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Abstract. Blind deconvolution problems arise in many imaging modalities,

where both the underlying point spread function, which parameterizes the con-

volution operator, and the source image need to be identified. In this work, a
novel bilevel optimization approach to blind deconvolution is proposed. The

lower-level problem refers to the minimization of a total-variation model, as

is typically done in non-blind image deconvolution. The upper-level objective
takes into account additional statistical information depending on the partic-

ular imaging modality. Bilevel problems of such type are investigated system-
atically. Analytical properties of the lower-level solution mapping are estab-

lished based on Robinson’s strong regularity condition. Furthermore, several

stationarity conditions are derived from the variational geometry induced by
the lower-level problem. Numerically, a projected-gradient-type method is em-

ployed to obtain a Clarke-type stationary point and its convergence properties

are analyzed. We also implement an efficient version of the proposed algorithm
and test it through the experiments on point spread function calibration and

multiframe blind deconvolution.

1. Introduction. Image blur is widely encountered in many application areas; see,
e.g., [6] and the references therein. In astronomy, images taken from a telescope
appear blurry as light travels through a turbulent medium such as the atmosphere.
The out-of-focus blur in microscopic images commonly occurs due to misplacement
of the focal planes. Tomographic techniques in medical imaging, such as single-
photon emission computed tomography (SPECT), are possibly prone to resolution
limits of imaging devices or physical motion of patients, which both lead to blur-
ring artifacts in final reconstructed images. In practice, the blurring operator, which
can be modeled as the convolution with some point spread function (PSF) provided
that the blurring is shift-invariant, is often not available beforehand and needs to
be identified together with the underlying source image. Such a problem, typi-
cally known as blind deconvolution [33, 34], represents an ill-posed inverse problem
in image processing, more challenging than non-blind deconvolution owing to the
coupling of the PSF and the image.

There exists a diverse literature on blind deconvolution, which roughly divides
into two categories: direct methods and iterative methods. The direct methods,
such as the APEX method by Carasso [7, 8, 9, 10], typically assume a specific
parametric structure on either the blurring kernel itself or its characteristic function,
and are provably effective for specific applications. Among the iterative methods,
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some use simple fixed-point type iterations, e.g. the Richardson-Lucy method [18],
but their convergence properties and robustness against noise are difficult to analyze.
Others proceed by formulating a proper variational model involving regularization
terms on the image and/or the PSF. In [53] H1-regularizations are imposed on
both the image and the PSF, and in [13, 23] total-variation regularizations on the
image and the PSF are utilized and yield better results than H1-regularizations
for certain PSFs. We also mention that nonconvex image priors are considered for
blind deconvolution in the work [1], which are favorable for certain sparse images [14,
28, 29]. The convergence analysis of an alternating minimization scheme for such
double-regularization based variational approaches in appropriately chosen function
spaces is carried out in [4, 31]. An exception of variational approaches to blind
deconvolution is [32], where the optimality condition is “diagonalized” by Fourier
transform and thus can be solved by some non-iterative root-finding algorithm.
Although we shall focus ourselves only on spatially invariant PSFs in this work, we
remark that blind deconvolution with spatially varying PSFs might be advantageous
in certain applications such as telescopic imaging; see, e.g., [3]. We also mention
recent development in blind motion deblurring, which is a specific class of blind
deconvolution; see, e.g., [36, 15, 49, 5].

Nevertheless, most existing variational approaches to blind deconvolution are
“single-level”, in the sense that both unknowns, i.e. the image and the PSF, appear
in a single objective to be minimized. In this work, we are interested in a class of
blind deconvolution problems where additional statistical information on the image
(and possibly also on the PSF) is available. For instance, in microscopic imaging
the blurring is nearly stationary and an artificial reference image can be inserted
into the imaging device for obtaining a trial blurry observation of the reference
image. In telescopic imaging, the target object, considered to be stationary, is pho-
tographed by multiple cameras within an instant, leading to highly correlated blurry
observations. To exploit such additional image statistics, we propose a bilevel opti-
mization framework. In essence, in the lower level the total-variation (TV) model
(also known as the Rudin-Fatemi-Osher model [46]) is imposed as the constraint
that the underlying source image must comply with, as is typically done in non-blind
deconvolution [2, 12]. In the upper level, we minimize a suitable objective which
incorporates the statistical information on the image and the PSF. Notably, bilevel
optimization of similar structures has been recently applied to parameter/model
learning tasks in image processing; see [35, 16].

Due to nonsmoothness of the objective in the (convex) TV-model, the sufficient
and necessary optimality condition for the lower-level problem can be equivalently
expressed as either a variational inequality, a nonsmooth equation, or a set-valued
(or generalized) equation. This prevents us from applying the classical Karush-
Kuhn-Tucker theory to derive a necessary optimality condition (or stationarity
condition) for the overall bilevel optimization, and thus distinguishes our bilevel
optimization problem from classical constrained optimization. Such difficulty is also
typical in mathematical programming with equilibrium constraints (MPEC); see the
monographs [38, 41] for comprehensive introductions on the subject. In this paper,
we tackle the total-variation based bilevel optimization problem in the fashion of
MPEC. For the lower-level problem, we justify the so-called strong regularity con-
dition by Robinson [43] and then establish the B(ouligand)-differentiability of the
solution mapping. Based on this, we derive the M(ordukhovich)-stationarity con-
dition for the bilevel optimization problem. Yet, the C(larke)-stationarity, slightly
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weaker than the M-stationarity, is pursued numerically by a hybrid projected gra-
dient method and its convergence is analyzed in detail. In the numerical experi-
ments, we implement a simplified version of the hybrid projected gradient method
and demonstrate some promising applications on point spread function calibration
and multiframe blind deconvolution.

The rest of the paper is organized as follows. We formulate the bilevel optimiza-
tion model in section 2. In section 3, the lower-level solution mapping is studied in
detail with respect to its existence, continuity, and differentiability. Different no-
tions of stationarity conditions are introduced in section 4, where their relations are
also discussed. Section 5 develops and analyzes a hybrid projected gradient method
for pursuing a C-stationary point of the bilevel problem. Numerical experiments
based on a simplified project gradient method are presented in section 6.

2. A bilevel optimization model. Let u(true) ∈ R|Ωu| be the underlying source
image over some two-dimensional (2D) index domain Ωu. Assume the following
image formation model for a blurry observation z ∈ R|Ωu|:

(1) z = K(h(true))u(true) + noise.

Here the noise is assumed to be white Gaussian noise. We denote by L(R|Ωu|) the
set of all continuous linear maps from R|Ωu| to itself and assume that K : h ∈ Qh 7→
K(h) ∈ L(R|Ωu|) is a given continuously differentiable mapping over a convex and
compact domain Qh in Rm. In our theoretical and algorithmic development each
K(h) is only required to be a continuous linear operator on R|Ωu|, while in our
numerics we focus on the cases where K(h) represents a 2D convolution with some
point spread function h, denoted by K(h)u := h ∗ u. Thus, our task is to restore
both unknowns, u(true) and h(true), from the observation z.

Whenever h is given, restoration of u (as non-blind deconvolution) can be carried
out by solving the following variational problem:

(2) minimize
µ

2
‖∇u‖2 +

1

2
‖K(h)u− z‖2 + α‖∇u‖1 over u ∈ R|Ωu|,

for some manually chosen parameters α > 0 and 0 < µ � α. Here ∇ : R|Ωu| →(
R|Ωu|

)2
is the discrete gradient operator with ‖∇u‖2 = u>(−∆)u, where ∆ denotes

the discrete Laplacian resulting from a standard five-point stencil (finite difference)
discretization with homogenous Dirichlet boundary conditions. It is well-known
that −∆ is symmetric and positive definite. Besides, ‖ · ‖ is the Euclidean norm

in R|Ωu| or
(
R|Ωu|

)2
, and ‖ · ‖1 is the `1-norm defined by ‖p‖1 :=

∑
j∈Ωu

|pj | for

p ∈
(
R|Ωu|

)2
where each |pj | is the Euclidean norm of the vector pj ∈ R2. We also

denote by 〈·, ·〉 the standard inner product in R2, R|Ωu|, or
(
R|Ωu|

)2
. The variational

model (2) represents a discrete version of the Hilbert-space approach [30, 26] to total
variation (TV) image restoration:

minimize

∫
Ωu

(
µ

2
|∇u|2 +

1

2
|K(h)u− z|2 + α|∇u|

)
dx over u ∈ H1

0 (Ωu).

The problem (2) always admits a unique global minimizer due to the strict con-
vexity of the objective. The associated sufficient and necessary optimality condition
is given by the following set-valued equation:

(3) 0 ∈ F (u, h) +G(u),
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where F : R|Ωu| ×Qh → R|Ωu| and G : R|Ωu| ⇒ R|Ωu| are respectively defined as

F (u, h) = (−µ∆ +K(h)>K(h))u−K(h)>z,(4)

G(u) =

{
α∇>p : p ∈ (R|Ωu|)2,

{
pj =

(∇u)j
|(∇u)j | if j ∈ Ωu, (∇u)j 6= 0

|pj | ≤ 1 if j ∈ Ωu, (∇u)j = 0

}
.(5)

We remark that in the original work by Robinson [43] the term generalized equations
was used for set-valued equations.

In this work, we propose a bilevel optimization approach to blind deconvolution.
In an abstract setting, the corresponding model reads

(6)
minimize (min) J(u, h)
subject to (s.t.) 0 ∈ F (u, h) +G(u),

u ∈ R|Ωu|, h ∈ Qh.
Here the TV model (2) represents the lower-level problem equivalently formulated as
the first-order optimality condition (3), while in the upper-level problem we minimize
a given objective J : R|Ωu| ×Qh → R known to be continuously differentiable and
bounded from below. In this context, the set-valued equation (3) may be referred
to as the state equation for the bilevel optimization (6), which implicitly induces a
parameter-to-state mapping h 7→ u.

3. Solution mapping for lower-level problem: Existence, continuity, and
differentiability. In this section, we investigate the solution mapping associated
with the lower-level problem in (6). To begin with, we establish the existence of
such a solution mapping and its Lipchitz property by following Robinson’s approach
to set-valued equations [43]. In this context, the notion of the strong regularity con-
dition [43] plays an important role. Essentially, the strong regularity condition for
set-valued equations generalizes the invertibility condition in the classical implicit
function theorem (for singled-valued equations), and thus allows the application
of Robinsons generalized implicit function theorem; see [43, 17]. In Theorem 3.1,
we justify the strong regularity condition at any feasible point and its consequence
turns out to be far-reaching. In what follows, we write DuF (u, h) for the (partial)
differential of F with respect to u.

Theorem 3.1 (Strong regularity and implicit function). The strong regularity con-
dition [43] holds at any feasible solution (u0, h0) of (3), i.e. the mapping w ∈
R|Ωu| 7→ {u ∈ R|Ωu| : w ∈ F (u0, h0) + DuF (u0, h0)(u − u0) + G(u)} is (glob-
ally) singled-valued and Lipschitz continuous. Consequently, there exists a locally
Lipschitz continuous solution mapping S : h 7→ u such that u = S(h) satisfies the
set-valued equation (3) for all h.

Proof. Due to Theorem 2.1 in [43], it suffices to show that the mapping w 7→ {u ∈
R|Ωu| : w ∈ F (u0, h0) +DuF (u0, h0)(u− u0) +G(u)} is globally singled-valued and
Lipschitz continuous.

First, note that F (u0, h0) + DuF (u0, h0)(u − u0) = (−µ∆ + K(h0)>K(h0))u −
K(h0)>z. Then the single-valuedness follows directly from the fact that the map-
ping

0 ∈ (−µ∆ +K(h0)>K(h0))u−K(h0)>z − w +G(u)

is the sufficient and necessary condition for the (strictly) convex minimization

min
u

µ

2
‖∇u‖2 +

1

2
‖K(h0)u− z‖2 − 〈w, u〉+ α‖∇u‖1,
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which admits a unique solution.
To prove the Lipschitz property, consider pairs (u1, w1) and (u2, w2) that satisfy

0 ∈ (−µ∆ +K(h0)>K(h0))u1 −K(h0)>z − w1 +G(u1),

0 ∈ (−µ∆ +K(h0)>K(h0))u2 −K(h0)>z − w2 +G(u2).

