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Abstract

Sparsity, in a general sense, plays a vital role in modern signal and image processing. This

thesis is devoted to nonconvex and nonsmooth minimization approaches to sparsity-based image

processing, which splits into three major parts.

In the first part of the thesis, a nonconvex minimization model for restoring a gradient-sparse

image is introduced which contains the `q-“norm”, q ∈ (0, 1), of the gradient of the underlying

image as a regularization. Hence, such a regularization term represents a nonconvex compromise

between the minimization of the support of the reconstruction and the classical convex total-

variation model. In our work, for the `q-norm based models in the discrete setting, existence of

a minimizer is proved, and a Newton-type solution algorithm is introduced and its global as well

as local superlinear convergence toward a stationary point of a locally regularized version of the

problem is established. The potential nonpositive definiteness of the Hessian of the objective

during the iteration is handled by a trust-region based regularization scheme. The performance

of the new algorithm is also studied by means of a series of numerical tests. We also generalize

our approach to the particular `q-minimization model to a wide range of sparsity-promoting

models with concave priors, which finds interesting applications beyond image processing in,

e.g., machine learning and optimal control of partial differential equations.

In the second part, a novel bilevel optimization framework is proposed for blind deconvo-

lution, where both the underlying point spread function, which parameterizes the convolution

operator, and the source image need to be identified. The minimization of a total-variation

model is formulated as the lower-level problem, as is typically done in non-blind image deconvo-

lution. The upper-level objective takes into account additional statistical information depending

on the particular imaging modality. Bilevel problems of such type are investigated systemat-

ically in our work. Analytical properties of the lower-level solution mapping are established

based on Robinson’s strong regularity condition. Furthermore, several stationarity conditions

are derived from the variational geometry induced by the lower-level problem. Numerically, a

projected-gradient-type method is employed to obtain a Clarke-type stationary point and its

convergence properties are analyzed. We also implement an efficient version of the proposed al-

gorithm and test it through the experiments on point spread function calibration and multiframe

blind deconvolution.

The last part of the thesis concerns the so-called robust principal component pursuit (RPCP),

which refers to a decomposition of a data matrix into a low-rank component and a sparse com-

ponent. In our work, instead of invoking a convex-relaxation model based on the nuclear norm

and the `1-norm as is typically done in this context, RPCP is solved by considering a least-

squares problem subject to rank and cardinality constraints. An inexact alternating minimiza-

tion scheme, with guaranteed global convergence, is employed to solve the resulting constrained

minimization problem. In particular, the low-rank matrix subproblem is resolved inexactly by

a tailored Riemannian optimization technique, which favorably avoids singular value decompo-

sitions in full dimension. For the overall method, a corresponding q-linear convergence theory

is established. Our numerical experiments show that the newly proposed method compares

competitively with a popular convex-relaxation based approach.



Zusammenfassung

Diese Dissertation widmet sich nichtkonvexen und nichtglatten Minimierungsproblemen in
der auf dünner Besetztheit basierten mathematischen Bildverarbeitung. Die Arbeit ist in drei
Teile gegliedert.

Im ersten Teil der Arbeit wird ein nichtkonvexes Minimierungsmodell zur Rekonstruktion
eines Bildes mit dünnbesetzter Gradientenstruktur eingeführt. Dieses Modell beruht auf einer
Regularisierung mittels der `q-Quasinorm (mit q ∈ (0, 1)) des Gradienten des zugrundeliegenden
Bildes. Dieser Regularisierungsanteil repräsentiert einen nichtkonvexen Kompromiss zwischen
der Minimierung des Trägers des Gradienten und des klassischen konvexen Modells der Regular-
isierung mittels totaler Variation (TV-Modell). In unserer Arbeit wird die Existenz einer Min-
imalstelle für das diskrete `q-Modell nachgewiesen. Ein Newton-ähnlicher Lösungsalgorithmus
wird für eine regularisierte Variante des Problems eingeführt. Für diesen Algorithmus wird
sowohl die globale als auch die lokale superlineare Konvergenz zu einem stationären Punkt
nachgewiesen. Zur Stabilisierung aufgrund einer eventuell nicht positiv-definiten Hesse-Matrix
des Zielfunktionals während der Iterationen wird ein Trust-Region-Verfahren verwendet. Der
neue Algorithmus wird anhand numerischer Tests studiert und validiert. Anschließend wird das
`q-Minimierungsmodell auf weitere Anwendungen mit dünnbesetzter Information ausgedehnt.
Auf diese Weise führt der Ansatz–abgesehen von der Bildverarbeitung–auf weitere interessante
Bereiche wie zum Beispiel maschinelles Lernen und optimale Steuerung von partiellen Differen-
tialgleichungen.

Im zweiten Teil der Arbeit wird eine neuer zweistufiger Optimierungsansatz für blinde Ent-
faltung vorgestellt. Dabei muss sowohl der zugrundeliegende Konvolutionskern, welcher die
Faltung parametrisiert, als auch eine Rekonstruktion des Bildes gefunden werden. Das TV-
Modell tritt als untergeordnetes Optimierungsproblem auf, welches durch den Faltungskern
parametrisiert ist. Das Zielfunktional des übergeordneten Problems berücksichtigt zusätzliche
statistische Informationen, welche vom speziellen bildgebenden Verfahren abhängen. Die re-
sultierenden zweistufigen Probleme werden systematisch untersucht. So erhält man aufgrund
der starken Regularität nach Robinson analytische Eigenschaften der Lösungsabbildung des un-
tergeordneten Problems. Weiter werden anhand verschiedener Eigenschaften der nichtglatten
Geometrie des untergeordneten Problems verschiedene Stationaritätsbedingungen hergeleitet.
Für die numerische Behandlung wird ein projiziertes gradienten-ähnliches Abstiegsverfahren
zur Bestimmung eines Clarke-stationären Punkts entwickelt und analysiert. Daneben wird eine
effiziente Variante des Algorithmus implementiert und anhand von Beispielen zur Kalibrierung
des Faltungskerns und zur Entfaltung im Falle multipler Datenbilder getestet.

Der letzte Teil der Dissertation betrifft die so genannte robuste Bestimmung von Haup-
tkomponenten gegebener Daten. Dabei erfolgt eine Zerlegung der Datenmatrix in eine soge-
nannte Niedrig-Rang-Matrix und eine dünnbesetzte Matrix. Anstelle eines üblicherweise ver-
wendeten konvexen Relaxationsmodells, welches auf der Spurnorm und der `1-Norm basiert,
wird in unserer Arbeit das Problem unter Hinzuziehen einer Methode der kleinsten Quadrate
mit Rang- und Besetztheitsrestriktion gelöst. Für die Lösung des resultierenden restringierten
Minimierungsproblems wird ein inexaktes alternierendes Minimierungsschema, welches globale
Konvergenz garantiert, angewendet. Im Speziellen wird das Teilproblem zur Berechnung der
Niedrig-Rang-Komponente unter Verwendung einer Riemann’schen Optimierungstechnik inex-
akt gelöst. Dadurch wird eine Singulärwertzerlegung im hochdimensionalen Raum vermieden.
Für das Gesamtverfahren wird q-lineare Konvergenz bewiesen. Unsere numerischen Berechnun-
gen zeigen, dass die neue Methode im Vergleich zur gängigen konvexen Relaxationstechnik sehr
konkurrenzfähig ist.
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Chapter 1

Motivation and organization of the
thesis

Sparsity, possibly varying in form from case to case, plays a vital role in modern signal and image

processing. Digital images are commonly sparse under certain linear transforms, i.e. a fraction of

the transformed coefficients are dominating the rest in magnitude. The choice of the sparsifying

linear transform may depend on the underlying image content and the goal of an image processing

task. For example, a piecewise constant image is obviously sparse under a gradient transform.

The (block) discrete cosine transform well sparsifies a common photograph from a camera,

which leads to the success of JPEG-format image compression. The format JPEG-2000, a

successor of JPEG, rather relies on discrete wavelet transforms and yields superior compression

performance over JPEG. As is expected, sparsity-based image processing, or sparse imaging

in short, reaches far beyond image compression. Once the sparsity of the underlying image is

acknowledged as our a priori knowledge, it serves as a proper regularization of the solutions for

many imaging-related, most likely ill-posed, inverse problems. Such inverse problems include

image reconstruction, denoising, deblurring, inpainting, superresolution, and segmentation, to

name a few. In certain medical applications such as computed tomography (CT) and magnetic

resonance imaging (MRI), data measurements in respective transform-domains can be severely

inadequate in amount (i.e. strongly undersampled) due to physical and physiological constraints.

In such scenarios, utilization of a sparsity prior in a variational image reconstruction approach

would compensate, to a certain extent, the loss of information and hence trigger faster image

acquisition without degradation of image quality.

Beyond image processing, sparsity is also crucial for processing more general datasets of

high dimensions in large scales. In particular, the low-rank property of a matrix or tensor can

be viewed as the sparsity with respect to singular values, which finds profound applications in

machine learning and data mining. For instance, a low-rank matrix or tensor may arise from a

low-degree statistical model of a random process, a low-dimensional manifold embedding of high-

dimensional data, or a low-order approximation of a linear operator on an infinite dimensional

function space.

7



Motivated by the sparsity in a general sense, the present thesis concerns variational methods

for obtaining sparse solutions from given data. In this regard, we propose novel nonconvex

or/and nonsmooth minimization models for three different problems in image/video processing,

respectively. Each problem constitutes an individual chapter; see chapters 2–4. We will observe

from our numerical experiments that the newly proposed nonconvex or/and nonsmooth models,

when properly utilized, indeed yield visible improvements on either quality of the solutions or

computational time. Yet, nonconvex and nonsmooth minimizations are very challenging both

analytically and numerically. Our goal in each problem is to investigate existence of solutions

for the respective variational model, characterize optimality conditions, and devise an efficient

numerical solver with complete convergence analysis.

More specifically, in chapter 2 we propose a nonconvex `q-type (0 < q < 1) functional

for promoting sparsity of restored images. It is known, e.g. in compressed sensing, that the

most straightforward quantification for the sparsity of a vector is the `0-norm, which counts

the number of its nonzero entries. Nevertheless, minimization with the `0-norm is often an

NP-hard combinatorial problem [Nat95]. As a comprise, a vast amount of the literature resorts

to the convex `1-minimization, since the `1-norm is the convex relaxation of the `0-norm on

the closed unit ball; see [CDS01, BDE09] for an overview. In image processing, one typically

intends to keep edges in the solution image and hence minimizes with the total-variation (TV)

norm, which amounts to the `1-norm of the image gradient in a discrete setting; see [ROF92]

and its related works. More recently, there is evidence that the nonconvex `q-norm based models

better preserve sparsity of the underlying solution than the `1-norm based model, which may,

e.g., favorably reduce the amount of data required in image acquisition; see [Nik02, Cha07b,

CY08, NNZC08]. Numerical solution for the `q-model represents a nonconvex and non-Lipschitz

minimization, known to be far more challenging than convex and Lipschitz `1-minimization. In

chapter 2 of the present thesis, this challenge is tackled systematically. For the nonconvex `q-

model in the discrete setting, existence of a minimizer is proved, and a Newton-type solution

algorithm is introduced and its global as well as local superlinear convergence toward a stationary

point of a locally regularized version of the problem is established. The potential nonpositive

definiteness of the Hessian of the objective during the iteration is handled by a trust-region based

regularization scheme. The performance of the new algorithm is also studied by means of a series

of numerical tests. It turns out that our approach to the particular `q-minimization model can

be generalized to a wide range of sparsity-promoting models with concave priors, which finds

interesting applications beyond image processing in, e.g., machine learning and optimal control

of partial differential equations.

Once it is accepted that the sparsity-based variational method faithfully restores the original

image, more comprehensive modeling of unknown parameters, in addition to the underlying

image itself, becomes an interesting question. Such unknown parameters can be related to ei-

ther sparsity prior(s) or image acquisition; see, e.g., [KP13, DlRS13]. One specific paradigm
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to approach this problem is bilevel optimization. In this context, in an upper level, in contrast

to sparsity-based image restoration in a lower level, one can, for instance, minimize an energy

functional, which selects the best restored image(s) according to a certain statistical criterion.

In chapter 3, we investigate a particular problem of such type, namely blind deconvolution, using

the bilevel optimization approach. Image blur is widely encountered in astronomy, microscopes,

tomographic imaging, etc; see e.g. [KH96a, KH96b, CE07] and the references therein. In many

situations, the blurring operator, often modeled by the convolution with a single point spread

function provided that the blurring is shift-invariant, is not available beforehand and needs to

be identified together with the underlying image. In this work, we restrict our sparsity prior in

the lower-level problem to be the (convex) total variation only. We emphasize, however, that the

overall bilevel problem represents a nonconvex and nonsmooth minimization. Moreover, the con-

straint that arises from solving the lower-level problem is typically characterized as a set-valued

equation or a nonsmooth equation, which renders the classical Karush-Kuhn-Tucker (KKT) the-

ory inapplicable for deriving optimality conditions of our bilevel optimization. Instead, we apply

Mordukhovich’s generalized differential calculus [Mor94, Mor06] to derive a sharp stationarity

condition, where Robinson’s strong regularity condition [Rob80] serves as a proper constraint

qualification. We further develop a projected-gradient-type algorithm for computing a Clarke-

type stationary point, which is slightly weaker than the Mordukhovich-type stationary point.

Our numerical experiments will demonstrate applications in point spread function calibration

and multiframe blind deconvolution.

Chapter 4 of the thesis is motivated from modeling a video clip, i.e. a sequence of image

frames, by decomposing it into two “sparse” components of different natures. Once each frame

of the image sequence is stacked as a single column of a matrix, we essentially speak of a matrix

decomposition problem. More specifically, we aim to decompose, up to some small fitting error,

the given data matrix (encoding original video contents) into a low-rank matrix sparse in singu-

lar values and a sparse matrix sparse in matrix entries. In the context of a surveillance video,

a stationary background is typically modeled by the low-rank matrix, while moving objects are

extracted by the sparse matrix. We remark that such a low-rank plus sparse matrix decompo-

sition, in a more general context, is referred to as robust principal component pursuit (RPCP)

in Candés et al [CLMW11], as RPCP robustifies the classical principle component analysis by

taking into account extreme outliers with respect to the principle components. Concerning the

numerical solution for RPCP, instead of invoking a convex-relaxation model based on the nu-

merical norm and the `1-norm as most popular approaches in the literature do, in chapter 4 we

consider a least-squares formulation subject to rank and cardinality constraints. An alternating

minimization scheme is then employed to solve the resulting nonconvex constrained minimization

problem. In particular, the low-rank matrix subproblem is resolved by a tailored Riemannian

optimization technique [AMS08], which avoids singular value decompositions in full dimension.

From the perspective of an inexact Riemannian Newton method, we establish a q-linear conver-
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gence theory for the overall alternating minimization scheme. Finally, we demonstrate numerical

evidences that our newly proposed method compares favorably with the convex-relaxation based

approach.

As the main body of the thesis, chapters 2–4 are all structured in a similar way. Each chap-

ter begins with an introduction section, which describes the background of the problem under

consideration and reviews the existing literature. Then a preliminary section provides a connec-

tion between the upfront research on the corresponding subject and the relevant mathematical

tools at a more fundamental level. This is followed by the original research by the author of the

present thesis that consists of a complete presentation of analyses, algorithms, and numerics.

Most findings within this thesis have been published in academic journals from the corresponding

fields; see [HW13, HW14a, HW14b, HW15b, HW15a]. Finally, chapter 5 concludes the thesis

with a brief summary and an outlook on the future work. It should be noted that the notations

and symbols used in the thesis are self-consistent within each individual chapter, which are typ-

ically clarified at the beginning of the presentations. The bibliography at the end of the thesis

is ordered alphabetically according to the citation labels.
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Chapter 2

Nonconvex TVq-models in image
restoration: analysis, algorithm,
numerics, and generalizations

2.1 Introduction

In many applications of signal and image recovery one is interested in obtaining solutions with

the sparsest or smallest support set, either of the signal directly or of a related quantity of in-

terest (such as the gradient of an image for instance), from a limited number of measurements.

This topic is at the core of compressed sensing (see, e.g., [CT06, DL92, DS89, DDFG10] and

the references therein) or basis pursuit (see, e.g., [CDS98]) and has sparked significant research

activities in the recent past. Mathematically, finding the smallest support set of a signal or

an image requires to minimize the `0-norm, i.e. the number of nonzero entries in the solution

vector or the related quantity of interest, subject to a constraint reflecting data fidelity. This

problem is of combinatorial nature and it is well-known that it is essentially NP-hard [Nat95].

Thus, for practical purposes the `0-norm minimization problem is usually replaced by a con-

vex relaxation leading to the minimization of the `1-norm which can be solved efficiently; see

the discussion in [DDFG10] and, for instance, [TW10] and the references therein for further

algorithmic developments.

In image processing one typically aims at recovering an image from noisy data while still

keeping edges in the image. The latter requirement is responsible for the tremendous success of

total variation based image restoration [ROF92]. In connection with the sparsity requirement

alluded to above, this implies to compute a restoration result with gradient-sparsity, i.e. a

piecewise constant image with a small number of patches. Hence, rather than minimizing the

support of the image directly, one is interested in minimizing the support of the gradient of

the recovered image. In the context of the convex relaxation mentioned above this amounts to

minimizing the `1-norm of the gradient of the image subject to data fidelity; see, e.g., [CGM99,

HK04, Nes05, HS06, GO09, TW10, BBC11] and the references therein for associated solution
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algorithms.

There is evidence [Cha07b, NNZC08] that replacing the `1-norm by the nonconvex and

nondifferentiable function ‖v‖q`q =
∑

i |vi|q with q ∈ (0, 1), which for the ease of reference we

refer to as `q-norm in what follows, promotes gradient-sparsity even better. Moreover, the

`q-norm allows possibly a smaller number of measurements than the `1-norm in compressed

sensing. In [Nik02] (see also the more recent paper [NNZC08]) it was shown that nonconvex

regularization terms in total variation based image restoration yield even better edge preservation

when compared to the convex `1-type regularization. Moreover, it appears that the `q-norm

regularization is also more robust with respect to noise.

Nonconvex and nonsmooth regularization in image restoration (and more generally in inverse

problems) poses significant challenges with respect to both, the existence of solutions of asso-

ciated minimization problems and, in particular, the development of efficient (i.e. locally more

than the linearly convergent) solution algorithms. Linearly convergent gradient projection type

methods for compressed sensing problems minimizing the `q-norm can be found in [Cha07b]. In

[CY08] the latter solver was replaced by a regularized iteratively reweighted least squares (IRLS)

technique. Based on [GO09], Chartrand extends in [Cha09] the Bregman iteration which relies

on a variable splitting approach combined with a q-shrinkage operation to `q-norm minimiza-

tion. The resulting method typically has a linear convergence behavior. In [DDFG10], the

iteratively reweighted least squares solver for compressed sensing with the `q-norm is shown to

converge locally superlinearly. The result depends on a q-null-space-condition, the sparsity of

the solution and a locality requirement of the initial guess. A different perspective was taken in

[NNZC08] where, under certain conditions, more general nonconvex regularization functionals

are considered. Concerning the solver development, a technique based on interior point method

is proposed. The authors make the interesting observation that, under the stated conditions,

the nonsmooth and nonconvex regularization functional may be decomposed as the sum of a

nonconvex but smooth part plus a convex and nonsmooth part. Increasing the variable space

and rewriting the problem then yields the minimization of a nonconvex and smooth function

subject to linear or affine equality constraints and nonnegativity constraints, which is equiva-

lent to the original problem. The reformulated problem may now be tackled by interior point

methods [Wri97], which were very recently shown to compute a local minimizer in compressed

sensing in polynomial time [GJY11]. Clearly, the increase of the variable space and the com-

putational effort implied by the interior point methods might be considered as disadvantages.

In the follow-up work [NNT10] the interior point solver is replaced by variable splitting tech-

niques resulting in alternating minimization methods which converge linearly. Unfortunately,

the conditions required for the success of the algorithms proposed in [NNZC08] and [NNT10]

rule out the `q-norm minimization and also the modified version of this problem considered in

this chapter. We also mention the development of a smoothing nonlinear conjugate gradient

solver in [CZ10] which is based on [NNZC08].
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In this chapter we are interested in expanding the scope of solvers for `q-norm-based reg-

ularization of the gradient of the image to be recovered (we refer to this regularization as the

TVq-regularization as it combines the edge preservation property of total variation regularization

with the sparsity-promoting `q-norm). In particular we are interested in locally superlinearly

convergent methods which are robust with respect to noise. In order to achieve this, our pro-

posed method considers a Huber-type regularization of the non-Lipschitz `q-norm and combines

a reweighting technique for handling the nonconvexity with primal-dual semismooth Newton

methods for image restoration [CGM99, HK04, HS06], which exhibit a fast (local) convergence

towards a stationary point. For stabilizing the Newton solver in the presence of indefiniteness

due to the involved nonconvexity, a specific regularization scheme is applied which modifies the

(generalized) Hessian of the underlying variational problem based on a trust-region technique

[CGT00]. The latter technique has the advantage of allowing a transition of the modified (gen-

eralized) Hessian to the true Hessian as the solution is approached and, thus, enabling the local

superlinear convergence properties of the underlying Newton iteration. We point out that in

contrast to the IRLS solver of [DDFG10] we guarantee global convergence. Moreover, local su-

perlinear convergence is established without requiring conditions like the q-null-space property

or sparsity conditions concerning the solution.

The rest of the chapter is organized as follows. Section 2.2 consists of preliminaries of some

classical theories on the total-variation model as well as relevant numerical methods for non-

convex and nonsmooth minimizations. In section 2.3, we introduce our TVq-model problem

and discuss its regularization by a Huber-type function. The primal-dual Newton solver is the

subject of section 2.4. In this core section of the present chapter, we introduce the stabilization

of Newton’s method (which we call R-regularization) together with the associated trust-region

scheme for deciding on the amount of R-regularization required. Furthermore, the overall algo-

rithm is defined and its global as well as local superlinear convergence is established. Section 2.5

is devoted to numerical tests showing the efficiency of our new method. A smoothing scheme to

trace the original nonsmooth TVq problem via a sequence of smoothed problems is provided in

section 2.6. In section 2.7, we address the function space setting of the underlying variational

problem and discuss the associated difficulties including a warning example. Finally, general-

ization of our TVq-models to a more general class of variational models with concave priors is

conducted in section 2.8.

2.2 Preliminaries

A systematic approach to investigating an optimization problem roughly consists of three steps.

