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Abstract

Robust principal component pursuit (RPCP) refers to a decomposition of a data matrix
into a low-rank component and a sparse component. In this work, instead of invoking a
convex-relaxation model based on the nuclear norm and the `1-norm as is typically done
in this context, RPCP is solved by considering a least-squares problem subject to rank
and cardinality constraints. An inexact alternating minimization scheme, with guaranteed
global convergence, is employed to solve the resulting constrained minimization problem. In
particular, the low-rank matrix subproblem is resolved inexactly by a tailored Riemannian
optimization technique, which favorably avoids singular value decompositions in full dimen-
sion. For the overall method, a corresponding q-linear convergence theory is established.
The numerical experiments show that the newly proposed method compares competitively
with a popular convex-relaxation based approach.

Keywords: Matrix decomposition, low-rank matrix, sparse matrix, image processing, alternating
minimization, Riemannian manifold, optimization on manifolds.
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1 Introduction

A typical approach in understanding big and complex data in many different application areas
utilizes data decomposition additively splitting the given data into several components of respec-
tive low complexity. For this purpose, robust principal component pursuit (RPCP), introduced
in [10], aims at recovering a low-rank component and a sparse component from a possibly noisy
data matrix. The low-rank component often refers to a certain intrinsically low dimensional
pattern in the data, while the sparse component corresponds to either grossly corrupted mea-
surements or pattern-irrelevant data. In this sense, RPCP is more robust in practice than the
classical principal component analysis. The RPCP and its variants have found various promising
applications, particularly in image and signal processing; e.g. video surveillance [10], face recog-
nition [17], texture modeling [35], video inpainting [16], audio separation [15], latent semantic
indexing [25], etc.

Concerning the numerical solution of RPCP in the large-scale setting, a popular approach
[10, 12] is to solve a “relaxed” convex program, where the rank functional is relaxed by the nuclear
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norm, i.e. the sum of the singular values, and the cardinality function is relaxed by the `1-norm,
i.e. the sum of all entries in absolute values. In [10], it was proven that the convex-relaxation
model provides the exact recovery with dominating probability given some mild assumptions
on the underlying low-rank and sparse components. A somewhat more deterministic argument
can be found in [12], where a sufficient condition for exact recovery, based on the notion of
rank-sparsity incoherence, is invoked. This condition holds true with high probability for ran-
dom low-rank and sparse components. Based on the convex-relaxation formulation, for the
numerical solution of the associated minimization problem an augmented Lagrangian method
(ALM) is utilized in [10]. A related work on ALM, improving efficiency of the method and ex-
panding its scope with respect to applications, can be found in [31]. A list of works concerning
numerical solvers relevant to the convex-relaxation approach is contained in [2]. Typically, at
each iteration such solvers involve the computation of a singular value decomposition (SVD) in
full dimension, which becomes highly expensive in large-scale applications. Acceleration of this
SVD step can be possibly done via a Lancoz-based partial SVD technique (see, e.g., [3] for an
efficient implementation under Matlab) as suggested in [9, 31], but its practical efficiency largely
relies on the properties of the target matrix of the SVD such as relatively low rank and/or fast
matrix-vector multiplication. Finally, besides the convex-relaxtion based approaches, we also
mention a (nonconvex) factorization-based augmented Lagrangian alternating direction method
for RPCP [34], for which an online code is available [1].

In this paper, we solve RPCP by formulating a (regularized) least-squares problem with rank
and cardinality constraints; see (1) below. Then an alternating minimization scheme (AMS) is
employed to seek a stationary point which satisfies the first-order necessary optimality condi-
tion. If each subproblem in AMS is solved exactly by global minimization (i.e. metric projection)
along the iterations, then AMS essentially becomes a heuristic method of (generalized) alter-
nating projection onto manifolds (see the Appendix and also [21]), which is known to be locally
convergent for transversal manifolds. However, the convergence of this alternating projection
method can be possibly spoiled by defective initial guesses, which calls upon proper globalization
(or safeguard) strategies on AMS.

For this sake, we propose a general framework sufficient for AMS to converge globally, which
is then activated algorithmically. In particular, the low-rank subproblem is solved inexactly by
a Riemannian (manifold) optimization step such that SVDs in full dimension can be favorably
avoided. We point out that Riemannian optimization is an active research area in its own right;
see [5] and the references therein for an introduction on the subject and [8] for a miscellaneous
toolbox available online. Concerning the applications of Riemannian optimization related to
low-rank matrices, we refer to [18, 19, 29, 7, 24, 33] among other references which appeared
very recently. Nevertheless, most of these papers, if not all, address the context of low-rank
matrix completion [11] rather than RPCP, i.e. the sparse component is of no concern. In the
present work, however, we include such a sparse component (in addition to the low-rank part) by
embedding a tailored Riemannian optimization technique, namely the projected dogleg step, into
the overall AMS. A q-linear convergence theory is established from the perspective of an inexact
Newton method on the underlying matrix manifold. For the implementation of AMS, we also
propose a heuristic trimming procedure which performs a proper tuning of the underlying rank
and cardinality constraints. This procedure aims at automatically identifying the appropriate
rank and sparsity of the two target components within the given data.

The remainder of the paper is organized as follows. In section 2, we formulate our variational
model for RPCP and investigate the existence of a solution as well as the first-order optimality
condition. The overall AMS and its convergence analysis are presented in detail in section 3.
Section 4 concludes the paper with a series of numerical experiments on the proposed method,

2



including a comparison with a currently state-of-the-art augmented Lagrangian method.

2 Robust principal component pursuit

Let the observed data Z be composed in the following way:

Z = Atrue +Btrue +N,

where Atrue ∈ M(r) = {A ∈ Rm×n : rank(A) ≤ r}, Btrue ∈ N (s) = {B ∈ Rm×n : ‖B‖0 ≤ s},
and N is an m-by-n matrix of white Gaussian noise. Moreover, ‖ · ‖0 denotes the number of
nonzero entries of a matrix. In what follows, we omit the arguments r and s whenever their values
stay constant in the context. Let the inner product 〈·, ·〉 be defined as 〈A,B〉 = trace(A>B) for
any A,B ∈ Rm×n and ‖ · ‖ be the Frobenius norm. Throughout this paper, we assume that r
and s are natural numbers such that r � n ≤ m and s� mn.

Our goal is to recover the matrices Atrue and Btrue by solving the following optimization
problem:

minimize f(A,B) =
1

2
‖A+B − Z‖2 +

µ

2
‖A‖2,

subject to (A,B) ∈M×N .
(1)

Note that a quadratic regularization on A with 0 < µ � 1 is introduced into the objective in
order to enforce the existence of solution, as provided by the following theorem.

Theorem 2.1. The variational problem (1) admits a global minimizer.

Proof. Let (Ak, Bk) ∈M×N form an infimizing sequence for (1), i.e.

lim
k→∞

f(Ak, Bk) = inf
(A,B)∈M×N

f(A,B).

Since f is bounded from below and coercive with respect to A and A + B (i.e. f(A,B) → ∞
if either ‖A‖ → ∞ or ‖A + B‖ → ∞), the sequences {Ak} and {Ak + Bk} are both uniformly
bounded and, therefore, {Bk} is also uniformly bounded. By compactness, {(Ak, Bk)} admits
an accumulation point (A∗, B∗). Moreover, note that the feasible set M × N is closed and
f :M×N → R is continuous. Thus, we conclude that (A∗, B∗) is a global minimizer.

Any global minimizer (A∗, B∗) ∈M×N of (1) satisfies the first-order necessary optimality
condition: {

〈∆, (1 + µ)A∗ +B∗ − Z〉 ≥ 0, for any ∆ ∈ TM(A∗),

〈∆, A∗ +B∗ − Z〉 ≥ 0, for any ∆ ∈ TN (B∗).
(2)

Here, TM(A∗) denotes the tangent cone of the setM at A∗, and analogously for TN (B∗). Note
that the structure of the optimality condition (2) is due to the separability of the constraints.