Then there exist subdifferentials p1 ∈ ∂‖ · ‖1(∇u1) and p2 ∈ ∂‖ · ‖1(∇u2) such that

0 = (−µ∆ +K(h0)>K(h0))u1 −K(h0)>z − w1 + α∇>p1,

0 = (−µ∆ +K(h0)>K(h0))u2 −K(h0)>z − w2 + α∇>p2.

It follows from the property of subdifferentials in convex analysis, see e.g. Proposi-
tion 8.12 in [45], that

‖∇u2‖1 ≥ ‖∇u1‖1 + 〈p1,∇u2 −∇u1〉,
‖∇u1‖1 ≥ ‖∇u2‖1 + 〈p2,∇u1 −∇u2〉,

which further implies that

〈p1 − p2,∇u1 −∇u2〉 ≥ 0.

Thus, we have

0 = 〈(−µ∆ +K(h0)>K(h0))(u1 − u2)− (w1 − w2) + α∇>(p1 − p2), u1 − u2〉

≥ 〈(−µ∆ +K(h0)>K(h0))(u1 − u2), u1 − u2〉 − 〈w1 − w2, u1 − u2〉,

and therefore the following Lipschitz property holds, i.e.

‖u1 − u2‖ ≤ 1

λmin(−µ∆ +K(h0)>K(h0))
‖w1 − w2‖,

where λmin(·) denotes the minimal eigenvalue of a matrix. This completes the
proof.

In view of Theorem 3.1, we may conveniently consider the reduced problem

(7)
min Ĵ(h) := J(u(h), h)
s.t. h ∈ Qh,

which is equivalent to (6). It is immediately observed from (7) that there exists a
global minimizer for (7) and thus also for (6).

Note that the state equation (3) can be expressed in terms of (u, h, p) as follows:

(8)

{
F (u, h) + α∇>p = 0,

(u, α∇>p) ∈ gphG,

where p is included as an auxiliary variable lying in the set

Qp :=
{
p ∈ (R|Ωu|)2 : |pj | ≤ 1 ∀j ∈ Ωu

}
,

and gphG denotes the graph of the set-valued mapping G, i.e. gphG = {(u, v) :
u ∈ R|Ωu|, v ∈ G(u)}. We call the triplet (u, h, p) a feasible point for (6) if (u, h, p)
satisfies (8).

In the following, we briefly introduce notions from variational geometry such as
tangent/normal cones and graphical derivatives. The interested reader may find
further details in Chapter 6 of the monograph [45].
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Definition 3.2 (Tangent and normal cones). The tangent (or contingent) cone of
a subset Q in R|Ωu| at u ∈ Q, denoted by TQ(u), is defined by

(9) TQ(u) =
{
v ∈ R|Ωu| : tk → 0+, vk → v, u+ tkvk ∈ Q ∀k

}
.

The (regular) normal cone of Q at u ∈ Q, denoted by NQ(u), is defined as the
(negative) polar cone of TQ(u), i.e.

NQ(u) =
{
w ∈ R|Ωu| : 〈w, v〉 ≤ 0 ∀v ∈ TQ(u)

}
.

In our context, the tangent and normal cones of gphG can be progressively
calculated as:

TgphG(u, α∇>p) =
{

(δu, α∇>δp) : δu ∈ R|Ωu| and δp ∈ (R|Ωu|)2 satisfy(10)

|(∇u)j |δpj = (∇δu)j − 〈(∇δu)j , pj〉pj , if (∇u)j 6= 0;

(∇δu)j = 0, δpj ∈ R2, if |pj | < 1;(
(∇δu)j = 0, 〈δpj , pj〉 ≤ 0

)
∨
(
∃c ≥ 0 : (∇δu)j = cpj , 〈δpj , pj〉 = 0

)
,

if (∇u)j = 0, |pj | = 1
}
.

NgphG(u, α∇>p) =
{

(α∇>w,−v) : w ∈ (R|Ωu|)2 and v ∈ R|Ωu| satisfy(11)

∃ξj ∈ R2 : wj = ξj − 〈ξj , pj〉pj , (∇v)j = |(∇u)j |ξj , if (∇u)j 6= 0;

wj ∈ R2, (∇v)j = 0, if |pj | < 1;

∃c ≤ 0 : 〈wj , pj〉 ≤ 0, (∇v)j = cpj , if (∇u)j = 0, |pj | = 1
}
.

The directional differentiability of the solution mapping S invokes the following
notion.

Definition 3.3 (Graphical derivative). Let S : V ⇒ W be a set-valued mapping
between two normed vector spaces V and W . The graphical derivative of S at
(v, w) ∈ gphS, denoted by DS(v, w), is a set-valued mapping from V to W such
that gphDS(v, w) = TgphS(v, w), i.e.

δw ∈ DS(v, w)(δv) if and only if (δv, δw) ∈ TgphS(v, w).

Notably, when S is single-valued and locally Lipchitz near (v, w) ∈ gphS and
DS(v, w) is also singled-valued such that δw = DS(v, w)(δv), one infers that S is
directionally differentiable at v along δv with the directional derivate S′(v; δv) = δw;
see, e.g., [37]. The directional differentiability of the lower-level solution mapping
S is asserted in the following theorem.

Theorem 3.4 (Directional differentiability). Let S : Qh → R|Ωu| be the solu-
tion mapping in Theorem 3.1 and (u, h, p) be a feasible solution satisfying the state
equation (8). Then S is directionally differentiable at h along any δh ∈ TQh

(h).
Moreover, the directional derivative δu := S′(h; δh) is uniquely determined by the
following sensitivity equation:

(12)

{
DuF (u, h)δu+DhF (u, h)δh+ α∇>δp = 0,

(δu, α∇>δp) ∈ TgphG(u, α∇>p).
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Proof. By [50, Theorem 4.1], the following estimate on the graphical derivative of
S holds true:
(13)

DS(h, u)(δh) ⊂
{
δu ∈ R|Ωu| : 0 ∈ DuF (u, h)δu+DhF (u, h)δh+DG(u,−F (u, h))(δu)

}
.

With the introduction of the auxiliary variables p and δp such that (u, h, p) satisfies
(8) and (δu, α∇>δp) ∈ TgphG(u, α∇>p), the relation (13) is equivalent to
(14)

DS(h, u)(δh) ⊂
{
δu ∈ R|Ωu| : (δu, δh, δp) satisfies the sensitivity equation (12)

}
.

Let δh ∈ TQh
(h) be arbitrarily fixed in the following.

We first show that the set DS(h, u)(δh) is nonempty. Following the definition of
a tangent cone in (9), there exists ti → 0+, δhi → δh such that h+ tiδhi ∈ Qh for
all i. Then we have

lim sup
i→∞

‖S(h+ tiδhi)− S(h)‖
ti

≤ κ‖δh‖,

where κ is the Lipschitz constant for S near h. As a result, possibly along a
subsequence, we have

lim
i→∞

S(h+ tiδhi)− S(h)

ti
= δu

for some δu ∈ R|Ωu|. Thus, we assert that (δh, δu) ∈ TgphS(h, u), or equivalently
δu ∈ DS(h, u)(δh).

Next we show that δu must be unique among all solutions (δu, δp) for (12). Fixing
h ∈ Qh, let (δu1, δp1) and (δu2, δp2) be two solutions for (12). Then we have

DuF (u, h)(δu1 − δu2) + α∇>(δp1 − δp2) = 0,

which further implies

〈δu1 − δu2, DuF (u, h)(δu1 − δu2)〉+ α〈∇δu1 −∇δu2, δp1 − δp2〉 = 0.

We claim that 〈∇δu1 −∇δu2, δp1 − δp2〉 ≥ 0. Indeed, we component-wisely distin-
guish the following three cases.

(1) Consider j ∈ Ωu where |pj | < 1. Then it follows immediately from (10) that
(∇δu1)j − (∇δu2)j = 0.

(2) Consider j ∈ Ωu where (∇u)j 6= 0. Then from (10) we have

〈(∇δu1)j − (∇δu2)j , δp
1
j − δp2

j 〉

= 〈(∇δu1)j − (∇δu2)j ,
1

|(∇u)j |
(I − pjp>j )((∇δu1)j − (∇δu2)j)〉

≥ 1

|(∇u)j |
(1− |pj |2)|(∇δu1)j − (∇δu2)j |2 ≥ 0.

(3) The last case where j ∈ Ωu with (∇u)j = 0 and |pj | = 1 further splits into
three subcases.
(3a) Consider (∇δu1)j = 0, 〈δp1

j , pj〉 ≤ 0 and (∇δu2)j = 0, 〈δp2
j , pj〉 ≤ 0.

Then as in case (1) we have (∇δu1)j − (∇δu2)j = 0.
(3b) Consider (∇δu1)j = c1pj (c1 ≥ 0), 〈δp1

j , pj〉 = 0 as well as (∇δu2)j =

c2pj (c2 ≥ 0), 〈δp2
j , pj〉 = 0. Then 〈(∇δu1)j − (∇δu2)j , δp

1
j − δp2

j 〉 =

(c1 − c2)〈pj , δp1
j − δp2

j 〉 = 0.
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(3c) Consider (∇δu1)j = 0, 〈δp1
j , pj〉 ≤ 0 and (∇δu2)j = cpj (c ≥ 0), 〈δp2

j , pj〉
= 0. Then we have 〈(∇δu1)j−(∇δu2)j , δp

1
j−δp2

j 〉 = 〈−cpj , δp1
j−δp2

j 〉 ≥ 0.
The analogous conclusion holds true if we interchange the upper indices
1 and 2.

Altogether, our claim is proven. Moreover, since DuF (u, h) is strictly positive
definite, we arrive at δu1 = δu2.

Thus, the equality holds in (14) with both sides being singletons, which concludes
the proof.

Thus, it has been asserted that the solution mapping S : h 7→ u(h) for the lower-
level problem is B(ouligand)-differentiable [44], i.e. locally Lipschitz continuous and
directionally differentiable, everywhere on Qh such that, with δu(h; δh) = S′(h; δh),
we have

u(h+ δh) = u(h) + δu(h; δh) + o(‖δh‖) as δh→ 0.

Furthermore, according to the chain rule, the reduced objective Ĵ : h → R is also
B-differentiable such that
(15)

Ĵ(h+ δh) = J(u(h), h) +DhJ(u(h), h)δh+DuJ(u(h), h)δu(h; δh) + o(‖δh‖) as δh→ 0.

4. Stationarity conditions for bilevel optimization. Our bilevel optimiza-
tion problem (6) is a special instance of a mathematical program with equilib-
rium constraints (MPEC). The derivation of appropriate stationarity conditions is
a persistent challenge for MPECs; see [38, 41] for more backgrounds on MPECs.
Very often, the commonly used constraint qualifications like linear independence
constraint qualification (LICQ) or Mangasarian-Fromovitz constraint qualification
(MFCQ) are violated for MPECs [52], and therefore a theoretically sharp and com-
putationally amenable characterization of the variational geometry (such as tangent
and normal cones) of the solution set induced by the lower-level problem becomes a
major challenge. Depending on the viewpoint (primal versus primal-dual) and the
utilized generalized derivative concept, different stationarity characterizations for
MPECs may arise. In this vein, various stationarity concepts are introduced in [47]
when the lower-level problems are so-called complementarity problems. Whenever
strict complementarity holds true for an MPEC, all stationarity conditions reduce
to the classical KKT condition. In particular, the effect of strict complementarity in
our context is discussed at the end of this section. The aforementioned stationarity
concepts have been further developed and extended during the past decade; see,
e.g., [38, 41, 39, 47, 51, 24, 27]. This research field still remains active in its own
right.

