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Abstract A general class of variational models with concave priors is considered
for obtaining certain sparse solutions, for which nonsmoothness and non-Lipschitz
continuity of the objective functions pose significant challenges from an analytical as
well as numerical point of view. For computing a stationary point of the underlying
variational problem, a Newton-type scheme with provable convergence properties is
proposed. The possible non-positive definiteness of the generalized Hessian is han-
dled by a tailored regularization technique, which is motivated by reweighting as well
as the classical trust-region method. Our numerical experiments demonstrate selected
applications in image processing, support vector machines, and optimal control of
partial differential equations.

Keywords Sparsity · Concave priors · Nonconvex minimization · Semismooth
Newton method · Superlinear convergence

1 Introduction

Nonsmooth and nonconvex variational models have recently attracted significant at-
tention in mathematical image (or signal) processing, compressed sensing etc. for
computing solutions with certain sparsity properties [3, 5, 11, 12, 21, 22, 24, 26, 29,
31, 32]. Particular concave priors, which have been used for this purpose, include
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the bridge priori [26], the fraction prior [21], the logarithmic prior [29], to mention
only a few. They reflect a nonconvex compromise between minimizing nonsmooth
but convex models and the combinatorial �0-problem, which aims at minimizing the
support of the property of interest of the solution [4, 7].

The success of these variational models in sparse optimization is also related to
the fact that they are typically not locally Lipschitz continuous; see, e.g., [9, 12, 14,
24]. Besides the nonconvexity, this property represents significant challenges in both
theory and numerics. On the analytical side, the derivation of stationarity conditions
becomes delicate as Euler–Lagrange principles, as known for smooth or nonsmooth
but still locally Lipschitz problems, cannot be applied. This difficulty, on the other
hand, is also reflected in the development of robust solution algorithms with first-
order methods, which are prone to slow convergence, and generalized second-order
schemes suffering from the nonconvexity and non-Lipschitz behavior of the objec-
tive.

Specific stationarity conditions for certain classes of nonconvex and non-Lipschitz
problems can be found for instance in [14]. Concerning solution algorithms, we note
that in [31] a graduated nonconvexity approach is employed, where each subprob-
lem is solved by an interior point type algorithm, which unfortunately increases the
variable space. An alternative can be found in [32], but in that paper non-Lipschitz
continuous models are not admissible. The authors in [35] provide an existence result
and a surrogate-functional based algorithm for �q -norm minimization (0 < q < 1) in
sequence space, where the sparse regularization term is restricted to be separable. In
[11] iteratively reweighted techniques are employed, which converge only linearly.
On the other hand, the iteratively reweighted least squares method in [17] converges
superlinear for the �q -norm, but requires certain sparsity assumptions on the under-
lying solution.

The development in this paper extends earlier work by the authors [22] to a more
general problem class (e.g. using a variety of different priors), which allows applica-
tions in image processing, sparse support vector machines, sparse optimal control of
partial differential equations and possibly more within a unified framework. Algorith-
mically, the method relies on a local smoothing, which is treated asymptotically for
vanishing smoothing parameter by a so-called smoothing scheme in the spirit of [12].
For each fixed smoothing parameter, a semismooth Newton solver is developed which
relies on a specific R-regularization of the generalized Hessian in case it is not pos-
itive definite. With this regularization, which vanishes as a solution of the associate
Euler–Lagrange equation is approached, it can be shown that the method converges
superlinearly without any sparsity requirements and for a rather general class of non-
convex priors. The globalization of the Newton scheme is achieved by a Wolfe-type
line search procedure. It is demonstrated in the numerical experiments that this new
approach outperforms well-known methods ranging from general-purpose nonlinear
optimization algorithms such as the BFGS quasi-Newton method and special-purpose
solvers for sparse solutions such as the iteratively reweighted least squares method.

The rest of the paper is organized as follows. Section 2 formulates the variational
models under consideration and introduces the corresponding Huber relaxation. A su-
perlinearly convergent R-regularized Newton scheme, together with its convergence
analysis, is presented in Sect. 3. Finally, Sect. 4 demonstrates the practical behavior of
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the proposed algorithm and covers a number of applications of the sparsity-promoting
variational models.

2 Variational model with concave priors

We consider the following general variational model:

min
u∈R|Ωu|

f (u) = Θ(u) + αΨ (u), (2.1)

where Ωu denotes the multidimensional index set for u. We assume that the fidelity
term Θ :R|Ωu| →R is a coercive and strictly convex C2-function. Thus, the Hessian
∇2Θ(·) exists and is positive definite everywhere in R

|Ωu|.
The prior term Ψ under consideration is of the form

Ψ (u) =
∑

j∈Ωp

ψ
(∣∣(Gu)j

∣∣),

where G : R|Ωu| → R
|Ωp | is a bounded linear operator and Ωp is the multidimen-

sional index set for a transformed vector Gu. The scalar function ψ : [0,∞) →
[0,∞) is supposed to satisfy the following hypotheses:

1. (continuity) ψ is continuous on [0,∞).
2. (regularity) ψ is C2 on (0,∞).
3. (mononicity) ψ is strictly increasing on [0,∞).
4. (concavity) ψ is concave on [0,∞).

The motivation for a concave prior ψ is to sparsify the solution u under a certain
transform G; see e.g. [29]. Typical choices for G include the identity [19], the gra-
dient operator [22], or some overcomplete dictionary [27]. In particular, we are in-
terested in those situations where ψ(| · |) is non-smooth or even non-Lipschitz at 0.
Particular examples for ψ , which have been considered in either a statistical or vari-
ational framework, are specified below.

Example 2.1 (Concave priors)

– Bridge prior [24, 26]: ψ(s) = sq/q , 0 < q < 1.
– Fraction prior [21]: ψ(s) = qs/(1 + qs), q > 0.
– Logarithmic prior [29]: ψ(s) = log(1 + qs), q > 0.

The proof of existence of a solution for (2.1) is straightforward due to the fact that
the objective f is continuous, coercive, and bounded from below.

Theorem 2.2 (Existence of solution) There exists a global minimizer for (2.1).

In order to characterize a stationary point for (2.1), we introduce an auxiliary vari-
able p ∈R

|Ωp | and derive the Euler–Lagrange equation as follows.
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Theorem 2.3 (Necessary optimality condition) For any global minimizer of (2.1)
there exists some p ∈R

|Ωp | such that

{∇Θ(u) + αG�p = 0,

ϕ
(∣∣(Gu)j

∣∣)pj = (Gu)j , for all j ∈ Ωp with (Gu)j �= 0,
(2.2)

where ϕ(s) := s/ψ ′(s) for any s ∈ (0,∞).