Whenever rank(A∗) = r, the set M is locally (around A∗) a Riemannian manifold with the
Riemannian metric 〈·, ·〉. Hence, TM(A∗) reduces to a linear subspace in Rm×n, namely the
tangent space of M at A∗, and the first variational inequality in (2) becomes

PTM(A∗)((1 + µ)A∗ +B∗ − Z) = 0. (3)

Here PTM(A∗) denotes the orthogonal projection onto the linear subspace TM(A∗). Let UΣV >

be the compact singular value decomposition (SVD) of the matrix A∗. Then the tangent space
TM(A∗) is given by

TM(A∗) = {UMV > + UpV
> + UV >p : M ∈ Rr×r, Up ∈ Rm×r, U>p U = 0, Vp ∈ Rn×r, V >p V = 0};
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see, e.g., [33]. Analogously, whenever ‖B∗‖0 = s, N is a Riemannian manifold around B∗ with
the Riemannian metric 〈·, ·〉. Hence, TN (B∗) reduces to the tangent space of N at B∗, and
correspondingly the second variational inequality in (2) becomes

PTN (B∗)(A
∗ +B∗ − Z) = 0, (4)

where the tangent space TN (B∗) is given by

TN (B∗) = {∆ ∈ Rm×n : supp(∆) ⊂ supp(B∗)}.

3 Alternating minimization on matrix manifolds

In this section, we investigate the numerical solution of the variational problem (1). While (1)
is handled by a rather straightforward alternating minimization scheme, the respective subprob-
lems are sophisticated due to the respective constraint sets.

3.1 Alternating minimization scheme and its convergence property

We first formulate our alternating minimization scheme in Algorithm 3.1 below. Then a rather
macroscopic convergence result for this algorithm is given in Theorem 3.2. While the proof for
Theorem 3.2 is straightforward, the major work is to figure out appropriate algorithmic steps for
solving the respective subproblems that activate the convergence criteria, which are the subjects
of sections 3.2 and 3.3.

Algorithm 3.1 (Alternating minimization scheme).

Initialize A0 ∈M, B0 ∈ N . Set k := 0 and iterate:

1. Compute Ak+1 ∈ M as an approximate solution for the A-subproblem: minA∈M
1
2‖A +

Bk − Z‖2 + µ
2‖A‖

2.

2. Compute Bk+1 ∈ N as an approximate solution for the B-subproblem: minB∈N
1
2‖A

k+1 +
B − Z‖2.

3. If a suitable stopping criterion is satisfied, then stop; otherwise set k := k + 1 and return
to step 1.

Theorem 3.2. Let {(Ak, Bk)} ⊂ M×N be the sequence generated by Algorithm 3.1. Suppose
that there exists a positive constant δ and two sequences of nonnegative scalars {εka} and {εkb}
such that the following conditions are satisfied for all k:

f(Ak+1, Bk) ≤ f(Ak, Bk)− δ‖Ak+1 −Ak‖2, (5)

f(Ak+1, Bk+1) ≤ f(Ak+1, Bk)− δ‖Bk+1 −Bk‖2, (6)

〈∆, (1 + µ)Ak+1 +Bk − Z〉 ≥ −εka‖∆‖, for any ∆ ∈ TM(Ak+1), (7)

〈∆, Ak+1 +Bk+1 − Z〉 ≥ −εkb‖∆‖, for any ∆ ∈ TN (Bk+1). (8)

Furthermore, let {(Akl , Bkl)} be any convergent subsequence of {(Ak, Bk)} with the limit point

(A∗, B∗) ∈M×N such that rank(A∗) = r, ‖B∗‖0 = s, and liml→∞ ε
kl
a = liml→∞ ε

kl

b = 0. Then
(A∗, B∗) satisfies the first-order optimality conditions (3)–(4).
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Proof. First note that f(Ak+1, Bk+1) ≤ f(Ak+1, Bk) ≤ f(Ak, Bk) for all k. Since f is bounded
from below, we have limk→∞ f(Ak+1, Bk)−f(Ak, Bk) = limk→∞ f(Ak+1, Bk)−f(Ak+1, Bk+1) =
0, which by conditions (5)–(6) implies that limk→∞ ‖Ak −Ak+1‖ = limk→∞ ‖Bk −Bk+1‖ = 0.

Now let {(Akl , Bkl)} be a subsequence that converges to some (A∗, B∗) with rank(A∗) = r

and ‖B∗‖0 = s. Then we have rank(Ak
l
) = r and ‖Bkl‖0 = s for all sufficiently large l.

Since M is a smooth manifold in a neighborhood of A∗ and N is a smooth manifold in a
neighborhood B∗, conditions (7)–(8) yield that ‖P

TM(Akl+1)
((1 +µ)Ak

l+1 +Bkl −Z)‖ ≤ εkla and

‖P
TN (Bkl+1)

(Ak
l+1 + Bkl+1 − Z)‖ ≤ εk

l

b for all sufficiently large l. Due to the continuity of the

mappings (A,M) ∈ M × Rm×n 7→ PTM(A)(M) and (B,M) ∈ N × Rm×n 7→ PTN (B)(M), we
conclude that the optimality conditions (3)–(4) hold true by passing l→∞.

In the following, we discuss in detail the resolution of the subproblems in Algorithm 3.1
such that the conditions (5)–(8) in Theorem 3.2 are fulfilled. We start by studying step 2 of
Algorithm 3.1.

3.2 Sparse matrix (B-)subproblem

The global minimizer of the sparse matrix subproblem minB∈N
1
2‖A

k+1+B−Z‖2 can be obtained
explicitly in closed form by utilizing the projection operator PN . For this purpose, for a given
matrix M ∈ Rm×n, one aligns its entries in decreasing order with respect to the absolute value;
i.e. |Mi1j1 | ≥ |Mi2j2 | ≥ ... ≥ |Mimnjmn |. Then one obtains PN (M) by setting

(PN (M))iljl =

{
Miljl , if l ≤ s,
0, otherwise.

Note that PN (M) is not unique if Misjs = Mis+1js+1 . In this case we simply take PN (M)
to be any one of the valid candidates. With PN at hand, the global minimizer of the sparse
matrix subproblem is computed as in step 1 of Algorithm 3.3 below. On the other hand, such a
global minimizer does not necessarily guarantee a sufficient decrease in the objective as required
by condition (6). When the global minimizer fails to fulfill condition (6), we resort to a local
minimizer as specified by step 3 in Algorithm 3.3.

Algorithm 3.3 (B-subproblem solver).

Let (Ak+1, Bk) ∈M×N be given. Choose 0 < δ ≤ 1/2.

1. Compute the global minimizer of the B-subproblem B̂k+1 = PN (Z −Ak+1).

2. If f(Ak+1, B̂k+1) ≤ f(Ak+1, Bk) − δ‖B̂k+1 − Bk‖2, then accept Bk+1 = B̂k+1; otherwise
reject B̂k+1 and continue with step 3.

3. Return Bk+1 with

Bk+1
ij =

{
(Z −Ak+1)ij , if Bk

ij 6= 0,

0, otherwise.
(9)

Theorem 3.4. The solution Bk+1 computed by Algorithm 3.3 satisfies condition (6). Moreover,
if ‖Bk+1‖0 = s, condition (8) holds with εkb = 0.

Proof. (Case 1). We first prove the conclusion in the case that B̂k+1 is accepted. It follows
immediately from step 2 of Algorithm 3.3 that condition (6) holds.

Now assume that ‖Bk+1‖0 = s, which implies that the tangent space TN (Bk+1) = {∆ ∈
Rm×n : supp(∆) ⊂ supp(Bk+1)}. Then it follows that ∆ij = 0 whenever (i, j) 6∈ supp(Bk+1) and
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that Bk+1
ij = (Z −Ak+1)ij whenever (i, j) ∈ supp(Bk+1). Therefore, 〈∆, Ak+1 +Bk+1 − Z〉 = 0

for any ∆ ∈ TN (Bk+1) and (8) holds with εkb = 0.

(Case 2). Now consider the case where B̂k+1 is not accepted. Then (9) must hold true;
i.e. we have that Bk+1

ij = (Z − Ak+1)ij whenever (i, j) ∈ supp(Bk) and that (Bk − Bk+1)ij = 0

whenever (i, j) 6∈ supp(Bk). Thus condition (6) is fulfilled since

f(Ak+1, Bk)− f(Ak+1, Bk+1) =
1

2
‖Bk −Bk+1‖2 + 〈Bk −Bk+1, Ak+1 +Bk+1 − Z〉

=
1

2
‖Bk −Bk+1‖2 ≥ δ‖Bk −Bk+1‖2.

The argument for the satisfaction of condition (8) with εkb = 0 is analogous to the one given in
Case 1.

In the numerical implementation of step 1 of Algorithm 3.3, we call the Matlab command
sort, which is based on a Quicksort algorithm of complexity O(mn log(mn)) in average. We
remark that, according to our numerical experience, the overall cost of the alternating minimiza-
tion scheme is dominated by the A-subproblem solve. Therefore, in this paper we do not pursue
more advanced randomized partial ordering algorithms [20], e.g. Quickselect, for further CPU
gain. We also remark that the choice of the parameter δ in Algorithm 3.3 represents a tradeoff
between the convergence of the iterates and the global optimality of their limit. In fact, if δ is
too large, then the iterates may possibly converge to one among many undesired local solutions.
On the other hand, it may slow down the speed of convergence by choosing δ too close to 0.

