the right part of Table 1, we again compare the
three candidate methods with respect to PSNR and CPU time. Similar to the
compression sensing example, the TVq method costs more CPU time than the
other two methods (but still less than double the CPU time of the TV method)
but yields an almost perfect reconstruction.

4.5 Reconstruction of Multi-coil MRI Raw Data

We now extend the methodology to magnetic resonance imaging (MRI), by con-
sidering the following model:

min
u∈R|Ω|

1
2

L∑

l=1

‖Klu − zl‖2 +
∑

(i,j)∈Ω

αg

q
|(∇u)ij |q +

∑

(i′,j′)∈Ξ

αw

q
|(Wu)i′j′ |q, (9)

with Kl := PF (σlu). Here αg and αw are two positive parameters, L is the num-
ber of coils of the MRI machine, (zl) denote the raw data collected by each coil,
(σl) are the given (or precomputed) coil sensitivities, F is the two-dimensional
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Table 1. Comparison with respect to PSNR and CPU time (in seconds).

Compressed sensing Integral-geometry tomography

IFT TV TVq FBP TV TVq

PSNR 13.68 25.74 44.48 PSNR 15.14 23.18 51.26
CPU �1 6.68 12.72 CPU �1 3.82 7.27

discrete Fourier transform, and P represents some given radial projection oper-
ator in the k-space. Moreover, W : R|Ω| → R

|Ξ| is a user-chosen transform, typ-
ically a 2D discrete wavelet transform, and Ξ denotes the wavelet transformed
domain.

Note that in addition to the TVq regularization, we include the �q-norm of
wavelet coefficients in the regularization in order to allow the reconstruction to
be richer than patchwise constant images. Nevertheless, our algorithm presented
in this paper can be extended without agonizing pain to the problem (9).

Indeed, as a straightforward extension of Theorem 1, the solution of (9) exists
provided that Ker∇∩KerW ∩(∩L

l=1KerKl) = {0}. The Euler-Lagrange equation
for (9) appears as
⎧
⎪⎨

⎪⎩

αg∇�pg + αwW�pw +
∑L

l=1 K�
l (Klu − zl) = 0,

(pg)ij = |(∇u)ij |q−2(∇u)ij , if (i, j) ∈ Ω ∧ (∇u)ij �= 0,

(pw)i′j′ = |(Wu)(i′,j′)|q−2(Wu)i′j′ , if (i′, j′) ∈ Ξ ∧ (Wu)i′j′ �= 0.

The associated Huberized problem can be analogously formulated as

min
u∈R|Ω|

1
2

L∑

l=1

‖Klu − zl‖2 + αg

∑

(i,j)∈Ω

ϕγ(|(∇u)ij |) + αw

∑

(i′,j′)∈Ξ

ϕγ(|(Wu)i′j′ |),

and the corresponding Huberized Euler-Lagrange equation is given by

αg∇�(max(|∇u|, γ)q−2∇u)+αwW�(max(|Wu|, γ)q−2Wu)+
L∑

l=1

K�
l (Klu−zl)= 0.

We shall not go into further details but remark that the R-regularized method
in the appendix can be used to solve the above smooth problem by treating the
gradient term and the wavelet term independently. Thus, Algorithm 3 can be
implemented.

In this experiment, the MRI data are collected from four coils, i.e. L =
4. We choose q = 0.75, αg = 10−5, αw = 2 × 10−5, and W to be the 4th-
order Daubechies wavelet transform [8]. The reconstructed images using various
numbers of radial projections are shown in Fig. 8. Depending on the resolution
(or detail) desired by practitioners, our method helps to reduce the necessary
number of k-space samples and therefore to speed up the overall MRI data
acquisition.
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(a) 96 radial projections. (b) 48 radial projections. (c) 32 radial projections.

(d) 24 radial projections. (e) 16 radial projections. (f) 12 radial projections.

Fig. 8. Reconstruction of four-coil MRI raw data.

Appendix: R-Regularized Newton Method

Here we provide a brief and self-contained description of the R-regularized New-
ton method. The interested readers can find more details in the recent work [12].

A regularized-Newton-type structure generically arises in the classical lagged-
diffusivity fixed-point iteration [20]. Let uk be our current iterate in solving the
Huberized problem (4). By introducing a lagged-diffusivity weight

wk := max(|∇uk|, γ)q+r−2,

and a dual variable
p := wk max(|∇u|, γ)−r∇u,

with 0 ≤ r ≤ 2 − q, the reweighted Euler-Lagrange Eq. (5) appears as
{−μΔu + K�(Ku − z) + α∇�p = 0,

(wk)−1 max(|∇u|, γ)rp = ∇u.
(10)

Given a current approximation (uk, pk), we apply a generalized linearization to
(10) and obtain the generalized Newton system
[−μΔ + K�K α∇�,

−C̃k(r)∇ D((mk)2−qe)

] [
δuk

δpk

]

=
[

μΔuk − K�(Kuk − z) − α∇�pk

∇uk − (mk)2−qpk

]

,
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where

mk := max(|∇uk|, γ),

(χAk)ij :=
{

1, if |(∇uk)ij | > γ,
0, otherwise,

C̃k(r) := I − rD(χAk(mk)−qpk)
[

D(∇xuk) D(∇yuk)
D(∇xuk) D(∇yuk)

]

.