First, existence of optimal solutions needs to be justified, ideally in a properly chosen infinite

dimensional space. In this respect, direct methods in the calculus of variations are typically

the ways to follow. Once it exists, characterization of an optimal solution, often known as the

(necessary) optimality condition, becomes interesting since this helps us qualify or disqualify
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certain candidate solutions among others. The final step is to devise a numerical scheme (often

in a discrete setting) for computing an optimal solution in the sense that it is globally optimal

for the underlying optimization problem or at least satisfies the derived optimality condition.

Since such a numerical scheme is often iterative in nature, its convergence properties need to be

carefully analyzed.

In this preliminary section, we recap some classical theories, under the context of the present

chapter, in terms of the three aforementioned aspects. Section 2.2.1 concerns the existence of

solutions and the optimality condition of the classical total-variation (TV) model in infinite

dimensions, as the (convex) TV-model is the precursor of the nonconvex TVq-models in the main

body of this chapter. This is followed by two algorithmic subsections under the finite dimensional

settings. A locally superlinearly convergent semismooth Newton method is introduced in section

2.2.2. In addition, two globalization strategies for nonconvex minimizations, namely the line

search method and the trust-region method, are presented in section 2.2.3.

2.2.1 Functional analytic aspects of total-variation models

In section 2.2.1, we consider the following TV-model, see [CK97, HK04], in a continuous setting:

min α

∫

Ω
|Du|+ µ̃

2

∫

Ω
|u|2dx+

1

2

∫

Ω
|Ku− z|2dx, over u ∈ BV(Ω). (2.2.1)

Here Ω denotes a domain in R2 which is bounded, simply connected, and has a Lipschitz bound-

ary ∂Ω. The observed image z is a square-integrable function on Ω, i.e. z ∈ L2(Ω), and K is a

known continuous linear map from L2(Ω) to itself, i.e. K ∈ L(L2(Ω)). The parameters α > 0,

µ̃ ≥ 0 are chosen by the user. We denote by dx the Lebesgue measure in R2, and without further

specification the symbol “a.e.” means almost everywhere with respect to this measure. We use

the notation K> for the adjoint of K. Besides, BV(Ω) denotes the space of all functions of

bounded variation (BV) on Ω with the associated BV-seminorm
∫

Ω |Du|; see (2.2.3) and (2.2.2)

below for the corresponding definitions. For introductions to general theory on BV functions,

we refer to [Giu84, ABM06]. The BV space is more appropriate in digital image modeling

than Sobolev spaces, since a BV function admits discontinuities (often edges in an image) while

excludes extensive oscillations (often noises in an image).

The rest of section 2.2.1 is organized as follows. We first define the BV space and prove the

existence of solutions for (2.2.1). This is followed by the derivation of the optimality condition

for (2.2.1) via the Fenchel duality. Finally, we introduce an approximation of the model (2.2.1)

in a Hilbert space.

Existence of solutions in the BV space

Define the BV-seminorm of u ∈ L1(Ω) by

∫

Ω
|Du| := sup

{∫

Ω
udivv dx : v ∈ C1

c (Ω;R2), |v(x)| ≤ 1 a.e. in Ω

}
. (2.2.2)
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Here C1
c (Ω;R2) refers to the set of all continuously differentiable R2-valued functions on Ω with

compact supports. The space BV(Ω) is defined by

BV(Ω) :=

{
u ∈ L1(Ω) :

∫

Ω
|Du| <∞

}
. (2.2.3)

Note that BV(Ω) is a Banach space endowed with the norm ‖ · ‖BV(Ω) defined by ‖u‖BV(Ω) :=

‖u‖L1(Ω) +
∫

Ω |Du|; see, e.g., Theorem 10.1.1 in [ABM06]. As a remark, the distributional

derivative Du should be understood as a R2-valued Borel measure; see, e.g., Definition 10.1.1 in

[ABM06].

Some important properties of the BV space are stated in the following two lemmas.

Lemma 2.2.1 (Weak lower semicontinuity in Lp(Ω), 1 ≤ p < ∞). The BV-seminorm u 7→∫
Ω |Du| is weakly lower semicontinuous in Lp(Ω) for 1 ≤ p <∞, i.e. for any u ∈ Lp(Ω) we have

∫

Ω
|Du| ≤ lim inf

{∫

Ω
|Duk| : uk ⇀ u in Lp(Ω)

}
.

Proof. See Theorem 2.3 in [AV94].

Lemma 2.2.2 (Embedding of BV(Ω) into Lp(Ω), 1 ≤ p ≤ 2). The space BV(Ω) is continuously

embedded into Lp(Ω) for 1 ≤ p ≤ 2, i.e. there exists a constant Cp depending on Ω, p only such

that the following inequality holds for all u ∈ BV(Ω):

(∫

Ω
|u|pdx

)1/p

≤ Cp‖u‖BV(Ω).

Furthermore, if 1 ≤ p < 2, the embedding is even compact, i.e. every bounded sequence in BV(Ω)

has a (strongly) convergent subsequence in Lp(Ω).

Proof. This result is a special case of Theorems 10.1.3 and 10.1.4 in [ABM06] for Ω ⊂ R2.

Now we show the existence of a solution for the TV-model (2.2.1).

Theorem 2.2.3 (Existence of solution). Assume that µ̃ > 0 or K>K is nonsingular. Then

(2.2.1) admits a unique global minimizer.

Proof. Our proof closely follows Theorem 2.1 in [CK97].

Provided that a global minimizer exists, its uniqueness follows immediately from the strict

convexity under our assumptions. To show the existence, let {uk} ⊂ BV(Ω) be an infimizing

sequence for (2.2.1).

We claim that {uk} is uniformly bounded in BV(Ω). If this is not true, we have, possibly

along a subsequence, that ‖uk‖L1(Ω) → ∞ or
∫

Ω |Duk| → ∞. In both cases, the objective in

(2.2.1) tends to infinity, contradicting the assumption that {uk} is an infimizing sequence.

Thanks to the embedding in Lemma 2.2.2, there exists a subsequence {uk} which converges

to some u∗ strongly in L1(Ω) and weakly in L2(Ω). Note that u∗ ∈ BV(Ω) can be checked from
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Lemma 2.2.1. Moreover, the mapping u 7→ α
∫

Ω |Du| +
µ̃
2

∫
Ω |u|2dx is convex and (strongly)

continuous in L2(Ω), and therefore also weakly lower semicontinuous in L2(Ω). Together with

Lemma 2.2.1, the objective in (2.2.1) is weakly lower semicontinuous in L2(Ω), and we conclude

that u∗ is a global minimizer.

Optimality condition via Fenchel duality

Our next concern is to derive an optimality condition for the TV-model (2.2.1) based on the

Fenchel duality theorem. For this purpose, we first introduce some notions from convex analysis

(in infinite dimensions), for which further information can be found in [ET99].

Let X be a Banach space with its topological dual X∗, and 〈·, ·〉X,X∗ be a duality pairing

over X × X∗. The function Θ∗ : X∗ → R ∪ {∞} is called the convex conjugate of a convex

function Θ : X → R ∪ {∞} if we have for all û ∈ X∗ that

Θ∗(û) = sup
u∈X
{〈u, û〉X,X∗ −Θ(u)} .

In convex analysis, the subdifferential of Θ at u, denoted by ∂Θ(u), is defined by

∂Θ(u) := {û ∈ X∗ : Θ(v) ≥ Θ(u) + 〈v − u, û〉X,X∗ ∀v ∈ X}

if Θ(u) <∞, and ∂Θ(u) := ∅ if Θ(u) =∞.

We state the Fenchel duality theorem in the following. For convenience of our later utiliza-

tion, we set p as the primal variable and u as the dual variable in our formulation.

Theorem 2.2.4 (Fenchel duality). Let X and Y be two Banach spaces with topological duals X∗

and Y ∗, respectively, and Λ ∈ L(X;Y ). Assume that Θ : X → R ∪ {∞} and Ψ : Y → R ∪ {∞}
are convex lower semicontinuous functionals and there exists p0 ∈ X such that Θ(p0) < ∞,

Ψ(Λp0) <∞, and Ψ is continuous at Λp0. Then we have

inf
p∈X

Θ(p) + Ψ(Λp) = sup
u∈Y ∗

−Θ∗(−Λ>u)−Ψ∗(u), (2.2.4)

where Θ∗ : X∗ → R ∪ {∞} and Ψ∗ : Y ∗ → R ∪ {∞} are the convex conjugates of Θ and Ψ,

respectively. Moreover, the optimal solutions p∗ ∈ X and u∗ ∈ Y ∗ in (2.2.4) are characterized

by the following optimality conditions:

{
−Λ>u∗ ∈ ∂Θ(p∗),

Λp∗ ∈ ∂Ψ∗(u∗).

Proof. See pp. 60 in [ET99].

In the following, we will associate (2.2.1) with the following predual problem:

min
1

2

〈
v +K>z, (µ̃I +K>K)−1(v +K>z)

〉
L2(Ω)

s.t. v ∈ Hdiv
0 (Ω), |v(x)| ≤ 1 a.e. in Ω.

(2.2.5)
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Let H1 be the one-dimensional (outer) Hausdorff measure; see, e.g., pp. 110 in [ABM06]. The

space Hdiv
0 (Ω) is defined by

Hdiv
0 (Ω) :=

{
p ∈ L2(Ω;R2) : divp ∈ L2(Ω), p(x) · ν(x) = 0 a.e. with respect to H1 on ∂Ω

}
,

where ν is the outer normal vector on ∂Ω. To utilize Theorem 2.2.4, we set

X := Hdiv
0 (Ω),

Y = Y ∗ := L2(Ω),

Λ := α div,

Σp := {p ∈ Hdiv
0 (Ω) : |p(x)| ≤ 1 a.e. in Ω},

Θ(p) :=

{
0 if p ∈ Σp,

∞ otherwise,

Ψ(v) :=
1

2

〈
v +K>z, (µ̃I +K>K)−1(v +K>z)

〉
L2(Ω)

.

The convex conjugates of Θ and Ψ can be readily calculated as

Θ∗(w) = sup
{
〈p, w〉Hdiv

0 (Ω),Hdiv
0 (Ω)∗ : p ∈ Σp

}
,

Ψ∗(u) =
µ̃

2

∫

Ω
|u|2dx+

1

2

∫

Ω
|Ku− z|2dx.

One may consider div ∈ L(Hdiv
0 (Ω);L2(Ω)) and ∇ ∈ L(L2(Ω);Hdiv

0 (Ω)∗) such that ∇ :=

−div>. Since {p ∈ C1
c (Ω;R2) : |p(x)| ≤ 1 a.e. in Ω}, i.e. the feasible set for the supremum in

(2.2.2), is dense in Σp under the (strong) Hdiv
0 (Ω)-topology, see Theorem 2 in [HR15], we have

Θ∗(α∇u) = α

∫

Ω
|Du|

for any u ∈ L2(Ω). In fact, Θ∗(α∇u) + Ψ∗(u) <∞ if and only if u ∈ BV(Ω).

Thus, based on the Fenchel duality, we arrive at the optimality condition stated in the

following theorem.

Theorem 2.2.5 (Optimality condition). The Fenchel dual of (2.2.5) is given by (2.2.1). More-

over, the optimal solutions u∗ and p∗ for (2.2.1) and (2.2.5), respectively, satisfy the following

conditions: {
(µ̃I +K>K)u∗ − α divp∗ = K>z in L2(Ω),

〈p− p∗,∇u∗〉Hdiv
0 (Ω),Hdiv

0 (Ω)∗ ≤ 0 ∀p ∈ Σp.

A Hilbert-space approach

Now we consider the approximation of the TV-model (2.2.1) (with µ̃ = 0) in the Hilbert space

H1
0 (Ω), see related work in [IK99, HS06]. Our variational model in H1

0 (Ω) is formulated as

follows:

min α

∫

Ω
|∇u|dx+

µ

2

∫

Ω
|∇u|2dx+

1

2

∫

Ω
|Ku− z|2dx, over u ∈ H1

0 (Ω). (2.2.6)
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Here ∇u is the distributional derivative of u. We shall denote the topological dual of H1
0 (Ω) by

H−1(Ω) and the Laplacian by ∆ := div ◦ ∇ ∈ L(H1
0 (Ω);H−1(Ω)). Different from (2.2.1), there

is an additional H1-term with the leading coefficient 0 ≤ µ � α. The space H1
0 (Ω) consists of

all functions u ∈ L2(Ω) such that

‖u‖H1
0 (Ω) :=

(∫

Ω
|∇u|2dx

)1/2

<∞,

and u has zero trace over ∂Ω. Note that
∫

Ω |∇u|dx =
∫

Ω |Du| for u ∈ H1
0 (Ω).

Under the assumption that µ > 0 or K>K is nonsingular, existence and uniqueness of the

solution for (2.2.6) can be verified using standard arguments from the direct methods of the

calculus of variations. Besides, the optimality condition for (2.2.6) is again a consequence of the

Fenchel duality in Theorem 2.2.4.

Theorem 2.2.6 (Optimality condition). The optimal solution u∗ for (2.2.6) satisfies the fol-

lowing conditions for some p∗ ∈ L2(Ω;R2):




−µ∆u∗ +K>Ku∗ − α divp∗ = K>z in H−1(Ω),

|(∇u∗)(x)|p∗(x) = (∇u∗)(x) if |p∗(x)| = 1

(∇u∗)(x) = 0 if |p∗(x)| < 1

}
for p∗ ∈ L2(Ω;R2).

Proof. See Theorem 2.1 in [HS06].

It is justified in the following theorem that the H1-model (2.2.6) is indeed a faithful approx-

imation to the original TV-model (2.2.1).

Theorem 2.2.7 (Consistency). Without loss of generality, assume that µ̃ = 0 and K is the

identity. Let {µk} be a sequence of positive scalars such that µk → 0+. For each µk, let uk ∈
H1

0 (Ω) be the optimal solution of (2.2.6) with µ := µk. Then there exists a weak accumulation

point u∗ of {uk} in L2(Ω) such that u∗ is the optimal solution for (2.2.1).

Proof. Our proof is based on Remark 2.1 in [IK99].

First, note that {uk} is uniformly bounded in BV(Ω). Hence, by Lemma 2.2.2, there exists a

subsequence, again denoted by {uk}, such that uk converges to u∗ strongly in L1(Ω) and weakly

in L2(Ω). In addition, for each k we have

α

∫

Ω
|∇uk|dx+

µk

2

∫

Ω
|∇uk|2dx+

1

2

∫

Ω
|uk−z|2dx ≤ α

∫

Ω
|∇ũ|dx+

µk

2

∫

Ω
|∇ũ|2dx+

1

2

∫

Ω
|ũ−z|2dx

for all ũ ∈ H1
0 (Ω). Fixing ũ and taking the limit inferior with respect to k on both sides of the

above inequality, we have

α

∫

Ω
|Du∗|+ 1

2

∫

Ω
|u∗ − z|2dx ≤ α

∫

Ω
|∇ũ|dx+

1

2

∫

Ω
|ũ− z|2dx, (2.2.7)

due to the weak lower semicontinuity in Lemma 2.2.1. Note that (2.2.7) holds true for an

arbitrary ũ ∈ H1
0 (Ω). Furthermore, given an arbitrary u ∈ BV(Ω), there exists {ũl} in H1

0 (Ω)
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such that ũl converges to u (strongly) in L2(Ω) and liml→∞
∫

Ω |Dũl| =
∫

Ω |Du|; see Theorem

1.17 in [Giu84]. Thus, (2.2.7) also holds true for any ũ ∈ BV(Ω), i.e. u∗ is optimal for (2.2.1).

As a remark, we mention that the H1-model (2.2.6) is convenient for numerical purposes. In

[HS06], up to a Tikhonov regularization on the dual problem for (2.2.6), an efficient semismooth

Newton method is developed to compute the optimal solution. We also remark that the H1-

model (2.2.6) is the precursor of the TVq-model in (2.3.1).

2.2.2 Semismooth Newton method

In section 2.2.2, we introduce the semismooth Newton method for (iteratively) solving the

nonlinear equation

F (u) = 0, (2.2.8)

where the associated operator F : Rn → Rm is merely locally Lipschitz (rather than continuously

differentiable). In this regard, the semismooth Newton method generalizes the classical Newton’s

method. Under the finite dimensional settings, our following presentation on the semismooth

Newton method is based on [QS93, IK08].

Based on Rademacher’s theorem, which asserts that in finite dimensions any locally Lipschitz

function is differentiable almost everywhere, we introduce two notions of generalized derivatives.

The B(ouligand)-subdifferential of F is defined by

∂BF (u) :=

{
lim
k→∞

DF (uk) : uk → u, F is differentiable at uk for each k

}
,

and the (Clarke) subdifferential ∂F (u) is defined as the convex hull of ∂BF (u). Then the

semismooth Newton method can be described by the iteration formula below for k = 0, 1, 2, ...:

uk+1 := uk − (V k(uk))−1F (uk), where V k(uk) ∈ ∂BF (uk) is nonsingular. (2.2.9)

It will be shown in Theorem 2.2.12 that the semismooth property of F leads to the local super-

linear convergence of the iterative scheme (2.2.9).

Definition 2.2.8 (Directionally differentiable function). A function F : Rn → Rm is direction-

ally differentiable at u ∈ Rn along d ∈ Rn if

DF (u; d) := lim
t→0+

F (u+ td)− F (u)

t

exists. We say F is directionally differentiable at u if DF (u; d) exists for any d ∈ Rn.

Definition 2.2.9 (Semismooth function). A function F : Rn → Rm is said to be semismooth

at u if F is locally Lipschitz at u and the following limit exists for all d ∈ Rn:

lim
V (u+ td̃ ) ∈ ∂F (u+ td̃ ),

d̃→ d, t→ 0+

V (u+ td̃ )d̃.
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Lemma 2.2.10. Assume that F : Rn → Rm is locally Lipschitz at u ∈ Rn. Then the following

statements are equivalent:

1. F is semismooth at u.

2. F is directionally differentiable at u, and it holds for each V (u+ d) ∈ ∂F (u+ d) that

‖V (u+ d)d−DF (u; d)‖ = o(‖d‖), as d→ 0. (2.2.10)

Proof. See Theorem 2.3 in [QS93].

Lemma 2.2.11. Assume that F : Rn → Rm is locally Lipschitz at u ∈ Rn and all V (u) ∈ ∂BF (u)

are nonsingular. Then there exist a neighborhood Uu of u and a positive constant CF such that

‖V (ũ)−1‖ ≤ CF for all ũ ∈ Uu and V (ũ) ∈ ∂BF (ũ).

Proof. The proof is analogous to that for Proposition 3.1 in [QS93], though that proposition

requires a stronger assumption, i.e. V (u) ∈ ∂F (u), than the present lemma.

Theorem 2.2.12 (Local superlinear convergence). Let u∗ ∈ Rn be a solution of (2.2.8). Further

assume that F is semismooth at u∗ and all V (u∗) ∈ ∂BF (u∗) are nonsingular. Let the iterating

sequence {uk} be generated by formula (2.2.9) starting from an initial guess u0 sufficiently close

to u∗. Then the sequence {uk} converges superlinearly to u∗, i.e. limk→∞ uk = u∗ and

lim
k→∞

‖uk+1 − u∗‖
‖uk − u∗‖ = 0.

Proof. Our proof is analogous to Theorem 3.2 in [QS93].

In view of Lemma 2.2.11, formula (2.2.9) is well defined for each k and, moreover, {(V k(uk))−1}
is uniformly bounded. Then we have

‖uk+1 − u∗‖ = ‖uk − u∗ − (V k(uk))−1F (uk)‖
≤ ‖(V k(uk))−1(F (uk)− F (u∗)−DF (u∗;uk − u∗))‖

+ ‖(V k(uk))−1(V k(uk)(uk − u∗)−DF (u∗;uk − u∗))‖
= o(‖uk − u∗‖), as ‖uk − u∗‖ → 0.

The last equality above follows from Defintion 2.2.8, Lemma 2.2.10, and the uniform boundedness

of {(V k(uk))−1}. Since u0 is assumed to be sufficiently close to u∗, the proof is complete.

We conclude section 2.2.2 by noting that an analogous semismooth Newton method can be

posed in infinite dimensional spaces, but the theoretical framework differs from its counterpart

in finite dimensions due to lack of Rademacher’s theorem in infinite dimensions; see [CNQ00,

HIK03, Ulb03].
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2.2.3 Globalization strategies for nonconvex minimizations

It is known that the semismooth Newton method in section 2.2.2 typically enjoys fast local

convergence for obtaining a stationary point of the unconstrained minimization

min
u∈Rn

f(u).

Throughout section 2.2.3, we assume that the objective f : Rn → R is a continuously dif-

ferentiable function bounded from below and its derivative ∇f is locally Lipchitz. However,

global convergence is not guaranteed for the Newton-type method from an arbitrary initial

guess provided that the objective f is nonconvex. This calls for so-called globalization on iter-

ative algorithms. Here we present two classical globalization strategies, namely the line search

method and the trust-region method. By stipulating proper conditions on the update step,

global convergence can be proven for both methods. Moreover, we remark that a state-of-the-

art optimization algorithm should always satisfy a sufficient condition for global convergence,

while asymptotically function like a Newton-type method in order to attain local superlinear

convergence. The materials in section 2.2.3 are collected from standard optimization textbooks

[DS96] and [NW06], where more implementation details as well as some historical perspectives

can be traced.

Line search method

The iteration formula for a line search method is given by

uk+1 := uk + akdk. (2.2.11)

Here uk is the current iterate where gk := ∇f(uk) 6= 0, dk is a descent direction, i.e. (gk)>dk < 0,

and ak > 0 is the step size along dk. After fixing the search direction dk, the line search method

selects ak such that the following conditions are satisfied for some constants 0 < τ1 < τ2 < 1:

f(uk+1) ≤ f(uk) + τ1a
k(gk)>dk, (2.2.12)

∇f(uk+1)>dk ≥ τ2(gk)>dk. (2.2.13)

The inequality (2.2.12) alone is typically referred to as the Armijo condition. The line search

method which fulfills both inequalities in (2.2.12)–(2.2.13) is called the Wolfe-Powell line search.

In the following, we present the global convergence theory for the Wolfe-Powell line search.

Lemma 2.2.13. There always exists an interval such that each ak in this interval satisfies the

Wolfe-Powell conditions (2.2.12)–(2.2.13).

Proof. See Theorem 6.3.2 in [DS96].
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Theorem 2.2.14 (Zoutendijk’s theorem). For each k ∈ N, let ak > 0 fulfill the Wolfe-Powell

conditions (2.2.12)–(2.2.13) and define cos θk := −(gk)>dk/(‖gk‖‖dk‖). Then it follows that

∑

k∈N
cos2 θk‖gk‖2 <∞.