Note that since (2.1) is a nonconvex minimization problem, in general there exist
more than one stationary point satisfying the Euler–Lagrange system (2.2).

2.1 Huber relaxation

In order to handle the non-smoothness (or even non-Lipschitz continuity) of ψ(| · |)
numerically, we introduce a Huber-type local smoothing [25] by defining

ψγ (s) =
⎧
⎨

⎩
ψ(s) − (

ψ(γ ) − γψ ′(γ )
2

)
, if |s| ≥ γ,

ψ ′(γ )
2γ

s2, if |s| < γ,

where γ > 0 is the associated Huber parameter. Then we replace ψ in (2.1) by the
C1 function ψγ and formulate the Huberized variational model as:

min
u∈R|Ωu|

fγ (u) = Θ(u) + α
∑

j∈Ωp

ψγ

(∣∣(Gu)j
∣∣). (2.3)

The corresponding Euler–Lagrange equation for (2.3), which we call the Huber-
ized Euler–Lagrange equation, is given by

∇fγ (u) = ∇Θ(u) + αG�(
ϕ
(
max

(|Gu|, γ ))−1
Gu

) = 0, (2.4)

or equivalently posed with an auxiliary variable p as follows:

res(u,p;γ ) :=
[

∇Θ(u) + αG�p

ϕ(max(|Gu|, γ ))p − Gu

]
= 0. (2.5)

Here and below we shall adopt the following conventions for componentwise opera-
tions on vectors. For a vector v ∈R

n, |v| denotes the componentwise absolute value,
i.e. |v| = (|v1|, . . . , |vn|), vw denotes the componentwise product (v1w1, . . . , vnwn)

with another vector w ∈ R
n, vq = (v

q

1 , . . . , vq) for an exponent q ∈ R, max(v, γ ) =
(max(v1, γ ), . . . ,max(vn, γ )) for γ ∈R, and ϕ(v) = (ϕ(v1), . . . , ϕ(vn)) is also taken
componentwisely. In addition, D(v) denotes a diagonal matrix with diagonal ele-
ments given by v, and ‖ · ‖ denotes the 2-norm for a vector and the spectral norm for
a matrix.

Since the argument of ϕ is bounded below by the positive number γ , the quan-
tity ϕ(·) is well defined. Furthermore, ϕ satisfies the following properties: (1) ϕ is
continuously differentiable on (0,∞); (2) ϕ′(s) ≥ ψ ′(γ )−1 > 0 for any s ∈ [γ,∞).
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Consequently, by the composition rule of semismooth functions [20, Theorem 19],
the residual function res(·, ·;γ ) is semismooth at any (u,p) ∈ R

|Ωu| × R
|Ωp |. This

allows us to apply the generalized Newton method [23, 34] to (2.5) as we shall see in
the next section.

3 Superlinearly convergent R-regularized Newton scheme

In this section, we propose a tailored approach for finding a stationary point for (2.3).
We start by investigating a structured regularization scheme in the generalized New-
ton method.

3.1 R-Regularized Newton scheme

Let (uk,pk) be the current iterate and the active set characteristic χAk ∈ R
|Ωp | be

defined as

(χAk )j =
{

1, if |(Guk)j | ≥ γ,

0, if |(Guk)j | < γ.

The set Ak := {j ∈ Ωp : (Guk)j | ≥ γ } is referred to as the active set. In view of the
max-function, we shall apply the generalized Newton method [23, 34] to (2.5). This
leads us to the following linear system

[ ∇2Θ(uk) αG�

−D
(
1 − χAkpk ϕ′(mk)Guk

mk

)
G D(ϕ(mk))

][
δuk

δpk

]

=
[

−∇Θ(uk) − αG�pk

−ϕ(mk)pk + Guk

]
,

with

mk := max
(∣∣Guk

∣∣, γ
)
.

After eliminating δpk , we are left with

Hkδuk = −gk,

where

Hk = H
(
uk,χAkp

k
)

= ∇2Θ
(
uk

) + αG�D

(
ϕ
(
mk

)−1
(

1 − χAkpk ϕ′(mk)(Guk)

mk

))
G, (3.1)

gk = ∇fγ

(
uk

) = ∇Θ
(
uk

) + αG�(
ϕ
(
mk

)−1
Guk

)
.
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Based on an observation of the structure of the Hessian matrix Hk (see (3.2) be-
low), we are motivated to define the R-regularization of Hk at (uk,χAkpk) as

Rk = R
(
uk,χAkpk

) = αG�D

(
χAkpk ϕ′(mk)(Guk)

ϕ(mk)mk

)
G.

Then the resulting R-regularized Newton scheme arises as
(
Hk + βRk

)
δuk = −gk.

In particular, if we take β = 1, then the R-regularized Newton scheme becomes

(
Hk + Rk

)
δuk = (∇2Θ

(
uk

) + αG�D
(
ϕ
(
mk

)−1)
G

)
δuk = −gk. (3.2)

Note that the fully R-regularized Hessian Hk + Rk is strictly positive definite and
thus guarantees a descent direction δuk for fγ at uk .

It is worth mentioning that a Hessian regularization as in (3.2) can be alterna-
tively derived from applying the generalized Newton method to the reweighted Euler–
Lagrange equation

∇Θ(u) + αG�(
ϕ
(
max

(∣∣Guk
∣∣, γ

))−1
u
) = 0. (3.3)

The reweighting techniques can be traced back to [10, 37], where they are used in a
fixed-point iterative scheme for nonlinear optimization. Here we interpret this tech-
nique as a regularization of the Hessian in Newton’s method. This motivates why we
have coined the term “R-regularization”.

3.2 Infeasible Newton technique

In order to ensure fast local convergence of the overall Newton scheme presented in
Sect. 3.3, we introduce several modifications in the construction of Hk and Rk .

We start by replacing χAkpk by p̃k in formula (3.1), where

p̃k := χAk (mk/ϕ(mk))pk

max(mk/ϕ(mk), |pk|) .

This choice of p̃k satisfies the feasibility condition
∣∣(p̃k

)
j

∣∣ ≤ ∣∣(Guk
)
j

∣∣/ϕ
(∣∣(Guk

)
j

∣∣),

on the index subset {j ∈ Ωp : |(Guk)j | ≥ γ }. As a consequence, the modified Hessian
H̃ k appears as

H̃ k = H
(
uk, p̃k

) = ∇2Θ
(
uk

) + αG�D

(
ϕ
(
mk

)−1
(

1 − p̃k ϕ′(mk)(Guk)

mk

))
G.