3.3 Low-rank matrix (A-)subproblem

Now we turn our attention to solving the A-subproblem, namely the task of step 1 of Algorithm
3.1. Unlike solving the B-subproblem in section 3.2, the A-subproblem will be resolved inexactly
by a single update of a gradient-based algorithm. The organization of this subsection is as follows.
In section 3.3.1, we review the global minimizer via SVD and discuss its drawbacks in numerical
computation. In section 3.3.2, we develop a projected dogleg method on the fixed-rank matrix
manifold for resolving the A-subproblem and its convergence property is studied in detail.

3.3.1 Global minimizer via (partial) SVD

The low-rank matrix subproblem minA∈M
1
2‖A+Bk −Z‖2 + µ

2‖A‖
2 admits a global minimizer

in closed form for any µ ≥ 0. It is obtained by the projection of 1
1+µ(Z − Bk) onto M,

denoted by PM( 1
1+µ(Z − Bk)). Let Ukz Σk

z(V
k
z )> be the singular-value decomposition (SVD) of

the matrix 1
1+µ(Z −Bk), where Ukz ∈ Rm×m and V k

z ∈ Rn×n are both orthogonal matrices, and

Σk
z is a diagonal matrix in Rm×n with nonnegative diagonal elements (σkz )1, (σkz )2, ..., (σkz )m

in decreasing order. Then, by the well-known Eckart-Young theorem [13], a global minimizer
of the A-subproblem is given by PM(Z −Bk) = Ukz Σ̂k

z(V
k
z )>, where Σ̂k

z is a diagonal matrix in
Rm×n with diagonal elements (σkz )1, (σkz )2, ..., (σkz )r, 0, ..., 0.

The classical SVD of an m-by-n matrix has a complexity of O(mn2) flops [32], which is rather
expensive in large-scale computation. In the context of our low-rank subproblem, however, this
can be accelerated by a partial SVD technique of complexity O(mnr), see e.g. the package
PROPACK [3] available online, since only the first r-th singular values and vectors are needed.
Although such a global minimization strategy often works quite efficiently, see the corresponding
numerical tests in section 4, it does not guarantee for the overall alternating minimization scheme
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(global) convergence towards a stationary point from an arbitrary initial guess. In particular,
satisfaction of the sufficient conditions for global convergence, i.e. conditions (5) and (7), is not
ensured. For this sake, in the following we investigate in detail an inexact-solution strategy for
the low-rank subproblem based on Riemannian optimization, which fulfills conditions (5) and
(7), thus admitting a global convergence theory for Algorithm 3.1. The proposed method also
enjoys good practical efficiency as will be demonstrated in section 4.

3.3.2 Projected dogleg method on a fixed-rank matrix manifold

Riemannian optimization techniques have been developed in the past two decades; see, e.g., [30,
14]. More recently, these methods have been successfully applied to optimization problems
related to low-rank matrices [29, 7, 33]. In the following, we develop a tailored Riemannian
optimization approach, namely a projected dogleg method, on a rank-r matrix manifold M̄(r) =
{A ∈ Rm×n : rank(A) = r}. We emphasize that the ultimate goal of the projected dogleg method
under consideration is to fulfill conditions (5) and (7) with limk→∞ ε

k
a = 0 in order to guarantee

the global convergence of the alternating minimization scheme. Other Riemannian approaches,
e.g. Riemannian trust-region method [5, 8], may also be applicable in the context, but require a
rather different, perhaps more involved, analysis.

Given Bk ∈ N , define the smooth mapping fkA : M̄ → R with fkA(A) = f(A,Bk) for all
A ∈ M̄. The Riemannian gradient of fkA at A on M̄, denoted by gradfkA(A), is defined as
a tangent vector in the tangent space TM̄(A) such that 〈gradfkA(A),∆〉 = DfkA(A)[∆] for all
∆ ∈ TM̄(A). Here DfkA(A)[∆] is the directional derivative of fkA at A along the direction ∆.
Let ∇ be the (unique) Riemannian connection on M̄, and let ∇η(A)ξ(A) ∈ TM̄(A) denote
the covariant derivative of two smooth vector fields ξ and η on M̄ at A. Then the Riemannian
Hessian of fkA at A on M̄, denoted by HessfkA(A), is a linear mapping from TM̄(A) to TM̄(A) such
that HessfkA(A)[∆] = ∇∆gradfkA(A) for any ∆ ∈ TM̄(A). By considering M̄ as an embedded
submanifold in the Euclidean space (Rm×n, 〈·, ·〉), the Riemannian gradient is derived as

gradfkA(A) = PTM̄(A)(∇fkA(A)) = PTM̄(A)((1 + µ)A+Bk − Z),

see section 3.6.1 in [5]. The derivation of the Riemannian Hessian is more involved in general.
For the rank-r matrix manifold, the following Hessian formula can be calculated by constructing
a factorization-based second-order retraction [33]:

HessfkA(A)[∆] = (1 + µ)∆ + (I − UU>)∇fkA(A)(I − V V >)∆>UΣ−1V >

+ UΣ−1V >∆>(I − UU>)∇fkA(A)(I − V V >)

= (1 + µ)∆ + (I − UU>)(Bk − Z)(I − V V >)∆>UΣ−1V >

+ UΣ−1V >∆>(I − UU>)(Bk − Z)(I − V V >), (10)

where A = UΣV > is the compact SVD of A with a full-rank diagonal matrix Σ ∈ Rr×r and two
orthonormal matrices U ∈ Rm×r and V ∈ Rn×r. It is worth noting that the Hessian formula
(10) should be handled in a matrix-free fashion so that computing each matrix-vector product
HessfkA(A)[∆] requires O(mnr) flops. To ease our presentation, in the remainder of section 3.3.2,
we use the notations gk := gradfkA(Ak), Hk := HessfkA(Ak), and assume that gk 6= 0.

One can approximate fkA around Ak in the tangent space TM̄(Ak) by a quadratic function
hk(∆k) := fkA(Ak) + 〈gk,∆k〉+ 1

2〈∆
k, Hk[∆k]〉 for ∆k ∈ TM̄(Ak). Presuming that Hk is positive

definite on TM̄(Ak), based on the Cauchy point

∆k
C := − ‖gk‖2

〈gk, Hk[gk]〉
gk, (11)
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and the Newton point
∆k
N := −(Hk)−1[gk], (12)

we define the dogleg path in the tangent space TM̄(Ak) as follows:

∆k(τk) =

{
τk∆k

C , if 0 ≤ τk ≤ 1,
∆k
C + (τk − 1)(∆k

N −∆k
C), if 1 ≤ τk ≤ 2.

(13)

Lemma 3.5. For the statements:

i. Hk is positive definite on TM̄(Ak); i.e. 〈∆, Hk[∆]〉 > 0 for any nonzero ∆ ∈ TM̄(Ak);

ii. 〈∆k
C ,∆

k
N −∆k

C〉 ≥ 0;

iii. ‖∆k(τk)‖ is an increasing function in τk ∈ [0, 2];

the following implication holds true: (i)⇒ (ii)⇒ (iii).

Proof. The proof is analogous to the one of Lemma 4.2 in [27].

Given the current iterate Ak ∈ M̄, in order to generate the next iterate from the update
step in the tangent space at Ak, we use the metric projection PM̄ : Rm×n → M̄ defined
by PM̄(Z) = arg minA∈M̄ ‖A − Z‖, which makes a smooth mapping locally around Ak; see,
e.g., [21]. Different from the scenario in section 3.3.1, given A ∈ M̄ and ∆ ∈ TM̄(A), the
projection PM̄(A + ∆) can be computed via a reduced SVD on a 2r-by-2r matrix thanks to
unitary invariance; see, e.g., [26, 33]. The reduction of the computational cost, compared to the
approach in section 3.3.1, is significant in practice where r is typically much smaller than m and
n. For the reader’s convenience, we describe the implementation of the projection operation in
Algorithm 3.6 below.

Algorithm 3.6 (Projection onto fixed-rank matrix manifold via reduced SVD).

Let A ∈ M̄(r), represented in the compact SVD form A = UΣV >, and ∆ ∈ TM̄(r)(A) be given.
Choose 0 < εs � 1.