In our context of the bilevel optimization problem (6), it is straightforward to
deduce from the expansion formula (15) that

(16) DhJ(u(h), h)δh+DuJ(u(h), h)δu(h; δh) ≥ 0 ∀δh ∈ TQh
(h)

must hold at any local minimizer (h, u(h)) for (6). In fact, condition (16) is referred
to as B(ouligand)-stationarity; see [38]. However, such “primal” stationarity is
difficult to realize numerically, since the mapping δh 7→ δu(h; δh) need not be linear.
For this reason, we are motivated to search for stationarity conditions in “primal-
dual” form, as they typically appear in the classical KKT conditions for constrained
optimization. Based on the strong regularity condition proven in Theorem 3.1 above
and the Mordukhovich calculus (see the two-volume monograph [39] for reference),
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we shall derive the M(ordukhovich)-stationarity for (6) in Theorem 4.2. There the
Mordukhovich (or limiting) normal cone of gphG will appear in the stationarity
condition, which is defined as follows.

Definition 4.1 (Mordukhovich normal cone). The Mordukhovich normal cone of

a subset Q in R|Ωu| at u ∈ Q, denoted by N
(M)
Q (u), is defined by

(17) N
(M)
Q (u) = {w ∈ R|Ωu| : wk → w, uk → u, wk ∈ NQ(uk) ∀k}.

In particular, one has N
(M)
Q (·) = NQ(·) whenever Q is convex. Following (10)

and (11), the Mordukhovich normal cone of gphG can be calculated as:

N
(M)
gphG(u, α∇>p) =

{
(α∇>w,−v) : w ∈ (R|Ωu|)2 and v ∈ R|Ωu| satisfy(18)

∃ξj ∈ R2 : wj = ξj − 〈ξj , pj〉pj , (∇v)j = |(∇u)j |ξj , if (∇u)j 6= 0;

wj ∈ R2, (∇v)j = 0, if |pj | < 1;(
wj ∈ R2, (∇v)j = 0

)
∨
(
∃c ∈ R : 〈wj , pj〉 = 0, (∇v)j = cpj

)
∨
(
∃c ≤ 0 : 〈wj , pj〉 ≤ 0, (∇v)j = cpj

)
, if (∇u)j = 0, |pj | = 1

}
.

We are now ready to present the M-stationarity condition for (6). Given that the
strong regularity condition is satisfied at any feasible solution (u, h, p) as justified
in Theorem 3.1, M-stationarity of a local minimizer for (6) follows as a direct
consequence of Theorem 3.1 and Proposition 3.2 in [42]. The proof for this result
in [42] used the strong regularity condition as a proper constraint qualification.

Theorem 4.2 (M-stationarity). Let (u, h, p) ∈ R|Ωu|×Qh×Qp be any feasible point
satisfying (8). If (u, h) is a local minimizer for the bilevel optimization problem
(6), then the following M-stationarity condition must hold true for some (w, v) ∈(
R|Ωu|

)2 × R|Ωu|:

(19)


DuJ(u, h)> + α∇>w +DuF (u, h)>v = 0,
0 ∈ DhJ(u, h)> +DhF (u, h)>v +NQh

(h),

(α∇>w,−v) ∈ N (M)
gphG(u, α∇>p),

where N
(M)
gphG is the Mordukhovich normal cone of gphG given in (18).

Though theoretically sharp, the M-stationarity condition in the above theorem
is in general not guaranteed by numerical algorithms. Instead, we resort to a
Clarke-type stationarity, termed C-stationarity in the following corollary. The C-

stationarity is slightly weaker than the M-stationarity due to the relation N
(M)
gphG(u,

α∇>p) ⊂ N
(C)
gphG(u, α∇>p), but can be guaranteed by a projected-gradient-type

algorithm proposed in section 5 below.

Corollary 4.3 (C-stationarity). Let (u, h, p) ∈ R|Ωu|×Qh×Qp be any feasible point
satisfying (8). If (u, h) is a local minimizer for the bilevel optimization problem (6),

the following C-stationarity condition must hold true for some (w, v) ∈
(
R|Ωu|

)2 ×
R|Ωu|:

(20)


DuJ(u, h)> + α∇>w +DuF (u, h)>v = 0,
0 ∈ DhJ(u, h)> +DhF (u, h)>v +NQh

(h),

(α∇>w,−v) ∈ N (C)
gphG(u, α∇>p),
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10 Michael Hintermüller and Tao Wu

where

N
(C)
gphG(u, α∇>p) =

{
(α∇>w,−v) : w ∈ (R|Ωu|)2 and v ∈ R|Ωu| satisfy that(21)

∃ξj ∈ R2 : wj = ξj − 〈ξj , pj〉pj , (∇v)j = |(∇u)j |ξj , if (∇u)j 6= 0;

wj ∈ R2, (∇v)j = 0, if |pj | < 1;

∃c ∈ R : (∇v)j = cpj , 〈wj , (∇v)j〉 ≥ 0, if (∇u)j = 0, |pj | = 1
}
.

We say that strict complementarity holds at a feasible point (u, h, p) whenever
the biactive set is empty, i.e.

(22) {j ∈ Ωu : (∇u)j = 0, |pj | = 1} = ∅.
Under strict complementarity, one immediately observes the equivalence of M- and

C-stationarity as N
(M)
gphG(u, α∇>p) = N

(C)
gphG(u, α∇>p). The scenarios of strict com-

plementarity are studied in detail in section 5.1, where it will become evident to
the reader that all B-, M-, and C-stationarity concepts are equivalent under strict
complementarity; see Corollary 5.3.

5. Hybrid projected gradient method. This section is devoted to the devel-
opment and the convergence analysis of a hybrid projected gradient algorithm to
compute a C-stationary point for the bilevel optimization problem (6). Most ex-
isting numerical solvers for MPECs adopt regularization/smoothing/relaxation on
the complementary structure in the lower-level problem, see e.g. [21, 48, 19], even
though the complementary structure induced by (8) is more involved than those
in the previous works due to the presence of nonlinearity. Motivated by the recent
work in [27], here we devise an algorithm which avoids redundant regularization,
e.g., when the current iterate is a continuously differentiable point for the reduced

objective Ĵ .

5.1. Differentiability given strict complementarity. In this subsection, we
assume that strict complementarity, i.e. condition (22), holds at a feasible point
(u, h, p). In this scenario, the sensitivity equation (12) is fully characterized by the
following linear system:

(23)

[
DuF (u, h) α∇>

(−I + pp>)∇ diag(|∇u|e)

] [
δu
δp

]
=

[
−DhF (u, h)δh

0

]
.

Here e is the identity vector in
(
R|Ω|

)2
, i.e. ej = (1, 1) for all j ∈ Ωu, and diag(|∇u|e)

denotes a diagonal matrix with its diagonal elements given by the vector |∇u|e. As
a special case in Theorem 3.4, for any given δh ∈ TQh

(h), the linear system (23)
always admits a solution (δu, δp) which is unique in δu. Thus, the differential
mapping δu

δh (h) : δh 7→ δu defined by equation (23) is a continuous linear mapping,

and therefore the reduced objective Ĵ in (7) is continuously differentiable at h. On
the other hand, the adjoint of the differential δuδh (h), denoted by δu

δh (h)>, is required

when computing DhĴ(h). This will be addressed through the adjoint equation in
Theorem 5.2 below.

Lemma 5.1. Assume that (u, h, p) is a feasible point satisfying (8) and strict
complementarity holds at (u, h, p). Let Πδu be a canonical projection such that

Πδu(δu, δp) = (δu, 0) for all (δu, δp) ∈ R|Ωu| ×
(
R|Ωu|

)2
. Then the following rela-

tions hold true:
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(i) Ker

[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

]
⊂ Ker Πδu.

(ii) Ran Πδu ⊂ Ran

[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

]
.

Proof. We first prove (i). For this purpose, let[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

] [
v
η

]
=

[
0
0

]
,

which implies

0 = 〈v,DuF (u, h)>v〉+ 〈∇v, (−I + pp>)η〉

= 〈v,DuF (u, h)>v〉+
1

α
〈|∇u|η, (I − pp>)η〉

= 〈v,DuF (u, h)>v〉+
1

α

∑
j∈Ωu

|(∇u)j |(|ηj |2 − |〈pj , ηj〉|2).

Owing to the strict positive definiteness of DuF (u, h) as well as the non-negativity
of the second term in the above equation, we verify that v = 0.

To justify (ii), in view of the fundamental theorem of linear algebra, it suffices
to prove

Ker

[
DuF (u, h) α∇>

(−I + pp>)∇ diag(|∇u|e)

]
⊂ Ker Πδu.

For this purpose, consider

(24)

[
DuF (u, h) α∇>

(−I + pp>)∇ diag(|∇u|e)

] [
δu
δp

]
=

[
0
0

]
.

Then we have

(25) 〈δu,DuF (u, h)δu〉+ α〈δp, pp>∇δu〉+ α〈δp, |∇u|δp〉 = 0.

Due to strict complementarity, only two possible scenarios may occur. If (∇u)j 6= 0,
then the second row of equation (24) yields δpj = 1

|(∇u)j | (I−pjp
>
j )(∇δu)j , and thus

〈δpj , pjp>j (∇δu)j〉 ≥ 0. If |pj | < 1, then (∇u)j = 0 and 0 = |(I − pjp>j )(∇δu)j | ≥
(1−|pj |2)|(∇δu)j |, which implies 〈δpj , pjp>j (∇δu)j〉 = 0. Altogether, we have shown

〈δp, pp>∇δu〉 ≥ 0. Moreover, since the third term in (25) is also non-negative and
DuF (u, h) = −µ∆ +K(h)>K(h) is strictly positive definite, we must have δu = 0.
Thus, (ii) is proven.

Theorem 5.2. As in Lemma 5.1, assume that (u, h, p) is a feasible point satisfying
(8) and strict complementarity holds at (u, h, p). Then δu

δh (h)> is a linear mapping

such that δu
δh (h)> : ζ 7→ DhF (u, h)>v with (ζ, v, η) ∈ R|Ωu| × R|Ωu| ×

(
R|Ωu|

)2
satisfying the following adjoint equation:

(26)

[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

] [
v
η

]
=

[
−ζ
0

]
.

Proof. It follows from Lemma 5.1 that ζ 7→ v is a continuous linear mapping and,
therefore, so is δu

δh (h)>. To show the adjoint relation between δu
δh (h) and δu

δh (h)>,

consider an arbitrary pair (δu, δh, δp) which satisfies (23), i.e. δu = δu
δh (h)δh, and

(ζ, v, η) which satisfies (26). Then we derive that〈
ζ,
δu

δh
(h)δh

〉
= −

〈[
δu
δp

]
,

[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

] [
v
η

]〉
Inverse Problems and Imaging Volume 9, No. 4 (2015), X–XX



12 Michael Hintermüller and Tao Wu

= −
〈[

DuF (u, h) α∇>
(−I + pp>)∇ diag(|∇u|e)

] [
δu
δp

]
,

[
v
η

]〉
= 〈v,DhF (u, h)δh〉 = 〈DhF (u, h)>v, δh〉 =

〈
δu

δh
(h)>ζ, δh

〉
,

which concludes the proof.

As a consequence of Theorem 5.2, at a feasible point (u, h, p) where strict com-
plementarity holds, the gradient of the reduced objective can be calculated as

(27) DhĴ(h)> = DhJ(u, h)>+
δu

δh
(h)>DuJ(u, h)> = DhJ(u, h)>+DhF (u, h)>v,

where (v, η) satisfies the adjoint equation (26) with ζ = DuJ(u, h)>. For numerical
purposes, we note that the adjoint equation (26) can be solved iteratively by, e.g.,
the quasi-minimal residual method [20]. For the sake of our convergence analysis in
section 5.3, we also introduce an auxiliary variable w defined by

(28) w :=
1

α
(−I + p(p)>)η,

which parallels the auxiliary variable wγ later in (38) for the smoothing case. To
conclude section 5.1, we point out that one can readily deduce from (27) the equiv-
alence among the B-, M-, and C-stationarity under strict complementarity.