One of our motivations for such a replacement is that the sequence (p̃k) will be
uniformly bounded provided that the sequence (uk) is uniformly bounded, which
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will be useful in the derivation of global convergence; see Theorem 3.7 below. In
addition, the Hessian modification becomes asymptotically invariant, as shown in the
following lemma.

Lemma 3.1 Assume that limk→∞(uk,pk) = (u∗,p∗) with the limiting pair (u∗,p∗)
satisfying the Euler–Lagrange equation (2.5). Then we have

lim
k→∞

∥∥H̃ k − Hk
∥∥ = 0.

Proof Based on the structures of H̃ k and Hk , it suffices to show limk→∞ ‖p̃k −
χAkpk‖ = 0. Given the assumption, we have for all j ∈ Ωp that |p∗| = |Gu∗|/
ϕ(max(|Gu∗|, γ )) and therefore

∣∣p̃k − χAkpk
∣∣ ≤ ∣∣pk

∣∣
∣∣∣∣

mk/ϕ(mk)

max(mk/ϕ(mk), |pk|) − 1

∣∣∣∣

→ ∣∣p∗∣∣
∣∣∣∣

max(|Gu∗|, γ )/ϕ(max(|Gu∗|, γ ))

max(max(|Gu∗|, γ )/ϕ(max(|Gu∗|, γ )), |p∗|) − 1

∣∣∣∣ = 0

as k → ∞. Thus the conclusion follows. �

Besides the Hessian modification, we correspondingly define the modified
R-regularization by

R̃k = R
(
uk, p̃k

) = αG�D

(
p̃k ϕ′(mk)(Guk)

ϕ(mk)mk

)
G + εI, (3.4)

with an arbitrarily fixed parameter 0 < ε 
 α.

Lemma 3.2 Let the assumptions of Lemma 3.1 hold true. Then we have λmin(R̃
k) ≥

ε/2 for all sufficiently large k.

Proof As the conclusion is trivial given G = 0, we proceed with any given G �= 0. It
follows from the assumption that

min

{(
p̃k ϕ′(mk)(Guk)

ϕ(mk)mk

)

j

: j ∈ Ωp

}

= min

{(
ϕ′(mk)(Guk)χAk (mk/ϕ(mk))pk

ϕ(mk)mk max(mk/ϕ(mk), |pk|)
)

j

: j ∈ Ωp

}

≥ min

({(
ϕ′(mk)(Guk)(mk/ϕ(mk))pk

ϕ(mk)mk max(mk/ϕ(mk), |pk|)
)

j

: j ∈ Ωp

}
∪ {0}

)

k→∞−−−→ min

({(
ϕ′(max(|Gu∗|, γ ))(Gu∗)2

max(|Gu∗|, γ )(ϕ(max(|Gu∗|, γ )))2

)

j

: j ∈ Ωp

}
∪ {0}

)
≥ 0.
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Therefore, we have for all sufficiently large k that

min

{
p̃k ϕ′(mk)(Guk)

ϕ(mk)mk
: j ∈ Ωp

}
≥ − ε

2‖G‖2
,

and

v�R̃kv ≥ − ε

2‖G‖2
‖Gv‖2 + ε‖v‖2 ≥ ε

2
‖v‖2,

for any vector v ∈R
|Ωp |. Thus we conclude that λmin(R̃

k) ≥ ε/2. �

The ε-term in (3.4) is important as indicated by Lemma 3.2 since it guarantees
R̃k to be strictly positive definite when the iterate is sufficiently close to a solution.
However, note that ε can be arbitrarily small and therefore R̃k is allowed to have
nonpositive eigenvalues during the Newton iterations. In fact, choosing a large ε that
dominates the R-regularization term is not desirable in the numerical implementation.

Thus far, we arrive at the overall modified R-regularized Newton scheme

(
H̃ k + βR̃k

)
δuk = −gk. (3.5)

The fully R-regularized scheme, i.e. with β = 1, generates a descent direction satis-
fying the estimate in the following theorem.

Theorem 3.3 (Sufficient condition for descent property) Assume that the sequence
(uk) is uniformly bounded and contained in a compact subset E in R

|Ωu|. Then the
solution δuk of (3.5) with β = 1 is a descent direction satisfying

− (gk)�δuk

‖gk‖‖δuk‖ ≥ Cl

Cu + αλmax(G�G)/ϕ(γ )
=: ε̄d ,

where 0 < Cl ≤ Cu are two constants depending on Θ and E.

Proof Let S = {v ∈ R
|Ωu| : ‖v‖ = 1} denote the unit sphere. Due to the compactness

of E × S and the continuity of the functional (u, v) �→ v�∇2Θ(u)v, the problem

Cl := inf
(u,v)∈E×S

v�∇2Θ(u)v

attains the infimum Cl for some (u, v) ∈ E × S. Note that Cl > 0, since otherwise
our assumption that Θ is a strictly convex C2 function would be violated.

Analogously, there exists a constant Cu such that

Cu := sup
(u,v)∈E×S

v�∇2Θ(u)v.

Obviously, we have Cu ≥ Cl . Then it follows that



Variational models with concave priors 9

− (gk)�δuk

‖gk‖‖δuk‖ ≥ λmin(H̃
k + R̃k)

λmax(H̃ k + R̃k)

≥ λmin(∇2Θ(uk))

λmax(∇2Θ(uk)) + λmax(αG�D(ϕ(mk)−1)G)

≥ Cl

Cu + αλmax(G�G)/ϕ(γ )
.

For the last inequality, we have used the fact that ϕ is monotonically increasing on
[γ,∞). �

3.3 A superlinearly convergent algorithm

According to Theorem 3.3, the R-regularized Newton scheme (3.5) with β = 1 pro-
vides a descent direction. However, a constant R-regularization (with β = 1), which
is equivalent to a fixed-point approach, is known to be only linearly convergent [8,
30, 37].

Ideally, we would like to utilize a sufficient R-regularization when the objective
is nonconvex (or the Hessian possesses negative eigenvalues) at the current iterate.
As the iterative scheme proceeds, the iterate may eventually be contained in a neigh-
borhood of some local minimizer satisfying some type of a second-order sufficient
optimality condition, such that all (generalized) Hessians of the objective are positive
definite within that neighborhood. Under such circumstances, we would rather utilize
the true Hessian without any R-regularization in the Newton scheme, as it leads to
local superlinear convergence.