Furthermore, provided that there exists a positive constant εc such that cos θk ≥ εc for all k ∈ N,

we have the following global convergence:

lim
k→∞

‖∇f(uk)‖ = 0.

Proof. See Theorem 6.3.3 in [DS96].

Trust-region method

Different from the line search method, the trust-region method selects the update step (in terms

of both step size and direction) by minimizing a local quadratic model subject to a trust-region

constraint, i.e.
min hk(d) := f(uk) + (gk)>d+ 1

2d
>Hkd

s.t. d ∈ Rn, ‖d‖ ≤ σk. (2.2.14)

Here σk > 0 is called the trust-region radius. The matrix Hk can be the Hessian ∇2f(uk) or its

approximation provided that f is twice continuously differentiable at uk. Nevertheless, the global

convergence of the trust-region method does not require any specific structural information on

Hk. We specify the trust-region method in our discussion as follows.

Algorithm 2.2.15 (Trust-region method).

Fix 0 < ρ1 ≤ ρ2 < 1, 0 < κ1 < 1 < κ2. Initialize u0 ∈ Rn, σ0 > 0. Iterate with k = 0, 1, 2, ...:

1. Generate dk as an approximate solution for (2.2.14) such that the following Cauchy-point-

based model reduction criterion is satisfied for some constant 0 < Ch ≤ 1:

hk(0)− hk(dk) ≥ Ch‖gk‖min

(
σk,
‖gk‖
‖Hk‖

)
. (2.2.15)

Then set uk+1 := uk + dk.

2. Evaluate the ratio ρk :=
f(uk)− f(uk+1)

hk(0)− hk(dk) .

3. Update the trust-region radius according to ρk, i.e.

σk+1 :=





κ1σ
k if ρk < ρ1,

κ2σ
k if ρk > ρ2,

σk otherwise.

To obtain a qualified dk in step 1 of Algorithm 2.2.15, one can employ, e.g., the dogleg method

or the truncated conjugate gradient method. We refer to [NW06, CGT00] for more elaborate

introductions on trust-region subproblem solvers. The global convergence of Algorithm 2.2.15

is asserted in the following theorem.
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Theorem 2.2.16 (Global convergence). Let {uk} be generated by Algorithm 2.2.15. Assume

that for each k, (2.2.15) and the following two inequalities all hold true for some constants

0 < Ch ≤ 1, CH > 0, Cσ ≥ 1:

‖Hk‖ ≤ CH , ‖dk‖ ≤ Cσσk.

Then we have the following global convergence:

lim inf
k→∞

‖∇f(uk)‖ = 0.

Proof. See Theorem 4.5 in [NW06].

2.3 TVq-model and its Huberization

We consider the following variational problem

min
u∈R|Ω|

f(u) :=
∑

(i,j)∈Ω

(
µ

2
|(∇u)ij |2 +

α

q
|(∇u)ij |q +

λij
2
|(Ku− z)ij |2

)
, (2.3.1)

where Ω is a two-dimensional index set representing the image domain. By |Ω| we denote

its cardinality. We have α > 0, 0 < q < 1, 0 < µ � α as the given model parameters.

The matrix K ∈ R|Ω|×|Ω| is assumed to not annihilate a constant vector, e.g. K might be a

blurring matrix. The vector z ∈ R|Ω| stands for the given noisy data, and u ∈ R|Ω| is the

image to be restored. Despite the fact that we refer to u ∈ R|Ω| as a vector, we denote the

elements of u by uij with (i, j) ∈ Ω. This appears natural as the image domain is given as a

two-dimensional array of pixels. Analogously one has to understand the action of the blurring

operator (matrix) K. Notably we allow situations where the fidelity coefficient λ ∈ R|Ω| is

possibly spatially dependent (see, e.g., [DHRC11a, DHRC11b]) such that λij > 0 for all (i, j) ∈ Ω

and
∑

(i,j)∈Ω λij = |Ω|, though λij = 1 for all (i, j) ∈ Ω is taken in the numerics. The discrete

gradient operator ∇ is decomposed as ∇ = (∇x,∇y) such that (∇u)ij = ((∇xu)ij , (∇yu)ij),

where ∇x ∈ R|Ω|×|Ω| is the discrete derivative in x-direction and ∇y ∈ R|Ω|×|Ω| is the discrete

derivative in y-direction, respectively. The Euclidean norm of (∇u)ij in R2 is denoted by |(∇u)ij |.
For elements p ∈ (R|Ω|)2, px denotes components corresponding to the x-direction in the above

sense and py components belonging to the y-direction. The discrete Laplacian ∆ is defined as

∆ := −∇>x∇x − ∇>y ∇y. The multiplication of vectors is understood in the pointwise sense,

i.e. (uv)ij = uijvij for u, v ∈ R|Ω| and (up)ij = (uij(px)ij , uij(py)ij) for u ∈ R|Ω|, p ∈ (R|Ω|)2.

Similarly, for u ∈ R|Ω| and q ∈ R, the power uq is a vector in R|Ω| such that (uq)ij = uqij . For u, v ∈
R|Ω| and γ ∈ R, the max-operation is understood in a componentwise sense, i.e. (max(u, γ))ij =

max(uij , γ) and (max(u, v))ij = max(uij , vij). A diagonal matrix with its diagonal elements

given by the vector u is denoted by diag(u). The characteristic vector χA of the set A ⊂ Ω is

defined as (χA)ij = 1 if (i, j) ∈ A and (χA)ij = 0 otherwise. The identity vector e ∈ (R|Ω|)2 is

defined as eij = (1, 1) for all (i, j) ∈ Ω. We use ‖ · ‖ to denote the 2-norm for vectors in R|Ω|
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and the spectral norm for matrices in R|Ω|×|Ω|. The symbols λmax(·) and λmin(·) represent the

maximal eigenvalue and the minimal eigenvalue of a matrix, respectively. The constant C may

take different values at different occasions.

We start our investigations of (2.3.1) by establishing the existence of a solution.

Theorem 2.3.1 (Existence of solution). Assume that µ ≥ 0, α > 0, q > 0, λij > 0 for all

(i, j) ∈ Ω, and

Ker∇∩KerK = {0}. (2.3.2)

Then there exists a global minimizer for the variational problem (2.3.1).

Proof. Since f is bounded from below, it suffices to show that f is coercive, i.e. |f(uk)| → ∞
whenever ‖uk‖ → ∞ for some sequence (uk) in R|Ω|. We prove this by contradiction. For this

purpose, assume that ‖uk‖ → ∞ and that f(uk) is uniformly bounded. For each k, let uk = skvk

such that sk ≥ 0, vk ∈ R|Ω|, and ‖vk‖ = 1. Then we have

lim
k→∞

∑

(i,j)∈Ω

(
α|(∇vk)ij |q/q + λij |(Kvk)ij |2/2

)
= 0,

due to the fact that the functions s 7→ |s|q and s 7→ |s|2 are both coercive. By compactness, the

sequence (vk) has an accumulation point v∗ with ‖v∗‖ = 1 such that v∗ ∈ Ker∇ ∩KerK. This

contradicts our hypothesis (2.3.2).

In order to characterize an optimal solution u, we define the active set A(u) := {(i, j) ∈ Ω :

|(∇u)ij | 6= 0} and the inactive set I(u) := Ω\A(u). Due to the occurrence of the term involving

q in (2.3.1) with 0 < q < 1 (which we call the TVq-term from now on), the objective f (which we

refer to as the TVq-model) is nondifferentiable on I(u). Therefore, the Euler-Lagrange equation

for characterizing a stationary point is separately posed on A(u) and on I(u), i.e.

{
−µ∆u+K>λ(Ku− z) + α∇>(|∇u|q−2∇u) = 0, if (i, j) ∈ A(u),

∇u = 0, if (i, j) ∈ I(u).
(2.3.3)

Since the objective f is nonconvex, the solution to (2.3.3) is in general not unique.

In order to make the problem numerically tractable, we locally smooth the TVq-term by a

Huber function ϕγ defined by

ϕγ(s) :=

{
1
q |s|q − (1

q − 1
2)γq, if |s| ≥ γ,

1
2γ

q−2|s|2, if |s| ≤ γ.

Correspondingly, the Huberized variational problem is written as

min
u∈R|Ω|

fγ(u) :=
∑

(i,j)∈Ω

(
µ

2
|(∇u)ij |2 + αϕγ(|(∇u)ij |) +

λij
2
|(Ku− z)ij |2

)
. (2.3.4)

24



Note that the Huberized functional fγ is continuously differentiable, and the Euler-Lagrange

equation associated with (2.3.4) is given by

∇fγ(u) = −µ∆u+K>diag(λ)(Ku− z) + α∇>
(
max(|∇u|, γ)q−2∇u

)
= 0. (2.3.5)

The Huber function [Hub64], as a tool of local smoothing, has been previously applied and

analyzed on convex nondifferentiable variational models in image processing; see, e.g., [Vog02,

HS06, DHN09]. For different nonconvex models with either smoothing or continuation we refer

to, e.g., [Nik99, CZ10]. Next we study the behavior of our Huberization of the nonconvex

TVq-model for vanishing Huber parameter, i.e. for γ → 0+.

Theorem 2.3.2 (Consistency of Huberization). Let the assumptions of Theorem 2.3.1 hold

true. Further assume that (uk) is a uniformly bounded sequence with each uk a stationary point of

the Huberized problem (2.3.4) satisfying (2.3.5). Then as γk → 0+, there exists a subsequence of

(uk) converging to some u∗ ∈ R|Ω|, which satisfies the original Euler-Lagrange equation (2.3.3).

Proof. By compactness, there exists a subsequence of (uk), say (uk
′
), such that (uk

′
) converges

to some u∗ as k′ →∞. Next we show that u∗ is a solution to (2.3.3). Since each (uk
′
) satisfies

the Huberized Euler-Lagrange equation (2.3.5), we have

− µ∆uk
′
+K>diag(λ)(Kuk

′ − z) + α∇>
(

max(|∇uk′ |, γk′)q−2∇uk′
)

= 0. (2.3.6)

Let k′ → ∞ so that γk
′ → 0+. On the active set A(u∗) where |∇u∗| > 0, the first argument of

the max-function in (2.3.6) is taken in the limit, i.e.

− µ∆u∗ +K>diag(λ)(Ku∗ − z) + α∇>
(
|∇u∗|q−2∇u∗

)
= 0, for (i, j) ∈ A(u∗).

On the inactive set I(u∗), we have ∇u∗ = 0 by definition. Thus we conclude that u∗ satisfies

the Euler-Lagrange equation (2.3.3).

In particular, if each uk is a global minimizer of the Huberized problem (2.3.4), with an

analogous argument to the proof of Theorem 2.3.1 we have the coercivity of all (fγk), uniformly

with respect to γk. Therefore the sequence (uk) is uniformly bounded, and the same conclusion

as in Theorem 2.3.2 can be drawn.

Corollary 2.3.3. Let the assumptions in Theorem 2.3.1 hold true. Further assume that (uk)

is a sequence such that each uk is a global minimizer of the Huberized problem (2.3.4). Then as

γk → 0+, there exists a subsequence of (uk) converging to some u∗ ∈ R|Ω|, which satisfies the

original Euler-Lagrange equation (2.3.3).

We note that finding global minimizers for nonconvex problems often represents a challenging

(if not impossible) task. Therefore, our next task is to design and analyze an algorithm for

numerically finding local minimizers of (2.3.4).
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We start by noting that the gradient mapping in (2.3.5), i.e. ∇fγ : R|Ω| → R|Ω|, is locally

Lipschitz. According to Rademacher’s Theorem, ∇fγ is differentiable almost everywhere. Then

the generalized Hessian of fγ at u [Cla83], denoted by ∂2fγ(u), is defined as the convex hull of

∂2
Bfγ(u), where ∂2

Bfγ(u) consists of all matrices in R|Ω|×|Ω| that are limits of sequences of the

form ∇2fγ(uk) with uk → u and ∇fγ differentiable at all uk, i.e.

∂2
Bfγ(u) := {lim∇2fγ(uk) : uk → u, ∇fγ is differentiable at uk}.

Moreover, the gradient mapping ∇fγ : R|Ω| → R|Ω| is semismooth at any u, i.e.

lim
V (u+ td′) ∈ ∂2fγ(u+ td′),

d′ → d, t→ 0+

V (u+ td′)d′ exists for all d ∈ R|Ω|;

see [QS93]. Due to Theorem 2.3 in [QS93], ∇fγ is directionally differentiable at any u, and for

any V (u+ d) ∈ ∂2fγ(u+ d),

‖V (u+ d)d−∇2fγ(u; d)‖ = o(‖d‖), as ‖d‖ → 0,

where o(t)/t → 0 as t → 0+, and ∇2fγ(u; d) denotes the directional derivative of ∇fγ at u in

direction d. Thus, for any V (u+ d) ∈ ∂2
Bfγ(u+ d) we have

‖∇fγ(u+ d)−∇fγ(u)− V (u+ d)d‖ = o(‖d‖), as ‖d‖ → 0. (2.3.7)

In our subsequently defined algorithm, we are in particular interested in the elements of the

(possibly) set-valued mapping ∂2
Bfγ at u, which can be written explicitly as follows:

∇2
Bfγ(u) :=− µ∆ +K>diag(λ)K

+ α∇>diag
(

max(|∇u|, γ)q−2(I − (2− q)χA(u) max(|∇u|, γ)−2(∇u)(∇u)>)
)
∇,

where χA(u) is defined by

(χA(u))ij :=

{
1, if |(∇u)ij | ≥ γ,
0, otherwise.

We shall refer to ∇2
Bfγ(u) as the B-Hessian of f at u.

Due to its favorable local convergence properties, we are interested in applying a generalized

version of Newton’s method for solving (2.3.5). In variational image processing it has turned

out that primal-dual Newton schemes are typically superior to purely primal or dual iterations;

see, e.g., [CGM99, HK04, HS06]. Hence, we reformulate the Euler-Lagrange equation (2.3.5) by

introducing a new variable p ∈ (R|Ω|)2, which plays the role of a dual variable, i.e.
{
−µ∆u+K>diag(λ)(Ku− z) + α∇>p = 0,

max(|∇u|, γ)2−qp = ∇u. (2.3.8)

This system is the starting point for developing our semismooth Newton scheme in the next

section.
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2.4 Primal-dual Newton method

2.4.1 Regularized Newton via reweighted Euler-Lagrange equation

In order to handle the nonlinear diffusion term (which contains the (q−2)-th power of the max-

term) in the Euler-Lagrange equation (2.3.5), we invoke an approach relying on reweighting.

Similar techniques were previously considered in [VO96, CM99, NC07, CY08, DDFG10]. In

fact, let uk be our current approximation of a solution to (2.3.5). Then the reweighted Euler-

Lagrange equation is given by

− µ∆u+K>diag(λ)(Ku− z) + α∇>
(
wk max(|∇u|, γ)−r∇u

)
= 0, (2.4.1)

with 0 ≤ r ≤ 2− q and the weight wk defined by

wk := max(|∇uk|, γ)q+r−2.

We further introduce a reweighted dual variable

p = wk max(|∇u|, γ)−r∇u.

As a result, the equation (2.3.8) may be written as

{
−µ∆u+K>diag(λ)(Ku− z) + α∇>p = 0,

(wk)−1 max(|∇u|, γ)rp = ∇u. (2.4.2)

Next, at uk we define the active set Ak := {(i, j) ∈ Ω : |(∇uk)ij | ≥ γ}. Given a current

approximation (uk, pk), we apply a generalized linearization to (2.4.2) and obtain the semismooth

Newton system

[ −µ∆ +K>diag(λ)K α∇>
−C̃k(r)∇ diag((mk)2−qe)

] [
δuk+1

δpk+1

]
=

[
µ∆uk −K>diag(λ)(Kuk − z)− α∇>pk

∇uk − (mk)2−qpk

]
,

(2.4.3)

where

mk := max(|∇uk|, γ), (2.4.4)

C̃k(r) := I − rdiag(χAk(mk)−qpk)
[

diag(∇xuk) diag(∇yuk)
diag(∇xuk) diag(∇yuk)

]
. (2.4.5)

After eliminating δpk+1, we are left with the linear system

H̃k(r)δuk+1 = −gk, (2.4.6)

where

H̃k(r) := −µ∆ +K>diag(λ)K + α∇>diag((mk)q−2e)C̃k(r)∇, (2.4.7)

gk := −µ∆uk +K>diag(λ)(Kuk − z) + α∇>((mk)q−2∇uk). (2.4.8)
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Note that gk = ∇fγ(uk) in (2.3.5). Upon solving (2.4.6) for δuk+1, we compute δpk+1 according

to (2.4.3), i.e.

δpk+1 = (mk)q−2(∇uk + C̃k(r)∇δuk+1)− pk. (2.4.9)

Assuming that δuk+1 is a descent direction for fγ at uk, i.e. (gk)>δuk+1 < 0, we update uk+1 :=

uk + akδuk+1 and pk+1 := pk + akδpk+1 with a suitable step size ak, and then go to the next

Newton iteration.

Note that Hk := H̃k(2 − q) is the B-Hessian in the non-reweighted primal-dual Newton

method [VO96, HS06]. We observe that the reweighting procedure is, in fact, equivalent to a reg-

ularization of the B-Hessian of the non-reweighting approach, which we call the R-regularization

in our presentation. In order to see this, let

Rk := α∇>diag(χAk(mk)−2pk)

[
diag(∇xuk) diag(∇yuk)
diag(∇xuk) diag(∇yuk)

]
∇.

Then the Newton system (2.4.6) becomes

(Hk + βRk)δuk+1 = −gk, (2.4.10)

with β = 2− q − r.
Subsequently we consider variable β, i.e. β = βk, and a slight modification of the R-matrix

to guarantee (i) well-definedness of the Newton iteration defined below, (ii) the aforementioned

descent property and (iii) ultimately the local superlinear convergence of our overall algorithmic

scheme. For the latter, we show in the proof of Theorem 2.4.10 that limk→∞ βk = 0. Thus, the

R-regularization vanishes for k →∞.

2.4.2 Infeasible Newton technique

We next study feasibility properties of the iterates of a semismooth Newton method relying

on (2.4.6) and definiteness of H̃k(r). For this discussion, we return to the reweighted Euler-

Lagrange equation (2.4.1) with 0 ≤ r ≤ 1 (or 1 − q ≤ β ≤ 2 − q). In particular, assuming that

pk = |∇uk|q−2∇uk on Ak, we have that

C̃k(r) = I − rdiag(χAk(mk)−2e)

[
diag(|∇xuk|2) diag(∇xuk∇yuk)

diag(∇xuk∇yuk) diag(|∇yuk|2)

]
� 0, (2.4.11)

where “�” indicates positive semidefiniteness of a matrix. Therefore, we conclude

H̃k(r) = −µ∆ +K>diag(λ)K + α∇>diag((mk)q−2e)C̃k(r)∇ � 0,

i.e. H̃k(r) is positive definite, since −µ∆ + K>diag(λ)K � 0 under the hypothesis (2.3.2). In

general, however, H̃k(r) may be indefinite during semismooth Newton iterations.

In the following, we derive a sufficient condition for r (or β) such that the system matrix

H̃k(r) is positive definite; see Theorem 2.4.2 below. This property of H̃k(r) is useful to guarantee
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that a descent direction δuk is computed in each Newton iteration. Moreover, it constitutes an

iteration dependent regularization scheme.

For this purpose, we propose two modifications of the system matrix H̃k(r). First, we replace

pk by pk+, where

pk+ :=
χAk(mk)q−1pk

max((mk)q−1, |pk|) + (1− χAk)pk.

Note that the modified pk+ satisfies its feasibility condition on Ak, i.e.

|(pk+)ij | ≤ |(∇uk)ij |q−1, whenever (i, j) ∈ Ak. (2.4.12)

Secondly, we replace C̃k(r) by its symmetrization denoted by C̃k+(r), i.e.

C̃k+(r) :=
C̃k(r) + C̃k(r)>

2
= I − rdiag(χAk(mk)−q)·

·
[

diag((pk+)x∇xuk) diag(1
2((pk+)x∇yuk + (pk+)y∇xuk))

diag(1
2((pk+)x∇yuk + (pk+)y∇xuk)) diag((pk+)y∇yuk)

]
.

(2.4.13)

Accordingly, the system matrix H̃k(r) in (2.4.6) is replaced by H̃k
+(r) with

H̃k
+(r) := −µ∆ +K>diag(λ)K + α∇>diag((mk)q−2e)C̃k+(r)∇, (2.4.14)

and the regularizer Rk is replaced by Rk+ with

Rk+ :=α∇>diag(χAk(mk)−2)·

·
[

diag((pk+)x∇xuk) diag(1
2((pk+)x∇yuk + (pk+)y∇xuk))

diag(1
2((pk+)x∇yuk + (pk+)y∇xuk)) diag((pk+)y∇yuk)

]
∇.

(2.4.15)

Lemma 2.4.1. Assume that 0 ≤ r ≤ 1 (or equivalently 1 − q ≤ β ≤ 2 − q) and the feasibility

condition (2.4.12) holds true. Then the matrix C̃k+(r) given in (2.4.13) is positive semidefinite.

Proof. By reordering, it suffices to show that each 2-by-2 block

[C̃k+(r)]ij = I − rχAk(mk)−q
[

(pk+)x∇xuk 1
2((pk+)x∇yuk + (pk+)y∇xuk)

1
2((pk+)x∇yuk + (pk+)y∇xuk) (pk+)y∇yuk

]

is positive semidefinite. For the ease of notation, the subscripts ij are frequently omitted for

the remainder of this proof.

We distinguish two cases with respect to (i, j). First, consider the case where (i, j) /∈ Ak.
Then we have [C̃k+(r)]ij = I and the assertion holds immediately.