1. Compute M = U>∆V , Up = ∆V − UM , Vp = ∆>U − VM>.

2. Perform the QR-factorization of Up and Vp such that Up = QuRu and Vp = QvRv with
two orthonormal matrices Qu ∈ Rm×r, Qv ∈ Rn×r and two upper-triangular matrices
Ru, Rv ∈ Rr×r.

3. Perform an SVD of the 2r-by-2r matrix on the left-hand side of the following equation:[
Σ +M R>v
Ru 0

]
= Ũ Σ̃Ṽ >,

where Σ̃ = diag({σ̃j}2rj=1) ∈ R2r×2r is some diagonal matrix with positive diagonal entries

{σ̃j}2rj=1 in descending order, and Ũ , Ṽ ∈ R2r×2r are two orthogonal matrices.

4. Set Σ̂ = diag({max(σ̃j , εs)}rj=1) ∈ Rr×r, Û = [U Qu][{Ũj}rj=1] ∈ Rm×r, and V̂ =

[V Qv][{Ṽj}rj=1] ∈ Rn×r, where Ũj and Ṽj denote the j-th columns of Ũ and Ṽ , respectively.

Return PM̄(r)(A+ ∆) = Û Σ̂V̂ >.
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Concerning the QR-factorization of the matrices Up and Vp required in step 2 of Algo-
rithm 3.6, we remark that in a MATLAB environment one may call the command qr with the
“economy-size” option. In addition, we note that a small positive parameter εs is introduced
in step 4 in order to prevent rank deficiency of the projection. Ideally, it suffices to choose
εs > 0 which is significantly smaller than the minimal nonzero singular value of the underlying
low-rank matrix A∗ that, together with B∗, solves (1). Throughout our numerical experiments
in section 4, we shall fix εs = 10−3 . For a proper tuning of the underlying rank r along the
overall iterative algorithm, we refer to the trimming procedure presented in section 3.4.

It is known [21, 6] that for any point A on the smooth manifold M̄, the projection PM̄ is a
smooth diffeomorphism in a neighborhood of A, and moreover the differentiation rule

DPM̄(A)[∆] = PTM̄(A)(∆)

holds for any ∆ ∈ Rm×n. Thus, the projected dogleg path τk 7→ PM̄(Ak + ∆k(τk)) is a well-
defined smooth function in a neighborhood of 0. We remark that, in the context of [5, 6], PM̄
induces a second-order retraction on M̄ near A given by ∆ ∈ TM̄(A) 7→ PM̄(A+∆) ∈ M̄, which
locally fits the exponential mapping up to second order.

We are now in a position to present the projected dogleg method for solving the low-rank
matrix subproblem. Below, we have chosen a specific sequence of trial step sizes Fk, but
obviously other choices may be considered as well.

Algorithm 3.7 (A-subproblem solver via projected dogleg method).

Let (Ak, Bk) ∈ M̄ ×N be given. Choose δ > 0.

0.
#

(Optional) Compute the global minimizer of the A-subproblem Âk+1 = PM( 1
1+µ(Z−Bk)).

If fkA(Âk+1) ≤ fkA(Ak)− δ‖Âk+1−Ak‖2, then accept Ak+1 = Âk+1; otherwise, reject Âk+1

and continue with step 1.

1. Compute gk, Hk. If 〈gk, Hk[gk]〉 > 0, then compute ∆k
C by formula (11); otherwise, set

∆k(τk) := −τkgk, Fk := {1, 1/2, 1/4, 1/8, 1/16, ...}, and go to step 3.

2. Compute ∆k
N by formula (12). If 〈∆k

C ,∆
k
N − ∆k

C〉 < 0 or any non-positive definite-
ness of Hk is detected during the computation, then set ∆k(τk) := τk∆k

C and Fk :=
{1, 1/2, 1/4, 1/8, 1/16, ...}; otherwise define the dogleg path ∆k : [0, 2] → TM̄(Ak) as in
(13) and set Fk := {2, 3/2, 1, 1/2, 1/4, 1/8, 1/16, ...}.

3. Set τk to be the largest element in Fk that fulfills

fkA(Ak)− fkA(PM̄(Ak + ∆k(τk))) ≥ δ‖Ak − PM̄(Ak + ∆k(τk))‖2. (14)

Return Ak+1 = PM̄(Ak + ∆k(τk)).

We remark that step 0 is included in the above algorithm as an optional trial step, only rec-
ommended for utility when the global minimizer Âk+1 tends to be accepted and can be computed
at low cost, say e.g. via partial SVD [3]. Since the projected dogleg method works practically
well in its own right, unless otherwise specified, this trial step is skipped in our subsequent al-
gorithmic development and analysis. Nevertheless, in section 4.2 we shall numerically compare
the performances of Algorithm 3.7 both with and without step 0, together with the augmented
Lagrangian method based on a convex variational model.

#

This trial step is optional, which is only recommended for utility if the global minimizer tends to be accepted
and can be computed at low cost. Unless otherwise specified, this step is skipped in our algorithmic development
and analysis.
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Lemma 3.8. There exists τ̄k > 0 such that condition (14) is fulfilled for all τk ∈ (0, τ̄k].
Consequently, step 3 in Algorithm 3.7 always returns some admissible step size τk > 0 fulfilling
condition (5) after finitely many trials.

Proof. Let φ(τk) := fkA(Ak)− fkA(PM̄(Ak + ∆k(τk)))− δ‖Ak − PM̄(Ak + ∆k(τk))‖2, which is a
well-defined smooth function in a neighborhood of 0. Then it follows that φ(0) = 0 and

φ′(0) = −〈gk, (∆k)′(0)〉 ≥ min

(
1,

‖gk‖2

〈gk, Hk[gk]〉

)
‖gk‖2 ≥ min

(
1,

1

λmax(Hk)

)
‖gk‖2 > 0.

Since φ is continuously differentiable in a neighborhood of 0, there exists some τ̄k > 0 such that
φ′(·) > 0 on the interval (0, τ̄k]. By utilizing the mean value theorem, we conclude that φ(·) ≥ 0
on the interval (0, τ̄k].

Lemma 3.9. Let {Ak} ⊂ M̄ be generated by Algorithm 3.7 along with some sequence {Bk} ⊂ N
satisfying condition (6). Then the following statements hold true:

i. limk→∞ ‖Ak −Ak+1‖ = 0.

ii. limk→∞ ‖∆k(τk))‖ = 0.

iii. Any convergent subsequence {Akl} of {Ak} satisfies liml→∞ ‖gk
l‖ = 0.

Proof. Owing to Lemma 3.8, the proof of (i) essentially resembles the first part of the proof for
Theorem 3.2.

Concerning (ii), note that Ak+1 = PM̄(Ak + ∆k(τk)), which satisfies the necessary condition
PTM̄(Ak+1)(A

k+1 −Ak −∆k(τk)) = 0. Then it follows from the reverse triangle inequality that

‖PTM̄(Ak+1)(∆
k(τk))‖ ≤ ‖PTM̄(Ak+1)(A

k+1 −Ak −∆k(τk))‖+ ‖Ak −Ak+1‖ → 0,

and therefore

‖∆k(τk)‖ = ‖PTM̄(Ak)(∆
k(τk))‖

≤ ‖PTM̄(Ak+1)(∆
k(τk))‖+ ‖PTM̄(Ak)(∆

k(τk))− PTM̄(Ak+1)(∆
k(τk))‖ → 0,

as k →∞.
We prove (iii) by contradiction. For this purpose, let {Akl} be a convergent subsequence of

{Ak} and ε > 0 such that ‖gkl‖ ≥ ε for all l. Based on an observation of the structure of the

Riemannian Hessian given in (10), the sequence {Hkl} is uniformly bounded, and we denote

κh := supl λmax(Hkl). Making use of Lemma 3.5(iii), we obtain a lower bound for ‖∆kl(τk
l
)‖ as

follows:

‖∆kl(τk
l
)‖ ≥ min

(
τk

l‖gkl‖,min(1, τk
l
)

‖gkl‖3

〈gkl , Hkl [gkl ]〉

)
≥ εmin(1, 1/κh) min(1, τk

l
).

Then the result in (ii) yields that liml→∞ τ
kl = 0. Due to the nature of the backtracking dogleg

search in step 3 of Algorithm 3.7, this further implies that the trial step 2τk
l

is not admissible
at iteration l for all sufficiently large l; i.e.

fk
l

A (Ak
l
)− fklA (PM̄(Ak

l
+ ∆kl(2τk

l
))) < δ‖Akl − PM̄(Ak

l
+ ∆kl(2τk

l
))‖2,
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for all l. Dividing both sides above by 2τk
l

and passing l→∞, we find

0 ≥ lim
l→∞
−〈gkl , (∆kl)′(0)〉 ≥ min

(
1,

1

κh

)
lim
l→∞
‖gkl‖2,

which leads to a contradiction.