In order to achieve these goals, we establish an automated scheme for adapting β ,
the weight of the R-regularization, motivated by the trust-region method; see e.g. [16,
18, 33] for comprehensive discussions on the trust-region method (but in a completely
different context). We start by setting up the local quadratic model of fγ at the current
iterate uk as follows

hk(d) := fγ

(
uk

) + (
gk

)�
d + 1

2
d�H̃ kd.

Consider now the minimization of hk(·) subject to a trust-region constraint, i.e.

minimize hk(d), (3.6)

subject to d�R̃kd ≤ (
σk

)2
, (3.7)

where σ > 0 is the trust-region radius.
Note that the matrix H̃ k may be indefinite due to the nonconvexity of fγ . Fur-

thermore, as pointed out after Lemma 3.2, R̃k is allowed to have more than one non-
positive eigenvalues. Thus, the feasible region induced by (3.7) may be nonconvex
and unbounded; see Fig. 1 for an illustration in two dimensions. This is significantly
different from the settings in classical trust-region methods [16, 18] where R̃k is pos-
itive definite and induces a convex, closed and bounded feasible region. Remarkably,
H̃ k and R̃k enjoy a special interplay as indicated in the following lemma.



10 M. Hintermüller, T. Wu

Fig. 1 Illustration of a
two-dimensional trust-region
subproblem (3.6)–(3.7). The
objective function is plotted
with contour lines. The feasible
region is colored in light gray
(contrary to dark gray). The
global minimizer
(−0.748,−0.403) is marked by
the solid dot

Lemma 3.4 The matrix H̃ k is positive definite on the subset {d ∈ R
|Ωu| :

d�R̃kd ≤ 0}.

Proof Let d ∈R
|Ωu| such that d �= 0 and d�R̃kd ≤ 0. Then we have

d�H̃ kd = d�∇2Θ
(
uk

)
d + α(Gd)�D

(
ϕ
(
mk

)−1)
Gd − d�R̃kd + ε‖d‖2

≥ d�∇2Θ
(
uk

)
d + α(Gd)�D

(
ϕ
(
mk

)−1)
Gd > 0,

which proves the assertion. �

Such an interplay between H̃ k and R̃k leads us to the existence as well as the
characterization of a global minimizer for the trust-region subproblem (3.6)–(3.7), as
stated in the following theorem. The proof techniques can be found in Theorems 3.4
and 3.5 in [22].

Theorem 3.5 There exists a global minimizer d∗ for (3.6)–(3.7). Moreover, the nec-
essary and sufficient condition for d∗ being optimal is that there exists β∗ ≥ 0 such
that

(
H̃ k + β∗R̃k

)
d∗ = −g, (3.8)

β∗ − max
(
β∗ + c−1(d�∗ R̃kd∗ − (

σk
)2)

,0
) = 0, (3.9)

H̃ k + β∗R̃k � 0, (3.10)

for an arbitrarily fixed scalar c > 0.

In particular, the complementarity equation (3.9) in Theorem 3.5 provides us a
natural fixed-point formula for updating the weight β . Now we are in a position to
present our superlinearly convergent R-regularized Newton scheme.
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Algorithm 3.6 (Superlinearly convergent R-regularized Newton scheme)

Require: parameters c > 0, 0 < ρ1 ≤ ρ2 < 1, 0 < κ1 < 1 < κ2, 0 < ε 
 α,
0 < εd ≤ ε̄d , 0 < τ1 < 1/2, τ1 < τ2 < 1.

1: Initialize the iterate (u0,p0), the regularization weight β0 ≥ 0, and the trust-
region radius σ 0 > 0. Set k := 0.

2: repeat {outer loop}
3: Generate H̃ k , R̃k , and gk at the current iterate (uk,pk).
4: repeat {inner loop}
5: Solve the linear equation (H̃ k + βkR̃k)dk = −gk for dk .
6: if the matrix H̃ k + βkR̃k is singular or −(gk)�dk/(‖gk‖‖dk‖) < εd then
7: Set βk := 1, and return to Step 5.
8: end if
9: if βk = 1 and (dk)�R̃kdk > (σ k)2 then

10: Set σk :=
√

(dk)�R̃kdk , and go to Step 15.
11: end if
12: Update βk := βk + c−1((dk)�R̃kdk − (σ k)2).
13: Project βk onto the interval [0,1], i.e. set βk := max(min(βk,1),0).
14: until the stopping criterion for the inner loop is fulfilled.
15: Evaluate ρk := [fγ (uk) − fγ (uk + dk)]/[fγ (uk) − (fγ (uk) + (gk)�dk +

(dk)�H̃ kdk/2)].
16: if ρk < ρ1 then
17: Set σk+1 := κ1σ

k .
18: else if ρk > ρ2 then
19: Set σk+1 := κ2σ

k .
20: else
21: σk+1 := σk .
22: end if
23: Determine the step size ak along the search direction dk such that uk+1 =

uk + akdk satisfies the following Wolfe–Powell conditions:

fγ

(
uk+1) ≤ fγ

(
uk

) + τ1a
k∇fγ

(
uk

)�
dk, (3.11)

∇fγ

(
uk+1)�

dk ≥ τ2∇fγ

(
uk

)�
dk. (3.12)

24: Generate the next iterate:

uk+1 := uk + akdk,

pk+1 := ϕ
(
mk

)−1
(

Guk +
(

1 − p̃k ϕ′(mk)(Guk)

mk

)
Gdk

)
. (3.13)

25: Initialize the R-regularization weight βk+1 := βk for the next iteration.
26: Set k := k + 1.
27: until the stopping criterion for the outer loop is fulfilled.

Concerning the input parameters involved in the above algorithm, we note that
these quantities are presented merely for the generality of the algorithm and do not
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require particular tuning for different test runs. Throughout our numerical experi-
ments in Sect. 4, we shall always fix the parameters as follows: c = 1, ρ1 = 0.25,
ρ2 = 0.75, κ1 = 0.25, κ2 = 2, ε = 10−4α, εd = 10−8, τ1 = 0.1, τ2 = 0.9.

We remark that Algorithm 3.6 is a hybrid approach combining the trust-region
method and the line search technique. The Wolfe–Powell line search, along the search
direction dk obtained from the R-regularized Newton scheme, is responsible for the
global convergence of the overall algorithm; see Theorem 3.7 in the following.

Theorem 3.7 (Global convergence) Let (uk,pk) be the sequence generated by Algo-
rithm 3.6. Then we have

lim
k→+∞

∥∥∇fγ

(
uk

)∥∥ = 0. (3.14)

Moreover, if in addition (uk) is uniformly bounded, then the sequence (uk,pk) has
an accumulation point (u∗,p∗) satisfying the Euler–Lagrange equation (2.5).