In the second case where (i, j) ∈ Ak, we have

[C̃k+(r)]ij =

[
1− r|∇uk|−q(pk+)x∇xuk − r

2 |∇uk|−q((pk+)x∇yuk + (pk+)y∇xuk)
− r

2 |∇uk|−q((pk+)x∇yuk + (pk+)y∇xuk) 1− r|∇uk|−q(pk+)y∇yuk
]
.
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This 2-by-2 block has nonnegative eigenvalues, since its diagonal elements are nonnegative and

its determinant satisfies

(1− r|∇uk|−q(pk+)x∇xuk)(1− r|∇uk|−q(pk+)y∇yuk)−
r2

4
|∇uk|−2q|(pk+)x∇yuk + (pk+)y∇xuk|2

=1− r|∇uk|−q((pk+)x∇xuk + (pk+)y∇yuk)−
r2

4
|∇uk|−2q|(pk+)x∇yuk − (pk+)y∇xuk|2

=1− r|∇uk|−q((pk+)x∇xuk + (pk+)y∇yuk)−
r2

4
|∇uk|−2q·

·
[
(|(pk+)x|2 + |(pk+)y|2)(|∇xuk|2 + |∇yuk|2)− |(pk+)x∇xuk + (pk+)y∇yuk|2

]

=− r2

4
|∇uk|2−2q|pk+|2 +

[
1− r

2
|∇uk|−q((pk+)x∇xuk + (pk+)y∇yuk)

]2

≥− r2

4
|∇uk|2−2q|pk+|2 +

[
1− r

2
|∇uk|1−q|pk+|

]2
= 1− r|∇uk|1−q|pk+| ≥ 0.

In deriving the above inequalities, we have used the assumption that 0 ≤ r ≤ 1, the feasibility

condition (2.4.12), and the Cauchy-Schwarz inequality.

The following theorem is an immediate consequence of Lemma 2.4.1 and the structure of

H̃k
+(r).

Theorem 2.4.2 (Sufficient condition for descent property). Suppose the assumptions of Lemma

2.4.1 are satisfied. Then the following statements hold true:

1. The matrix H̃k
+(r) is positive definite.

2. We have the following estimate on the spectrum of H̃k
+(r):

λmin(H̃k
+(r)) ≥ λmin(−µ∆ +K>diag(λ)K),

λmax(H̃k
+(r)) ≤ λmax(−(µ+ 3αγq−2)∆ +K>diag(λ)K).

3. We obtain from (2.4.6) a descent direction δuk+1 satisfying

− (gk)>δuk+1

‖gk‖‖δuk+1‖ ≥
λmin(H̃k

+(r))

λmax(H̃k
+(r))

≥ ε̄d :=
λmin(−µ∆ +K>diag(λ)K)

λmax(−(µ+ 3αγq−2)∆ +K>diag(λ)K)
.

2.4.3 Superlinear convergence by adaptive regularization

Using the results in [VO96, CM99], one readily finds that the R-regularized version of the

semismooth Newton method with fixed β, which results in the reweighting approach, is linearly

convergent.

In this subsection, we propose a new adaptively R-regularized version of the semismooth

Newton method that attains superlinear local convergence. This requires an appropriate update

strategy for β > 0. For this purpose, we propose a trust-region-type scheme; see, e.g., [NW06,
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CGT00] for comprehensive discussions of trust-region methods. Given a current iterate uk, these

methods typically model fγ locally by a quadratic function hk : R|Ω| → R with

hk(d) := fγ(uk) + (gk)>d+
1

2
d>Hk

+d. (2.4.16)

Here we let Hk
+ := H̃k

+(2− q); see (2.4.14). Consider now the minimization of hk subject to the

trust-region constraint, i.e.

min hk(d) over d ∈ R|Ω| (2.4.17)

s.t.
1

2
d>Rk+,εd ≤

1

2
(σk)2. (2.4.18)

Here σk > 0 represents the trust-region radius, and

Rk+,ε := Rk+ + εI, (2.4.19)

is defined with an arbitrarily fixed regularization parameter 0 < ε � α. The existence of a

solution to (2.4.17)–(2.4.18) hinges on the interplay of Hk
+ and Rk+,ε.

Lemma 2.4.3. The matrix Hk
+ is positive definite on {d ∈ R|Ω| : d>Rk+,εd ≤ 0}.

Proof. Suppose d ∈ R|Ω| satisfies d 6= 0 and d>Rk+d ≤ −ε‖d‖2 < 0. Then we have

d>Hk
+d = d>(−µ∆ +K>diag(λ)K)d+ α(∇d)>diag((mk)q−2e)∇d− (2− q)d>Rk+d > 0,

which proves the assertion.

Theorem 2.4.4. There exists a solution to the trust-region subproblem (2.4.17)–(2.4.18).

Proof. Note that the objective is at most quadratic and the feasible set is nonempty and closed.

It suffices to show that hk(dl)→∞ for any feasible sequence (dl) with ‖dl‖ → ∞. We shall prove

this by contradiction. Let such a sequence (dl) be given, and assume oppositely that (hk(dl))

is uniformly bounded from above. For each l, we write dl = slvl such that sl ≥ 0, vl ∈ R|Ω|,
and ‖vl‖ = 1. By compactness, there exists a subsequence of (vl), say (vl

′
), such that vl

′ → v∗

for some v∗ ∈ R|Ω|. The constraint (2.4.18) yields that (vl
′
)>Rk+,εv

l′ ≤ (σk)2/(sl
′
)2. Letting

l′ → ∞, we get (v∗)>Rk+,εv
∗ ≤ 0. It follows from Lemma 2.4.3 that (v∗)>Hk

+v
∗ > 0. Thus we

must have hk(dl
′
)→∞ as l′ →∞, which contradicts our assumption.

Given the current iterate uk, we aim to determine a search direction dk by approximately

solving the trust-region subproblem. A classical argument in the convergence analysis of trust-

region methods requires that the search direction dk yields a reduction in the model function hk

proportional to the decrease implied by the Cauchy point [CGT00].

The Cauchy point is defined by dkC := −tkgk, where tk minimizes the one-dimensional prob-

lem

tk := arg min{hk(−tgk) : t2(gk)>Rk+,εg
k ≤ (σk)2, t ≥ 0}.

Let tk∗ := ‖gk‖2/((gk)>Hk
+g

k) be the critical point provided that it exists. The Cauchy point

can be explicitly computed through the following three cases:
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1. Suppose (gk)>Hk
+g

k ≤ 0. By Lemma 2.4.3, we have (gk)>Rk+,εg
k > 0. The Cauchy point

lies on the boundary of the trust region, i.e. dkC = −
(
σk/
√

(gk)>Rk+,εgk
)
gk, and

hk(0)− hk(dk) =
σk‖gk‖2√

(gk)>Rk+,εgk
− (σk)2(gk)>Hk

+g
k

2(gk)>Rk+,εgk
≥ σk‖gk‖2√

(gk)>Rk+,εgk
. (2.4.20)

2. Suppose (gk)>Hk
+g

k > 0 and (tk∗)
2(gk)>Rk+,εg

k ≤ (σk)2. Then we have dkC = −tk∗gk =

−
(
‖gk‖2/((gk)>Hk

+g
k)
)
gk, and

hk(0)− hk(dk) =
‖gk‖4

2(gk)>Hk
+g

k
≥ ‖gk‖2

2λmax(Hk
+)
. (2.4.21)

3. Suppose (gk)>Hk
+g

k > 0 and (tk∗)
2(gk)>Rk+,εg

k > (σk)2. Then similar to the first case,

we have dkC = −
(
σk/
√

(gk)>Rk+,εgk
)
gk. In particular, σk((gk)>Hk

+g
k)/
√

(gk)>Rk+,εgk <

‖gk‖2. Therefore, we have

hk(0)− hk(dk) =
σk‖gk‖2√

(gk)>Rk+,εgk
− (σk)2(gk)>Hk

+g
k

2(gk)>Rk+,εgk
≥ σk‖gk‖2

2
√

(gk)>Rk+,εgk
. (2.4.22)

The search direction dk is said to satisfy the Cauchy-point-based model reduction criterion if

hk(0)− hk(dk) ≥ C‖gk‖2ηk, (2.4.23)

for some constant C > 0, where

ηk :=





σk√
(gk)>Rk+,εgk

, if (gk)>Hk
+g

k ≤ 0,

1

λmax(Hk
+)
, if (gk)>Rk+,εg

k ≤ 0,

min


 σk√

(gk)>Rk+,εgk
,

1

λmax(Hk
+)


 , otherwise.

(2.4.24)

Due to Lemma 2.4.3, ηk is well-defined. It is easily seen that (2.4.20)–(2.4.22) satisfy the criterion

(2.4.23) with C = 1/2.

Now we turn to the computation of an approximate solution to the trust-region subproblem

(2.4.17)–(2.4.18). In the forthcoming Theorem 2.4.5, we shall characterize this solution dk∗ by

(Hk
+ + βk∗R

k
+,ε)d

k
∗ = −gk, (2.4.25)

βk∗
(

(dk∗)
>Rk+,εd

k
∗ − (σk)2

)
= 0, (2.4.26)

Hk
+ + βk∗R

k
+,ε � 0, (2.4.27)

for some βk∗ ≥ 0. Its proof essentially adopts the proof of Theorem 4.1 in [NW06] under our

context.
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Theorem 2.4.5. The trust-region subproblem (2.4.17)–(2.4.18) has a global solution dk∗ if and

only if dk∗ is feasible and there exists a scalar βk∗ ≥ 0 such that (2.4.25)–(2.4.27) are satisfied.

Proof. (if part) Suppose there exists βk∗ ≥ 0 such that (2.4.25)–(2.4.27) hold. Then by Lemma

4.7 in [NW06], dk∗ minimizes ĥk : R|Ω| → R, where

ĥk(dk) := (gk)>dk +
1

2
(dk)>(Hk

+ + βk∗R
k
+,ε)d

k = hk(dk) +
βk∗
2

(dk)>Rk+,εd
k − fγ(uk).

If follows from ĥk(dk) ≥ ĥk(dk∗) that

hk(dk) ≥ hk(dk∗) +
βk∗
2

((dk∗)
>Rk+,εd

k
∗ − (dk)>Rk+,εd

k)

=hk(dk∗) +
βk∗
2

((σk)2 − (dk)>Rk+,εd
k) ≥ hk(dk∗).

Since dk is arbitrary but feasible, the assertion follows.

(only-if part) Suppose now that dk∗ is the global solution of the trust-region subproblem

(2.4.17)–(2.4.18).

• Case 1: (dk∗)
>Rk+,εd

k
∗ < (σk)2. The second-order necessary conditions of the unconstrained

problem imply that

∇hk(dk∗) = Hk
+d

k
∗ + gk = 0,

∇2hk(dk∗) = Hk
+ � 0.

We get the desired conclusion with βk∗ = 0.

• Case 2: (dk∗)
>Rk+,εd

k
∗ = (σk)2. In particular we have Rk+,εd

k
∗ 6= 0, and therefore the linear

independence constraint qualification (see, e.g., [NW06]) is fulfilled at dk∗. By the second-

order necessary condition, there exists βk∗ ≥ 0 such that

Hk
+d

k
∗ + gk + βk∗R

k
+,εd

k
∗ = 0, (2.4.28)

and

v>(Hk
+ + βk∗R

k
+,ε)v ≥ 0, (2.4.29)

for any nonzero vector v ∈ R|Ω| with v>Rk+,εd
k
∗ = 0.

It remains to show (2.4.29) for any nonzero vector v with v>Rk+,εd
k
∗ 6= 0. Let such a vector

v be given. In particular we have Rk+,εv 6= 0. Define

dk := dk∗ −
2v>Rk+,εd

k
∗

v>Rk+,εv
v. (2.4.30)

Then it is easy to check that (dk)>Rk+,εd
k = (σk)2. Since hk(dk) ≥ hk(dk∗), we have

hk(dk) ≥ hk(dk∗) +
βk∗
2

((dk∗)
>Rk+,εd

k
∗ − (dk)>Rk+,εd

k).
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From this and (2.4.28), we infer

1

2
(dk − dk∗)>(Hk

+ + βk∗R
k
+,ε)(d

k − dk∗) ≥ 0.

Thus in view of (2.4.30) we have shown (2.4.29) for any nonzero vector v with v>Rk+,εd
k
∗ 6=

0, which completes the proof.

Based on the above observation concerning hk and using a complementarity function (see,

e.g., [HIK03]), we can equivalently formulate (2.4.25)–(2.4.27), with an arbitrarily fixed scalar

c > 0, as follows:

(Hk
+ + βk∗R

k
+,ε)d

k
∗ = −gk, (2.4.31)

βk∗ −max

(
βk∗ +

1

2c
((dk∗)

>Rk+,εd
k
∗ − (σk)2), 0

)
= 0, (2.4.32)

Hk
+ + βk∗R

k
+,ε � 0. (2.4.33)

From this formulation, we propose an adaptively regularized Newton iteration which converges

globally and locally at a superlinear rate.

Algorithm 2.4.6 (Adaptively regularized Newton method).

Require: input parameters 1 − q ≤ βmax ≤ 2 − q, c > 0, 0 < ρ1 ≤ ρ2 < 1, 0 < κ1 < 1 < κ2,

0 < ε� α, 0 < εd ≤ ε̄d, 0 < τ1 < 1/2, τ1 < τ2 < 1.

1: Initialize the primal and dual variables (u0, p0), the regularization scalar β0 ≥ 0, and the

trust-region radius σ0 > 0. Set k := 0.

2: repeat {outer loop}
3: Generate Hk

+, Rk+,ε, and gk.

4: repeat {inner loop}
5: Solve (Hk

+ + βkRk+,ε)d
k = −gk for dk.

6: if −(gk)>dk/(‖gk‖‖dk‖) < εd then

7: Set βk := βmax and return to step 5.

8: end if

9: if βk = βmax and (dk)>Rk+,εd
k > (σk)2 then

10: Set σk :=
√

(dk)>Rk+,εdk and go to step 15.

11: end if

12: Update βk := βk + ((dk)>Rk+,εd
k − (σk)2)/(2c).

13: Project βk onto the interval [0, βmax], i.e. set βk := max(min(βk, βmax), 0).

14: until the stopping criterion for the inner loop is fulfilled.

15: Evaluate ρk := [fγ(uk)− fγ(uk + dk)]/[fγ(uk)− (fγ(uk) + (gk)>dk + (dk)>Hk
+d

k/2)].

16: if ρk < ρ1 then
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17: Set σk+1 := κ1σ
k.

18: else if ρk > ρ2 then

19: Set σk+1 := κ2σ
k.

20: else

21: σk+1 := σk.

22: end if

23: Determine the step size ak along the search direction dk such that uk+1 = uk + akdk

satisfies the following Wolfe-Powell conditions:

fγ(uk+1) ≤ fγ(uk) + τ1a
k∇fγ(uk)>dk, (2.4.34)

∇fγ(uk+1)>dk ≥ τ2∇fγ(uk)>dk. (2.4.35)

24: Set δuk+1 := dk and compute δpk+1 according to (2.4.9). Update uk+1 := uk + akδuk+1

and pk+1 := pk + akδpk+1.

25: Initialize the regularization weight βk+1 := βk for the next iteration.

26: Set k := k + 1.

27: until the stopping criterion for the outer loop is fulfilled.

Concerning the input parameters involved in the above algorithm, we note that these quanti-

ties are presented merely for the generality of the algorithm and do not require particular tuning

for various imaging restoration tasks. Throughout our numerical experiments in section 2.5, we

shall always fix the parameters as follows: βmax = 1.2 − q, c = 1, ρ1 = 0.25, ρ2 = 0.75, κ1 =

0.25, κ2 = 2, ε = 10−4α, εd = 10−8, τ1 = 0.1, τ2 = 0.9.

We observe that Algorithm 2.4.6 combines a trust-region technique for adjusting the weight

β in the R-regularization (steps 4–14) with a line search method for updating the iterate along

the direction obtained from the approximately weighted R-regularized problem (step 23). We

emphasize, however, that the classical trust-region approach might be used instead of the line

search procedure for globalizing Newton’s method; see section 2.2.3 and the references therein.

In Algorithm 2.4.6, the global convergence is guaranteed by the Wolfe-Powell line search while

the trust-region-type framework is utilized to guarantee that dk is a descent direction for fγ at

uk and to retain the local superlinear convergence of Newton’s method. Based on our numerical

experience we prefer the Wolfe-Powell line search over other, possibly simpler, rules as it appears

to better resolve the line search problem for our nonconvex objective.

Note that our objective fγ is bounded from below and continuously differentiable. Moreover,

its gradient ∇fγ(·) is locally Lipschitz. Thus Zoutendijk’s theorem, recall Theorem 2.2.14, can

be applied to derive the global convergence of Algorithm 2.4.6.

Theorem 2.4.7 (Global convergence). Let uk+1 = uk + akdk such that the Wolfe-Powell con-

ditions (2.8.15)–(2.8.16) are satisfied. Then we have limk→∞ ‖∇fγ(uk)‖ = 0.

Proof. By Theorem 2.2.14, we have
∑+∞

k=0 cos2 θk‖gk‖2 < +∞, where cos θk := − (gk)>dk

‖gk‖‖dk‖ . Since
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cos θk ≥ εd holds true for each k due to steps 6–8 of Algorithm 2.4.6 and Theorem 2.4.2, we

conclude that limk→∞ ‖∇fγ(uk)‖ = 0.

Next we study the local convergence of Algorithm 2.4.6. As a preparatory result, Lemma

2.4.8 investigates the approximation properties of (Hk
+) with respect to (∇2

Bfγ(uk)) and the

definiteness properties of (Rk+,ε).

Lemma 2.4.8. Assume that the primal-dual sequence (uk, pk) converges to some (u∗, p∗) satis-

fying the Euler-Lagrange system (2.3.8). Then the following statements hold true:

1. The modified system matrix Hk
+ approaches asymptotically the B-Hessian ∇2

Bfγ(uk), i.e.

limk→∞ ‖Hk
+ −∇2

Bfγ(uk)‖ = 0.

2. For all sufficiently large k, the matrix Rk+,ε is strictly positive definite and its minimal

eigenvalue satisfies λmin(Rk+,ε) > ε/2.

Proof. (Proof of 1.) Let Ck := C̃k(2 − q) in (2.4.11) and Ck+ := C̃k+(2 − q) in (2.4.13). For

k → ∞ we have (uk, pk) → (u∗, p∗) with the latter satisfying the Euler-Lagrange equation

(2.3.8). Further, for all (i, j) ∈ Ω we have

|pk+ − pk| ≤ |pk|
∣∣∣∣

(mk)q−1

max((mk)q−1, |pk|) − 1

∣∣∣∣→ |p∗|
∣∣∣∣

max(|∇u∗|, γ)q−1

max(max(|∇u∗|, γ)q−1, |p∗|) − 1

∣∣∣∣

= |p∗|
∣∣∣∣

max(|∇u∗|, γ)q−1

|p∗|max(|∇u∗|, γ)/|∇u∗| − 1

∣∣∣∣ = 0 (2.4.36)

as k → ∞. Moreover, Ck will converge to a symmetric matrix, and therefore Ck+ = (Ck +

(Ck)>)/2 approaches asymptotically Ck, i.e. limk→∞ ‖Ck+−Ck‖ = 0. Thus, due to the structures

of Hk and Hk
+, we have limk→∞ ‖Hk

+ −Hk‖ = 0.

Finally, as (uk, pk) → (u∗, p∗), it is easy to see that both Hk and ∇2
Bfγ(uk) converge to

∇2
Bfγ(u∗), which yields limk→∞ ‖Hk −∇2

Bfγ(uk)‖ = 0. Thus we conclude that limk→∞ ‖Hk
+ −

∇2
Bfγ(uk)‖ = 0 as desired.

(Proof of 2.) Our proof again utilizes the reordered system as in Lemma 2.4.1. In view of

the definition of Rk+,ε, see (2.4.19), and the structure of Rk+, see (2.4.15), it suffices to show that

for all (i, j) ∈ Ω, the minimal eigenvalue of the 2-by-2 block

χAk(mk)−2

[
(pk+)x∇xuk 1

2((pk+)x∇yuk + (pk+)y∇xuk)
1
2((pk+)x∇yuk + (pk+)y∇xuk) (pk+)y∇yuk

]
(2.4.37)

goes to zero as k → ∞. The characteristic equation of the 2-by-2 block (2.4.37) without the

factor χAk is given by

t2 − (mk)−2((pk+)x∇xuk + (pk+)y∇yuk)t

+ (mk)−4

(
(pk+)x∇xuk(pk+)y∇yuk −

1

4
|(pk+)x∇yuk + (pk+)y∇xuk|2

)
= 0.
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Note that due to (2.4.36) we have limk→∞ pk+ = p∗ such that (u∗, p∗) satisfies (2.3.8). Therefore,

as k →∞, we have

(mk)−4

(
(pk+)x∇xuk(pk+)y∇yuk −

1

4
|(pk+)x∇yuk + (pk+)y∇xuk|2

)

=− (mk)−4

4

[
|(pk+)x∇yuk|2 + |(pk+)y∇xuk|2 − 2(pk+)x(pk+)y∇xuk∇yuk

]

=
(mk)−4

4

[
|pk+|2|∇uk|2 − |(pk+)x∇xuk + (pk+)y∇yuk|2

]
→ 0, (2.4.38)

and

(mk)−2((pk+)x∇xuk + (pk+)y∇yuk)→ max(|∇u∗|, γ)q−4|∇u∗|2 > 0. (2.4.39)

From (2.4.38) and (2.4.39), we conclude that the minimal eigenvalue of the 2-by-2 block (2.4.37)

without the factor χAk goes to zero as k →∞. Since {χAk} is uniformly bounded, the minimal

eigenvalue of (2.4.37) goes to zero as (uk, pk)→ (u∗, p∗), which completes the proof.

The following lemma verifies the convergence of the inner loop, i.e. steps 4–14 in Algorithm

2.4.6.

Lemma 2.4.9. Assume that Hk
+ and Rk+,ε are both positive definite, and

0 < ‖gk‖ <
√
c(λmin(Hk

+))3

(λmax(Rk+,ε))
2
.

Then the sequence {(βkl , dkl ) : l ∈ N} generated by the inner iterations, i.e. steps 4–14, of

Algorithm 2.4.6 converges to some (βk∗ , d
k
∗) satisfying the optimality conditions of the trust-region

subproblem; see (2.4.31)–(2.4.33).

Proof. By our assumption, the definiteness condition (2.4.33) is automatically satisfied. In

the case where Steps 9–11 of Algorithm 2.4.6 are active, the inner iterations terminate with a

modified σk such that the conditions (2.4.31)–(2.4.32) are satisfied. Hence, in what follows we

assume that Steps 9–11 are inactive all along the sequence {(βkl , dkl ) : l ∈ N}.
We define the function φ : [0, βmax]→ R by

φ(β) = β +
((Hk

+ + βRk+,ε)
−1gk)>Rk+,ε(H

k
+ + βRk+,ε)

−1gk − (σk)2

2c
.

Then by eliminating dk by dk = −(Hk
+ + βkRk+,ε)

−1gk in Step 12 of Algorithm 2.4.6, we have

the update rule (Steps 12–13) as follows

βkl+1 = max
(

min
(
φ(βkl ), βmax

)
, 0
)
.