Lemma 3.10. Let (A∗, B∗) ∈ M̄ ×N satisfy the first-order optimality conditions (3)–(4) with
‖B∗‖0 = s. Further assume that the Riemannian Hessian Hessf(A∗, B∗) : TM̄(A∗)×TN (B∗)→
TM̄(A∗) × TN (B∗) is strictly positive definite when µ = 0. Then the following statements hold
true:

i. The Riemannian Hessian of f with respect to the first argument, denoted by HessAf(A∗, B∗) :
TM̄(A∗)→ TM̄(A∗), is strictly positive definite for any µ ≥ 0.

ii. The following tangent space transversality holds true:

TM̄(A∗) ∩ TN (B∗) = {0}. (15)

iii. The linear operator PTM̄(A∗) ◦ PTN (B∗) : Rm×n → Rm×n is a contraction; i.e. there exists
a constant κp ∈ [0, 1) such that

‖(PTM̄(A∗) ◦ PTN (B∗))(∆)‖ ≤ κp‖∆‖, (16)

for all ∆ ∈ Rm×n.

Proof. Given an arbitrary nonzero element ∆A in TM̄(A∗), we have

0 < 〈(∆A, 0),Hessf(A∗, B∗)[(∆A, 0)]〉TM̄(A∗)×TN (B∗)

∣∣∣
µ=0

= 〈(∆A, 0),∇(∆A,0)gradf(A∗, B∗)〉TM̄(A∗)×TN (B∗)

∣∣∣
µ=0

= 〈∆A,∇∆A
gradAf(A∗, B∗)〉TM̄(A∗)

∣∣∣
µ=0

= 〈∆A,HessAf(A∗, B∗)[∆A]〉TM̄(A∗)

∣∣∣
µ=0

≤ 〈∆A,HessAf(A∗, B∗)[∆A]〉TM̄(A∗)

∣∣∣
µ≥0

.

The last inequality follows from an observation of the Hessian formula (10). Thus, (i) is proven.
We prove (ii) by contradiction. For this purpose, assume that µ = 0 and there exists a

nonzero element ∆ ∈ TM̄(A∗) ∩ TN (B∗). Since M̄ is an embedded submanifold of Rm×n, we
have

Hessf(A∗, B∗)[(∆,−∆)]

=PTM̄(A∗)×TN (B∗)

(
D(A,B)gradf(A∗, B∗)[(∆,−∆)]

)
=PTM̄(A∗)×TN (B∗)

(
D(A,B)

(
PTM̄(A)(A+B − Z), PTN (B)(A+B − Z)

)
[(∆,−∆)]

∣∣∣
(A,B)=(A∗,B∗)

)
= (0, 0). (17)

In the above formulae, note that the first equality follows from Proposition 5.3.2 in [5]. The
last equality is a consequence of conditions (3)–(4) and the chain rule of differentiation. Thus,
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(17) yields 〈(∆,−∆),Hessf(A∗, B∗)[(∆,−∆)]〉 = 0, which contradicts the positive definiteness
of Hessf(A∗, B∗).

We prove (iii) again by contradiction. Note that the composition of projections PTM̄(A∗) ◦
PTN (B∗) is nonexpansive, and therefore condition (16) always hold true for κp = 1. Now assume

that (iii) does not hold. Then there must exist a sequence {κlp}∞l=1 ∈ [0, 1) with liml→∞ κ
l
p = 1

and correspondingly {∆l} ⊂ Rm×n with ‖∆l‖ = 1 for all l such that it holds for all l that

κlp‖∆l‖ < ‖(PTM̄(A∗) ◦ PTN (B∗))(∆
l)‖ ≤ ‖∆l‖.

Upon the extraction of a subsequence of {∆l}, whose limit point ∆ ∈ Rm×n satisfies ‖∆‖ = 1,
we have

‖(PTM̄(A∗) ◦ PTN (B∗))(∆)‖ = ‖∆‖.
Then it follows from the self-adjointness and idempotence of an orthogonal projection onto a
linear subspace that

〈∆,∆〉 = 〈(PTM̄(A∗) ◦ PTN (B∗))(∆), (PTM̄(A∗) ◦ PTN (B∗))(∆)〉
= 〈∆, (PTN (B∗) ◦ PTM̄(A∗) ◦ PTN (B∗))(∆)〉,

or equivalently 〈∆, (id−PTN (B∗) ◦PTM̄(A∗) ◦PTN (B∗))(∆))〉 = 0. By the self-adjointness we have
(id− PTN (B∗) ◦ PTM̄(A∗) ◦ PTN (B∗))(∆) = 0, and thus

(PTN (B∗) ◦ PTM̄(A∗) ◦ PTN (B∗))(∆) = PTN (B∗)(∆). (18)

In particular, note that PTN (B∗)(∆) ∈ TN (B∗) and PTN (B∗)(∆) 6= 0. Further manipulation
of (18) yields that 〈PTN (B∗)(∆), (id − PTM̄(A∗))(PTN (B∗)(∆))〉 = 0, and therefore by the self-
adjointness

PTN (B∗)(∆) = (PTM̄(A∗) ◦ PTN (B∗))(∆).

Thus, we have found PTN (B∗)(∆) 6= 0 such that PTN (B∗)(∆) ∈ TM̄(A∗)∩TN (B∗), which contra-
dicts the tangent space transversality in (ii).

We remark that in [12] the tangent space transversality condition (15) is discussed in detail,
and a sufficient condition on A∗ and B∗, which holds with high probability in practice, is also
provided for ensuring the tangent space transversality. From Lemma 3.10, we see that tangent
space transversality can be naturally regarded as a consequence of the second-order sufficient
optimality condition.

Theorem 3.11. Let {Ak} ⊂ M̄ be a sequence generated by Algorithm 3.7 along with some se-
quence {Bk} ⊂ N generated by Algorithm 3.3. At iteration k, assume that the iterate (Ak, Bk)
is sufficiently close to some (A∗, B∗) ∈ M̄ × N with ‖B∗‖0 = s satisfying the first-order opti-

mality conditions (3)–(4). Moreover, assume that the Riemannian Hessian Hessf(A∗, B∗)
∣∣∣
µ=0

is strictly positive definite as in Lemma 3.10 and that 0 < δ < λmin(HessAf(A∗, B∗))/4. Then
it follows:

i. For all sufficiently large k, ∆k(τk) = ∆k
N is admissible in the backtracking dogleg search

in step 3 of Algorithm 3.7; i.e. Ak+1 = PM̄(Ak + ∆k
N ) satisfies condition (5).

ii. The sequence {Ak} converges q-linearly to A∗ at rate κp; i.e.

lim sup
k→∞

‖Ak+1 −A∗‖
‖Ak −A∗‖

≤ κp,

where κp ∈ [0, 1) is a qualified constant in Lemma 3.10(iii) such that condition (16) holds.
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iii. limk→∞ ‖PTM̄(Ak+1)((1 + µ)Ak+1 + Bk − Z)‖ = 0. Consequently, condition (7) is fulfilled

with limk→∞ ε
k
a = 0.

Proof. By the continuity of the mapping (Ak, Bk) 7→ Hk and Lemma 3.10(i), we have λmin(Hk) ≥
λmin(HessAf(A∗, B∗))/2 > 0 for all sufficiently large k. Thus the backtracking dogleg search in
step 3 of Algorithm 3.7 is initiated with τk = 2, or ∆k(τk) = ∆k

N = −(Hk)−1[gk]. Note that,
due to Lemma 3.9(iii), both ‖gk‖ and ‖∆k

N‖ can be assumed to be sufficiently close to 0. Since
∆ ∈ TM̄(A) 7→ PM̄(A+ ∆) ∈ M̄ is a second-order retraction on M̄ near A (see Example 18 in
[6]), we have the following Taylor expansion:

fkA(PM̄(Ak + ∆k
N )) = fkA(Ak) + 〈gk,∆k

N 〉+
1

2
〈∆k

N , H
k[∆k

N ]〉+ o(‖∆k
N‖2)

= fkA(Ak)− 1

2
〈∆k

N , H
k[∆k

N ]〉+ o(‖∆k
N‖2), as k →∞.

Meanwhile, it follows from Ak+1 = PM̄(Ak + ∆k
N ) = Ak + ∆k

N + o(‖∆k
N‖) that

‖Ak+1 −Ak‖2 = ‖∆k
N‖2 + o(‖∆k

N‖2), as k →∞.