Corollary 5.3 (Stationarity under strict complementarity). If strict complemen-
tarity holds at a feasible point (u, h, p), then B-stationarity (16), M-stationarity
(19), and C-stationarity (20) are all equivalent.

5.2. Local smoothing at a non-differentiable point. The solution mapping
h 7→ u for the lower-problem in (6) is only B-differentiable (rather than continuously
differentiable) at a feasible point (u, h, p) where the biactive set {j ∈ Ωu : (∇u)j =
0, |pj | = 1} is nonempty. In this scenario, continuous optimization techniques are
not directly applicable. Instead, we utilize a local smoothing approach by replacing
the Lipschitz continuous function ‖ · ‖1 in (2) by a C2-approximation ‖ · ‖1,γ :(
R|Ωu|

)2 → R, which is defined for each γ > 0 by ‖p‖1,γ :=
∑
j∈Ωu

ϕγ(pj) with

(29) ϕγ(s) =

{
− 1

8γ3 |s|4 + 3
4γ |s|

2 if |s| < γ,

|s| − 3γ
8 if |s| ≥ γ.

The first-order and second-order derivatives of ϕγ can be calculated as

(30) ϕ′γ(s) =

{
( 3

2γ −
1

2γ3 |s|2)s if |s| < γ,
1
|s|s if |s| ≥ γ.

and

(31) ϕ′′(s) =

{
( 3

2γ −
1

2γ3 |s|2)IR2 − 1
γ3 ss

> if |s| < γ,
1
|s|IR2 − 1

|s|3 ss
> if |s| ≥ γ.

We remark that the same smoothing function was used in [35] for parameter learn-
ing, but other choices are possible as well.

The resulting smoothed bilevel optimization problem appears as

(32)

min J(uγ , h)

s.t. uγ = arg minu
µ

2
‖∇u‖2 +

1

2
‖K(h)u− z‖2 + α‖∇u‖1,γ ,

uγ ∈ R|Ωu|, h ∈ Qh.
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The corresponding Euler-Lagrange equation for the lower-level problem in (32) is
given by

(33) r(uγ ;h, γ) := (−µ∆ +K(h)>K(h))uγ −K(h)>z + α∇>(ϕ′γ(∇uγ)) = 0,

which induces a continuously differentiable mapping h 7→ uγ(h) according to the
(classical) implicit function theorem. Moreover, the sensitivity equation for (33) is
given by

(34)
(
DuF (uγ , h) + α∇>ϕ′′γ(∇uγ)∇

)
Dhu

γ(h) = −DhF (uγ , h).

Analogous to (7), we may also reformulate the smoothed bilevel problem (32) in
the reduced form as

(35)
min J̆γ(h) := J(uγ(h), h)
s.t. h ∈ Qh.

The gradient of J̆γ can be calculated as

(36) DhJ̆γ(h)> = DhJ(uγ , h)> +DhF (uγ , h)>vγ ,

where vγ satisfies the adjoint equation

(37)
(
DuF (uγ , h)> + α∇>ϕ′′γ(∇uγ)∇

)
vγ = −DuJ(uγ , h)>.

Thus, any stationary point (uγ , h) of the smoothed bilevel optimization problem
(32) must satisfy the following stationarity condition

(38)


F (uγ , h) + α∇>pγ = 0,
pγ = ϕ′γ(∇uγ),
DuF (uγ , h)>vγ + α∇>wγ = −DuJ(uγ , h)>,
wγ = ϕ′′γ(∇uγ)∇vγ ,
0 ∈ DhJ(uγ , h)> +DhF (uγ , h)>vγ +NQh

(h),

for some pγ ∈
(
R|Ωu|

)2
, wγ ∈

(
R|Ωu|

)2
, and vγ ∈ R|Ωu|.

We remark that finding a stationary point of the (smooth) constrained minimiza-
tion problem (35) can be accomplished by standard optimization algorithms; see
[40]. As a subroutine in Algorithm 5.5 below, we adopt a simple projected gradient
method whose convergence analysis can be found in [22]. The following theorem
establishes the consistency on how a stationary point of the smoothed bilevel prob-
lem (32) approaches a C-stationary point of the original bilevel problem (6) as γ
vanishes.

Theorem 5.4 (Consistency of smoothing). Let {γk} be any sequence of positive
scalars such that γk → 0+. For each γk, let (uk, hk) ∈ R|Ωu| × Qh be a stationary

point of (32) such that condition (38) holds for some (pk, wk, vk) ∈
(
R|Ωu|

)2 ×(
R|Ωu|

)2×R|Ωu|. Then any accumulation point of {(uk, hk, pk, wk, vk)} is a feasible
C-stationary point for (6) satisfying (8) and (20).

Proof. Let (u∗, h∗, p∗, w∗, v∗) be an arbitrary accumulation point of {(uk, hk, pk, wk,
vk)}. Then the first condition in (8) and the first condition in (20) immediately fol-
low from continuity. The second condition in (20) also follows due to the closedness
of the normal cone mapping NQh

(·); see, e.g., Proposition 6.6 in [45].
For those j ∈ Ωu where (∇u∗)j 6= 0, we have for all sufficiently large k that

pkj =
(∇uk)j
|(∇uk)j | , and therefore p∗j =

(∇u∗)j
|(∇u∗)j | . On the other hand, p∗j ∈ Qp clearly

holds if (∇u∗)j = 0. Altogether, the feasibility of (u∗, h∗, p∗) is verified.
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It remains to show (α∇>w∗,−v∗) ∈ N (C)
gphG(u∗, α∇>p∗), for which the proof is

divided into three cases as follows.

(1) If (∇u∗)j 6= 0, then we have for all sufficiently large k that |(∇uk)j | ≥ γk and
therefore

wkj =
1

|(∇uk)j |
(∇vk)j −

1

|(∇uk)j |
〈(∇vk)j , p

k
j 〉pkj .

Passing k →∞, the first condition in (21) is fulfilled with ξj = 1
|(∇u∗)j | (∇v

∗)j .

(2) If |p∗j | < 1, then we have for all sufficiently large k that |pkj | < 1 and, therefore,

|(∇uk)j | < γk. This implies (∇u∗)j = 0. Let qj ∈ R2 be an arbitrary
accumulation point of the uniformly bounded sequence {(∇uk)j/γ

k}. We
obviously have |qj | ≤ 1. Then it follows from pk = ϕ′γk(∇uk) that p∗j = (3/2−
|qj |2/2)qj . Since |p∗j | < 1, we must have |qj | < 1. Since wk = ϕ′′γk(∇uk)∇vk,

we have

γkwkj =

(
3

2
− |(∇u

k)j |2

2(γk)2

)
(∇vk)j −

〈
(∇vk)j ,

(∇uk)j
γk

〉
(∇uk)j
γk

.

Passing k →∞, we obtain

3− |qj |2

2
(∇v∗)j − 〈qj , (∇v∗)j〉qj = 0,

which indicates that (∇v∗)j = cqj for some c ∈ R. Thus it follows that
3
2 (1 − |qj |2)(∇v∗)j = 0, and thus (∇v∗)j = 0 as requested by the second
condition in (21).

(3) Now we investigate the third condition in (21) where (∇u∗)j = 0 and |p∗j | = 1
under the following two circumstances.
(3a) There exists an infinite index subset {k′} ⊂ {k} such that (∇uk′)j ≥ γk

′

for all k′. Then it holds for all k′ that

(39)

|p
k′

j | = 1,

wk
′

j =
1

|(∇uk′)j |
(∇vk′)j −

1

|(∇uk′)j |
〈(∇vk′)j , pk

′

j 〉pk
′

j ,

and therefore{
〈wk′j , pk

′

j 〉 = 0,

|(∇uk′)j |wk
′

j = (∇vk′)j − 〈(∇vk
′
)j , p

k′

j 〉pk
′

j .

Passing k′ → ∞, we have 〈w∗j , p∗j 〉 = 0 and (∇v∗)j − 〈(∇v∗)j , p∗j 〉p∗j = 0.
Thus the third condition in (21) is fulfilled.

(3b) There exists an infinite index subset {k′} ⊂ {k} such that (∇uk′)j < γk
′

for all k′. Then analogous to case (2), we have for all k′ that

(40)


pk
′

j =

(
3

2γk′
−
|∇uk′j |2

2(γk′)3

)
∇uk′j ,

γk
′
wk
′

j =

(
3

2
− |(∇u

k′)j |2

2(γk′)2

)
(∇vk′)j −

〈
(∇vk′)j ,

(∇uk′)j
γk′

〉
(∇uk′)j
γk′

.

Let qj ∈ R2 be an arbitrary accumulation point of the uniformly bounded

sequence {(∇uk′)j/γk
′}. Then we have p∗j = ( 3

2 −
1
2 |qj |

2)qj . It follows
from |p∗j | = 1 that |qj | = 1 must hold. Since this holds true for an arbi-

trary accumulation point qj , we infer that limk′→∞(∇uk′)j/γk = p∗j and
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further from the second equation in (40) that (∇v∗)j−〈(∇v∗)j , p∗j 〉p∗j = 0,
i.e. (∇v∗)j = cp∗j for some c ∈ R. On the other hand, equation (40) also
yields that

〈wk
′

j , (∇vk
′
)j〉 =

(
3

2γk′
− |(∇u

k′)j |2

2(γk′)3

)
|(∇vk

′
)j |2 −

1

γk′

∣∣∣∣∣
〈

(∇vk
′
)j ,

(∇uk′)j
γk′

〉∣∣∣∣∣
2

≥ 3

2γk′

1−

∣∣∣∣∣ (∇uk
′
)j

γk′

∣∣∣∣∣
2
 |(∇vk′)j |2 ≥ 0.

Passing k′ →∞, the third condition in (21) is again fulfilled.

5.3. Hybrid projected gradient method. Now we present in Algorithm 5.5 a
hybrid projected gradient method for finding a C-stationary point of the bilevel
optimization problem (6). In this algorithm, at a feasible point (uk, hk, pk) where

strict complementarity holds, we calculate DhĴ(hk)> according to formula (27) and
perform a projected gradient step by setting

(41) ĥk(τk) := PQh
[hk − τkDhĴ(hk)>]

for some proper step size τk > 0; see steps 6–15 of Algorithm 5.5. If strict comple-
mentarity is violated at (uk, hk, pk), we rather perform a projected gradient step on
the smoothed bilevel problem (32) with γ = γk > 0, i.e.

(42) h̆k(τk) := PQh
[hk − τkDhJ̆γk(hk)>];

see steps 16–25. Moreover, the method takes precautions against the critical case
where the step size τk in (41) tends to zero along the iterations. This case may
possibly occur when the {(uk, hk, pk)} converges to some {(u∗, h∗, p∗)} where strict
complementarity fails, even if strict complementarity holds for each feasible point
(uk, hk, pk) along the sequence. In such a critical case, we also resort to the smoothed
bilevel problem as in (42); see steps 11–13. The overall hybrid algorithm is detailed
below.

Algorithm 5.5 (Hybrid projected gradient method).

Require: inputs α > 0, 0 ≤ µ � α, 0 < τ � τ̄ , 0 < σJ < 1, 0 < ρτ < 1,
0 < ργ < 1, σh > 0, tolh > 0, tolγ > 0.

1: Initialize γ1 > 0, a feasible point (u1, h1, p1) ∈ R|Ωu| ×Qh ×
(
R|Ωu|

)2
satisfying

(8), ũ1 := u1, p̃1 := p1, I := {1}, and k := 1.
2: loop
3: if strict complementarity condition (22) is violated at (ũk, hk, p̃k) (i.e. the

biactive set {j ∈ Ωu : (∇ũk)j = 0, |p̃kj | = 1} is nonempty) or J(ũk, hk) >

J(umax(I), hmax(I)) then
4: Go to step 16.
5: end if
6: Set uk := ũk, pk := p̃k. Compute DhĴ(hk)> using formula (27). Define the

mapping ĥk(·) by (41).