Note that φ is continuously differentiable, and its derivative is given by

φ′(β) = 1− 1

c
(gk)>(Hk

+ + βRk+,ε)
−1(Rk+,ε(H

k
+ + βRk+,ε)

−1)2gk.
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It follows from our assumptions that

∣∣∣∣
1

c
(gk)>(Hk

+ + βRk+,ε)
−1(Rk+,ε(H

k
+ + βRk+,ε)

−1)2gk
∣∣∣∣ ≤

(λmax(Rk+,ε))
2‖gk‖2

cλmin(Hk
+ + βRk+,ε)

3

≤
(λmax(Rk+,ε))

2‖gk‖2
c(λmin(Hk

+))3
< 1.

By the above inequality and the mean value theorem, there exists a constant C ∈ (0, 1) such

that for any β1, β2 ∈ [0, βmax],

|φ(β1)− φ(β2)| ≤ |β1 − β2| sup
β∈[0,βmax]

|φ′(β)| ≤ C|β1 − β2|,

i.e. φ is a contractive mapping. As a consequence, the mapping β 7→ max (min (φ(β), βmax) , 0) is

also contractive. Thus by the Banach fixed-point theorem, we have βkl → βk∗ as l→∞ for some

βk∗ ∈ [0, βmax]. Accordingly, dkl → dk∗ = −(Hk
+ + βk∗R

k
+,ε)

−1gk as l → ∞. Moreover, (βk∗ , d
k
∗)

satisfies (2.4.31)–(2.4.32), which completes the proof.

Now we are in the position to present our local convergence result.

Theorem 2.4.10 (Local convergence). Let {dk} be generated by Algorithm 2.4.6, and let the

sequence {(uk, pk)} converge to some (u∗, p∗) satisfying the Euler-Lagrange system (2.3.8). As-

sume that all elements in ∂2
Bfγ(u∗) are strictly positive definite. Then Algorithm 2.4.6 is locally

superlinearly convergent, i.e. for sufficiently large k we have

‖uk+1 − u∗‖ = o(‖uk − u∗‖) for k →∞. (2.4.40)

Proof. Throughout the proof we argue only for sufficiently large k. From our assumption that

all elements of ∂2
Bfγ(u∗) are strictly positive definite, it follows that all elements in ∂2

Bfγ(uk),

including ∇2
Bfγ(uk), are strictly positive definite with uniformly bounded inverses; see Lemma

2.2.11. Furthermore, due to Lemma 2.4.8 we have that Hk
+ is also strictly positive definite.

Since Rk+,ε � 0 according to Lemma 2.4.8, we have

− (dk)>gk = (dk)>Hk
+d

k + βk(dk)>Rk+,εd
k ≥ λmin(Hk

+)‖dk‖2 ≥ 0.

Letting k →∞, we have ‖dk‖ → 0 since ‖gk‖ → 0 by Theorem 2.2.14.

Next, we show that limk→∞ βk = 0. From the semismoothness property (2.3.7) and Lemma

2.4.8, we have that as k →∞,

|(fγ(uk)− fγ(uk + dk))− (hk(0)− hk(dk))| =
∣∣∣∣fγ(uk + dk)− fγ(uk)− (gk)>dk − 1

2
(dk)>Hk

+d
k

∣∣∣∣

≤
∣∣∣∣fγ(uk + dk)− fγ(uk)− (gk)>dk − 1

2
(dk)>∇2

Bfγ(uk)dk
∣∣∣∣+

∣∣∣∣
1

2
(dk)>(∇2

Bfγ(uk)−Hk
+)dk

∣∣∣∣
=o(‖dk‖2). (2.4.41)
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For sufficiently large k, all assumptions in Lemma 2.4.9 hold true. Therefore, we have that

(dk)>Rk+,εd
k ≤ ν2(σk)2,

for some constant ν > 0, since otherwise (2.4.32) would fail. Lemma 2.4.9 also implies that

dk will satisfy the Cauchy-point-based model reduction criterion (2.4.23) after sufficiently many

inner iterations. In fact, only the last case in (2.4.24) may occur. So as k →∞, we have

hk(0)− hk(dk) ≥ C‖gk‖2 min


 σk√

(gk)>Rk+,εgk
,

1

λmax(Hk
+)




≥C‖gk‖min



‖gk‖

√
(dk)>Rk+,εdk

ν
√

(gk)>Rk+,εgk
,
‖gk‖

λmax(Hk
+)


 ≥ C‖gk‖min




√
λmin(Rk+,ε)‖dk‖

ν
√
λmax(Rk+,ε)

,
‖gk‖

λmax(Hk
+)




≥Cλmin(Hk
+) min




√
λmin(Rk+,ε)

ν
√
λmax(Rk+,ε)

,
λmin(Hk

+)

λmax(Hk
+)


 ‖dk‖2. (2.4.42)

Combining (2.4.41) and (2.4.42), we have that as k →∞

|ρk − 1| = |(fγ(uk)− fγ(uk + dk))− (hk(0)− hk(dk))|
|hk(0)− hk(dk)| ≤ o(1)→ 0.

Thus the sequence {σk} is uniformly bounded away from 0. Consequently, limk→∞ βk = 0, and

the Dennis-Moré condition [DM77] is satisfied, i.e. as k →∞,

‖(Hk
+ + βkRk+,ε)d

k −∇2
Bfγ(u∗)dk‖

‖dk‖ ≤ ‖Hk
+ −∇2

Bfγ(u∗)‖+ βkλmax(Rk+,ε)→ 0,

as the sequence {λmax(Rk+,ε)} is uniformly bounded.

It follows from the semismoothness property (2.3.7) that

fγ(uk + dk)− fγ(uk)− τ1∇fγ(uk)>dk = (1− τ1)∇fγ(uk)>dk +
1

2
(dk)>∇2

Bfγ(uk)dk + o(‖dk‖2)

=(dk)>[(τ1 − 1)(Hk
+ + βkRk+,ε) +

1

2
∇2
Bfγ(uk)]dk + o(‖dk‖2)

=(τ1 −
1

2
)(dk)>∇2

Bfγ(uk)dk + o(‖dk‖2) ≤ 0,

and

∇fγ(uk + dk)>dk − τ2∇fγ(uk)>dk = (dk)>∇2
Bfγ(uk)dk + (1− τ2)∇fγ(uk)>dk + o(‖dk‖2)

=(dk)>[(τ2 − 1)(Hk
+ + βkRk+,ε) +∇2

Bfγ(uk)]dk + o(‖dk‖2) = τ2(dk)>∇2
Bfγ(uk)dk + o(‖dk‖2) ≥ 0,

for sufficiently large k since ‖dk‖ → 0 as k → ∞. Hence the Wolfe-Powell conditions (2.8.15)–

(2.8.16) are satisfied for ak = 1, i.e. uk+1 = uk + dk, for all sufficiently large k.
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Let dkN := −∇2
Bfγ(uk)−1gk. Note that

‖dk − dkN‖ = ‖∇2
Bfγ(uk)−1(∇2

Bfγ(uk)dk + gk)‖
=‖∇2

Bfγ(uk)−1(∇2
Bfγ(uk)− (Hk

+ + βkRk+))dk‖ ≤ ‖∇2
Bfγ(uk)−1‖o(‖dk‖) = o(‖dk‖),

since {∇2
Bfγ(uk)−1} is uniformly bounded as uk → u∗ for k →∞. As a consequence, we have

‖uk+1 − u∗‖ = ‖uk + dk − u∗‖ ≤ ‖uk + dkN − u∗‖+ ‖dk − dkN‖ = o(‖uk − u∗‖).

We have used that ‖uk + dkN − u∗‖ = o(‖uk − u∗‖) (see, e.g., Theorem 8.5 in [IK08]), and

that ‖dk‖ = O(‖uk − u∗‖). From this we conclude that Algorithm 2.4.6 is locally superlinearly

convergent.

The assumption of Theorem 2.4.10 relates to second-order sufficient optimality conditions

for smooth problems. Although such assumptions typically occur in the optimization literature

(also in the context of nonsmooth problems), they are difficult to check in an algorithm.

2.5 Numerical experiments

In this section we present numerical results obtained by our primal-dual Newton method.

Throughout this section, Ω denotes the m-by-n pixel-domain, i.e. Ω = {(i, j) ∈ Z2 : 1 ≤
i ≤ m, 1 ≤ j ≤ n}. We discretize the gradient operator by (∇u)ij =

(
(ui+1,j −ui,j)/ω, (ui,j+1−

ui,j)/ω
)

with ω =
√

1/|Ω|. We set uij = 0 whenever (i, j) /∈ Ω. Unless otherwise specified, the

following parameters are used in our experiments: q = 0.75, µ = 10−4α, γ = 0.1.

The trust-region subproblem (2.4.17)–(2.4.18) is solved only approximately. In fact, from

our numerical experience one inner iteration seems sufficient for Algorithm 2.4.6 in practice.

The outer loop is terminated once the residual norm ‖∇fγ(uk)‖, see formula (2.3.5), has been

reduced by a factor of 10−7.

In step 5 of Algorithm 2.4.6, a R-regularized Newton system needs to be solved. In a

denoising problem, i.e. whenK = I, the linear system can be efficiently solved by sparse Cholesky

factorization. For problems where K is a dense matrix or not even explicitly formulated as a

matrix, we utilize the conjugate gradient method with residual tolerance 0.05. We remark that in

our convergence analysis in section 2.4, step 5 is treated as exact equation solving. Nevertheless

in the numerical realization, whenever the matrix Hk
+ + βkRk+,ε is detected to be indefinite

or (near-) singular, we immediately activate the sufficient condition for descent property (see

Theorem 2.4.2), i.e. utilize step 7 of the algorithm.

All experiments were performed under MATLAB R2009b on a 2.66 GHz Intel Core Laptop

with 4 GB RAM. The CPU time reported in the tables below is measured in seconds.
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Test on “Two Circles” image

The 64-by-64 image “Two Circles” in [NNZC08] is used as our first test example, see Figure

2.1(a), in the context of a denoising problem.This image is corrupted by white Gaussian noise of

zero mean and 0.1 standard deviation as shown in Figure 2.1(b). We choose the regularization

parameters α = 2× 10−3 and µ = 0 in the experiments.

(a) Original image. (b) Degraded image.

Figure 2.1: “Two Circles” image.

Dependence on initial guess. Three different choices of initial guesses are considered, namely

the observed data, the zero vector, and a randomly chosen initial guess. The corresponding

restored images are displayed in Figure 2.2, and the corresponding statistics are given in Table

2.1. We observe that the convergence behavior is stable with respect to the choice of the initial

guess, in terms of both restoration quality and computational cost. Due to the nonconvex nature

of the variational problem, our iterative algorithm is expected to terminate at a stationary point.

In our experiments, the qualities of the obtained stationary points are almost equally good, in

terms of objective value and PSNR (peak signal noise ratio), and all three restorations require

about three seconds. In the sequel, we shall choose the observed data as our initial guess if not

otherwise specified.

(a) u0 = z. (b) u0 = 0. (c) Randomly chosen u0.

Figure 2.2: Dependence on initial guess.
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Initial guess Objective value PSNR CPU

u0 = z 42.0354 30.2395 3.06
u0 = 0 42.0385 30.2438 3.02

random u0 42.0373 30.2048 3.19

Table 2.1: Dependence on initial guess.

Dependence on Huber parameter γ. In the discrete variational model (2.3.4), the nondifferen-

tiable TVq-penalty term is locally smoothed by the Huber function ϕγ with Huber parameter γ.

In Table 2.2, we show the results of numerical tests for four different choices of γ. It is observed

that the convergence behavior of our algorithm is insensitive with respect to the choice of γ,

once γ is sufficiently small. Clearly, with respect to γ there is a tradeoff between the convergence

speed and the restoration quality. As γ goes to zero, one obtains higher restoration quality but

at the same time the computational cost increases. From our experience, γ = 0.1 is practically

a reasonable choice in general.

Huber parameter γ 1e1 1e0 1e-1 1e-2 1e-3

# Newton iter. 5 28 37 40 43
PSNR 25.3644 29.7011 30.12 30.1489 30.1489

Table 2.2: Dependence on Huber parameter γ.

Infeasible Newton technique. We note that in contrast to the primal-dual algorithm (for

q = 1) in, e.g., [CGM99], our algorithm allows violations of the feasibility condition (2.4.12)

during the Newton iterations. Yet towards the convergence of the algorithm we expect the

feasibility condition (2.4.12) to hold true for (uk, pk), as established in the proof in Lemma

2.4.8. This is illustrated in Figure 2.3. In plot (a) the number of infeasible pixels (i, j) ∈ Ω,

where |(∇uk)ij | ≥ γ and |(pk)ij ||(∇uk)ij |1−q ≥ 1 + εp, is plotted for each Newton iteration. Here

εp = 10−6 is introduced to compensate roundoff errors. In plot (b), the residual norm ‖∇fγ(uk)‖
is shown for each Newton iteration. It is observed that the number of infeasible pixels decreases

to zero as the algorithm converges.

Globalization by Wolfe-Powell line search. In Algorithm 2.4.6, after the search direction dk

is computed, the Wolfe-Powell line search is performed, where we aim to find an approximation

of the solution to the one-dimensional problem fk∗ := minak>0 fγ(uk + akdk). Here we utilize an

implementation according to Algorithm 3.5–3.6 in [NW06]. Essentially, we begin with an initial

step size ak equal to 1. If either this step size is acceptable or the interval [0, 1] contains an

acceptable step size (which we refer to as Case 1), we directly proceed to the zoom procedure

[NW06], which successively reduces the size of the interval until an acceptable step size is found.

Otherwise (which we refer to as Case 2), we keep increasing ak until we find either an acceptable

step size or a solution interval that contains the acceptable step size. Once the solution interval

is found, we proceed to the zoom procedure as in Case 1. In Table 2.3 and Figure 2.4, we
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Figure 2.3: Infeasible Newton technique.

provide an example of the Wolfe-Powell line search for each of the two cases: zoom only (see

the upper part of Table 2.3), and first increase ak and then zoom (see the lower part of Table

2.3). We remark that backtracking-only line search rules, e.g. the backtracking Armijo rule (see,

e.g., [NW06]), do not perform well in our context. A backtracking-only line search rule would

terminate with ak = 1 in the example for Case 2, which poorly resolves the line search problem

and therefore causes more (outer) Newton iterations.

Case 1: zoom only

ak 1 0.04 0.084 0.122 0.156 0.188
f(uk + akdk)− fk∗ 5.26e-3 9.57e-5 6.97e-5 4.13e-5 1.14e-5 4.06e-7

Case 2: increase ak and then zoom

ak 1 2 4 2.217 2.393 2.539 2.662
f(uk + akdk)− fk∗ 3.27e-4 1.62e-4 1.01e-3 1.1e-4 6.05e-5 1.7e-5 5.89e-7

Table 2.3: Wolfe-Powell line search history.

Comparison with existing algorithms. In Table 2.4, we compare Algorithm 2.4.6 with two

existing algorithms, namely the BFGS quasi-Newton method (see e.g. [NW06]) and the lagged-

diffusivity fixed-point method [VO96]. For a given tolerance with respect to the residual norm,

we implement each candidate method with three different choices of the Huber parameter γ.

The CPU time is reported in the corresponding entry. It is observed that our method always

outperforms the other two methods, in particular when the problem becomes increasingly ill-

conditioned as γ is reduced. We remark that the BFGS quasi-Newton method suffers from the

strongly nonlinear nature of the underlying problem. The lagged-diffusivity fixed-point method

performs reasonably well at early iterations, but becomes less competitive once higher accuracy

is concerned.
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Figure 2.4: Wolfe-Powell line search. In each figure, the solid line is a plot of the function
ak 7→ fγ(uk + akdk), and the circled points are plots of the data in Table 2.3.

BFGS Fixed-point Our method

tolerance 1e-4 1e-7 1e-4 1e-7 1e-4 1e-7

γ=1e1 5.12 8.64 0.43 1.06 0.33 0.43
γ=1e0 51.21 70.91 3.98 12.54 1.86 2.68
γ=1e-1 >300 >300 4.7 20.02 2.44 3.07

Table 2.4: Comparison with existing algorithms in terms of CPU time.

Test on “Shepp-Logan Phantom”

Our second testing image is the “Shepp-Logan Phantom” contaminated by white Gaussian noise

of zero mean and 0.05 standard deviation.

Dependence on image resolution. Our algorithm is implemented to restore the “Shepp-Logan

Phantom” images under different resolutions, namely 64-by-64, 128-by-128, and 256-by-256.

The regularization parameters α = 4 × 10−4 and µ = 0 are fixed in all three restorations.

The algorithm terminates after 62, 64, and 60 Newton iterations for restoring images under

resolutions 64-by-64, 128-by-128, and 256-by-256, respectively. This indicates that our algorithm

is stable with respect to the image resolution.

Performance of the TVq-model for different q-values. We compare the performance of our

TVq-model for q =1, 0.75, 0.5, and 0.25 for denoising the 256-by-256 Shepp-Logan Phantom; see

Figure 2.5. For each q, the parameter α is manually chosen in order to obtain the best PSNR

value. The restored images ûq are shown in Figure 2.6 for each q. It is observed from the rescaled

zoom-in views that the TVq-models provide better contrast in restoration as q becomes smaller.

The performance of the TVq-model for different q-choices is also compared quantitatively; see

Table 2.5. The PSNR values of the restoration from the nonconvex TVq-models (with 0 < q < 1)

are significantly higher than those from the TV-model (with q = 1). In addition, we measure

the gradient sparsity by |Aγ(ûq)|/|Ω|, where Aγ(u) := {(i, j) ∈ Ω : |(∇u)ij | ≥ γ}. It is observed

that in comparison with the conventional TV-model, the sparsity is well enhanced under the
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nonconvex TVq-regularizations. Note that the gradient sparsity of the true image is 0.0503.

Furthermore, we compare each solution of the TVq-model, denoted by ûq, with the solution of

the TV-model, denoted by û1, by plugging both solutions into the objective of the nonconvex

TVq-problem. We find that û1 is far from being optimal with respect to the objective value.

This phenomenon is more distinct as q becomes smaller.

(a) Original image. (b) Degraded image.

Figure 2.5: 256-by-256 Shepp-Logan Phantom. The dash-boxed region in (a) is zoomed in for
restored images in forthcoming Figure 2.6.

q PSNR |Aγ(ûq)|/|Ω| fγ,q(ûq) fγ,q(û1)

1 37.5709 0.196 - -
0.75 41.0039 0.0578 134.3021 137.6719
0.5 41.0191 0.0531 116.6721 125.6655
0.25 39.9259 0.0503 113.9953 133.6758

Table 2.5: Performances of TVq-models.

Test on simultaneously blurred and noisy images

Now we apply our algorithm for simultaneously deblurring and denoising the text image “TVq-

model” (see Figure 2.7) and the image “Cameraman” (see Figure 2.8). For both images, the

blurring kernel is chosen to be a two-dimensional truncated Gaussian kernel, i.e.

(Ku)ij =
∑

|i′|≤3, |j′|≤3

exp

(
−|i
′|2 + |j′|2
2|σK |2

)
ui−i′,j−j′ .

with σK = 1.5. After blurring, white Gaussian noise of zero mean and 0.05 standard deviation

is added. The restored images are shown in the corresponding figures. It is visually observed

that the nonconvex TVq-model promotes piecewise constant images in the restoration results.

This is expected because q → 0 results in the problem of minimizing the support of the image

intensity.
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(a) q = 1, α = 3× 10−4.
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(b) q = 0.75, α = 4× 10−4.
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(c) q = 0.5, α = 6× 10−4.
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(d) q = 0.25, α = 1.2× 10−3.

Figure 2.6: Restoration via TVq-models. In each group, the left figure is the restored image ûq,
and the right figure is the rescaled zoom-in of the restored image on the dash-boxed region of
Figure 2.5(a).

(a) Original image. (b) Observed image. (c) Restored image.

Figure 2.7: “TVq-model” text image: restoration with α = 5× 10−4.

Test on tomographic data

Our algorithm can be applied to restoring images from possibly noisy tomographic data. In

Figure 2.9, the 64-by-64 Shepp-Logan Phantom is used as test example, see plot (a). The

tomographic data, or the sinogram, of size 95-by-13 is obtained from applying the 2D Radon

transform [KS01] along the angles 0, 12, 24, ..., 180 degrees. Then white Gaussian noise of zero

mean and 0.05 standard deviation is added to the sinogram. The resulting observed data is

shown in plot (b). Note that the matrix K is the discrete Radon transform of size 1235-by-4096,

which indicates that the problem is highly underdetermined.

In our experiments, we consider three candidate methods, namely the filtered back-projection

method (FBP) [KS01], the total-variation model (TV), and the TVq-model, with q = 0.75,

proposed in this work. The corresponding restored images are displayed in plots (c)–(e), and

the comparisons of the three approaches in terms of PSNR and CPU time are given in Table 2.6.
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(a) Original image. (b) Observed image. (c) Restored image.

Figure 2.8: “Cameraman” image: restoration with α = 2× 10−4.

FBP is implemented using the MATLAB routine iradon. For both TV- and TVq-methods, we

choose the regularization parameter α = 0.001 and the initial guess u0 = 0, and terminate the

algorithm once the residual norm ‖∇fγ(u)‖ is reduced by a factor of 10−4. It is observed that the

computational cost of FBP is very low but the associated restoration quality is poor. The TV-

method takes about 1.5 seconds and yields a much better restoration result, but some artifacts

remain. Finally, the TVq-method requires more CPU time than the other two methods (yet less

than double the CPU time of the TV-method) but yields an almost perfect reconstruction.

FBP TV TVq

PSNR 16.5321 26.7974 37.3862
CPU <0.01 1.56 2.64

Table 2.6: Comparison of restoration methods in terms of PSNR and CPU time.

2.6 A smoothing scheme and the consistency result

In section 2.4, we have proposed an adaptively regularized Newton algorithm for solving (2.3.4)

which is a Huberized version of the original problem (2.3.1). We further witness from the

numerics in section 2.5 that, up to a reasonable choice of the Huber parameter γ, Algorithm

2.4.6 efficiently computes a numerical solution that is often satisfactory for practical concerns.

Nevertheless, we are intrigued by the question how to use the adaptively regularized Newton

algorithm to track the solution of the original nonsmooth problem. Motivated by the recent find-

ings in [Che12], here we provide a smoothing scheme with convergence analysis to accomplish

this goal. It is substantiated by the convergence of the smoothing scheme below that the Hu-

berization strategy provides a consistent approximation of the seemingly intractable nonsmooth

problem (which is even non-Lipschitz in this case).

Algorithm 2.6.1 (Smoothing scheme).