Proof According to Zoutendijk’s theorem for the Wolfe–Powell line search (see, e.g.,
Theorem 3.2 in [33]), we have

∑∞
k=0 cos2 θk‖gk‖2 < ∞, where

cos θk := − (gk)�dk

‖gk‖‖dk‖ .

Due to the descent property

cos θk ≥ εd > 0, (3.15)

guaranteed by Theorem 3.3 and steps 6–8 in Algorithm 3.6, we have proved (3.14).
Moreover, it follows from the descent property (3.15) that

εd

∥∥gk
∥∥∥∥dk

∥∥ ≤ −(
gk

)�
dk = (

dk
)�(

H̃ k + βkR̃k
)
dk ≤ ∥∥gk

∥∥∥∥dk
∥∥.

Consider dk := skvk such that sk ≥ 0 and ‖vk‖ = 1 for all k, then we have

εd

∥∥gk
∥∥ ≤ sk

(
vk

)�(
H̃ k + βkR̃k

)
vk ≤ ∥∥gk

∥∥.

It follows that

lim
k→∞ sk

(
vk

)�(
H̃ k + βkR̃k

)
vk = 0. (3.16)

By the uniform boundedness of (uk), (vk), (p̃k), and (βk), there exist u∗, v∗ ∈
R

|Ωu|, p̃∗ ∈ R
|Ωp |, and β∗ ∈ [0,1] such that up to a subsequence uk → u∗, vk → v∗,

p̃k → p̃∗, and βk → β∗ as k → ∞. Owing to the continuity of the mappings
(uk, p̃k) �→ H̃ k = H(uk, p̃k) and (uk, p̃k) �→ R̃k = R(uk, p̃k), we also have H̃ k →
H̃ ∗ := H(u∗, p̃∗) and R̃k → R̃∗ := R(u∗, p̃∗) as k → ∞.

We claim that lim infk→∞ sk = 0. Assume the contrary that (sk) is uniformly
bounded away from 0. Then because of (3.16) we have (v∗)�(H̃ ∗ +β∗R̃∗)v∗ = 0, or
equivalently

(
H̃ ∗ + β∗R̃∗)v∗ = 0,
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due to the symmetry of the matrix. This leads to a contradiction as

εd ≤ − (gk)�dk

‖gk‖‖dk‖ = (dk)�(H̃ k + βkR̃k)dk

‖(H̃ k + βkR̃k)−1dk‖‖dk‖

≤ ((dk)�(H̃ k + βkR̃k)dk)‖(H̃ k + βkR̃k)dk‖
‖dk‖3

≤ ‖(H̃ k + βkR̃k)dk‖2

‖dk‖2

= ∥∥(
H̃ k + βkR̃k

)
vk

∥∥2 k→∞−−−→ ∥∥(
H̃ ∗ + β∗R̃∗)v∗∥∥2 = 0.

We have used the Cauchy–Schwarz inequality in deriving the above inequalities.
Thus, we have proved that lim infk→∞ ‖dk‖ = 0.

Upon extracting another subsequence of (dk) and using again the same notation
for the indices, we have limk→∞ dk = 0 and then

p∗ := lim
k→∞pk+1 = ϕ

(
max

(∣∣Gu∗∣∣, γ
))−1

Gu∗,

according the update formula (3.13). Together with the already established fact that

0 = lim
k→∞∇fγ

(
uk

) = ∇fγ

(
u∗) = ∇Θ

(
u∗) + αG�(

ϕ
(
max

(∣∣Gu∗∣∣, γ
))−1

Gu∗),

we conclude that (u∗,p∗) satisfies the Euler–Lagrange equation (2.5). �

In addition to the global convergence, the trust-region framework supplies a proper
tuning of the R-regularization weight βk , such that βk will vanish asymptotically.
Thus the algorithm converges locally at a superlinear rate to a local minimizer sat-
isfying the second-order sufficient optimality condition (for semismooth problems);
see Theorem 3.8 below. To sketch the proof, note that for sufficiently large k, H̃ k and
R̃k both become strictly positive definite. It follows that the alternating iterations on
βk and uk , i.e. steps 4–14 of Algorithm 3.6, converge and therefore the so-called
Cauchy-point based model reduction criterion will be satisfied; see [22]. Analogous
to the classical trust-region method, the evaluation ratio ρk tends to 1 and the trust-
region radius σk is uniformly bounded away from 0. As a result the weight βk will
vanish in the limit. Finally, the full step size ak = 1 is admissible for all sufficiently k

and the step dk is asymptotically identical to a full semismooth Newton step. We refer
to Theorem 3.10 in [22] for a complete proof of the local superlinear convergence.

Theorem 3.8 (Local superlinear convergence) Let the sequence (uk,pk) generated
by Algorithm 3.6 converge to some (u∗,p∗) satisfying the Euler–Lagrange equa-
tion (2.5). Assume that all generalized Hessians [22] of fγ at u∗ are strictly positive
definite. Then we have limk→∞ βk = 0 and the sequence (uk) converges to u∗ super-
linearly, i.e.

∥∥uk+1 − u∗∥∥ = o
(∥∥uk − u∗∥∥)

, as k → ∞.
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4 Numerical examples

In this section, we present a numerical study of Algorithm 3.6. Throughout this sec-
tion, the linear system in step 5 is handled by the conjugate gradient method with
residual tolerance 0.01. Whenever, the matrix H̃ k + βkR̃k is detected to be indefinite
or (near-) singular, we immediately utilize step 7 in order to obtain a positive definite
linear system. The trust-region subproblem (3.6)–(3.7) is solved only approximately.
From our numerical experience, one (inner) iteration on the R-regularization weight
βk seems efficient for the overall algorithm. The regularization parameter α is manu-
ally chosen to properly balance the data fidelity and the sparsity-promoting prior. The
Huber parameter γ is selected to be sufficiently small, depending on the particular
application, in order to obtain a desirable sparse solution. We terminate the overall
algorithm once the residual norm ‖ res(uk,pk;γ )‖ is reduced by a factor of 10−7

relative to its initial value.
The remainder of the section is organized as follows. In Sect. 4.1, we apply our

algorithm to the “classical” problem of a sparse solution to an undetermined linear
system. Therein we provide detailed studies and comparisons on various aspects of
the algorithm in practice. Sections 4.2–4.4 present selected applications of the gen-
eral variational framework (2.1) in image processing, feature selection, and optimal
control. All experiments in this section are performed under MATLAB R2011b on a
2.66 GHz Intel Core Laptop with 4 GB RAM. The CPU time reported in this section
is measured in seconds.