Thus, altogether we have

f(Ak, Bk)− f(Ak+1, Bk) = fkA(Ak)− fkA(Ak+1) =
1

2
〈∆k

N , H
k[∆k

N ]〉+ o(‖∆k
N‖2)

≥ λmin(HessAf(A∗, B∗))

4
‖∆k

N‖2 + o(‖∆k
N‖2)

=
λmin(HessAf(A∗, B∗))

4
‖Ak+1 −Ak‖2 + o(‖∆k

N‖2) ≥ δ‖Ak+1 −Ak‖2,

i.e. ∆k(τk) = ∆k
N is admissible.

Now consider Ak+1 = φA(Ak, Bk), where φA : M̄ × N → M̄ is defined by the following
system of equations:

φA(A,B) = PM̄(A+ ∆) =: ρ(A,∆), (19)

∇∆gradAf(A,B) = −gradAf(A,B). (20)

If (Ak, Bk) = (A∗, B∗), then we have gradAf(A∗, B∗) = 0. Moreover, since HessAf(A∗, B∗) is
invertible, we have ∆ = 0 and thus Ak+1 = ρ(A∗, 0) = A∗. Let us perturb φA at (A∗, B∗) with
respect to the first argument along some ΛA ∈ TM̄(A∗), which yields

DAφ
A(A∗, B∗)[ΛA] = DAρ(A∗, 0)[ΛA] +D∆ρ(A∗, 0)[DA∆(A∗, B∗)[ΛA]].

Since DAρ(A∗, 0)[ΛA] = ΛA and D∆ρ(A∗, 0)[·] = idTM̄(A∗)(·) on TM̄(A∗), we have

DAφ
A(A∗, B∗)[ΛA] = ΛA +DA∆(A∗, B∗)[ΛA].

The function ∆(A,B) is implicitly defined through equation (20), and in particular ∆(A∗, B∗) =
0.

Next we use a calculus approach to show the following identity:

DAgradAf(A∗, B∗)[DA∆(A∗, B∗)[ΛA]] = −DAgradAf(A∗, B∗)[ΛA]. (21)
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Let ΓA denote the matrix-form Christoffel symbols of M̄ around A (see, e.g., [14]) such that
ΓA is symmetric, bilinear, and ∇η(A)ξ(A) = Dξ(A)[η(A)] + ΓA[ξ(A), η(A)] ∈ TM̄(A) for any two
smooth vector fields ξ and η on M̄. Then equation (20) can be rewritten as follows:

DAgradAf(A,B)[∆(A,B)] + ΓA[gradAf(A,B),∆(A,B)] = −gradAf(A,B).

By perturbing the above equation at (A∗, B∗) along (ΛA, 0) ∈ TM̄(A∗)× TN (B∗), we have

D2
AgradAf(A∗, B∗)[∆(A∗, B∗),ΛA] +DAgradAf(A∗, B∗)[DA∆(A∗, B∗)[ΛA]]

+ ΓA∗ [DAgradAf(A∗, B∗)[ΛA],∆(A∗, B∗)] + ΓA∗ [gradAf(A∗, B∗), DA∆(A∗, B∗)[ΛA]]

=−DAgradAf(A∗, B∗)[ΛA].

Crossing out the vanishing terms, we obtain (21) as claimed. Note that gradAf(A,B) =
PTM̄(A)((1 + µ)A + B − Z) and thus DAgradAf(A∗, B∗)[·] = (1 + µ)idTM̄(A∗)(·) on TM̄(A∗).
Thus we have

DAφ
A(A∗, B∗) = 0.

Analogously, we perturb φA at (A∗, B∗) with respect to the second argument along (0,ΛB) ∈
TM̄(A∗)× TN (B∗). This leads to

DBφ
A(A∗, B∗)[ΛB] = DB∆(A∗, B∗)[ΛB].

Again by the calculus approach, we derive

DAgradAf(A∗, B∗)[DB∆(A∗, B∗)[ΛB]] = −DBgradAf(A∗, B∗)[ΛB].

Note that DBgradAf(A∗, B∗)[ΛB] = PTM̄(A∗)(ΛB). Then it follows that

DBφ
A(A∗, B∗)[ΛB] = PTM̄(A∗)(ΛB).

By the Taylor expansion of φA at (A∗, B∗), we have the following estimate

‖Ak+1 −A∗‖ = ‖φA(Ak, Bk)− φA(A∗, B∗)‖
≤‖DAφ

A(A∗, B∗)(Ak −A∗)‖+ ‖DBφ
A(A∗, B∗)(Bk −B∗)‖+ o(‖Ak −A∗‖) + o(‖Bk −B∗‖)

= ‖PTM̄(A∗)(B
k −B∗)‖+ o(‖Ak −A∗‖) + o(‖Bk −B∗‖), as k →∞. (22)

In order to obtain an estimate on Bk−B∗, consider the mapping φB(A,B) := PTN (B)(A+B−Z).

Let Bk be sufficiently close to B∗ such that ‖Bk‖0 = s and Bk − B∗ ∈ TN (B∗). Due to our
assumption on the sequence {Bk} and Theorem 3.4, we have φB(Ak, Bk) = φB(A∗, B∗) = 0.
Moreover, the derivatives of φB are given by DAφ

B(A∗, B∗) = PTN (B∗) and DBφ
B(A∗, B∗) =

idTN (B∗). Thus the Taylor expansion of φB at (A∗, B∗) appears as

φB(Ak, Bk) = φB(A∗, B∗) +DAφ
B(A∗, B∗)(Ak −A∗) +DBφ

B(A∗, B∗)(Bk −B∗)
+ o(‖Ak −A∗‖) + o(‖Bk −B∗‖), as k →∞,

which further implies that

Bk −B∗ = −PTN (B∗)(A
k −A∗) + o(‖Ak −A∗‖) + o(‖Bk −B∗‖), as k →∞. (23)

In particular, we have ‖Bk −B∗‖ ≤ O(‖Ak −A∗‖) as k →∞.
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By plugging (23) into (22), it follows from Lemma 3.10(iii) that

‖Ak+1 −A∗‖ ≤ ‖(PTM̄(A∗) ◦ PTN (B∗))(A
k −A∗)‖+ o(‖Ak −A∗‖)

≤ κp‖Ak −A∗‖+ o(‖Ak −A∗‖),

for all sufficiently large k. This proves our claim (ii).
Finally, in view of the convergence of {(Ak, Bk)} to (A∗, B∗) as well as Lemma 3.9(i), we

conclude that limk→∞ ‖PTM̄(Ak+1)((1 +µ)Ak+1 +Bk−Z)‖ = 0 and that condition (7) is fulfilled

with limk→∞ ε
k
a = 0.

We end this subsection by noting that the dependence of δ on (A∗, B∗) is certainly delicate.
In our numerics, however, the choice of δ turned out to be rather unproblematic, even for
µ = 0 as in section 4. Concerning the complexity of the low-rank subproblem solver, note
that the computation of ∆k

N in step 2 of Algorithm 3.7 possibly requires solving the linear
system involving Hk. Under the assumption on the positive definiteness of the Riemannian
Hessian in Theorem 3.11, which imitates the second-order sufficient optimality condition in
classical (unconstrained, Euclidean) optimization, each Hk-system solve, up to certain fixed
tolerance of the error, can be carried out by the conjugate gradient method within a uniformly
bounded number of iterations. Thus, the overall complexity for the low-rank subproblem solver
at each iteration is no more than O(mnr) flops. In addition, we remark that the constant
κp in Lemma 3.10(iii), which in fact measures the angle between the tangent spaces TM̄(A∗)
and TN (B∗), is an intrinsic quantification of the local identifiability [12] at (A∗, B∗). Even
though our alternating minimizer scheme solves its subproblems only inexactly, its asymptotical
convergence rate (i.e. κp) is equally fast as that attained by the (exact) alternating projection
method. When 0 ≤ κp < 1, (A∗, B∗) is a strict local minimizer, and {Ak} converges to A∗

q-linearly at rate κp, as shown in Theorem 3.11(ii). In case κp = 0, or equivalently TM̄(A∗) and
TN (B∗) are perpendicular to each other, the convergence of {Ak} to A∗ is even superlinear.

3.4 Alternating minimization scheme with trimming

The favorable performance of Algorithm 3.1 depends on a proper choice of r and s. If either
r or s is too small, the constraint will rule out the desired solution. On the other hand, if
either r or s is too large, the convergence property of Algorithm 3.1 is in danger due to the
rank- or cardinality-deficiency at the desired solution. In this subsection we resolve this issue by
incorporating a heuristic trimming procedure into the alternating minimization scheme which
allows an adaptive tuning of r and s. The trimming of the matrix Ak is based on the k-means
clustering algorithm [28], and the trimming of the matrix Bk is based on a hard-thresholding.