Require: parameters in Algorithm 2.4.6 and in addition 0 < κγ < 1, ργ > 0.
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(a) Original image.
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(b) Noisy sinogram z.

(c) Restored by FBP. (d) Restored by TV. (e) Restored by TVq (q = 0.75).

Figure 2.9: Restoration from Radon transformed data.

1: Initialize the iterate (u0, p0), the regularization scalar β0 ≥ 0, the trust-region radius σ0 > 0,

and the Huber parameter γ0 > 0. Set k := 0.

2: repeat

3: Implement steps 3–25 in Algorithm 2.4.6 for the relaxed problem (2.3.4) with γ := γk.

4: if ‖∇fγk(uk)‖ > ργγ
k then

5: Set γk+1 := γk.

6: else

7: Set γk+1 := κγγ
k.

8: end if

9: Set k := k + 1.

10: until the stopping criterion for the smoothing scheme is fulfilled.

Lemma 2.6.2. Let the sequence {uk} be generated by Algorithm 2.6.1. Then we have

lim
k→∞

γk = 0 and lim inf
k→∞

‖∇fγk(uk)‖ = 0.

Proof. Define the index set

K := {k : γk+1 = κγγ
k}.

If K is finite, then there exists some k̄ such that for all k > k̄ we have γk = γk̄ and ‖∇fγk(uk)‖ ≥
ργγ

k̄. This leads to a contradiction to the global convergence guaranteed by Theorem 2.4.7 that
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limk→∞ ‖∇fγk(uk)‖ = 0. Thus, K must be infinite and limk→∞ γk = 0. Moreover, by ordering

the indices in K as k1 < k2 < k3 < ..., we have ‖∇f
γkl

(uk
l
)‖ ≤ ργγ

kl → 0 as l → ∞. Hence,

lim infk→∞ ‖∇fγk(uk)‖ = 0.

Theorem 2.6.3 (Consistency). Assume that the sequence {uk} generated by Algorithm 2.6.1 is

uniformly bounded. Then this sequence has an accumulation point u∗ that satisfies the Euler-

Lagrange equation (2.3.3).

Proof. In view of the result in Lemma 2.6.2, there exists a subsequence of {uk}, under the same

notation, such that limk→∞ γk = 0 and limk→∞ ‖∇fγk(uk)‖ = 0. Let u∗ be an accumulation

point of the uniformly bounded sequence {uk}. We show that u∗ is a solution to (2.3.3). On

the set {(i, j) ∈ Ω : (∇u∗)ij = 0}, the conclusion follows automatically. On the set {(i, j) ∈ Ω :

(∇u∗)ij 6= 0}, we have max(|(∇uk)ij |, γk)→ |(∇u∗)ij | > 0 as k →∞. Therefore, it follows from

|(∇f(u∗))ij | ≤ |(∇fγk(uk))ij − (∇f(u∗))ij |+ |(∇fγk(uk))ij | → 0, (2.6.1)

that u∗ satisfies (2.3.3).

2.7 A note on TVq-models in function space

Often one aims at studying the variational problem in its original function space setting. In our

context, the infinite dimensional version associated with (2.3.1) reads

inf
u∈H1

0 (Ω)
f(u) =

∫

Ω
F (x, u,∇u)dx =

∫

Ω

(
µ

2
|∇u|2 +

α

q
|∇u|q +

λ

2
|Ku− z|2

)
dx, (2.7.1)

where α > 0, 0 < q < 1, 0 < µ � α, z ∈ L2(Ω), λ ∈ L∞(Ω) such that λ(x) > 0 a.e. on Ω and∫
Ω λ(x)dx = Area(Ω), and K ∈ L(L2(Ω)), i.e. it is a linear and continuous operator from L2(Ω)

to L2(Ω), such that KχΩ 6= 0.

Obviously, f is coercive, i.e. f(u)→∞ as ‖u‖H1
0 (Ω) →∞. Note that the integrand F (x, u, ξ)

is nonconvex in ξ. It is known from Theorem 2.1.3 in [AK02] that f is weakly lower semicontin-

uous on H1
0 (Ω) if and only if F is convex in ξ. As a consequence, f : H1

0 (Ω)→ R in (2.7.1) is not

weakly lower semicontinuous, a usual prerequisite for proving existence of minimizers. Hence,

the direct methods of the calculus of variations cannot be applied here.

Nevertheless, there exists a minimizer for a relaxed version of the problem (2.7.1). For this

purpose, we construct a relaxed functional by taking the bipolar [ET99] of F (x, u, ξ) with respect

to ξ, i.e.

F̄ (x, u, ξ) := F ∗∗(x, u, ξ) =

{
(αsq−1
∗ + µs∗)|ξ|+ λ

2 |Ku− z|2, if |ξ| < s∗,
F (x, u, ξ), if |ξ| ≥ s∗,

where the convexity threshold s∗ is given by

s∗(q, µ, α) :=

(
α(1/q − 1)

µ/2

)1/(2−q)
.
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q |s|q (in solid line), and its envelope (in dashed line).

We define f̄(u) :=
∫

Ω F̄ (x, u,∇u)dx. It turns out that f̄ represents the weakly lower semicon-

tinuous envelope of f(u) under the weak H1
0 (Ω)-topology (see pp. 34 in [DM93]), i.e.

f̄(u) = sup{f̃(u) : f̃(u) ≤ f(u) ∀u ∈ H1
0 (Ω), f̃ is weakly lower semicontinuous on H1

0 (Ω)}.

Concerning the existence of minimizers in H1
0 (Ω) for f̄ and their relations to f , we state the

following two theorems, which can be found in [AK02]; see Theorem 2.1.5 and Theorem 2.1.6 in

this reference.

Theorem 2.7.1 (Characterization). The relaxed functional f̄ is characterized by the following

properties:

1. For every sequence {uk} that weakly converges to u in H1
0 (Ω), we have f̄(u) ≤ lim inf f(uk).

2. For every u ∈ H1
0 (Ω), there exists a sequence {uk} that weakly converges to u in H1

0 (Ω)

and f̄(u) ≥ lim sup f(uk).

Theorem 2.7.2 (Main properties). Suppose f : H1
0 (Ω) → R is coercive. Then the following

properties hold:

1. f̄ is coercive and weakly lower semicontinuous on H1
0 (Ω).

2. f̄ has a minimizer in H1
0 (Ω).

3. minu∈H1
0 (Ω) f̄(u) = infu∈H1

0 (Ω) f(u).

4. Every accumulation point of an infimizing sequence for f is a minimizer for f̄ under the

weak H1
0 (Ω)-topology.

5. Every minimizer for f̄ is the limit of an infimizing sequence for f under the weak H1
0 (Ω)-

topology.

In a nutshell, we associate the original nonconvex problem, for which no minimizer may exist,

with a relaxed problem, which ensures the existence of a minimizer. However, the minimizer
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of the relaxed problem may be far from optimal for the original problem with respect to the

objective value. This is illustrated by the following example; see pp. 36 in [AK02] for a related

example. Note that this example shares the nonconvexity in the ξ-variable with our TVq-model,

but otherwise has a different structure in the term involving the derivative.

Example 2.7.3. Let F (x, u, ξ) := u2 + (|ξ| − 1)2. The Bolza problem is

inf{f(u) :=

∫ 1

0

(
(|u′| − 1)2 + u2

)
dx : u ∈ H1

0 (0, 1)}.

The integrand F (x, u, ξ) is nonconvex in ξ. We claim that inf f = 0. Indeed, consider the

sequence {uk} defined by

uk(x) =

{
x− l

k if x ∈
(
l
k ,

2l+1
2k

)

−x+ l+1
k if x ∈

(
2l+1
2k ,

l+1
k

) , for l = 0, 1, 2, ..., n− 1.

Then uk ∈ W 1,∞
0 (0, 1) such that 0 ≤ uk(x) ≤ 1

2k , ∀x ∈ (0, 1), and |(uk)′(x)| = 1 a.e. in (0, 1).

Therefore, we have 0 ≤ infu f(u) ≤ f(uk) ≤ 1
4k2 . Thus the claim is verified. However, there

exists no function u ∈ H1
0 (0, 1) such that f(u) = 0. Hence there exists no solution to the Bolza

problem.

Nevertheless, the Bolza problem can be relaxed, using the weakly lower semicontinuous

envelope of f , as follows:

min{f̄(u) :=

∫ 1

0

(
(max(|u′| − 1, 0))2 + u2

)
dx : u ∈ H1

0 (0, 1)}.

The relaxed problem admits a unique solution u∗ = 0. Obviously the set {x ∈ (0, 1) : |(u∗)′(x)| <
1} is of positive Lebesgue measure; otherwise u∗ would be a minimizer for infu f(u). Finally, we

notice that f(u∗) = 1. This indicates that u∗ is far from optimal for the original problem.

2.8 Beyond TVq — variational models with concave sparsity-
promoting priors

Our methodology developed so far in this chapter focuses on the TVq models for image restora-

tion. It is no surprise that this methodology fits into a wider scope. The generalization of the

TVq-models in this section is twofold. First, we free the prior term from particular param-

eterizations to a general class of concave priors, which includes the `q-norm (0 < q < 1) as

a special case. Secondly, while the TVq-models promote piecewise constant images which are

gradient-sparse, in some other applications we are seeking sparse solutions under other specified

transforms. Following a similar route as for the TVq models, we also devise a superlinearly

convergent Newton-type method for the generalized variational model (under Huberization).

Our numerical experiments will demonstrate the applications of the generalized methodology

in dictionary-based image denoising, support vector machines, and optimal control of partial

differential equations.
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2.8.1 Variational models with concave priors

We consider the following general variational model:

min
u∈R|Ωu|

f(u) = Θ(u) + αΨ(u), (2.8.1)

where Ωu denotes the multidimensional index set for u. We assume that the fidelity term

Θ : R|Ωu| → R is a coercive and strictly convex C2-function. Thus, the Hessian ∇2Θ(·) exists

and is positive definite everywhere in R|Ωu|.
The prior term Ψ under consideration is of the form

Ψ(u) =
∑

j∈Ωp

ψ(|(Gu)j |),

where G : R|Ωu| → R|Ωp| is a bounded linear operator and Ωp is the multidimensional index set

for a transformed vector Gu. The scalar function ψ : [0,∞)→ [0,∞) is supposed to satisfy the

following hypotheses:

1. (continuity) ψ is continuous on [0,∞).

2. (regularity) ψ is C2 on (0,∞).

3. (mononicity) ψ is strictly increasing on [0,∞).

4. (concavity) ψ is concave on [0,∞).

The motivation for a concave prior ψ is to sparsify the solution u under a certain transform G; see

e.g. [Nik05]. Typical choices for G include the identity [FL01], the gradient operator [HW13], or

some overcomplete dictionary [KP13]. In particular, we are interested in those situations where

ψ(| · |) is non-smooth or even non-Lipschitz at 0. Particular examples for ψ, which have been

considered in either a statistical or variational framework, are specified below.

Example 2.8.1 (Concave priors).

• Bridge prior [KF00, HHM08]: ψ(s) = sq/q, 0 < q < 1.

• Fraction prior [GR92]: ψ(s) = qs/(1 + qs), q > 0.

• Logarithmic prior [Nik05]: ψ(s) = log(1 + qs), q > 0.

The proof of existence of a solution for (2.8.1) is straightforward due to the fact that the

objective f is continuous, coercive, and bounded from below. In order to characterize a station-

ary point for (2.8.1), we introduce an auxiliary variable p ∈ R|Ωp| and derive the Euler-Lagrange

equation as follows.
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Theorem 2.8.2 (Necessary optimality condition). For any global minimizer of (2.8.1) there

exists some p ∈ R|Ωp| such that

{
∇Θ(u) + αG>p = 0,

ϕ(|(Gu)j |)pj = (Gu)j , for all j ∈ Ωp with (Gu)j 6= 0,
(2.8.2)

where ϕ(s) := s/ψ′(s) for any s ∈ (0,∞).

Note that since (2.8.1) is a nonconvex minimization problem, in general there exist more than

one stationary point satisfying the Euler-Lagrange system (2.8.2).

To handle the non-smoothness (or even non-Lipschitz continuity) of ψ(| · |) numerically, we

introduce a Huber-type local smoothing [Hub64] by defining

ψγ(s) =





ψ(s)−
(
ψ(γ)− γψ′(γ)

2

)
, if |s| ≥ γ,

ψ′(γ)

2γ
s2, if |s| < γ,

where γ > 0 is the associated Huber parameter. Then we replace ψ in (2.8.1) by the C1 function

ψγ and formulate the Huberized variational model as:

min
u∈R|Ωu|

fγ(u) = Θ(u) + α
∑

j∈Ωp

ψγ(|(Gu)j |). (2.8.3)

The corresponding Euler-Lagrange equation for (2.8.3), which we call the Huberized Euler-

Lagrange equation, is given by

∇fγ(u) = ∇Θ(u) + αG>(ϕ(max(|Gu|, γ))−1Gu) = 0, (2.8.4)

or equivalently posed with an auxiliary variable p as follows:

res(u, p; γ) :=

[
∇Θ(u) + αG>p

ϕ(max(|Gu|, γ))p−Gu

]
= 0. (2.8.5)

Since the argument of ϕ is bounded below by the positive number γ, the quantity ϕ(·) is well

defined. Furthermore, ϕ satisfies the following properties: (1) ϕ is continuously differentiable

on (0,∞); (2) ϕ′(s) ≥ ψ′(γ)−1 > 0 for any s ∈ [γ,∞). Consequently, by the composition rule of

semismooth functions Theorem 19 in [Fis97], the residual function res(·, ·; γ) is semismooth at

any (u, p) ∈ R|Ωu| × R|Ωp|. This allows us to apply the semismooth Newton method to (2.8.5)

as we shall see in the next subsection.

2.8.2 A superlinearly convergent regularized Newton scheme

In this subsection, we propose a tailored approach for finding a stationary point for (2.8.3). We

start by investigating a structured regularization scheme in the semismooth Newton method.
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R-regularized Newton scheme

Let (uk, pk) be the current iterate and the active set characteristic χAk ∈ R|Ωp| be defined as

(χAk)j =

{
1, if |(Guk)j | ≥ γ,
0, if |(Guk)j | < γ.

The setAk := {j ∈ Ωp : (Guk)j | ≥ γ} is referred to as the active set. In view of the max-function,

we shall apply the semismooth Newton method to (2.8.5). This leads us to the following linear

system




∇2Θ(uk) αG>

−diag

(
1− χAkpk

ϕ′(mk)Guk

mk

)
G diag(ϕ(mk))



[
δuk

δpk

]
=

[
−∇Θ(uk)− αG>pk
−ϕ(mk)pk +Guk

]
,

with

mk := max(|Guk|, γ).

After eliminating δpk, we are left with

Hkδuk = −gk,

where

Hk = H(uk, χAkp
k)

= ∇2Θ(uk) + αG>diag

(
ϕ(mk)−1

(
1− χAkpk

ϕ′(mk)(Guk)

mk

))
G, (2.8.6)

gk = ∇fγ(uk) = ∇Θ(uk) + αG>(ϕ(mk)−1Guk).

Based on an observation of the structure of the Hessian matrix Hk (see equation (2.8.7)

below), we are motivated to define the R-regularization of Hk at (uk, χAkp
k) as

Rk = R(uk, χAkp
k) = αG>diag

(
χAkp

kϕ
′(mk)(Guk)

ϕ(mk)mk

)
G.

Then the resulting R-regularized Newton scheme arises as

(Hk + βRk)δuk = −gk.

In particular, if we take β = 1, then the R-regularized Newton scheme becomes

(Hk +Rk)δuk =
(
∇2Θ(uk) + αG>diag(ϕ(mk)−1)G

)
δuk = −gk. (2.8.7)

Note that the fully R-regularized Hessian Hk+Rk is strictly positive definite and thus guarantees

a descent direction δuk for fγ at uk.
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Infeasible Newton technique

In order to ensure fast local convergence of the overall Newton scheme, we introduce several

modifications in the construction of Hk and Rk.

We start by replacing χAkp
k by p̃k in formula (2.8.6), where

p̃k :=
χAk(mk/ϕ(mk))pk

max(mk/ϕ(mk), |pk|) .

This choice of p̃k satisfies the feasibility condition

|(p̃k)j | ≤ |(Guk)j |/ϕ(|(Guk)j |),

on the index subset {j ∈ Ωp : |(Guk)j | ≥ γ}. As a consequence, the modified Hessian H̃k

appears as

H̃k = H(uk, p̃k) = ∇2Θ(uk) + αG>diag

(
ϕ(mk)−1

(
1− p̃kϕ

′(mk)(Guk)

mk

))
G.

One of our motivations for such a replacement is that the sequence (p̃k) will be uniformly bounded

provided that the sequence (uk) is uniformly bounded, which will be useful in the derivation

of global convergence; see Theorem 2.8.9 below. In addition, the Hessian modification becomes

asymptotically invariant, as shown in the following lemma.

Lemma 2.8.3. Assume that limk→∞(uk, pk) = (u∗, p∗) with the limiting pair (u∗, p∗) satisfying

the Euler-Lagrange equation (2.8.5). Then we have

lim
k→∞

‖H̃k −Hk‖ = 0.

Proof. Based on the structures of H̃k and Hk, it suffices to show limk→∞ ‖p̃k − χAkpk‖ = 0.

Given the assumption, we have for all j ∈ Ωp that |p∗| = |Gu∗|/ϕ(max(|Gu∗|, γ)) and therefore

|p̃k − χAkpk| ≤ |pk|
∣∣∣∣

mk/ϕ(mk)

max(mk/ϕ(mk), |pk|) − 1

∣∣∣∣

→ |p∗|
∣∣∣∣

max(|Gu∗|, γ)/ϕ(max(|Gu∗|, γ))

max(max(|Gu∗|, γ)/ϕ(max(|Gu∗|, γ)), |p∗|) − 1

∣∣∣∣ = 0

as k →∞. Thus the conclusion follows.

Besides the Hessian modification, we correspondingly define the modified R-regularization

by

R̃k = R(uk, p̃k) = αG>diag

(
p̃k
ϕ′(mk)(Guk)

ϕ(mk)mk

)
G+ εI, (2.8.8)

with an arbitrarily fixed parameter 0 < ε� α.

Lemma 2.8.4. Let the assumptions of Lemma 2.8.3 hold true. Then we have λmin(R̃k) ≥ ε/2

for all sufficiently large k.
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Proof. As the conclusion is trivial given G = 0, we proceed with any given G 6= 0. It follows

from the assumption that

min

{(
p̃k
ϕ′(mk)(Guk)

ϕ(mk)mk

)

j

: j ∈ Ωp

}

= min

{(
ϕ′(mk)(Guk)χAk(mk/ϕ(mk))pk

ϕ(mk)mk max(mk/ϕ(mk), |pk|)

)

j

: j ∈ Ωp

}

≥min

({(
ϕ′(mk)(Guk)(mk/ϕ(mk))pk

ϕ(mk)mk max(mk/ϕ(mk), |pk|)

)

j

: j ∈ Ωp

}
∪ {0}

)

k→∞−−−→min

({(
ϕ′(max(|Gu∗|, γ))(Gu∗)2

max(|Gu∗|, γ)(ϕ(max(|Gu∗|, γ)))2

)

j

: j ∈ Ωp

}
∪ {0}

)

≥0.

Therefore, we have for all sufficiently large k that

min

{
p̃k
ϕ′(mk)(Guk)

ϕ(mk)mk
: j ∈ Ωp

}
≥ − ε

2‖G‖2 ,

and

v>R̃kv ≥ − ε

2‖G‖2 ‖Gv‖
2 + ε‖v‖2 ≥ ε

2
‖v‖2,

for any vector v ∈ R|Ωp|. Thus we conclude that λmin(R̃k) ≥ ε/2.

The ε-term in (2.8.8) is important as indicated by Lemma 2.8.4 since it guarantees R̃k to be

strictly positive definite when the iterate is sufficiently close to a solution. However, note that ε

can be arbitrarily small and therefore R̃k is allowed to have nonpositive eigenvalues during the

Newton iterations. In fact, choosing a large ε that dominates the R-regularization term is not

desirable in the numerical implementation.

Thus far, we arrive at the overall modified R-regularized Newton scheme

(H̃k + βR̃k)δuk = −gk. (2.8.9)

The fully R-regularized scheme, i.e. with β = 1, generates a descent direction satisfying the

estimate in the following theorem.

Theorem 2.8.5 (Sufficient condition for descent property). Assume that the sequence (uk) is

uniformly bounded and contained in a compact subset E in R|Ωu|. Then the solution δuk of

(2.8.9) with β = 1 is a descent direction satisfying

− (gk)>δuk

‖gk‖‖δuk‖ ≥
Cl

Cu + αλmax(G>G)/ϕ(γ)
=: ε̄d,

where 0 < Cl ≤ Cu are two constants depending on Θ and E.
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Proof. Let S = {v ∈ R|Ωu| : ‖v‖ = 1} denote the unit sphere. Due to the compactness of E × S
and the continuity of the functional (u, v) 7→ v>∇2Θ(u)v, the problem

Cl := inf
(u,v)∈E×S

v>∇2Θ(u)v

attains the infimum Cl for some (u, v) ∈ E×S. Note that Cl > 0, since otherwise our assumption

that Θ is a strictly convex C2 function would be violated.

Analogously, there exists a constant Cu such that

Cu := sup
(u,v)∈E×S

v>∇2Θ(u)v.

Obviously, we have Cu ≥ Cl. Then it follows that

− (gk)>δuk

‖gk‖‖δuk‖ ≥
λmin(H̃k + R̃k)

λmax(H̃k + R̃k)

≥ λmin(∇2Θ(uk))

λmax(∇2Θ(uk)) + λmax(αG>diag(ϕ(mk)−1)G)

≥ Cl
Cu + αλmax(G>G)/ϕ(γ)

.

For the last inequality, we have used the fact that ϕ is monotonically increasing on [γ,∞).

A superlinearly convergent algorithm

Analogous to Algorithm 2.4.6, here we also devise a superlinearly convergent algorithm for

(2.8.1). According to Theorem 2.8.5, the R-regularized Newton scheme (2.8.9) with β = 1

provides a descent direction. However, a constant R-regularization (with β = 1), which is

equivalent to a fixed-point approach, is known to be only linearly convergent [VO96, CM99,

NC07].

Ideally, we would like to utilize a sufficient R-regularization when the objective is nonconvex

(or the Hessian possesses negative eigenvalues) at the current iterate. As the iterative scheme

proceeds, the iterate may eventually be contained in a neighborhood of some local minimizer

satisfying some type of a second-order sufficient optimality condition, such that all (generalized)

Hessians of the objective are positive definite within that neighborhood. Under such circum-

stances, we would rather utilize the true Hessian without any R-regularization in the Newton

scheme, as it leads to local superlinear convergence.