7: if ‖ĥk(τ̄)− hk‖ ≤ tolh then
8: Return (uk, hk) as a C-stationary point of (6) and terminate the algorithm.
9: end if
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10: Perform the backtracking line search on ĥk(·), i.e. find τk as the largest ele-

ment in {τ̄(ρτ )l : l = 0, 1, 2, ...} such that ĥk(τk) fulfills the following Armijo-
type condition:

(43) Ĵ(ĥk(τk)) ≤ Ĵ(hk) + σJDhĴ(hk)(ĥk(τk)− hk).

11: if τk < τ then
12: Go to step 16.
13: end if
14: Set hk+1 := ĥk(τk) and I := I ∪ {k}. Generate ũk+1 ∈ R|Ωu| and p̃k+1 ∈(

R|Ωu|
)2

such that (ũk+1, hk+1, p̃k+1) satisfies the state equation (8).

15: Set γk+1 := γk. Go to step 26.
16: Solve equation (33) with (γ, h) = (γk, hk) for uγ =: uk, and equation (37)

with (γ, uγ , h) = (γk, uk, hk) for vγ =: vk. Then calculate DhJ̆γk(hk)> using

formula (36). Define the mapping h̆k(·) by (42).

17: if ‖h̆k(τ̄)− hk‖ ≤ σhγk then
18: if γk = tolγ then
19: Return (uk, hk) as a C-stationary point of (6) and terminate the algo-

rithm.
20: else
21: Set γk+1 := max(ργγ

k, tolγ) and (ũk+1, hk+1, p̃k+1) := (ũk, hk, p̃k). Go
to step 26.

22: end if
23: end if
24: Perform the backtracking line search on h̆k(·), i.e. find τk as the largest ele-

ment in {τ̄(ρτ )l : l = 0, 1, 2, ...} such that h̆k(τk) fulfills the following Armijo-
type condition:

(44) J̆γk(h̆k(τk)) ≤ J̆γk(hk) + σJDhJ̆γk(hk)(h̆k(τk)− hk).

25: Set hk+1 := h̆k(τk). Generate ũk+1 ∈ R|Ωu| and p̃k+1 ∈
(
R|Ωu|

)2
such that

(ũk+1, hk+1, p̃k+1) satisfies the state equation (8). Set γk+1 := γk.
26: Set k := k + 1.
27: end loop

In the following, we prove convergence of Algorithm 5.5 towards C-stationarity.
To begin with, we collect a technical result from Lemma 3 in [22], which will be
used several times in our convergence analysis.

Lemma 5.6. The mappings τk 7→ ‖ĥk(τk) − hk‖/τk and τk 7→ ‖h̆k(τk) − hk‖/τk
are both monotonically decreasing on [0,∞).

Based on Lemma 5.6, it is shown in the following lemma that the backtracking
line searches in Algorithm 5.5 enjoy good properties.

Lemma 5.7. The backtracking line searches in steps 10 and 24 of Algorithm 5.5
always terminate with success after finitely many trails.

Proof. As the line search in step 24 is performed on the continuously differentiable
objective J̆γk , the proof of Proposition 2 in [22] can be directly applied.

However, this proof needs to be adapted for step 10 since it is performed on the

B-differentiable objective Ĵ . In this case, we proceed with a proof by contradiction.
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Assume that (43) is violated for all τk = τkl := τ̄(ρτ )l with l = 0, 1, 2, ... Then

hk cannot be stationary, since otherwise ĥk(τk) = hk and (43) holds true for any
τk > 0.

Since Ĵ is B-differentiable, we have

(45) Ĵ(ĥk(τkl ))− Ĵ(hk) = DhĴ(hk)(ĥk(τkl )− hk) + o(‖ĥk(τkl )− hk‖), as l→∞.

This, together with the violation of (43), gives

(46) (1− σJ)DhĴ(hk)(ĥk(τkl )− hk) + o(‖ĥk(τkl )− hk‖) > 0, as l→∞.

Moreover, due to the relation (41), we also have

(47) DhĴ(hk)(hk − ĥk(τkl )) ≥ ‖ĥ
k(τkl )− hk‖2

τkl
,

which further implies
(48)

o(‖ĥk(τkl )−hk‖) > (1−σJ)DhĴ(hk)(hk− ĥk(τkl )) ≥ (1−σJ)
‖ĥk(τkl )− hk‖2

τkl
, as l→∞.

Thus, it follows from Lemma 5.6 that

(49)
‖ĥk(τ̄)− hk‖

τ̄
≤ ‖ĥ

k(τkl )− hk‖
τkl

→ 0, as l→∞.

This contradicts that hk is not stationary.

For the sake of our convergence analysis, we consider tolh = tolγ = 0 in the
remainder of this section.

Lemma 5.8. Let the sequence {(uk, hk, pk) : k ∈ I} be generated by Algorithm 5.5.
If |I| is infinite, then we have

(50) lim inf
k→∞, k∈I

∥∥∥hk − PQh
[hk − τ̄DhĴ(hk)>]

∥∥∥ = 0.

Proof. We restrict ourselves to k ∈ I throughout this proof. It follows from Lemma
5.6 and the satisfaction of the Armijo-type condition (43) that

Ĵ(hk)− Ĵ(hk+1) = Ĵ(hk)− Ĵ(ĥk(τk)) ≥ σJDhĴ(hk)(hk − ĥk(τk))

≥ σJ
‖hk − ĥk(τk)‖2

τk
≥ σJτk

‖hk − ĥk(τ̄)‖2

τ̄2
≥ σJτ

τ̄2
‖hk − ĥk(τ̄)‖2,

for all sufficiently large k. Moreover, since the sequence {Ĵ(hk) : k ∈ I} is mono-

tonically decreasing and Ĵ is bounded from below, the conclusion follows.

Now we are in a position to present the main result of our convergence analysis.

Theorem 5.9. Let the sequence {(uk, hk)} be generated by Algorithm 5.5. In addi-
tion, assume that the auxiliary variables {wk}, recall (28) and (38) for the respective
cases k ∈ I and k /∈ I and also see equations (52) and (54) below, are uniformly
bounded. Then there exists an accumulation point {(u∗, h∗)} which is feasible and

C-stationary for (6), i.e. {(u∗, h∗)} satisfies (8) and (19) for some p∗ ∈
(
R|Ωu|

)2
,

w∗ ∈
(
R|Ωu|

)2
, v∗ ∈ R|Ωu|.
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Proof. The proof is divided into two cases.

Case I. Let us consider the case where |I| is infinite. In view of Lemma 5.8,
let {(uk, hk, pk)} be a subsequence (the index k is kept throughout this proof for
brevity) such that k ∈ I for all k and

(51) lim
k→∞

∥∥∥hk − PQh
[hk − τ̄DhĴ(hk)>]

∥∥∥ = 0.

Let (u∗, h∗, p∗) be an accumulation point of {(uk, hk, pk)}. Note that (u∗, h∗, p∗) is
feasible, i.e. satisfies the state equation (8), owing to the continuity of F and the

closedness of G. If strict complementarity holds at (u∗, h∗, p∗), then Ĵ is contin-

uously differentiable at h∗, and therefore we have h∗ = PQh
[h∗ − τ̄DhĴ(h∗)>], or

equivalently (u∗, h∗, p∗) is (C-)stationary.
Now assume that (u∗, h∗, p∗) lacks strict complementarity. For each k, let gk :=

DhĴ(hk)>. Then from (27) we have

(52)


gk = DhJ(uk, hk)> +DhF (uk, hk)>vk,
DuF (uk, hk)>vk + α∇>wk +DuJ(uk, hk)> = 0,
wk = 1

α (−I + pk(pk)>)ηk,
α∇vk + |∇uk|ηk = 0,

with vk → v∗, gk → g∗, wk → w∗ as k → ∞, possibly along yet another subse-
quence.

We claim that (u∗, h∗, p∗, w∗, v∗) satisfies the C-stationarity (20). From (51)
and (52), one readily verifies the first and the second conditions in (20). In view
of the satisfaction of strict complementarity at each (uk, hk, pk), the proof of the

third condition that (α∇>w∗,−v∗) ∈ N (C)
gphG(u∗, α∇>p∗) separates into two cases

for each j ∈ Ωu.

(I-1) There exists a subsequence {(uk, hk, pk)} such that (∇uk)j 6= 0 and |pkj | = 1
for all k. Then it follows from (52) that

|(∇uk)j |wkj = (∇vk)j − 〈(∇vk)j , p
k
j 〉pkj .

Analogous to (39), this eventually yields 〈w∗j , (∇v∗)j〉 ≥ 0 and (∇v∗)j −
〈(∇v∗)j , p∗j 〉p∗j = 0.

(I-2) There exists a subsequence {(uk, hk, pk)} such that (∇uk)j = 0 and |pkj | < 1
for all k. Then it follows from (52) that (∇v∗)j = 0.

In both cases above, (α∇>w∗,−v∗) ∈ N (C)
gphG(u∗, α∇>p∗) holds true.

Case II. Now we turn to the case where |I| is finite. We claim that limk→∞ γk = 0
in this scenario. Assume for the sake of contradiction that for all sufficiently large

k we have γk = γ̄ for some γ̄ > 0 and ‖h̆k(τ̄)−hk‖ > σhγ̄. Then Algorithm 5.5, for
all sufficiently large k, reduces to a projected gradient method on the constrained
minimization (35) with a continuously differentiable objective. This leads to a

contradiction as limk→∞ ‖h̆k(τ̄) − hk‖ = 0 due to Proposition 2 in [22]. Thus, we
must have limk→∞ γk = 0.

As a consequence, steps 17–23 in Algorithm 5.5 yields the existence of a subse-
quence {(uk, hk)} such that k /∈ I for all k and

(53) ‖h̆k(τ̄)− hk‖ =
∥∥∥hk − PQh

[hk − τ̄DhJ̆γk(hk)>]
∥∥∥ ≤ σhγk → 0,
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as k →∞. Let gkγ := DhJ̆γk(hk)>, and we have

(54)


F (uk, pk) + α∇>pkγ = 0,
pkγ := ϕ′γk(∇uk),

gkγ = DhJ(uk, hk)> +DhF (uk, hk)>vk,
DuF (uk, hk)>vk + α∇>wk = −DuJ(uk, hk)>,
wk = ϕ′′γk(∇uk)∇vk,

for all k such that hk → h∗, uk → u∗, pkγ → p∗, vk → v∗, wk → w∗, gkγ → g∗γ as
k → ∞, possibly along another subsequence. Then from (53) and (54), the first
and the second conditions in the C-stationarity condition (20) immediately follow.
The satisfaction of the third condition in (20) can be verified using an argument
analogous to that in the proof of cases (1)–(3) in Theorem 5.4. Thus, we conclude
that (u∗, h∗) is C-stationary.

6. Numerical experiments. In this section, we report our numerical experiments
on the bilevel optimization framework for blind deconvolution problems. In order
to achieve practical efficiency, in section 6.1.2 we will utilize a simplified version of
Algorithm 5.5. In particular, the smoothed lower-level problem can be efficiently
handled by a semismooth Newton solver, which is described in section 6.1.1. Nu-
merical results on PSF calibration and multiframe blind deconvolution are given in
sections 6.2 and 6.3, respectively.

6.1. Implementation issues. Here our concern is to implement a practically effi-
cient version of the hybrid projected gradient method (i.e. Algorithm 5.5) developed
in section 5.3. At each iteration of that algorithm, step 14 requires the numerical
solution of the set-valued equation (8) for obtaining a feasible point. In this vein,
first-order methods are typically used, see, e.g., [11] and its variants, but they only
converge sublinearly. We note that the semismooth Newton method without any
regularization is not directly applicable for solving (8) due to non-uniqueness in the
(dual) variable p. As a remedy, a null-space regularization on the predual problem is
introduced in [25]. A more computationally amenable Tikhonov regularization (on
the dual problem), which is equivalent to Huber-type smoothing on the primal ob-
jective, is proposed in [26]. Following [26], the Euler-Lagrange equation (33) in the
smoothing step (i.e. steps 16–26) of Algorithm 5.5 can be solved by a superlinearly
convergent semismooth Newton method. To take advantage of this fact, we will
simplify Algorithm 5.5 by implementing the smoothing step only in Algorithm 6.2.
In the meantime, we first describe a semismooth Newton solver for the smoothed
lower-level problem.