4.1 Sparse solution to underdetermined linear systems

Many problems such as compressed sensing and basis pursuit can be regarded as
special cases of finding a sparse solution to an underdetermined linear system; see,
e.g., [4, 13]. Here we consider a benchmark example of this type taken from [1]. The
true data û is a sparse vector of n entries, among which only 5 % are nonzero (either 1
or −1 with equal probability). The measurement z is constructed by multiplying û

by a randomly generated sensing matrix A of size (n/4)-by-n with orthonormal rows
and then adding to the product a white Gaussian noise of standard deviation 0.005.
In order to find an approximate sparse solution, we shall apply Algorithm 3.6 to the
following minimization problem:

min
u∈Rn

fγ (u) = 1

2
‖Au − z‖2 + α

n∑

i=1

ψγ

(|ui |
)
,

with the chosen parameters α = 0.001, ψ(t) = tq/q , q = 3/4, γ = 0.001, and u0 =
A�z. The restoration result for a trial run with n = 1000 is illustrated in Fig. 2, where
the red dots denote the true data and a faithful recovery, marked by blue circles, can
be observed.

Figure 3 investigates the practical behavior of the algorithm. The history of the
objective values over the iterations is plotted in (a). Owing to the descent property
of the search direction and the Wolfe–Powell line search along the descent direction,
the objective value is monotonically decreasing, which is verified by (a). The resid-
ual norm ‖ res(uk,pk;γ )‖ displayed in (b) confirms the global convergence claimed
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in Theorem 3.7. Moreover, a fast local convergence is observed near the solution.
For this fact note that the vertical axis has a logarithmic scale. The R-regularization
weight βk at each (outer) Newton iteration is plotted in (c). Note that the sufficient
condition (βk = 1) is utilized, e.g., at the 6th Newton iteration in order to obtain a
descent direction. On the other hand, βk tends to zero towards the end of the itera-
tion, permitting fast local convergence. We adopt the implementation in [33] for the
Wolfe–Powell line search, for which the history of step sizes is shown in (d). In our

Fig. 2 Sparse solution to
underdetermined linear system

Fig. 3 Behavior of Algorithm 3.6
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Table 1 Dependence on initial
guess Initial guess Objective Error CPU

u0 = A�z 6.826e-2 1.464e-2 1.99

u0 = 0 6.826e-2 1.467e-2 2.10

Random u0 6.826e-2 1.502e-2 2.21

Table 2 Comparison with
existing algorithms in terms of
CPU time

Tolerance BFGS IRLS RRN

1e-4 21.76 2.63 1.73

1e-7 25.62 4.88 2.01

experiments, we find that the Wolfe–Powell rule, which allows a step of size larger
than 1, outperforms the backtracking Armijo rule [33] due to the fact that the latter
poorly resolves the nonconvex line search problem and therefore causes more New-
ton iterations.

Since Algorithm 3.6 intends to find a stationary point for the nonconvex mini-
mization problem, it is important to check the quality of such local solutions as well
as the dependence of the algorithm on the initial guess. In this experiment, we com-
pare three different choices of initial guesses, namely u0 = A�z, u0 = 0, and a ran-
domly chosen u0. The corresponding objective value fγ (u), the error measured by
‖u− û‖/‖û‖, and the CPU time are reported in Table 1. It is observed that regardless
of the initial guess the algorithm always finds a reasonably good numerical solution
within nearly the same amount of time.

In Table 2, we compare our R-regularized Newton scheme (RRN) with two other
existing algorithms, namely the BFGS quasi-Newton method (see e.g. [33]) and the
iteratively reweighted least squares method (see e.g. [11, 17]). For each of the three
algorithms under consideration, we test the algorithm with two different tolerance
levels on the residual norm. The CPU time is reported in the corresponding entries
of Table 2. It is observed that our method always outperform the other two. Notably,
the BFGS quasi-Newton method exhibits a fast local convergence in the experiments,
but its overall convergence speed suffers from the strong nonlinear nature of the un-
derlying problem. The iteratively reweighted least squares method, a special case of
a fixed-point iteration, converges fairly fast at early iterations, but becomes less com-
petitive in case of higher accuracy requirements.

4.2 Image denoising via overcomplete dictionary

In this example, we apply our method to an image denoising problem, where the
following �1/2-DCT5 model is considered

min
u∈R|Ω|

1

2
‖u − z‖2 +

24∑

l=1

∑

(j1,j2)∈Ω

αlψγ

(∣∣(hl ∗ u)j1,j2

∣∣). (4.1)

Here, z is the observed image (see Fig. 5(b)), which is generated by adding white
Gaussian noise of standard deviation 25/255 to the “Cameraman” image (see
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5.599e-4 7.036e-4 4.913e-4 8.650e-4 9.291e-4 8.073e-4 9.853e-4 8.291e-4
1.981e-3 8.766e-4 6.595e-4 5.764e-4 7.636e-4 1.075e-3 9.150e-4 4.896e-4
6.361e-4 3.362e-4 1.180e-3 1.209e-3 1.392e-3 1.062e-3 2.121e-3 1.739e-3

Fig. 4 DCT5 filters and regularization parameters

Fig. 5 Image denoising via overcomplete dictionary

Fig. 5(a)). The filters (hl)
24
l=1 are the two-dimensional 5th-order discrete cosine trans-

form (DCT5) filters, and correspondingly (αl)
24
l=1 are the regularization parameters

trained from a large database of image patches [27]; see Fig. 4 for the illustrations
of DCT5 filters and the values of trained regularization parameters. The symbol “∗”
denotes the conventional two-dimensional convolution. By considering the concave
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Table 3 Dependence on the
Huber parameter γ 0.03 0.02 0.015 0.01

PSNR 26.61 27.47 27.91 28.25

CPU 50.88 61.03 122.7 234.1

Table 4 Comparison of �1/2-
and �1-models

Model PSNR #Newton #CG CPU

�1-DCT5 27.46 11 104 80.37

�1/2-DCT5 28.25 24 358 234.1

bridge prior with exponent 1/2 (or ψ(t) = 2t1/2), we expect the restored image u to
be sparse under the DCT5 transform. In this sense, the variational model (4.1) is an
analysis approach [6].

We implement Algorithm 3.6 with the initial guess u0 = z and different choices
of the Huber parameter, namely γ = 0.03, 0.02, 0.015, and 0.01. The quality of
the restored image is measured by the peak signal-to-noise ratio (PSNR). The corre-
sponding PSNR and CPU time with respect to different γ are reported in Table 3. We
note the tradeoff in γ -selection that smaller γ typically yields the higher quality on
the sparse solution, but costs more CPU time.