In brief, we initialize the algorithm by some safe choices of r1 and s1 that are larger than the
underlying r and s, respectively. As the iterates Ak ∈ M̄(rk) tend to settle, we partition the rk

largest singular values of Ak (in logarithmic scale) into two clusters by the k-means algorithm.
If the gap between the means of the two clusters is larger than some prescribed threshold, then
we set rk+1 to be the cardinality of the cluster of the larger mean, and replace the old Ak

by its projection onto M̄(rk+1). On the other hand, when the iterates Bk ∈ N (sk) tend to
stabilize along the sequence, we replace those entries of Bk, which are less than some threshold
in absolute value, by 0 and set sk+1 := ‖Bk‖0. The detailed implementation of the alternating
minimization scheme with trimming is specified in the following.

Algorithm 3.12 (Alternating minimization scheme with trimming).
Choose δ > 0, νa > 0, νb > 0, θa > 0, θb > 0. Initialize r1 ∈ N, s1 ∈ N, A0 ∈ M̄(r1),
B0 = PN (s1)(Z −A0). Set k = 1 and iterate:
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1. Compute Ak as an approximate solution of the A-subproblem minA∈M̄(rk)
1
2‖A+Bk−1 −

Z‖2 by Algorithm 3.7, which is represented in the compact SVD form Ak = UkΣk(V k)>.

2. Compute Bk as an approximate solution of the B-subproblem minB∈N (sk)
1
2‖A

k+B−Z‖2
by Algorithm 3.3.

3. If ‖Ak −Ak−1‖/‖Ak−1‖ > νa, then set rk+1 := rk; otherwise trim Ak as follows:

(a) Partition the logarithms of the rk largest singular values of Ak, namely {log σkj }r
k

j=1,

into two disjoint sets {log σkj }j∈I1 and {log σkj }j∈I2 by the k-means clustering algo-

rithm (with |I1|+ |I2| = rk).

(b) Evaluate the means of the two clusters; i.e. m1 := (
∑

j∈I1 log σkj )/|I1| and m2 :=

(
∑

j∈I2 log σkj )/|I2|. Assume m1 ≥ m2 without loss of generality.

(c) If m1 −m2 > θa, then set rk+1 := |I1|, Uk := [{Ukj }j∈I1 ], V k := [{V k
j }j∈I1 ], Σk :=

diag({σkj }j∈I1), and Ak := UkΣk(V k)>.

4. If ‖Bk − Bk−1‖/‖Bk−1‖ > νb, then set sk+1 := sk; otherwise set Bk
ij := 0 whenever

|Bk
ij | < θb and update sk+1 := ‖Bk‖0.

5. If a suitable stopping criterion is satisfied, then stop; otherwise increase k by 1 and return
to step 1.

4 Numerical experiments

In this section, we study the numerical performance of Algorithm 3.12. The following parameters
in the algorithm are fixed throughout the experiments: µ = 0, δ = 0.1, νa = νb = 0.2. Note
that although it is favorable to consider µ > 0 so as to guarantee the existence of a solution (see
Theorem 2.1), we experience no troubles in our numerical experiments when choosing µ = 0.
Concerning the initialization, given any A0 ∈ M̄(r1), we always take B0 = PN (s1)(Z − A0)

accordingly. The inversion of the linear system (12) for computing the Newton step ∆k
N is

carried out by the conjugate gradient method with fixed residual tolerance 0.01. It turns out that
this (approximate) Newton step in resolving the A-subproblem is so good that it is admissible,
i.e. ∆k(τk) = ∆k

N fulfills condition (14), in almost every iteration. In addition, all partial SVDs
are performed using the PROPACK routine lansvd [3], which should be distinguished from the
(full) SVDs using the MATLAB routine svd.

The experiments are performed under MATLAB R2011b on a 2.66 GHz Intel Core Laptop
with 4 GB RAM. All CPU-time reported in this section is measured in seconds.

4.1 Numerical behavior

We apply our algorithm to a test example of robust principal component pursuit. Let m = n =
400, r = 0.05n, s = 0.05n2, and the observation matrix is generated by Z = Atrue +Btrue +N .
The rank-r matrix Atrue = LtrueR

>
true is generated by the product of two matrices Ltrue ∈ Rm×r

and Rtrue ∈ Rn×r, both of which have entries independently sampled from a normal distribution
of mean 0 and standard deviation 1. The sparse matrix Btrue has s nonzero entries, whose
locations are randomly chosen and whose values are independently sampled from {±

√
n} with

uniform probability. The matrix N contains white Gaussian noise of mean 0 and standard
deviation 0.001. In this example, we choose θa = log 5, θb = 0.2

√
n.
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Since our algorithm intends to find a local solution for the nonconvex minimization problem
(1), it is important to check the quality of such a local solution as well as the dependence
on the initial guess (A0, B0). In the following test, we consider two different choices for A0,
namely A0 = PM̄(r1)(Z) and A0 being the projection of a random Gaussian matrix onto M̄(r1).

Meanwhile, we also investigate the effectiveness of the trimming procedure for tuning rk and
sk, provided that the true values of r and s are not available at the beginning. In this test, we
allow r1 and s1 to be overestimations with respect to the true r and s up to 100%. The iterative
algorithm is terminated once the relative error ‖Ak −Atrue‖/‖Atrue‖ drops below 2× 10−4.

In Table 1, we report the corresponding relative error and the CPU-time. It is observed
that the quality of the solutions produced by Algorithm 3.12, measured by the relative error, is
robust to different initializations. Nonetheless, we remark that the efficiency of the algorithm
is correlated to the choices of r1, s1, and A0. As it can be expected, the initial guess A0 =
PM̄(r1)(Z) is superior to a randomly chosen A0 with respect to CPU-time, while choosing r1

and s1 closer to the underlying r and s yields faster convergence.
We further illustrate the numerical behavior of the algorithm, for instance, when r1 = 1.5r,

s1 = 1.5s, and A0 = PM̄(r1)(Z). In Figure 1, we provide the semi-logarithmic plots of the

objective value f(Ak, Bk), the residual norm ‖gradAf(Ak, Bk)‖, and the convergence errors
‖Ak − A∗‖/‖A∗‖ and ‖Bk − B∗‖/‖B∗‖. The limit points A∗ and B∗ are precomputed with
sufficiently high accuracy. It is observed from Figure 1(c) that, as is theoretically justified in
Theorem 3.11, the sequence {Ak} indeed exhibits a linear convergence, and the asymptotical
convergence rate in this example is about 0.26.

A0 = PM̄(r1)(Z) random A0

r1 s1 error CPU error CPU

r s 1.78e-4 1.32 1.19e-4 1.76
1.25r 1.25s 1.73e-4 1.74 1.67e-4 2.05
1.5r 1.5s 1.84e-4 1.77 1.35e-4 2.36
1.75r 1.75s 1.32e-4 2.03 1.01e-4 2.64

2r 2s 1.16e-4 2.17 1.83e-4 2.75

Table 1: Initialization study.
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Figure 1: Convergence behavior.

4.2 Comparison with an augmented Lagrangian method

A comprehensive comparison of numerical solvers on the (convex) nuclear-plus-`1-norm model
for robust principal component pursuit can found on the webpage [2]. Among those solvers,
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the augmented Lagrangian method [10, 23, 31] seems to be the most efficient one in practice.
Hence, in the following we compare the performances of our alternating minimization scheme
and the augmented Lagrangian method with implementation-wise variations on both methods.
More specifically, we implement Algorithm 3.12 both with and without the global minimization
trial step for the low-rank subproblem (i.e. step 0 of Algorithm 3.7), which are abbreviated by
“AMS#” and “AMS” respectively. The implementation of the augmented Lagrangian method
essentially follows Algorithm 1 in [10]. The major computational cost of this algorithm lies
in an SVD in full dimension for performing a “singular value thresholding” at each iteration.
As pointed out by [9], it is possible to accelerate the singular value thresholding via partial
SVD [3]. Different from the context in [9], however, the target matrix (for SVD) in our matrix
decomposition problem is dense and unstructured in general, and thus this acceleration strategy
should only be utilized when the rank of the target matrix is predictably low. In our experiments,
we implement the augmented Lagrangian method with full SVDs only (abbreviated by “fSVD-
ALM”), and also its partial-SVD variant (abbreviated by “pSVD-ALM”) where one switches
from full SVD to partial SVD once the rank of the low-rank component Ak in the previous
iteration drops below an empirical threshold equal to 0.2n.