6.1.1. Semismooth Newton solver for the smoothed lower-level problem. We only
present essentials of the semismooth Newton method as a subroutine in solving the
bilevel problem and refer the interested reader to [26, 28, 29] for further details.
For the smoothed lower-level problem in (32), we fix γ > 0 and h ∈ Qh. With

the introduction a dual variable pγ ∈
(
R|Ωu|

)2
, the Euler-Lagrange equation (33)

associated with the smoothing parameter γ can be reformulated as follows:(−µ∆ +K(h)>K(h))uγ + α∇>pγ = K(h)>z,

max(|∇uγ |, γ)pγ =
(3

2
− |∇uγ |2

2 max(|∇uγ |, γ)2

)
∇uγ .
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To ease our presentation, we temporarily omit the superscript γ in uγ and pγ , and
denote the iterates in the lower-level solver (i.e. inner loop) by (ul, pl). A generalized
Newton step on the above Euler-Lagrange equation refers to the solution of the
following linear system:[

−µ∆ +K(h)>K(h) α∇>
−Cl∇ diag(mle)

] [
δul

δpl

]

=

 −(−µ∆ +K(h)>K(h))ul − α∇>pl +K(h)>z

−mlpl +
(3

2
− |∇u

l|2

2(ml)2

)
∇ul

 ,
where

ml := max(|∇ul|, γ),

(χl)j :=

{
1 if |(∇ul)j | ≥ γ
0 if |(∇ul)j | < γ

∀j ∈ Ωu,

Cl := χl
(
I − (ml)−1pl(∇ul)>

)
+ (1− χl)

(
3

2
I − diag

(
|∇ul|2e

2γ2

)
− (∇ul)(∇ul)>

γ2

)
.

After eliminating δpl in the above Newton system, we arrive at(
−µ∆ +K(h)>K(h) + α∇>(ml)−1Cl∇

)
δul = −r(ul;h, γ),

recall (33) for the definition of the residual term r(·). In order to guarantee that
δul be a descent direction for the lower-level minimization problem, we further
introduce a modification on Cl, i.e. we replace Cl by

Ĉl :=χl
(
I − 1

2
(ml)−1

(
p̂l(∇ul)> + (∇ul)(p̂l)>

))
+ (1− χl)

(
3

2
I − diag

(
|∇ul|2e

2γ2

)
− (∇ul)(∇ul)>

γ2

)
,

where p̂l is the projection of pl onto Qp, i.e. p̂l := pl

max(|pl|,1)
. Thus, the final

modified Newton system appears as

(55)
(
−µ∆ +K(h)>K(h) + α∇>(ml)−1Ĉl∇

)
δul = −r(ul;h, γ).

Once δul is obtained, δpl can be computed by

(56) δpl := −pl + (ml)−1
(3

2
− |∇u

l|2

2(ml)2

)
∇ul + (ml)−1Ĉl∇δul.

The overall semismooth Newton solver for the smoothed lower-level problem is
summarized in Algorithm 6.1 below. The superlinear convergence of this solver can
be justified following the approach in [26, 28].

Algorithm 6.1 (Semismooth Newton solver).

Require: (ordered) inputs α > 0, 0 < µ� α, h ∈ Qh, γ > 0, u1 ∈ R|Ωu|, tolr > 0.
Return: u∗ ∈ R|Ωu|.

1: Initialize p1 :=
∇u1

max(|∇u1|, γ)
, l := 1.

2: loop
3: Generate the Newton system in (55).

4: if
‖r(ul;h, γ)‖

max(‖r(u1;h, γ)‖, 1)
≤ tolr then
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5: return u∗ := ul and terminate the algorithm.
6: end if
7: Solve (55) for δul, and compute δpl using formula (56).
8: Determine the step size al > 0 via backtracking Armijo line search along δul.

9: Generate the next iterates: ul+1 := ul + alδul and pl+1 := pl + alδpl.
10: Set l := l + 1.
11: end loop

6.1.2. Simplified projected gradient method. Based on Algorithm 6.1, we present the
simplified projected gradient method for the bilevel problem (6) in the following.
We remark that while the proximity measure κk in step 3 is chosen in our algorithm
as a signal for reducing γk, other choices may be considered as well.

Algorithm 6.2 (Simplified projected gradient method).

Require: inputs α > 0, 0 < µ� α, tolr > 0, 0 < σJ < 1, σh > 0, τ̄ > 0, tolγ > 0,
0 < ργ < 1, 0 < ρτ < 1.

1: Initialize h1 ∈ Qh, γ1 > 0, u0 ∈ R|Ωu|, k := 1.
2: loop
3: Apply Algorithm 6.1 with ordered inputs α, µ, hk, γk, uk−1, tolr, which

returns uk as the solution of (33).
4: Solve the adjoint equation(

DuF (uk, hk)> + α∇>ϕ′′γk(∇uk)∇
)
vk = −DuJ(uk, hk)>

for vk. Then compute the gradient DhJ̆γk(hk)> := DhJ(uk, hk)>+DhF (uk,

hk)>vk and evaluate the proximity measure

κk :=
∥∥∥PQh

[hk − τ̄DhJ̆γk(hk)>]− hk
∥∥∥ .

5: if κk ≤ σhγk then
6: if γk = tolγ then
7: return (uk, hk) as a C-stationary point of (6) and terminate the algo-

rithm.
8: else
9: Set γk+1 := max(ργγ

k, tolγ). Go to step 13.
10: end if
11: end if
12: Set hk+1 := PQh

[hk−τkDhJ̆γk(hk)>], where τk the largest element in {τ̄(ρτ )l :
l = 0, 1, 2, ...} which fulfills the following Armijo-type condition:

J̆γk

(
PQh

[hk − τkDhJ̆γk(hk)>]
)

≤ J̆γk(hk) + σJDhJ̆γk(hk)(PQh
[hk − τkDhJ̆γk(hk)>]− hk).

13: Set k := k + 1.
14: end loop

We further specify the parameter choices for Algorithm 6.2 in our numerical
experiments. The image intensity is scaled to [0, 1] in all examples. For an image
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of nx × ny pixels, we set the mesh size ω :=
√

1/(nxny) and discretize the spatial
gradient by forward differences, i.e. for each j = (jx, jy) ∈ Ωu,

(∇u)(jx,jy) :=

(
u(jx+1,jy) − u(jx,jy))

ω
,
u(jx,jy+1) − u(jx,jy)

ω

)
with homogenous Dirichlet boundary condition. The following parameters are
chosen throughout the experiments: α = 10−5, µ = 10−4α, σJ = σh = 0.01,
ργ = ρτ = 1/2, u0 = z, γ1 = 0.05/ω, tolγ = 0.001/ω, tolr = 10−7. The conjugate
gradient method is utilized for solving the linear systems in step 3 of Algorithm 6.1
with residual tolerance 0.01 and in step 3 of Algorithm 6.2 with residual tolerance
10−9, respectively. All experiments are performed under Matlab R2011b.

6.2. Calibration of point spread functions. We first test our method on a
point spread function (PSF) calibration problem. Let h be a point spread function
on a 2D index domain Ωh, and Qh = {h ∈ R|Ωh| :

∑
j∈Ωh

hj = 1, hj ≥ 0 ∀j ∈ Ωh}.
The blurring operator K is defined through a 2D convolution, i.e. K(h)u = h ∗ u,
with zero boundary condition. Given the true PSF h(true) ∈ Qh and the source

image u(true) ∈ R|Ωu|, the observed image z is generated as h(true) ∗ u(true) + noise,
where the noise is white Gaussian and of zero mean and standard deviation 0.02.
In addition to the observation, we are supplied with a reference image u(ref), which
is generated as the (non-blurred) source image corrupted by white Gaussian noise
of zero mean and standard deviation 0.1. Our aim is to calibrate the underlying
PSF using a blurred observation image and a noisy reference image.

In this problem, we utilize a tracking-type objective

J(u, h) =
1

2
‖u− u(ref)‖2 +

β

2
‖∇h‖2

in the upper level, where a Tikhonov regularization on h is also included to stabilize
the solution and the regularization parameter β = 0.05 is chosen. We remark that
alternative regularizations on h, e.g. total-variation regularization [13], might be
favorable for certain classes of PSFs. The relevant partial derivatives of J and F
required for the implementation of Algorithm 6.2 are listed below

DuJ(u, h)> = u− u(ref),

DhJ(u, h)> = −β∆h,

DuF (u, h)> = (−µ∆ +K(h)>K(h)),(57)

〈DhF (u, h)>v, δh〉 = 〈v,DhF (u, h)δh〉(58)

= 〈v, δh(−·) ∗ (h ∗ u− z)〉+ 〈v, h(−·) ∗ (δh ∗ u)〉.

Here h(−·) is a PSF in Qh defined by (h(−·))j = h−j for all j ∈ Ωh, and similar
for δh(−·). The size of Ωh is always chosen to be slightly larger than the support
size of the true PSF. Note that for DhF (u, h)> only the matrix-vector product
DhF (u, h)>v is needed in the numerical computation, which is given by (58) in
a dual form. The projection PQh

[·] in Algorithm 6.2 requires solving a quadratic
program and can be efficiently computed by standard routines such as quadprog

in Matlab. Concerning the initializations, we set the initial line search step size
τ̄ = 2× 10−5 and the initial PSF h1 to be the discrete Dirac delta function.

Our experiments are performed on three different pairs of images and PSFs,
namely Gaussian blur on the “Satellite” image, motion blur on the “Cameraman”
image, and out-of-focus blur on the “Grain” image. In Figure 1, the ground-truth
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images are displayed in (a)–(c), the underlying PSFs in (d)–(f), and the corre-
sponding blurred observations in (g)–(i). The results of the bilevel-optimization
calibration are shown in the last two rows: (j)–(l) for the estimated PSFs and (m)–
(o) for the deblurred images from the lower-level problem. It is observed that the
calibrations are reasonably good in all three cases in the sense that the calibrated
PSFs resemble their true counterparts and yield the deblurred images of high visual
quality.

(a) Satellite. (b) Cameraman. (c) Grain.

(d) 15 × 15 Gaussian PSF. (e) 9 × 11 motion PSF. (f) 13 × 13 out-of-focus PSF.

(g) Observed satellite. (h) Observed cameraman. (i) Observed grain.

(j) Estimated Gaussian PSF. (k) Estimated motion PSF. (l) Estimated out-of-focus PSF.

(m) Deblurred satellite. (n) Deblurred cameraman. (o) Deblurred grain.

Figure 1. Calibration of point spread functions.
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In Figure 2, we also illustrate the typical numerical behavior of Algorithm 6.2 in
the “satellite” example. Subplot (a) records the history of the smoothing parameter
γk. The objective values J(uk, hk) are shown in (b), which exhibit regular decrease
along iterations. The proximity measure κk in step 4 of Algorithm 6.2, shown in
subplot (c), also behaves well.
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(a) Smoothing parameter. (b) Objective value. (c) Proximity measure.

Figure 2. Numerical behavior.

6.2.1. Comparison with a single-level optimization approach. Here we compare our
bilevel approach with a single-level alternating minimization method, in the spirit
of [53, 13, 23], for calibrating PSFs. More precisely, one considers the following
model:

minimize Jλ(u, h) :=
µ

2
‖∇u‖2 +

1

2
‖h ∗ u− z‖2 + α‖∇u‖1,γ

+λ

(
1

2
‖u− u(ref)‖2 +

β

2
‖∇h‖2

)
over u ∈ R|Ωu|, h ∈ Qh.