We further compare the performance of the �1/2-DCT5 model (with u0 = z,
γ = 0.01) and that of �1-DCT5 model in [27], for which the corresponding restored
images are displayed in (c) and (d) of Fig. 5, respectively. Table 4 reports the quan-
titative comparison of the two models with respect to the PSNR value, the number
of Newton iterations, the total number of conjugate gradient iterations, and the CPU
time. It is observed that the �1-DCT5 model poorly restores the homogeneous re-
gion in order to well preserve the textures in the image. The �1/2-DCT5 model is
more time-consuming due to solving a nonconvex problem, but yields considerable
improvement on the restoration quality.

4.3 Feature selection via sparse support vector machines

We consider an example of feature selection using a support vector machine (SVM)
[38], where we aim to identify 10 feature variables out of 200 candidate variables
(xj )

200
j=1. The identification is based on n training samples simulated as follows. For

each sample, the outcome yi ∈ {+1,−1}, i ∈ {1,2, . . . , n}, is generated with equal
probability. If xj is a feature variable, then with probability 0.3 the random variable
xi
j = yiN (3,1) is drawn and with probability 0.7 we generate xi

j = N (0,1). If xj is

a noise variable, then xi
j = N (0,1) is independently generated.

The linear SVM uses the classifier y = sgn(b + ∑200
j=1 wjxj ) to predict the out-

come for a fresh input x. The unknowns b ∈ R and w ∈ R
200 are determined by

solving the following minimization problem

min
b∈R,w∈R200

α

200∑

j=1

ψγ

(|wj |
) + 1

n

n∑

i=1

Lεhl

(
yi

(
b +

200∑

j=1

wjx
i
j

))
, (4.2)
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Fig. 6 Feature selection via sparse support vector machine

where Lεhl
(·) is a smoothed hinge loss [9] defined by

Lεhl
(s) =

{
max(1 − s,0), if |s − 1| ≥ εhl,

(1 + εhl − s)2/(4εhl), if |s − 1| < εhl,

with the smoothing parameter εhl = 0.01. In this experiment, we choose α = 0.1,
ψ(t) = log(1 + 2t), and γ = 0.001.

The computational results for a trial run with n = 200 training samples are dis-
played in Fig. 6. We plot the importance weight w in (a), where in particular the
weights for the 10 presumed feature variables are marked by red circles. From this
figure, it is observed that the variational model (4.2) has correctly identified the fea-
ture variables among all candidate variables. In (b) and (c), we illustrate the computed
classifier with respect to the training data projected onto two particular candidate
variables, i.e. y = sgn(b + wj1xj1 + wj2xj2). More specifically, in (b) xj1 and xj2

are two distinct feature variables, and in (c) one is a feature variable and the other is
a noise variable. In both figures, the coordinates of the circles indicate the random-
variable values of those simulated samples with outcomes +1, and the coordinates
of the crosses indicate the random-variable values of those simulated samples with
outcomes −1.
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4.4 Sparse optimal control

Finally, we demonstrate an application in sparse optimal control, which shows con-
siderable promises in actuator placement problems; see, e.g., [15, 36]. Consider the
following stationary control problem:

minimize J (y,u) = 1

2

∫

Ω

|y − z|2dx + μ

2

∫

Ω

|∇u|2dx + α

∫

Ω

ψ
(|u|)dx (4.3)

over (y,u) ∈ H 1
0 (Ω) × Uad (4.4)

subject to
∫

Ω

∇y · ∇vdx =
∫

Ω

uvdx for any v ∈ H 1
0 (Ω). (4.5)

Here Ω is a bounded Lipschitz domain, α > 0, 0 < μ 
 α are some given parame-
ters, a desired state is given by z ∈ H 1

0 (Ω), and Uad is some weakly closed subset
in H 1

0 (Ω). A (continuous) concave prior ψ(·) is applied in order to promote the spar-
sity of the optimal control in the spatial domain.

In general, it is a difficult task to establish the existence of solutions for a noncon-
vex minimization problem in function space due to the lack of weak (or weak∗) lower
semicontinuity for the objective; see, e.g., [3, 22]. However, in this special case with
the H 1-regularization (the μ-term), we are able to show the existence of solution as
in the following theorem.

Theorem 4.1 The stationary control problem (4.3)–(4.5) admits a solution.

Proof By the Lax–Milgram Lemma, the solution mapping u �→ y = (−�)−1u

for (4.5) is linear and continuous. Thus we only need to consider the reduced prob-
lem:

min
u∈Uad

Ĵ (u) = 1

2

∫

Ω

∣∣(−�)−1u − z
∣∣2

dx + μ

2

∫

Ω

|∇u|2dx + α

∫

Ω

ψ
(|u|)dx.

Since Ĵ (·) is bounded from below and coercive in H 1
0 (Ω), any infimizing sequence

(uk) is uniformly bounded in H 1
0 (Ω). By the reflexivity of the space H 1(Ω) and the

weak closedness of the admissible set Uad , there exists a subsequence of (uk), also
denoted by (uk), such that uk ⇀ u∗ in H 1(Ω) as k → ∞ for some u∗ ∈ Uad .

As the functional u ∈ H 1
0 (Ω) �→ 1

2

∫
Ω

|(−�)−1u− z|2dx + μ
2

∫
Ω

|∇u|2dx is con-
vex and strongly continuous, it is weakly lower semicontinuous, and thus we have

1

2

∫

Ω

∣∣(−�)−1u∗ − z
∣∣2

dx + μ

2

∫

Ω

∣∣∇u∗∣∣2
dx

≤ lim inf
k→∞

1

2

∫

Ω

∣∣(−�)−1uk − z
∣∣2

dx + μ

2

∫

Ω

∣∣∇uk
∣∣2

dx.

On the other hand, the compact embedding of H 1
0 (Ω) into L2(Ω) (see, e.g., Theo-

rem 5.3.3 in [2]) implies the strong convergence of (uk) to u∗ in L2(Ω), and thus we
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have, up to another subsequence, uk(x) → u∗(x) almost everywhere in Ω as k → ∞.
By Fatou’s lemma and the continuity of the scalar function ψ(| · |), we have

∫

Ω

ψ
(∣∣u∗∣∣)dx ≤ lim inf

k→∞

∫

Ω

ψ
(∣∣uk

∣∣)dx.