Here D(v) denotes a diagonal matrix with the vector v as diagonal entries. For
v ∈ R

|Ω| and p = (p1, p2) ∈ R
2|Ω|, the notation vp is understood as a vector in

R
2|Ω| such that (vp)ij = (vijp

1
ij , vijp

2
ij) for all (i, j) ∈ Ω.

After eliminating δpk, we are left with the linear system

H̃k(r)δuk = −∇fγ(uk), (11)

where

H̃k(r) := −μΔ + K�K + α∇�D((mk)q−2e)C̃k(r)∇.

The Newton system (11) can be rewritten as

(Hk + βRk)δuk = −∇fγ(uk), (12)

with β = 2−q−r, where Hk := H̃k(2−q) is the Hessian from the non-reweighted
primal-dual Newton method [11,20], and

Rk := α∇�D(χAk(mk)−2pk)
[

D(∇xuk) D(∇yuk)
D(∇xuk) D(∇yuk)

]

∇.

serves as a regularizer on the Hessian Hk. This coins the name R-regularization
in connection with Newton’s method.

Next we aim to establish a sufficient condition on the R-regularization weight
β in order to guarantee that H̃k(r) is positive definite and, therefore, δuk is a
descent direction for fγ at uk. For this purpose we invoke an infeasible Newton
technique [11,12].

The infeasible Newton technique involves two modifications in constructing
the system matrix H̃k(r). First, we replace pk by pk

+, where

pk
+ :=

χAk(mk)q−1pk

max((mk)q−1, |pk|) + (1 − χAk)pk.

Note that the modified pk
+ satisfies its feasibility condition, i.e.

|(pk
+)ij | ≤ |(∇uk)ij |q−1, whenever |(∇uk)ij | > γ. (13)

Secondly, we replace C̃k(r) by its symmetrization denoted by C̃k
+(r), i.e.

C̃k
+(r) :=

C̃k(r) + C̃k(r)�

2
=I − rD(χAk(mk)−q)·

·
[

D((pk
+)x∇xuk) D( 1

2 ((pk
+)x∇yuk + (pk

+)y∇xuk))
D( 1

2 ((pk
+)x∇yuk + (pk

+)y∇xuk)) D((pk
+)y∇yuk)

]

.
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Accordingly, the system matrix Hk in (12) is replaced by Hk
+ with

Hk
+ := −μΔ + K�K + α∇�D((mk)q−2e)C̃k

+(2 − q)∇,

and the regularizer Rk is replaced by Rk
+ with

Rk
+ :=α∇�D(χAk(mk)−2)·

·
[

D((pk
+)x∇xuk) D( 1

2 ((pk
+)x∇yuk + (pk

+)y∇xuk))
D( 1

2 ((pk
+)x∇yuk + (pk

+)y∇xuk)) D((pk
+)y∇yuk)

]

∇.

Lemma 4. Let 0 ≤ r ≤ 1 (or equivalently 1 − q ≤ β ≤ 2 − q) and the feasibility
condition (13) hold true. Then the matrix C̃k

+(r) is positive semidefinite.

The proof of Lemma 4 is given in [12]. Thus, the positive definiteness of the
R-regularized Hessian Hk

+ + βRk
+ follows immediately from its structure and

Lemma 4.

Theorem 5. Suppose the assumptions of Lemma 4 are satisfied. Then the
R-regularized Hessian Hk

+ + βRk
+ is positive definite.

We remark that our choice of μ is related to Theorem 6. Under the condition
(2), for any positive μ the matrix −μΔ+K�K is positive definite, and therefore
Theorem 6 follows. However, whenever K is injective the same conclusion holds
with μ = 0. This is why we are allowed to choose μ = 0 in the denoising example
in Sect. 4.1.

Given the result in Theorem 5, the descent direction δuk in the R-regularized
Newton method implemented in step 1 of Algorithm 3 can be now obtained by
solving the linear system

(Hk
+ + βRk

+)δuk = −∇fγ(uk),

with 1 − q ≤ β ≤ 2 − q. Given δuk, one can compute δpk as

δpk = (mk)q−2(∇uk + C̃k(r)∇δuk) − pk,

and then update uk+1 := uk + akδuk and pk+1 := pk + akδpk with some step
size ak determined by the Armijo line search as in step 2 of Algorithm 3.

In all experiments in Sect. 4, we consistently choose β = 1 − q. This choice
has the interesting interpretation that we actually relax the TVq-model to a
weighted TV-model (with weight updating in the outer iterations); see [12].
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