In order to achieve these goals, the weight of the R-regularization β will be adjusted under

a trust-region framework. Define the local quadratic model of fγ at the current iterate uk as

hk(d) := fγ(uk) + (gk)>d+
1

2
d>H̃kd.

Consider now the minimization of hk(·) subject to a trust-region constraint, i.e.

minimize hk(d), (2.8.10)

subject to d ∈ R|Ωu|, d>R̃kd ≤ (σk)2, (2.8.11)
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where σ > 0 is the trust-region radius.

Figure 2.11: Illustration of a two-dimensional trust-region subproblem (2.8.10)–(2.8.11). The
objective function is plotted with contour lines. The feasible region is colored in light gray
(contrary to dark gray). The global minimizer (−0.748,−0.403) is marked by the solid dot.

Note that the matrix H̃k may be indefinite due to the nonconvexity of fγ . Furthermore, as

pointed out after Lemma 2.8.4, R̃k is allowed to have more than one nonpositive eigenvalues.

Thus, the feasible region induced by (2.8.11) may be nonconvex and unbounded; see Figure 2.11

for an illustration in two dimensions. This is significantly different from the settings in classical

trust-region methods [DS96, CGT00] where R̃k is positive definite and induces a convex, closed

and bounded feasible region. Remarkably, H̃k and R̃k enjoy a special interplay as indicated in

the following lemma.

Lemma 2.8.6. The matrix H̃k is positive definite on the subset {d ∈ R|Ωu| : d>R̃kd ≤ 0}.

Proof. See Lemma 2.4.3.

Such an interplay between H̃k and R̃k leads us to the existence as well as the characterization

of a global minimizer for the trust-region subproblem (2.8.10)–(2.8.11), as stated in the following

theorem.

Theorem 2.8.7. There exists a global minimizer d∗ for (2.8.10)–(2.8.11). Moreover, the nec-

essary and sufficient condition for d∗ being optimal is that there exists β∗ ≥ 0 such that

(H̃k + β∗R̃k)d∗ = −g, (2.8.12)

β∗ −max
(
β∗ + c−1(d>∗ R̃

kd∗ − (σk)2), 0
)

= 0, (2.8.13)

H̃k + β∗R̃k � 0, (2.8.14)

for an arbitrarily fixed scalar c > 0.

Proof. See Theorems 2.4.4 and 2.4.5.

58



In particular, the complementarity equation (2.8.13) in Theorem 2.8.7 provides us a nat-

ural fixed-point formula for updating the weight β. Now we are in a position to present our

superlinearly convergent R-regularized Newton scheme for (2.8.1).

Algorithm 2.8.8 (Superlinearly convergentR-regularized Newton scheme).

Require: parameters c > 0, 0 < ρ1 ≤ ρ2 < 1, 0 < κ1 < 1 < κ2, 0 < ε � α, 0 < εd ≤ ε̄d, 0 <

τ1 < 1/2, τ1 < τ2 < 1.

1: Initialize the iterate (u0, p0), the regularization weight β0 ≥ 0, and the trust-region radius

σ0 > 0. Set k := 0.

2: repeat {outer loop}
3: Generate H̃k, R̃k, and gk at the current iterate (uk, pk).

4: repeat {inner loop}
5: Solve the linear equation (H̃k + βkR̃k)dk = −gk for dk.

6: if the matrix H̃k + βkR̃k is singular or −(gk)>dk/(‖gk‖‖dk‖) < εd then

7: Set βk := 1, and return to Step 5.

8: end if

9: if βk = 1 and (dk)>R̃kdk > (σk)2 then

10: Set σk :=

√
(dk)>R̃kdk, and go to Step 15.

11: end if

12: Update βk := βk + c−1((dk)>R̃kdk − (σk)2).

13: Project βk onto the interval [0, 1], i.e. set βk := max(min(βk, 1), 0).

14: until the stopping criterion for the inner loop is fulfilled.

15: Evaluate ρk := [fγ(uk)− fγ(uk + dk)]/[fγ(uk)− (fγ(uk) + (gk)>dk + (dk)>H̃kdk/2)].

16: if ρk < ρ1 then

17: Set σk+1 := κ1σ
k.

18: else if ρk > ρ2 then

19: Set σk+1 := κ2σ
k.

20: else

21: σk+1 := σk.

22: end if

23: Determine the step size ak along the search direction dk such that uk+1 = uk + akdk

satisfies the following Wolfe-Powell conditions:

fγ(uk+1) ≤ fγ(uk) + τ1a
k∇fγ(uk)>dk, (2.8.15)

∇fγ(uk+1)>dk ≥ τ2∇fγ(uk)>dk. (2.8.16)

24: Generate the next iterate:

uk+1 := uk + akdk,

pk+1 := ϕ(mk)−1

(
Guk + (1− p̃kϕ

′(mk)(Guk)

mk
)Gdk

)
. (2.8.17)
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25: Initialize the R-regularization weight βk+1 := βk for the next iteration.

26: Set k := k + 1.

27: until the stopping criterion for the outer loop is fulfilled.

Concerning the input parameters involved in the above algorithm, we note that these quanti-

ties are presented merely for the generality of the algorithm and do not require particular tuning

for different test runs. Throughout our numerical experiments in section 2.8.3, we shall always

fix the parameters as follows: c = 1, ρ1 = 0.25, ρ2 = 0.75, κ1 = 0.25, κ2 = 2, ε = 10−4α, εd =

10−8, τ1 = 0.1, τ2 = 0.9.

We remark that Algorithm 2.8.8 is a hybrid approach combining the trust-region method and

the line search technique. The Wolfe-Powell line search, along the search direction dk obtained

from the R-regularized Newton scheme, is responsible for the global convergence of the overall

algorithm; see Theorem 2.8.9 in the following.

Theorem 2.8.9 (Global convergence). Let {(uk, pk)} be the sequence generated by Algorithm

2.8.8. Then we have

lim
k→+∞

‖∇fγ(uk)‖ = 0. (2.8.18)

Moreover, if in addition {uk} is uniformly bounded, then the sequence {(uk, pk)} has an accu-

mulation point (u∗, p∗) satisfying the Euler-Lagrange equation (2.8.5).

Proof. According to Theorem 2.2.14, we have
∑∞

k=0 cos2 θk‖gk‖2 <∞, where

cos θk := − (gk)>dk

‖gk‖‖dk‖ .

Due to the descent property

cos θk ≥ εd > 0, (2.8.19)

guaranteed by Theorem 2.8.5 and steps 6–8 in Algorithm 2.8.8, we have proved (2.8.18).

Moreover, it follows from the descent property (2.8.19) that

εd‖gk‖‖dk‖ ≤ −(gk)>dk = (dk)>(H̃k + βkR̃k)dk ≤ ‖gk‖‖dk‖.

Consider dk := skvk such that sk ≥ 0 and ‖vk‖ = 1 for all k, then we have

εd‖gk‖ ≤ sk(vk)>(H̃k + βkR̃k)vk ≤ ‖gk‖.

It follows that

lim
k→∞

sk(vk)>(H̃k + βkR̃k)vk = 0. (2.8.20)

By the uniform boundedness of {uk}, {vk}, {p̃k}, and {βk}, there exist u∗, v∗ ∈ R|Ωu|,
p̃∗ ∈ R|Ωp|, and β∗ ∈ [0, 1] such that up to a subsequence uk → u∗, vk → v∗, p̃k → p̃∗, and

βk → β∗ as k → ∞. Owing to the continuity of the mappings (uk, p̃k) 7→ H̃k = H(uk, p̃k) and
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(uk, p̃k) 7→ R̃k = R(uk, p̃k), we also have H̃k → H̃∗ := H(u∗, p̃∗) and R̃k → R̃∗ := R(u∗, p̃∗) as

k →∞.

We claim that lim infk→∞ sk = 0. Assume the contrary that {sk} is uniformly bounded away

from 0. Then because of (2.8.20) we have (v∗)>(H̃∗ + β∗R̃∗)v∗ = 0, or equivalently

(H̃∗ + β∗R̃∗)v∗ = 0,

due to the symmetry of the matrix. This leads to a contradiction as

εd ≤ −
(gk)>dk

‖gk‖‖dk‖ =
(dk)>(H̃k + βkR̃k)dk

‖(H̃k + βkR̃k)−1dk‖‖dk‖

≤ ((dk)>(H̃k + βkR̃k)dk)‖(H̃k + βkR̃k)dk‖
‖dk‖3

≤ ‖(H̃
k + βkR̃k)dk‖2
‖dk‖2

= ‖(H̃k + βkR̃k)vk‖2 k→∞−−−→ ‖(H̃∗ + β∗R̃∗)v∗‖2 = 0.

We have used the Cauchy-Schwarz inequality in deriving the above inequalities. Thus, we have

proved that lim infk→∞ ‖dk‖ = 0.

Upon extracting another subsequence of {dk} and using again the same notation for the

indices, we have limk→∞ dk = 0 and then

p∗ := lim
k→∞

pk+1 = ϕ(max(|Gu∗|, γ))−1Gu∗,

according the update formula (2.8.17). Together with the already established fact that

0 = lim
k→∞

∇fγ(uk) = ∇fγ(u∗) = ∇Θ(u∗) + αG>(ϕ(max(|Gu∗|, γ))−1Gu∗),

we conclude that (u∗, p∗) satisfies the Euler-Lagrange equation (2.8.5).

In addition to the global convergence, the trust-region framework supplies a proper tuning

of the R-regularization weight βk, such that βk will vanish asymptotically. Thus the algorithm

converges locally at a superlinear rate to a local minimizer satisfying the second-order sufficient

optimality condition (for semismooth problems); see Theorem 2.8.10 below. To sketch the proof,

note that for sufficiently large k, H̃k and R̃k both become strictly positive definite. It follows that

the alternating iterations on βk and uk, i.e. steps 4–14 of Algorithm 2.8.8, converge and therefore

the Cauchy-point based model reduction criterion will be satisfied; see (2.4.23). Analogous to

the classical trust-region method, the evaluation ratio ρk tends to 1 and the trust-region radius

σk is uniformly bounded away from 0. As a result the weight βk will vanish in the limit. Finally,

the full step size ak = 1 is admissible for all sufficiently k and the step dk is asymptotically

identical to a full semismooth Newton step. We refer to Theorem 2.4.10 for a complete proof of

the local superlinear convergence.
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Theorem 2.8.10 (Local convergence). Let the sequence {(uk, pk)} generated by Algorithm 2.8.8

converge to some (u∗, p∗) satisfying the Euler-Lagrange equation (2.8.5). Assume that all gen-

eralized Hessians of fγ at u∗ are strictly positive definite. Then we have limk→∞ βk = 0 and the

sequence {uk} converges to u∗ superlinearly, i.e.

‖uk+1 − u∗‖ = o(‖uk − u∗‖), as k →∞.

2.8.3 Selected applications

Here we present a numerical study of Algorithm 2.8.8. Throughout this subsection, the linear

system in step 5 is handled by the conjugate gradient method with residual tolerance 0.01.

Whenever, the matrix H̃k + βkR̃k is detected to be indefinite or (near-) singular, we imme-

diately utilize step 7 in order to obtain a positive definite linear system. The trust-region

subproblem (2.8.10)–(2.8.11) is solved only approximately. From our numerical experience, one

(inner) iteration on the R-regularization weight βk seems efficient for the overall algorithm. The

regularization parameter α is manually chosen to properly balance the data fidelity and the

sparsity-promoting prior. The Huber parameter γ is selected to be sufficiently small, depending

on the particular application, in order to obtain a desirable sparse solution. We terminate the

overall algorithm once the residual norm ‖res(uk, pk; γ)‖ is reduced by a factor of 10−7 relative

to its initial value.

The remainder of this subsection will present selected applications of the general variational

framework (2.8.1) in image processing, feature selection, and optimal control. All experiments

in this subsection were performed under MATLAB R2011b on a 2.66 GHz Intel Core Laptop

with 4 GB RAM. The reported CPU time is measured in seconds.

Image denoising via overcomplete dictionary

We first apply our method to an image denoising problem, where the following `1/2-DCT5 model

is considered

min
u∈R|Ω|

1

2
‖u− z‖2 +

24∑

l=1

∑

(j1,j2)∈Ω

αlψγ(|(hl ∗ u)j1,j2 |). (2.8.21)

Here, z is the observed image (see Figure 2.13(b)), which is generated by adding white Gaus-

sian noise of standard deviation 25/255 to the “Cameraman” image (see Figure 2.13(a)). The

filters (hl)
24
l=1 are the two-dimensional 5th-order discrete cosine transform (DCT5) filters, and

correspondingly (αl)
24
l=1 are the regularization parameters trained from a large database of image

patches [KP13]; see Figure 2.12 for the illustrations of DCT5 filters and the values of trained

regularization parameters. The symbol “∗” denotes the conventional two-dimensional convolu-

tion. By considering the concave bridge prior with exponent 1/2 (or ψ(t) = 2t1/2), we expect

the restored image u to be sparse under the DCT5 transform. In this sense, the variational

model (2.8.21) is an analysis approach [COS09].
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(a) 1st

(b) 1st + 2nd

(c) DCT3

(d) DCT5

Figure 5: Different sets of filters used in the experiments.

operators �Kk as the N × N block-diagonal matrices

(5.1) �Kk = diag(Kk, ..., Kk� �� �
N times

) .

Then, we can treat the multiple training data problem as a single training
data problem with a modified linear operator �K and the analysis carried
out in the previous sections can be applied.

The linear operators Kk ∈ Rm×n we consider in our experiments are gen-
erated from local filter kernels κk ∈ Rµ×ν such that the matrix-vector prod-
uct Kkx is equal to the two dimensional convolution of the two-dimensional
image x with the filter kernel κk, i.e.

Kkx = x ∗ κk ,

where ∗ denotes the two-dimensional convolution operation. Note that for
the matrix vector product Kkx, the image is treated as a column vector

36

5.599e-4 7.036e-4 4.913e-4 8.650e-4 9.291e-4 8.073e-4 9.853e-4 8.291e-4

1.981e-3 8.766e-4 6.595e-4 5.764e-4 7.636e-4 1.075e-3 9.150e-4 4.896e-4

6.361e-4 3.362e-4 1.180e-3 1.209e-3 1.392e-3 1.062e-3 2.121e-3 1.739e-3

Figure 2.12: DCT5 filters and regularization parameters.

We implement Algorithm 2.8.8 with the initial guess u0 = z and different choices of the

Huber parameter, namely γ = 0.03, 0.02, 0.015, and 0.01. The quality of the restored image is

measured by the peak signal-to-noise ratio (PSNR). The corresponding PSNR and CPU time

with respect to different γ are reported in Table 2.7. We note the tradeoff in γ-selection that

smaller γ typically yields the higher quality on the sparse solution, but costs more CPU time.

γ 0.03 0.02 0.015 0.01

PSNR 26.61 27.47 27.91 28.25
CPU 50.88 61.03 122.7 234.1

Table 2.7: Dependence on the Huber parameter.

We further compare the performance of the `1/2-DCT5 model (with u0 = z, γ = 0.01) and

that of `1-DCT5 model in [KP13], for which the corresponding restored images are displayed

in (c) and (d) of Figure 2.13, repectively. Table 2.8 reports the quantitative comparison of the

two models with respect to the PSNR value, the number of Newton iterations, the total number

of conjugate gradient iterations, and the CPU time. It is observed that the `1-DCT5 model

poorly restores the homogeneous region in order to well preserve the textures in the image.

The `1/2-DCT5 model is more time-consuming due to solving a nonconvex problem, but yields

considerable improvement on the restoration quality.

Model PSNR #Newton #CG CPU

`1-DCT5 27.46 11 104 80.37

`1/2-DCT5 28.25 24 358 234.1

Table 2.8: Comparison of `1/2- and `1-models.
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(a) “Cameraman” image. (b) Corrupted image.

(c) Restoration via `1/2-DCT5. (d) Restoration via `1-DCT5.

Figure 2.13: Image denoising via overcomplete dictionary.

Feature selection via sparse support vector machines

We consider an example of feature selection using a support vector machine (SVM) [WMC+00],

where we aim to identify 10 feature variables out of 200 candidate variables (xj)
200
j=1. The

identification is based on n training samples simulated as follows. For each sample, the outcome

yi ∈ {+1,−1}, i ∈ {1, 2, ..., n}, is generated with equal probability. If xj is a feature variable,

then with probability 0.3 the random variable xij = yiN (3, 1) is drawn and with probability 0.7

we generate xij = N (0, 1). If xj is a noise variable, then xij = N (0, 1) is independently generated.

The linear SVM uses the classifier y = sgn(b +
∑200

j=1wjxj) to predict the outcome for a

fresh input x. The unknowns b ∈ R and w ∈ R200 are determined by solving the following

minimization problem

min
b∈R,w∈R200

α

200∑

j=1

ψγ(|wj |) +
1

n

n∑

i=1

Lεhl


yi(b+

200∑

j=1

wjx
i
j)


 , (2.8.22)

where Lεhl(·) is a smoothed hinge loss [Cha07a] defined by

Lεhl(s) =

{
max(1− s, 0), if |s− 1| ≥ εhl,
(1 + εhl − s)2/(4εhl), if |s− 1| < εhl,
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with the smoothing parameter εhl = 0.01. In this experiment, we choose α = 0.1, ψ(t) =

log(1 + 2t), and γ = 0.001.

The computational results for a trial run with n = 200 training samples are displayed in

Figure 2.14. We plot the importance weight w in (a), where in particular the weights for the

10 presumed feature variables are marked by red circles. From this figure, it is observed that

the variational model (2.8.22) has correctly identified the feature variables among all candidate

variables. In (b) and (c), we illustrate the computed classifier with respect to the training

data projected onto two particular candidate variables, i.e. y = sgn(b+ wj1xj1 + wj2xj2). More

specifically, in (b) xj1 and xj2 are two distinct feature variables, and in (c) one is a feature

variable and the other is a noise variable. In both figures, the coordinates of the circles indicate

the random-variable values of those simulated samples with outcomes +1, and the coordinates

of the crosses indicate the random-variable values of those simulated samples with outcomes −1.
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(a) Importance weight w.
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Figure 2.14: Feature selection via sparse support vector machine.

Sparse optimal control

Finally, we demonstrate an application in sparse optimal control, which shows considerable

promises in actuator placement problems; see, e.g., [Sta09, CK12]. Consider the following sta-

tionary control problem:

min J(y, u) =
1

2

∫

Ω
|y − z|2dx+

µ

2

∫

Ω
|∇u|2dx+ α

∫

Ω
ψ(|u|)dx (2.8.23)

over (y, u) ∈ H1
0 (Ω)× Uad, (2.8.24)

s.t.

∫

Ω
∇y · ∇vdx =

∫

Ω
uvdx ∀v ∈ H1

0 (Ω). (2.8.25)

Here Ω is a bounded Lipschitz domain, α > 0, 0 < µ� α are some given parameters, a desired

state is given by z ∈ H1
0 (Ω), and Uad is some weakly closed subset in H1

0 (Ω). A (continuous)

concave prior ψ(·) is applied in order to promote the sparsity of the optimal control in the spatial

domain.

In general, it is a difficult task to establish the existence of solutions for a nonconvex mini-

mization problem in function space due to the lack of weak (or weak∗) lower semicontinuity for
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the objective; see, e.g., [AK02] and section 2.7 of the present chapter. However, in this special

case with the H1-regularization (the µ-term), we are able to show the existence of solution in

the following theorem.

Theorem 2.8.11. The stationary control problem (2.8.23)–(2.8.25) admits a solution.

Proof. By the Lax-Milgram Lemma, the solution mapping u 7→ y = (−∆)−1u for (2.8.25) is

linear and continuous. Thus we only need to consider the reduced problem:

min
u∈Uad

Ĵ(u) =
1

2

∫

Ω
|(−∆)−1u− z|2dx+

µ

2

∫

Ω
|∇u|2dx+ α

∫

Ω
ψ(|u|)dx.

Since Ĵ(·) is bounded from below and coercive in H1
0 (Ω), any infimizing sequence {uk} is uni-

formly bounded in H1
0 (Ω). By the reflexivity of the space H1(Ω) and the weak closedness of the

admissible set Uad, there exists a subsequence of {uk}, also denoted by {uk}, such that uk ⇀ u∗

in H1
0 (Ω) as k →∞ for some u∗ ∈ Uad.

As the functional u ∈ H1
0 (Ω) 7→ 1

2

∫
Ω |(−∆)−1u−z|2dx+ µ

2

∫
Ω |∇u|2dx is convex and strongly

continuous, it is weakly lower semicontinuous, and thus we have

1

2

∫

Ω
|(−∆)−1u∗ − z|2dx+

µ

2

∫

Ω
|∇u∗|2dx

≤ lim inf
k→∞

1

2

∫

Ω
|(−∆)−1uk − z|2dx+

µ

2

∫

Ω
|∇uk|2dx.

On the other hand, the compact embedding of H1
0 (Ω) into L2(Ω) (see, e.g., Theorem 5.3.3 in

[ABM06]) implies the strong convergence of {uk} to u∗ in L2(Ω), and thus we have, up to another

subsequence, uk(x) → u∗(x) a.e. in Ω as k → ∞. By Fatou’s lemma and the continuity of the

scalar function ψ(| · |), we have
∫

Ω
ψ(|u∗|)dx ≤ lim inf

k→∞

∫

Ω
ψ(|uk|)dx.

Altogether, we have Ĵ(u∗) ≤ lim infk→∞ Ĵ(uk), indicating that u∗ is an optimal solution to the

underlying problem.

We remark that without the H1-regularization term the above proof would no longer be

valid due to the lack of coercivity of the reduced objective Ĵ(·). In addition, H1-regularization

enforces sufficient regularity on a weakly convergent (sub)sequence that finally yields the almost

everywhere pointwise convergence of the infimizing (sub)sequence.

Now we turn our attention to the numerical solution for the following discretized control

problem in reduced form:

min
u∈R|Ω|

∑

(j1,j2)∈Ω

1

2
|(−∆)−1u− z|2 + αψγ(|u|) +

µ

2
|∇u|2.