The test data is generated in the same way as described in the first paragraph of section
4.1, except for N = 0. Thus, the exact recovery of Atrue and Btrue is expected for all candidate
methods, namely AMS, AMS#, fSVD-ALM, and pSVD-ALM. In this example, we choose θa =
log 5, θb = 0.2

√
n in AMS and AMS#. Besides, we assume a moderate initial estimate (rather

than the exact knowledge) of r and s such that r1 = 1.5r, s1 = 1.5s. For a fair comparison,
we use the same initial guesses, i.e. A0 = PM̄(r1)(Z), B0 = PN (s1)(Z − A0), for all candidate
methods. The experiments are performed with different combinations of n, r, and s.

The corresponding comparisons among the four candidate methods with respect to rela-
tive errors, measured by ‖Ak − Atrue‖/‖Atrue‖ and ‖Bk − Btrue‖/‖Btrue‖, and CPU time are
demonstrated in Figure 2. It is observed in the experiments that AMS# always accepts the
global minimizers from both the A- and B-subproblems, and essentially behaves like a heuristic
alternating projection method (see the Appendix for a description) known to be locally linearly
convergent. In this particular example, AMS# works extremely well owing to a good initial
guess so that the local convergence of the alternating projection method is immediately acti-
vated from the beginning. Nevertheless, the reader should be cautioned that in general such
convergence behavior is not guaranteed for the alternating projection method with arbitrary
initial guesses, and under such circumstances the global minimization trial steps are most likely
wasteful. On the other hand, the plots on the relative errors in Figure 2 indicate that AMS,
with guaranteed global convergence, has rather close performance to AMS#, especially for larger
scales. Although partial SVDs typically improve the augmented Lagrangian method over the
asymptotical convergence rate, expensive full SVDs are inevitable at early iterations; see the
plots of the rank transitions of {Ak} (when n = 2000) in the rightmost column of Figure 2. In
comparison, AMS and AMS# capture the rank of the low-rank component and the cardinal-
ity of the sparse component efficiently, thanks to the heuristic trimming procedure, and thus
outperform fSVD-ALM and pSVD-ALM for large scales.

4.3 Application to background-foreground separation of surveillance video

We apply our algorithm to background-foreground separation of surveillance videos. Our first
test video, which is taken from [22, 10] and also publicly available [4], is a sequence of 200 frames
taken in an airport. Each frame is a gray-level image of resolution 144× 176, and is stacked as
one column in the data matrix Z ∈ R25344×200; i.e. m = 25344, n = 200. Our goal is to extract
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(b) Relative error on {Ak}.
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(d) Relative error on {Bk}.
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(e) Relative error on {Bk}.
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(g) Relative error on {Ak}.
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(h) Relative error on {Ak}.
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(j) Relative error on {Bk}.
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(k) Relative error on {Bk}.
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Figure 2: Comparison with augmented Lagrangian method.
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from Z the static background (as the low-rank matrix A) and the moving foreground (as the
sparse matrix B).

We implement the alternating minimization scheme (AMS) with θa = log 10, θb = 0.12,
A0 = PM̄(r1)(Z), r1 = 5, and s1 ≈ 0.1mn, which is terminated once the residual norm

‖gradAf(Ak, Bk)‖ is reduced by a factor of 10−4. It takes 39.4 seconds for AMS to converge,
and the ultimate value of rk is equal to 1 and sk ≈ 0.0483mn. The corresponding extractions for
three selected frames are displayed in columns (b) and (c) in Figure 3. For comparison, we also
perform the extraction using the augmented Lagrangian method (ALM). The implementation
of ALM again follows [10], and we terminate the iterations once ‖Z − Ak − Bk‖/‖Z‖ ≤ 10−4.
We note that only full SVDs are implemented in ALM, as partial SVDs do not lead to CPU
gain in this problem. The results by ALM are shown in columns (d) and (e), and it takes 124.4
seconds for ALM to converge.

Our second example is a 400-frame sequence taken in a lobby with varying illumination
[22, 10, 4]. Each frame is of resolution 128 × 160, and the data matrix Z is formulated as a
20480-by-400 matrix (i.e. m = 20480, n = 400). We run AMS with the same parameters as in
the previous example except for θb = 0.06, which is smaller than before, so that we allow more
information in the sparse matrix. The algorithm converges after 69.19 seconds, and the ultimate
value of rk is equal to 2 and sk ≈ 0.00413mn. We also implement ALM using the same setting
as before, for which it takes 193.5 seconds to converge. The separation results of both methods
are displayed in Figure 4.

We conclude from the experiments that AMS performs well in background-foreground sepa-
ration of surveillance videos, which is robust to the variation of illumination. In comparison with
ALM, AMS typically eliminates the moving shadows in the backgrounds that occur in ALM,
and provides sharper extractions of the moving foregrounds. Moreover, AMS has considerable
advantage over ALM with respect to CPU-time.

(a) (b) (c) (d) (e)

Figure 3: Background-foreground separation (airport): (a) original frames; (b) background via
AMS; (c) foreground via AMS; (d) background via ALM; (e) foreground via AMS. The CPU-
time consumed by AMS and ALM is 39.4 and 124.4 seconds, respectively.
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(a) (b) (c) (d) (e)

Figure 4: Background-foreground separation (lobby): (a) original frames; (b) background via
AMS; (c) foreground via AMS; (d) background via ALM; (e) foreground via AMS. The CPU-
time consumed by AMS and ALM is 69.19 and 193.5 seconds, respectively.

Appendix: Local convergence of an alternating projection method.

Here we consider a heuristic alternating projection method for the RPCP problem. This method,
which can be interpreted as an exact alternating minimizer scheme for the optimization problem
(1) with µ = 0, can be shortly described as follows. Given Ak ∈M, one generates{

Bk+1 := PN (Z −Ak),
Ak+1 := PM(Z −Bk+1).

(24)

The name “alternating projection method” is termed, since the iterative procedure (on {Ak})
can be expressed as

Ak+1 = ψ(Ak) := (PM ◦ ι ◦ PN ◦ ι)(Ak), (25)

with ι : A 7→ Z − A, and thus generalizes the classical alternating projection (where ι is the
identity map) in, e.g, [21]. The following theorem asserts the local convergence of the alternat-
ing projection method. However, we note that the global convergence for this method is not
guaranteed in general.

Theorem A.1. Given A0 ∈M, let the sequence {(Ak, Bk)} be iteratively generated by formula
(24). Assume that (Ak, Bk) is sufficiently close to some (A∗, B∗) such that rank(A∗) = r,
‖B∗‖ = s, TM(A∗) ∩ TN (B∗) = {0}, and moreover{

B∗ := PN (Z −A∗),
A∗ := PM(Z −B∗).

(26)

Then {(Ak, Bk)} converges to (A∗, B∗) q-linearly at rate κp; i.e.

lim sup
k→∞

‖(Ak+1, Bk+1)− (A∗, B∗)‖
‖(Ak, Bk)− (A∗, B∗)‖

≤ κp,
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where κp ∈ [0, 1) is a constant (same as in Lemma 3.10) such that

‖(PTM(A∗) ◦ PTN (B∗))(∆)‖ ≤ κp‖∆‖,

for all ∆ ∈ Rm×n.

Proof. We only prove the q-linear convergence on {Ak}, as the proof for {Bk} is almost identical.
Note that M and N are two smooth manifolds near A∗ and B∗, respectively. For the existence
of a qualified constant κp, we refer to Lemma 3.10(iii).

In the following, we perturb both equations in (26) with respect to A∗ by an arbitrarily fixed
∆ ∈ Rm×n. The perturbation of the first equation gives

PN (Z −A∗ −∆) = B∗ + PN (Z −A∗ −∆)− PN (Z −A∗) = B∗ + PTN (B∗)(−∆) +O(‖∆‖2).

Since A∗ is a fixed point of the map ψ in (25), the second equation in (26) can be written as
ψ(A∗) = PM(Z −B∗). Then we have

ψ(A∗ + ∆) = PM(Z − PN (Z −A∗ −∆)) = PM(Z −B∗ − PTN (B∗)(−∆) +O(‖∆‖2))

= A∗ + PM(Z −B∗ − PTN (B∗)(−∆) +O(‖∆‖2))− PM(Z −B∗)
= A∗ + (PTM(A∗) ◦ PTN (B∗))(∆) +O(‖∆‖2)).

Thus, by considering ∆ = Ak −A∗ and passing ∆→ 0, we conclude that

lim sup
k→∞

‖Ak+1 −A∗‖
‖Ak −A∗‖

≤ κp.
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