Altogether, we have Ĵ (u∗) ≤ lim infk→∞ Ĵ (uk), indicating that u∗ is an optimal so-
lution to the underlying problem. �

We remark that without the H 1-regularization term the above proof would no
longer be valid due to the lack of coercivity of the reduced objective Ĵ (·). In
addition, H 1-regularization enforces sufficient regularity on a weakly convergent
(sub)sequence that finally yields the almost everywhere pointwise convergence of
the infimizing (sub)sequence.

Now we turn our attention to the numerical solution for the following discretized
control problem in reduced form:

min
u∈R|Ω|

∑

(j1,j2)∈Ω

1

2

∣∣(−�)−1u − z
∣∣2 + αψγ

(|u|) + μ

2
|∇u|2.

Here Ω = {0,1,2, . . . ,2N }2, N ∈ N, denotes the 2D index set for the discretized
square domain (0,1)2 with a uniform mesh size h = 2−N . The Laplacian � with ho-
mogenous Dirichlet boundary conditions is discretized by the standard 5-point sten-
cil. The desired state z ∈R

|Ω| is defined by

zj1,j2 = sin(2πhj1) sin(2πhj2) exp(2hj1)/6,

for all (j1, j2) ∈ Ω ; see Fig. 7(a). Note that we have taken the admissible set to be uni-
versal, i.e. Uad = R

|Ω|. In the following experiments, we shall fix N = 7, α = 10−4,
γ = 0.1, and u0 = −�z. The associated numerical results are displayed in Fig. 7.

As shown in (b), we compute the optimal control with the prior ψ(t) = 4
3 t3/4

and μ = 10−12α. In fact, in the discrete setting with fixed mesh size, this result is
almost identical to the optimal control with μ = 0 displayed in (d). Note that the
optimal control is highly sparse in the spatial domain with sparsity rate |{(j1, j2) ∈
Ω : |uj1,j2 | ≥ γ }|/|Ω| equal to 0.47 %. The corresponding realized state (−�)−1u is
given in (c), and the mean tracking error ‖(−�)−1u − z‖/|Ω| is equal to 9.5322e-
05. For comparison, we also compute the optimal control obtained from the (convex)
prior ψ(t) = t (together with μ = 0), for which the realized state and the control
are shown in (e) and (f), respectively. The corresponding sparsity rate of the control
in (f) is 31.48 % and the mean tracking error is 1.0041e-04. The comparison tells
that the optimal control via the concave prior can produce a better realization of the
desired state even with much higher spatial sparsity. Nevertheless, we remark that
the magnitudes of the nontrivial entries (whose magnitudes are larger than γ ) of the
control in (d) are typically much larger than those in (f), which indicates that a higher
physical capability of the control devices is typically required in order to compensate
a reduction on the number of the control devices.
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Fig. 7 Sparse optimal control

5 A smoothing scheme and the consistency result

In Sect. 3, we have proposed the R-regularized Newton algorithm for solving (2.3)
which is a Huberized version of the original problem (2.1). We further witness from
the numerical examples in Sect. 4 that, up to a reasonable choice of the Huber param-
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eter γ , Algorithm 3.6 efficiently computes a numerical solution that is often satisfac-
tory for practical concerns.

Nevertheless, we are intrigued by the question how to use the R-regularized New-
ton algorithm to track the solution to the original non-smooth (or even non-Lipschitz)
problem. Motivated by the recent findings in [12], here we provide a smoothing
scheme with convergence analysis to accomplish this goal. It is substantiated by the
convergence of the smoothing scheme below that the Huberization strategy provides
a consistent approximation of the seemingly intractable non-smooth (or even non-
Lipschitz) problem.

Algorithm 5.1 (Smoothing scheme)
Require: parameters in Algorithm 3.6 and in addition 0 < ν < 1, η > 0.

1: Initialize the iterate (u0,p0), the regularization scalar β0 ≥ 0, the trust-region
radius σ 0 > 0, and the Huber parameter γ 0 > 0. Set k := 0.

2: repeat
3: Implement Steps 3–25 in Algorithm 3.6 for the γ k-relaxed problem.
4: if ‖ res(uk,pk;γ k)‖ ≥ ηγ k then
5: Set γ k+1 := γ k .
6: else
7: Set γ k+1 := νγ k .
8: end if
9: Set k := k + 1.

10: until the stopping criterion for the smoothing scheme is fulfilled.

Lemma 5.2 Let the sequence (uk,pk) be generated by Algorithm 5.1. Assume that
(uk) is uniformly bounded. Then we have

lim
k→∞γ k = 0 and lim inf

k→∞
∥∥res

(
uk,pk;γ k

)∥∥ = 0.

Proof Define the index set

K := {
k : γ k+1 = νγ k

}
.

If K is finite, then there exists some k̄ such that for all k > k̄ we have γ k = γ k̄

and ‖ res(uk,pk;γ k)‖ ≥ ηγ k̄ . This contradicts the global convergence in Theo-
rem 3.7 guaranteeing that lim infk→∞ ‖ res(uk,pk;γ k̄)‖ = 0. Thus, K is infinite
and limk→∞ γ k = 0. Moreover, let K = (kl)∞l=1 with k1 < k2 < · · · , then we

have ‖ res(ukl
, pkl ;γ kl

)‖ ≤ ργ kl → 0 as l → ∞. Hence, lim infk→∞ ‖ res(uk,pk;
γ k)‖ = 0. �

Theorem 5.3 (Consistency) Assume that the sequence (uk,pk) generated by Al-
gorithm 5.1 be uniformly bounded. Then the sequence has an accumulation point
(u∗,p∗) that satisfies the Euler–Lagrange equation (2.2).

Proof Let the sequence (uk,pk) be generated by Algorithm 5.1. By Lemma 5.2,
there exists a subsequence, also denoted by (uk,pk), such that limk→∞ γ k = 0 and
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limk→∞ res(uk,pk;γ k) = 0. By compactness, there exists yet another subsequence,
again with the same notation, that converges to some (u∗,p∗) ∈ R

|Ωu| × R
|Ωp |. In

particular, we have

∇Θ
(
u∗) + αG�p∗ = lim

k→∞
[∇Θ

(
uk

) + αG�pk
] = 0.

Moreover, since limk→∞ γ k = 0 according to Lemma 5.2, on the index subset {j ∈
Ωp : (Gu∗)j �= 0} we have that max(|Guk|, γ k) = |Guk| for all sufficiently large k

and therefore that

ϕ
(∣∣Gu∗∣∣)p∗ − Gu∗ = lim

k→∞
[
ϕ
(
max

(∣∣Guk
∣∣, γ k

))
pk − Guk

] = 0.

Thus we conclude that (u∗,p∗) satisfies the Euler–Lagrange equation (2.2). �
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