The objective Jλ combines the upper-level and lower-level objectives in the bilevel
model with a balancing weight λ > 0. Fixing λ, to obtain a numerical solution for
this model, one may utilize an alternating minimization scheme [13] formulated in
the following.

Algorithm 6.3 (Single-level alternating minimization).

1: Initialize k := 0 and h0 as the discrete Dirac delta function.
2: repeat
3: Compute uk+1 := arg minu∈R|Ωu| Jλ(u, hk).
4: Compute hk+1 := arg minh∈Qh

Jλ(uk+1, h).
5: Set k := k + 1.
6: until some stopping criterion is satisfied.

In Algorithm 6.3, step 3 calls for the solution of the following optimality system:

− µ∆uk+1 + hk(−·) ∗ (hk ∗ uk+1 − z) + α∇>(ϕ′γ(∇uk+1)) + λ(uk+1 − u(ref)) = 0,

which can be carried out by a simple adaption of the semismooth Newton method in
Algorithm 6.1. Meanwhile, step 4 corresponds to a standard quadratic programm.
Thus, the computational cost of each iteration in the single-level approach roughly
equals that in the bilevel approach in Algorithm 6.2. We terminate Algorithm 6.3
once (Jλ(uk, hk)− Jλ(uk+1, hk+1))/Jλ(uk, hk) < 10−6.

Figure 3 demonstrates the comparison between our bilevel approach in Algorithm
6.2 and the single-level approach in Algorithm 6.3 on the “Grain” example under
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exactly the same experimental setting as before. One difficulty for the single-level
approach is that the proper choice of the additional weight parameter λ remains
unclear. In our experiments, we have run the single-level approach with a series of
different λ’s. The resulting relative mean squared errors (RMSE) on the PSF h(λ),
measured by ‖h(λ) − h(true)‖/‖h(true)‖, for each λ are plotted in subplot (d). The
PSF via the single-level model reaches the smallest RMSE (=0.1481) when λ = 0.05,
which is shown in subplot (c). It is observed that the bilevel model yields a PSF,
see subplot (b), which is both visually and numerically (RMSE=0.1560) close to the
PSF via the single-level model with the optimally chosen λ. Otherwise, the bilevel
model is always superior, with respect to RMSE on PSF, over single-level models
with non-optimal λ’s. Thus, our bilevel approach is favorable for its automation in
the sense that it avoids selection of the additional parameter λ which is often done
by trail and error.

(a) True PSF. (b) PSF via bilevel model.
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Figure 3. Comparison with single-level alternating minimization.

6.3. Multiframe blind deconvolution. Now we apply our algorithmic frame-
work to multiframe blind deconvolution [6]. In this problem, the observation ~z
consists of f frames, i.e. ~z = (~z1, ..., ~zf ), where each frame is generated from the

convolution between the source image u(true) and a frame-varying PSF ~hi over Ωh
plus some additive Gaussian noise ~ηi, i.e.

~zi = ~hi ∗ u(true) + ~ηi, ∀i ∈ {1, 2, ..., f}.

Furthermore, each PSF ~hi follows a (normalized) multivariate Gaussian distribution,

i.e. ~hi = h(~σix, ~σ
i
y,
~θi) with unknown frame-dependent parameters ~σix, ~σ

i
y ∈ Qσ, ~θi ∈

Qθ. The parameterization of the Gaussian PSF h : Qσ ×Qσ ×Qθ → Qh is defined
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by

h(σx, σy, θ) :=
h̃(σx, σy, θ)∑

(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

,

where for all (jx, jy) ∈ Ωh(
h̃(σx, σy, θ)

)
(jx,jy)

:=
1

2πσxσy
exp

(
− (jx cos θ − jy sin θ)2

2(σx)2
− (jx sin θ + jy cos θ)2

2(σy)2

)
.

Our task is to simultaneously recover the image u(true) and the PSF parameters

~σx, ~σy ∈ (Qσ)f and ~θ ∈ (Qθ)
f .

For such a multiframe blind deconvolution problem, we formulate the bilevel
optimization model as follows:

min J(~u) =
1

2

∑f
k=1

∥∥∥~uk − 1
f

∑f
l=1 ~u

l
∥∥∥2

s.t. ~ui = arg minu∈R|Ωu|
1

2

∥∥∥h(~σix, ~σ
i
y,
~θi) ∗ u− ~zi

∥∥∥2

+ α‖∇u‖1, ∀i ∈ {1, 2, ...f},
~σx, ~σy ∈ (Qσ)f , ~θ ∈ (Qθ)

f .

The upper-level objective represents a (rescaled) sample variance of {~u1, ..., ~uf}.
Upon Huber-type smoothing on each lower-level problem respectively, the derivative

of the reduced objective Ĵ(~σx, ~σy, ~θ) := J(~u1(~σ1
x, ~σ

1
y,
~θ1), ..., ~uf (~σfx , ~σ

f
y ,
~θf )) can be

calculated for all i ∈ {1, ..., f} as

D(~σi
x,~σ

i
y,
~θi)Ĵ(~σx, ~σy, ~θ)

> = D(σx,σy,θ)h(~σix, ~σ
i
y,
~θi)>DhF (~ui,~hi)>~vi,

where each ~vi ∈ R|Ωu| satisfies the adjoint equation(
DuF (~ui,~hi)> + α∇>ϕ′′γ(∇~ui)∇

)
~vi = −D~uiJ(~u)> = −

(
~ui − 1

f

f∑
l=1

~ul

)
.

In addition, the formulae for DuF (·)> and DhF (·)> are identical to (57) and (58),
and the partial derivatives of h are respectively given by(

Dσx
h̃(σx, σy, θ)

>
)

(jx,jy)
=
(
h̃(σx, σy, θ)

)
(jx,jy)

(
(jx cos θ − jy sin θ)2

(σx)3
− 1

σx

)
,

Dσx
h(σx, σy, θ)

> =
1∑

(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

·

Dσx h̃(σx, σy, θ)
> − h(σx, σy, θ)

∑
(jx,jy)∈Ωh

(
Dσx h̃(σx, σy, θ)

>
)

(jx,jy)

 ,

(
Dσy

h̃(σx, σy, θ)
>
)

(jx,jy)
=
(
h̃(σx, σy, θ)

)
(jx,jy)

(
(jx sin θ + jy cos θ)2

(σy)3
− 1

σy

)
,

Dσy
h(σx, σy, θ)

> =
1∑

(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

·

Dσy
h̃(σx, σy, θ)

> − h(σx, σy, θ)
∑

(jx,jy)∈Ωh

(
Dσy

h̃(σx, σy, θ)
>
)

(jx,jy)

 ,
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Dθh̃(σx, σy, θ)

>
)

(jx,jy)
=
(
h̃(σx, σy, θ)

)
(jx,jy)

(
1

(σx)2
− 1

(σy)2

)
·

(jx cos θ − jy sin θ)(jx sin θ + jy cos θ),

Dθh(σx, σy, θ)
> =

1∑
(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

·

Dθh̃(σx, σy, θ)
> − h(σx, σy, θ)

∑
(jx,jy)∈Ωh

(
Dθh̃(σx, σy, θ)

>
)

(jx,jy)

 .

(a) True PSF #1. (b) True PSF #2. (c) True PSF #3. (d) True PSF #4.

(e) Estimated PSF #1. (f) Estimated PSF #2. (g) Estimated PSF #3. (h) Estimated PSF #4.

(i) True PSF #5. (j) True PSF #6. (k) True PSF #7. (l) True PSF #8.

(m) Estimated PSF #5. (n) Estimated PSF #6. (o) Estimated PSF #7. (p) Estimated PSF #8.

Figure 4. Multiframe blind deconvolution — PSFs.

In our experiments, Qσ = [1, 3] and Qθ = [−π/2, π/2] are fixed, and the underly-

ing parameters (~σ
(true)
x , ~σ

(true)
y , ~θ(true)) are (uniform-)randomly drawn from (Qσ)f ×

(Qσ)f×(Qθ)
f . The first and third rows of Figure 4 show the random PSFs in a trial

run with 8 frames, i.e. f = 8. The corresponding observations are given in the first
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(a) Observation #1. (b) Observation #2. (c) Observation #3. (d) Observation #4.

(e) Deblurred frame #1. (f) Deblurred frame #2. (g) Deblurred frame #3. (h) Deblurred frame #4.

(i) Observation #5. (j) Observation #6. (k) Observation #7. (l) Observation #8.

(m) Deblurred frame #5. (n) Deblurred frame #6. (o) Deblurred frame #7. (p) Deblurred frame #8.

Figure 5. Multiframe blind deconvolution — images.

and third rows of Figure 5. Concerning the initializations in our implementation,

we always choose τ̄ = 0.005 and (~σix)1 = (~σiy)1 = 2, (~θi)1 = 0 for all i.
The results of the 8-frame trial run, both PSFs and images, are displayed in

Figures 4 and 5 respectively. It is observed from the comparison in Figure 4 that
our method well captures the underlying PSFs, especially the widths and the ori-
entations in case of strongly skewed PSFs (see #2, #3, #4, #7, #8). Furthermore,
all deblurred frames yield significant improvement in visual quality over the corre-
sponding observations.

We are also interested in the effect of the number of frames on the image restora-
tion quality. For this sake, we track the mean peak signal-to-noise ratio (mPSNR)
of all individual frames for f ∈ {4, 6, 8, 10, 12}. For each f , the mean and the stan-
dard deviation (stdev) of mPSNR after 10 trial runs are reported in Table 1, where
the mean is rising and the standard deviation is falling as f becomes larger. Thus,
we conclude from our experiments that, as is expected, more observations typically
enhance the frame-wise image restoration quality in the bilevel-optimization based
multiframe blind deconvolution.
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f 4 6 8 10 12
mean 23.6019 23.7170 23.7639 23.7883 24.0026
stdev 0.6020 0.4380 0.3381 0.2889 0.2720

Table 1. Mean peak signal-to-noise ratio.
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laws, SIAM J. Appl. Math., 63 (2002), 593–618.

[9] , APEX blind deconvolution of color Hubble space telescope imagery and other astro-
nomical data, Optical Engineering, 45 (2006), 107004.

[10] , False characteristic functions and other pathologies in variational blind deconvolution:

A method of recovery, SIAM J. Appl. Math., 70 (2009), 1097–1119.
[11] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with

applications to imaging, J. Math. Imaging Vis., 40 (2011), 120–145.
[12] T. F. Chan and J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and

Stochastic Methods, SIAM, Philadelphia, 2005.

[13] T. F. Chan and C.-K. Wong, Total variation blind deconvolution, IEEE Trans. Image Pro-

cess., 7 (1998), 370–375.
[14] R. Chartrand and W. Yin, Iteratively reweighted algorithms for compressive sensing, in Pro-

ceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
2008, 3869–3872.

[15] S. Cho, Y. Matsushita and S. Lee, Removing non-uniform motion blur from images, in IEEE

11th International Conference on Computer Vision, 2007, 1–8.
[16] J. C. De los Reyes and C.-B. Schönlieb, Image denoising: Learning the noise model via

nonsmooth PDE-constrained optimization, Inverse Problems and Imaging, 7 (2013), 1183–

1214.
[17] A. L. Dontchev and R. T. Rockafellar, Robinson’s implicit function theorem and its extensions,

Math. Program., Ser. B, 117 (2009), 129–147.

[18] D. A. Fish, A. M. Brinicombe and E. R. Pike, Blind deconvolution by means of the
Richardson–Lucy algorithm, J. Opt. Soc. Am. A, 12 (1995), 58–65.

[19] R. Fletcher, S. Leyffer, D. Ralph and S. Scholtes, Local convergence of SQP methods for

mathematical programs with equilibrium constraints, SIAM J. Optim., 17 (2006), 259–286.
[20] R. W. Freund and N. M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian

linear systems, Numer. Math., 60 (1991), 315–339.

Inverse Problems and Imaging Volume 9, No. 4 (2015), X–XX

http://www.ams.org/mathscinet-getitem?mr=MR2729956&return=pdf
http://dx.doi.org/10.1109/TIP.2009.2031231
http://www.ams.org/mathscinet-getitem?mr=MR1865346&return=pdf
http://dx.doi.org/10.1364/OE.14.001767
http://dx.doi.org/10.1364/OE.14.001767
http://www.ams.org/mathscinet-getitem?mr=MR1868535&return=pdf
http://dx.doi.org/10.1007/s498-001-8041-y
http://dx.doi.org/10.1007/s498-001-8041-y
http://www.ams.org/mathscinet-getitem?mr=MR2537844&return=pdf
http://dx.doi.org/10.1016/j.jcp.2009.04.022
http://www.ams.org/mathscinet-getitem?mr=MR2404093&return=pdf
http://dx.doi.org/10.1201/9781420007299
http://www.ams.org/mathscinet-getitem?mr=MR1856879&return=pdf
http://dx.doi.org/10.1137/S0036139999362592
http://www.ams.org/mathscinet-getitem?mr=MR1951952&return=pdf
http://dx.doi.org/10.1137/S0036139901389318
http://dx.doi.org/10.1137/S0036139901389318
http://www.ams.org/mathscinet-getitem?mr=MR2546354&return=pdf
http://dx.doi.org/10.1137/080737769
http://dx.doi.org/10.1137/080737769
http://www.ams.org/mathscinet-getitem?mr=MR2782122&return=pdf
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/s10851-010-0251-1
http://www.ams.org/mathscinet-getitem?mr=MR2143289&return=pdf
http://dx.doi.org/10.1137/1.9780898717877
http://dx.doi.org/10.1137/1.9780898717877
http://dx.doi.org/10.1109/83.661187
http://dx.doi.org/10.1109/ICCV.2007.4408904
http://www.ams.org/mathscinet-getitem?mr=MR3180676&return=pdf
http://dx.doi.org/10.3934/ipi.2013.7.1183
http://dx.doi.org/10.3934/ipi.2013.7.1183
http://www.ams.org/mathscinet-getitem?mr=MR2421302&return=pdf
http://dx.doi.org/10.1007/s10107-007-0161-1
http://dx.doi.org/10.1364/JOSAA.12.000058
http://dx.doi.org/10.1364/JOSAA.12.000058
http://www.ams.org/mathscinet-getitem?mr=MR2219153&return=pdf
http://dx.doi.org/10.1137/S1052623402407382
http://dx.doi.org/10.1137/S1052623402407382
http://www.ams.org/mathscinet-getitem?mr=MR1137197&return=pdf
http://dx.doi.org/10.1007/BF01385726
http://dx.doi.org/10.1007/BF01385726


30 Michael Hintermüller and Tao Wu

[21] M. Fukushima, Z.-Q. Luo and J.-S. Pang, A globally convergent sequential quadratic program-
ming algorithm for mathematical programs with linear complementarity constraints, Comput.

Optim. Appl., 10 (1998), 5–34.

[22] E. M. Gafni and D. P. Bertsekas, Convergence of a Gradient Projection Method, Labora-
tory for Information and Decision Systems Report LIDS-P-1201, Massachusetts Institute of

Technology, 1982.
[23] L. He, A. Marquina and S. J. Osher, Blind deconvolution using TV regularization and Breg-

man iteration, International Journal of Imaging Systems and Technology, 15 (2005), 74–83.

[24] M. Hintermüller and I. Kopacka, Mathematical programs with complementarity constraints in
function space: C- and strong stationarity and a path-following algorithm, SIAM J. Optim.,

20 (2009), 868–902.

[25] M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally
constrained optimization problem, SIAM J. Appl. Math., 64 (2004), 1311–1333.

[26] M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for total bounded

variation-based inf-convolution-type image restoration, SIAM J. Sci. Comput., 28 (2006),
1–23.

[27] M. Hintermüller and T. Surowiec, A bundle-free implicit programming approach for a class

of MPECs in function space, preprint, 2014.
[28] M. Hintermüller and T. Wu, Nonconvex TVq-models in image restoration: Analysis and a

trust-region regularization–based superlinearly convergent solver, SIAM J. Imaging Sci., 6
(2013), 1385–1415.

[29] , A superlinearly convergent R-regularized Newton scheme for variational models with

concave sparsity-promoting priors, Comput. Optim. Appl., 57 (2014), 1–25.
[30] K. Ito and K. Kunisch, An active set strategy based on the augmented Lagrangian formulation

for image restoration, ESAIM Math. Model. Num., 33 (1999), 1–21.

[31] L. Justen, Blind Deconvolution: Theory, Regularization and Applications, Ph.D. thesis, Uni-
versity of Bremen, 2006.

[32] L. Justen and R. Ramlau, A non-iterative regularization approach to blind deconvolution,

Inverse Problems, 22 (2006), 771–800.
[33] D. Kundur and D. Hatzinakos, Blind image deconvolution, IEEE Signal Process. Mag., 13

(1996), 43–64.
[34] , Blind image deconvolution revisited, IEEE Signal Process. Mag., 13 (1996), 61–63.

[35] K. Kunisch and T. Pock, A bilevel optimization approach for parameter learning in variational

models, SIAM J. Imaging Sci., 6 (2013), 938–983.
[36] A. Levin, Blind motion deblurring using image statistics, Advances in Neural Information

Processing Systems, 19 (2006), 841–848.

[37] A. B. Levy, Solution sensitivity from general principles, SIAM J. Control Optim., 40 (2001),
1–38.

[38] Z.-Q. Luo, J.-S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints,

Cambridge University Press, 1996.
[39] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory,

II: Applications, Springer, 2006.
[40] J. Nocedal and S. Wright, Numerical optimization, 2nd ed., Springer, New York, 2006.
[41] J. Outrata, M. Kocvara and J. Zowe, Nonsmooth Approach to Optimization Problems with

Equilibrium Constraints, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.
[42] J. V. Outrata, A generalized mathematical program with equilibrium constraints, SIAM J.

Control Optim., 38 (2000), 1623–1638.

[43] S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), 43–62.
[44] , Local structure of feasible sets in nonlinear programming, Part III: Stability and

sensitivity, Math. Programming Stud., 30 (1987), 45–66.

[45] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, New York, 1998.
[46] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,

Physica D, 60 (1992), 259–268.

[47] H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: Sta-
tionarity, optimality, and sensitivity, Math. Oper. Res., 25 (2000), 1–22.

[48] S. Scholtes, Convergence properties of a regularization scheme for mathematical programs
with complementarity constraints, SIAM J. Optim., 11 (2001), 918–936.

[49] Q. Shan, J. Jia and A. Agarwala, High-quality motion deblurring from a single image, ACM

T. Graphic, 27 (2008), p73.

Inverse Problems and Imaging Volume 9, No. 4 (2015), X–XX

http://www.ams.org/mathscinet-getitem?mr=MR1609612&return=pdf
http://dx.doi.org/10.1023/A:1018359900133
http://dx.doi.org/10.1023/A:1018359900133
http://dx.doi.org/10.1002/ima.20040
http://dx.doi.org/10.1002/ima.20040
http://www.ams.org/mathscinet-getitem?mr=MR2515801&return=pdf
http://dx.doi.org/10.1137/080720681
http://dx.doi.org/10.1137/080720681
http://www.ams.org/mathscinet-getitem?mr=MR2068672&return=pdf
http://dx.doi.org/10.1137/S0036139903422784
http://dx.doi.org/10.1137/S0036139903422784
http://www.ams.org/mathscinet-getitem?mr=MR2219285&return=pdf
http://dx.doi.org/10.1137/040613263
http://dx.doi.org/10.1137/040613263
http://www.ams.org/mathscinet-getitem?mr=MR3080995&return=pdf
http://dx.doi.org/10.1137/110854746
http://dx.doi.org/10.1137/110854746
http://www.ams.org/mathscinet-getitem?mr=MR3146498&return=pdf
http://dx.doi.org/10.1007/s10589-013-9583-2
http://dx.doi.org/10.1007/s10589-013-9583-2
http://www.ams.org/mathscinet-getitem?mr=MR1685741&return=pdf
http://dx.doi.org/10.1051/m2an:1999102
http://dx.doi.org/10.1051/m2an:1999102
http://www.ams.org/mathscinet-getitem?mr=MR2235637&return=pdf
http://dx.doi.org/10.1088/0266-5611/22/3/003
http://dx.doi.org/10.1109/79.489268
http://www.ams.org/mathscinet-getitem?mr=MR3055238&return=pdf
http://dx.doi.org/10.1137/120882706
http://dx.doi.org/10.1137/120882706
http://www.ams.org/mathscinet-getitem?mr=MR1855303&return=pdf
http://dx.doi.org/10.1137/S036301299935211X
http://www.ams.org/mathscinet-getitem?mr=MR1419501&return=pdf
http://dx.doi.org/10.1017/CBO9780511983658
http://www.ams.org/mathscinet-getitem?mr=MR2191744&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2244940&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1641213&return=pdf
http://dx.doi.org/10.1007/978-1-4757-2825-5
http://dx.doi.org/10.1007/978-1-4757-2825-5
http://www.ams.org/mathscinet-getitem?mr=MR1766433&return=pdf
http://dx.doi.org/10.1137/S0363012999352911
http://www.ams.org/mathscinet-getitem?mr=MR561153&return=pdf
http://dx.doi.org/10.1287/moor.5.1.43
http://www.ams.org/mathscinet-getitem?mr=MR874131&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1491362&return=pdf
http://dx.doi.org/10.1007/978-3-642-02431-3
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://www.ams.org/mathscinet-getitem?mr=MR1854317&return=pdf
http://dx.doi.org/10.1287/moor.25.1.1.15213
http://dx.doi.org/10.1287/moor.25.1.1.15213
http://www.ams.org/mathscinet-getitem?mr=MR1855214&return=pdf
http://dx.doi.org/10.1137/S1052623499361233
http://dx.doi.org/10.1137/S1052623499361233
http://dx.doi.org/10.1145/1399504.1360672


Bilevel Optimization for Blind Deconvolution 31

[50] A. Shapiro, Sensitivity analysis of parameterized variational inequalities, Math. Oper. Res.,
30 (2005), 109–126.

[51] J. J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equi-

librium constraints, J. Math. Anal. Appl., 307 (2005), 350–369.
[52] J. J. Ye, D. L. Zhu and Q. J. Zhu, Exact penalization and necessary optimality conditions for

generalized bilevel programming problems, SIAM J. Optim., 7 (1997), 481–507.
[53] Y.-L. You and M. Kaveh, A regularization approach to joint blur identification and image

restoration, IEEE Trans. Image Process., 5 (1996), 416–428.

Received October 2014; revised March 2015.

E-mail address: hint@math.hu-berlin.de
E-mail address: wutao@math.hu-berlin.de

Inverse Problems and Imaging Volume 9, No. 4 (2015), X–XX

http://www.ams.org/mathscinet-getitem?mr=MR2125140&return=pdf
http://dx.doi.org/10.1287/moor.1040.0115
http://www.ams.org/mathscinet-getitem?mr=MR2138995&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2004.10.032
http://dx.doi.org/10.1016/j.jmaa.2004.10.032
http://www.ams.org/mathscinet-getitem?mr=MR1443630&return=pdf
http://dx.doi.org/10.1137/S1052623493257344
http://dx.doi.org/10.1137/S1052623493257344

	1. Introduction
	2. A bilevel optimization model
	3. Solution mapping for lower-level problem: Existence, continuity, and differentiability
	4. Stationarity conditions for bilevel optimization
	5. Hybrid projected gradient method
	5.1. Differentiability given strict complementarity
	5.2. Local smoothing at a non-differentiable point
	5.3. Hybrid projected gradient method

	6. Numerical experiments
	6.1. Implementation issues
	6.2. Calibration of point spread functions
	6.3. Multiframe blind deconvolution

	Acknowledgments
	REFERENCES