Here Ω = {0, 1, 2, ..., 2N}2, where N ∈ N, denotes the 2D index set for the discretized square

domain (0, 1)2 with a uniform mesh size h = 2−N . The Laplacian ∆ with homogenous Dirichlet
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boundary conditions is discretized by the standard 5-point stencil. The desired state z ∈ R|Ω| is

defined by

zj1,j2 = sin(2πhj1) sin(2πhj2) exp(2hj1)/6,

for all (j1, j2) ∈ Ω; see Figure 2.15(a). Note that we have taken the admissible set to be

universal, i.e. Uad = R|Ω|. In the following experiments, we shall fix N = 7, α = 10−4, γ = 0.1,

and u0 = −∆z. The associated numerical results are displayed in Figure 2.15.
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(a) Desired state.
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(b) Control (ψ(t) = 4
3
t3/4, µ =

10−12α).
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(c) Realization (ψ(t) = 4
3
t3/4, µ = 0).
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(d) Control (ψ(t) = 4
3
t3/4, µ = 0).
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(e) Realization (ψ(t) = t, µ = 0).
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(f) Control (ψ(t) = t, µ = 0).

Figure 2.15: Sparse optimal control.

As shown in (b), we compute the optimal control with the prior ψ(t) = 4
3 t

3/4 and µ = 10−12α.

In fact, in the discrete setting with fixed mesh size, this result is almost identical to the optimal
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control with µ = 0 displayed in (d). Note that the optimal control is highly sparse in the spatial

domain with sparsity rate |{(j1, j2) ∈ Ω : |uj1,j2 | ≥ γ}|/|Ω| equal to 0.47%. The corresponding

realized state (−∆)−1u is given in (c), and the mean tracking error ‖(−∆)−1u− z‖/|Ω| is equal

to 9.5322e-05. For comparison, we also compute the optimal control obtained from the (convex)

prior ψ(t) = t (together with µ = 0), for which the realized state and the control are shown

in (e) and (f), respectively. The corresponding sparsity rate of the control in (f) is 31.48%

and the mean tracking error is 1.0041e-04. The comparison tells that the optimal control via

the concave prior can produce a better realization of the desired state even with much higher

spatial sparsity. Nevertheless, we remark that the magnitudes of the nontrivial entries (whose

magnitudes are larger than γ) of the control in (d) are typically much larger than those in (f),

which indicates that a higher physical capability of the control devices is typically required in

order to compensate a reduction on the number of the control devices.
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Chapter 3

Blind deconvolution via bilevel
optimization

In this chapter, we continue our investigation on nonconvex and nonsmooth minimization ap-

proaches to sparse imaging, but in a somewhat different context from the previous chapter.

Concretely, we shall investigate a bilevel optimization model for blind deconvolution, where the

point spread function, which parameterizes the blurring operator, arises as a second unknown

in addition to the underlying image.

3.1 Introduction

Image blur is widely encountered in many application areas; see, e.g., [CE07] and the references

therein. In astronomy, images taken from a telescope appear blurry as light travels through a tur-

bulent medium such as the atmosphere. The out-of-focus blur in microscopic images commonly

occurs due to misplacement of the focal planes. Tomographic techniques in medical imaging,

such as single-photon emission computed tomography (SPECT), are possibly prone to resolution

limits of imaging devices or physical motion of patients, which both lead to blurring artifacts

in final reconstructed images. In practice, the blurring operator, which can be modeled as the

convolution with some point spread function (PSF) provided that the blurring is shift-invariant,

is often not available beforehand and needs to be identified together with the underlying source

image. Such a problem, typically known as blind deconvolution [KH96a, KH96b], represents an

ill-posed inverse problem in image processing, more challenging than non-blind deconvolution

owing to the coupling of the PSF and the image.

There exists a diverse literature on blind deconvolution, which roughly divides into two cat-

egories: direct methods and iterative methods. The direct methods, such as the APEX method

by Carasso [Car01, Car02, Car06, Car09], typically assume a specific parametric structure on

either the blurring kernel itself or its characteristic function, and are provably effective for spe-

cific applications. Among the iterative methods, some use simple fixed-point type iterations,

e.g. the Richardson-Lucy method [FBP95], but their convergence properties and robustness
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against noise are difficult to analyze. Others proceed by formulating a proper variational model

involving regularization terms on the image and/or the PSF. In [YK96] H1-regularizations are

imposed on both the image and the PSF, and in [CW98, HMO05] total-variation regularizations

on the image and the PSF are utilized and yield better results than H1-regularizations for cer-

tain PSFs. We also mention that nonconvex image priors are considered for blind deconvolution

in the work [AA10], which are favorable for certain sparse images [CY08, HW13, HW14b]. The

convergence analysis of an alternating minimization scheme for such double-regularization based

variational approaches in appropriately chosen function spaces is carried out in [BS01, Jus06].

An exception of variational approaches to blind deconvolution is [JR06], where the optimality

condition is “diagonalized” by Fourier transform and thus can be solved by some non-iterative

root-finding algorithm. Although we shall focus ourselves only on spatially invariant PSFs in this

work, we remark that blind deconvolution with spatially varying PSFs might be advantageous

in certain applications such as telescopic imaging; see, e.g., [BJNP06].

Nevertheless, most existing variational approaches to blind deconvolution are “single-level”,

in the sense that both unknowns, i.e. the image and the PSF, appear in a single objective to

be minimized. In this work, we are interested in a class of blind deconvolution problems where

additional statistical information on the image (and possibly also on the PSF) is available. For

instance, in microscopic imaging the blurring is nearly stationary and an artificial reference image

can be inserted into the imaging device for obtaining a trial blurry observation of the reference

image. In telescopic imaging, the target object, considered to be stationary, is photographed by

multiple cameras within an instant, leading to highly correlated blurry observations. To exploit

such additional image statistics, we propose a bilevel optimization framework. In essence, in

the lower level the total-variation (TV) model (also known as the Rudin-Fatemi-Osher model

[ROF92]) is imposed as the constraint that the underlying source image must comply with, as

is typically done in non-blind deconvolution [AK02, CS05]. In the upper level, we minimize

a suitable objective which incorporates the statistical information on the image and the PSF.

Notably, bilevel optimization of similar structures has been recently applied to image processing

for parameter/model learning tasks in [KP13, DlRS13].

Due to nonsmoothness of the objective in the (convex) TV-model, the sufficient and nec-

essary optimality condition for the lower-level problem can be equivalently expressed as either

a variational inequality, a nonsmooth equation, or a set-valued (or generalized) equation. This

prevents us from applying the classical Karush-Kuhn-Tucker theory to derive a necessary opti-

mality condition (or stationarity condition) for the overall bilevel optimization, and thus distin-

guishes our bilevel optimization problem from classical constrained optimization. Such difficulty

is also typical in mathematical programming with equilibrium constraints (MPEC); see the mono-

graphs [LPR96, OKZ98] for comprehensive introductions on the subject. In this chapter, we

tackle the total-variation based bilevel optimization problem in the fashion of MPEC. For the

lower-level problem, we justify the so-called strong regularity condition by Robinson [Rob80]
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and then establish the B(ouligand)-differentiability of the solution mapping. Based on this,

we derive the M(ordukhovich)-stationarity condition for the bilevel optimization problem. Yet,

the C(larke)-stationarity, slightly weaker than the M-stationarity, is pursued numerically by a

hybrid projected gradient method and its convergence is analyzed in detail. In the numerical

experiments, we implement a simplified version of the hybrid projected gradient method and

demonstrate some promising applications on point spread function calibration and multiframe

blind deconvolution.

The rest of the chapter is organized as follows. Section 3.2 provides preliminaries on some

classical theories concerning set-valued equations and MPECs. Then we formulate the bilevel

optimization model in section 3.3. In section 3.4, the lower-level solution mapping is studied

in detail with respect to its existence, continuity, and differentiability. Different notions of

stationarity conditions are introduced in section 3.5, where their relations are also discussed.

Section 3.6 develops and analyzes a hybrid projected gradient method for pursuing a C-stationary

point of the bilevel problem. Numerical experiments based on a simplified project gradient

method are presented in section 3.7.

3.2 Preliminaries on mathematical programs with equilibrium
constraints (MPECs)

Consider the following MPEC in a general setting:

minimize (min) J(u, h)
subject to (s.t.) 0 ∈ F (u, h) +G(u),

u ∈ Rn, h ∈ Qh.
(3.2.1)

Here Qh ⊂ Rm is a non-empty, closed admissible set for h, J : Rn×Qh → R is locally Lipschitz,

F : Rn × Qh → Rn is continuously differentiable, and G : Rn ⇒ Rn is a set-valued mapping

with a closed graph. Without loss of generality, we assume that there exists at least one feasible

point (u, h) in (3.2.1) and that the MPEC problem (3.2.1) admits a global solution. Very often

these conditions can be justified by standard arguments once further structural information on

(3.2.1) is supplied. The goal of this preliminary section is to derive a stationarity condition for

(3.2.1) based on Mordukhovich’s generalized differential calculus.

3.2.1 Lower-level problem: strong regularity condition and an implicit map

We first focus on the set-valued equation

0 ∈ F (u, h) +G(u), u ∈ Rn, h ∈ Qh. (3.2.2)

which appears as a constraint in the MPEC (3.2.1). The solution mapping of (3.2.2) is denoted by

S : Qh ⇒ Rn such that (3.2.2) holds for any h ∈ Qh, u ∈ S(h). We remark that the formulation in

(3.2.2) covers a rich class of equilibrium problems including constrained minimizations, nonlinear

71



complementarity problems, and variational inequalities (of the first kind); see [OKZ98] for a more

comprehensive introduction.

In the following, we introduce the notation of strong regularity condition originally proposed

by [Rob80], which leads to a (generalized) implicit function theorem for the set-valued equation.

Definition 3.2.1 (Strong regularity condition). Let (u0, h0) ∈ Rn ×Qh be a reference solution

for (3.2.2), i.e. u0 ∈ S(h0), and Σ : Rn ⇒ Rn be defined by

Σ(ξ) :=
{
u ∈ Rn : ξ ∈ F (u0, h0) +DuF (u0, h0)(u− u0) +G(u)

}
. (3.2.3)

Assume that there exist neighborhoods Uξ of 0 ∈ Rn and Uu of u0 such that the mapping ξ 7→
Σ(ξ)∩Uu is single-valued and Lipschitz on Uξ. Then we say the strong regularity condition holds

for (3.2.2) at (u0, h0).

Theorem 3.2.2 (Generalized implicit function theorem). Assume that the strong regularity

condition in Definition 3.2.1 holds for (3.2.2) at a reference solution (u0, h0) ∈ gphS. Then

there exist neighborhoods Vh of h0 and Vu of u0 such that the mapping h ∈ Vh ∩Qh 7→ S(h)∩Vu
is single-valued and Lipschitz.

Proof. See Theorem 2.1 and Corollary 2.2 in [Rob80].

We refer to Chapter 5 in [OKZ98] for an exhibition of sufficient conditions that yield strong

regularity condition for (3.2.2) when F and G admit particular structures.

3.2.2 Elements in Mordukhovich’s generalized differential calculus

Here we collect important notations from Mordukhovich’s generalized differential calculus and

a few auxiliary results used later in section 3.2.3. The materials presented here are based on

[Mor94, Out00]. For a more comprehensive introduction, we refer to the monographs [RW98,

Mor06].

Definition 3.2.3 (Tangent and normal cones). The tangent (or contingent) cone of a subset Ξ

in Rp at a ∈ cl Ξ, denoted by TΞ(a), is defined by

TΞ(a) =
{
v ∈ Rp : tk → 0+, vk → v, a+ tkvk ∈ Ξ ∀k

}
. (3.2.4)

The (regular) normal cone of Ξ at a ∈ cl Ξ, denoted by NΞ(a), is defined as the (negative) polar

cone of TΞ(a), i.e.

NΞ(a) = {w ∈ Rp : 〈w, v〉 ≤ 0 ∀v ∈ TΞ(a)} .

Definition 3.2.4 (Mordukhovich normal cone). The Mordukhovich (or limiting) normal cone

of a subset Ξ in Rp at a ∈ cl Ξ, denoted by N
(M)
Ξ (a), is defined by

N
(M)
Ξ (a) = {w ∈ Rp : wk → w, ak → a, wk ∈ NΞ(ak) ∀k}.
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Note that if Ξ is convex, we have NΞ(·) = N
(M)
Ξ (·); see [Mor94]. In the following, for a

set-valued mapping Ψ : Rp ⇒ Rq, we denote its graph by gph Ψ := {(a, b) ∈ Rp×Rq : b ∈ Ψ(a)}.
For an extended real-valued function ψ : Rp → R ∪ {+∞}, we denote its epigraph by epiψ :=

{(a, b) ∈ Rp × R : b ≥ ψ(a)}. Without further specification, Ψ is a generic set-valued mapping

with a closed graph in our discussion.

Definition 3.2.5 (Coderivative). The coderivative of a set-valued mapping Ψ : Rp ⇒ Rq at

(a, b) ∈ gph Ψ is a set-valued mapping D∗Ψ(a, b) : Rq ⇒ Rp defined by

D∗Ψ(a, b)[δb] :=
{
δa ∈ Rp : (δa,−δb) ∈ N (M)

gph Ψ(a, b)
}
.

Definition 3.2.6 (Mordukhovich subdifferential). The Mordukhovich subdifferential, denoted

by ∂∗ψ(a), of an extended real-valued function ψ : Rp → R ∪ {+∞} at a ∈ Rp is defined by

∂∗ψ(a) :=
{
δa ∈ Rp : (δa,−1) ∈ N (M)

epiψ(a, ψ(a))
}
.

Lemma 3.2.7. Assume that Ψ1 : Rp → Rq is continuously differentiable and Ψ2 : Rp ⇒ Rq has

a closed graph. Then for any b ∈ Ψ1(a) + Ψ2(a) and δb ∈ Rq, we have

D∗(Ψ1 + Ψ2)(a, b)[δb] = DΨ1(a)>δb+D∗Ψ2(a, b−Ψ1(a))[δb].

Proof. See Corollary 4.4 in [Mor94].

Lemma 3.2.8. Let Q1, Q2 be two subsets in Rp and a ∈ clQ1∩ clQ2. If N
(M)
Q1

(a)∩
(
−N (M)

Q2
(a)
)

=

{0}, then the following inclusion holds true:

N
(M)
Q1∩Q2

(a) ⊂ N (M)
Q1

(a) +N
(M)
Q2

(a).

Proof. See Corollary 4.7 in [Mor94].

Lemma 3.2.9. Consider a continuously differentiable function H : Rp → Rq and a nonempty,

closed subset QH in Rq. Define the set-valued mapping Φ : Rp ⇒ Rq by

Φ(a) := H(a) +QH ∀a ∈ Rp. (3.2.5)

Then the coderivative of Φ at (a, b) ∈ gph Φ is given by

D∗Φ(a, b)[δb] =

{
DH(a)>δb if δb ∈ −N (M)

QH
(b−H(a)),

∅ otherwise.
(3.2.6)

Proof. See Lemma 2.3 in [Out00].

Definition 3.2.10 (Pseudo-Lipschitz continuity). A set-valued mapping Ψ : Rp ⇒ Rq is pseudo-

Lipschitz continuous at (a0, b0) ∈ gph Ψ with modulus LΨ ≥ 0 if there exist neighborhoods Ua of

a0 and Ub of b0 such that the following inclusion holds for all a ∈ Ua:

Ψ(a) ∩ Ub ⊂ Ψ(a0) + LΨ‖a− a0‖B,

where B is the closed unit ball in Rq.
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Lemma 3.2.11. Consider a set-valued mapping Ψ : Rp ⇒ Rq and (a, b) ∈ gph Ψ. Then Ψ is

pseudo-Lipschitz continuous at (a, b) if and only if

D∗Ψ(a, b)[0] = {0}.

Proof. See Proposition 2.8 in [Mor94].

3.2.3 Mordukhovich-type stationarity condition for MPECs

Now we apply the results from section 3.2.2 to derive a stationarity condition for the MPEC

(3.2.1). Let us first consider a single-level mathematical program as follows:

min ψ(a) s.t. a ∈ Ξ, (3.2.7)

where we assume ψ : Rp → R is locally Lipschitz and Ξ is a nonempty, closed subset in Rp.

Lemma 3.2.12. Any local solution a∗ for (3.2.7) satisfies

0 ∈ ∂∗ψ(a∗) +N
(M)
Ξ (a∗).

Proof. See Proposition 2.1 in [Out00].

Now we assume that the constraint adopts the following representation

Ξ = {a ∈ Qa : 0 ∈ H(a) +QH} , (3.2.8)

with a continuously differentiable function H : Rp → Rq and nonempty, closed subsets Qa ⊂ Rp,
QH ⊂ Rq. The following lemma relates (3.2.7) to a penalized program based on a pseudo-

Lipschitz condition.

Lemma 3.2.13. Assume that a∗ is a local solution for (3.2.7) with Ξ given by (3.2.8) and ψ is

Lipschitz near a∗ with modulus Lψ. Define the set-valued mapping Φ : Rp ⇒ Rq by

Φ(a) := H(a) +QH ∀a ∈ Rp, (3.2.9)

and assume that Φ−1 ∩ Qa is pseudo-Lipschitz continuous at (0, a∗) with modulus LΦ. Then

there exist neighborhoods Ub of 0 ∈ Rq and Ua of a∗ such that (a, b) = (a∗, 0) solves the penalized

program:
min ψ(a) + λ‖b‖
s.t. b ∈ Φ(a) ∩ Ub, a ∈ Qa ∩ Ua,

(3.2.10)

provided that λ ≥ LψLΦ.

Proof. See Lemma 2.2 in [Out00].

The follow theorem establishes a Mordukhovich-type stationarity condition for (3.2.7)–(3.2.8),

which is taken from Theorem 2.4 in [Out00]. For completeness, we present a proof for this fun-

damental result.
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Theorem 3.2.14. Under the same assumption as in Lemma 3.2.13, there exists a multiplier

v∗ ∈ N (M)
QH

(−H(a∗)) such that

0 ∈ ∂∗ψ(a∗)−DH(a∗)>v∗ +N
(M)
Qa

(a∗). (3.2.11)

Proof. Consider the penalized program (3.2.10) in Lemma 3.2.13 for sufficiently large λ. Then

according to Lemma 3.2.12, the following stationarity condition holds true:

0 ∈ ∂∗ψ(a∗)× (λB) +N
(M)
gph Φ∩ (Ua×Ub)∩ (Qa×Rq)(a

∗, 0). (3.2.12)

By Definition 3.2.5, we have

N
(M)
gph Φ∩ (Ua×Ub)(a

∗, 0) = {(δa, δb) ∈ Rp × Rq : δa ∈ D∗Φ(a∗, 0)[−δb]} .

Due to Lemma 3.2.9, this further implies

N
(M)
gph Φ∩ (Ua×Ub)(a

∗, 0) =
{

(δa, δb) ∈ Rp × Rq : δa = −DH(a∗)>δb, δb ∈ N (M)
QH

(−H(a∗))
}
.

On the other hand, due to separability we have

N
(M)
Qa×Rq(a

∗, 0) = N
(M)
Qa

(a∗)× {0}.

Thus, the assumption in Lemma 3.2.8 is fulfilled, i.e.

N
(M)
gph Φ∩ (Ua×Ub)(a

∗, 0) ∩
(
−N (M)

Qa×Rq(a
∗, 0)

)
= {0}.

Invoking Lemma 3.2.8 on (3.2.12), we conclude that (3.2.11) holds for some v∗ ∈ N (M)
QH

(−H(a∗)).

To put the MPEC (3.2.1) into the perspective of Theorem 3.2.14, one may consider a :=

(u, h) ∈ Rn × Rm, H(a) := (−u, F (u, h)), Qa := Rn × Qh, QH := gphG. Accordingly, Φ in

(3.2.9) takes the form

Φ(u, h) =

[
−u

F (u, h)

]
+ gphG. (3.2.13)

Lemma 3.2.15. Let (u∗, h∗) be a local solution for (3.2.1). Further assume the following con-

straint qualification (CQ):

0 ∈
[
I −DuF (u∗, h∗)>

0 −DhF (u∗, h∗)>

] [
ζ
η

]
+ {0} ×N (M)

Qh
(h∗)

(ζ, η) ∈ N (M)
gphG(u∗,−F (u∗, h∗))




⇒

{
ζ = 0
η = 0

. (3.2.14)

Then there exist multipliers ζ∗, η∗ ∈ Rn such that the following stationarity condition is satisfied:





0 ∈ ∂∗J(u∗, h∗) +

[
I −DuF (u∗, h∗)>

0 −DhF (u∗, h∗)>

] [
ζ∗

η∗

]
+ {0} ×N (M)

Qh
(h∗),

(ζ∗, η∗) ∈ N (M)
gphG(u∗,−F (u∗, h∗)).

(3.2.15)
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Proof. See Theorem 3.1 in [Out00].

In fact, the CQ in (3.2.14) corresponds to the well-known Mangasarian-Fromowitz CQ on

the constraint set {(u, h) ∈ Rn ×Qh : 0 ∈ Φ(u, h), Φ given by (3.2.13)} in the dual form. It is

asserted in the following theorem that this CQ can be fulfilled by the strong regularity condition.

The proof essentially follows Proposition 3.2 in [Out00].

Theorem 3.2.16. Let (u∗, h∗) be a local solution for (3.2.1). Further assume that the strong

regularity condition, see Definition 3.2.1, holds for the lower-level problem (3.2.2) at (u∗, h∗).

Then the CQ in (3.2.14) is fulfilled and, therefore, the stationarity condition (3.2.15) must hold.

Proof. Due to the strong regularity, the set-valued mapping Σ in (3.2.3) is pseudo-Lipschitz

continuous at (0, u∗). It follows from Lemma 3.2.11 that

D∗Σ(0, u∗)[0] = {0}. (3.2.16)

In view of Definition 3.2.5, one can readily verify that

δu ∈ D∗Σ−1(u∗, 0)[δξ] ⇔ − δξ ∈ D∗Σ(0, u∗)[−δu],

and thus derive from (3.2.16) that

KerD∗Σ−1(u∗, 0) = {0}. (3.2.17)

Invoking the summation rule in Lemma 3.2.7 on Σ−1, we have

D∗Σ−1(u∗, 0)[−η] = DuF (u∗, h∗)>(−η) +D∗G(u∗,−F (u∗, h∗))[−η].

This, together with (3.2.17), yields the following implication:

−DuF (u∗, h∗)>η + ζ = 0

(ζ, η) ∈ N (M)
gphG(u∗,−F (u∗, h∗))

}
⇒ η = 0,

which ensures the satisfaction of the CQ in (3.2.14).

3.3 A bilevel optimization model for blind deconvolution

Let u(true) ∈ R|Ωu| be the underlying source image over some two-dimensional (2D) index domain

Ωu. Assume the following image formation model for a blurry observation z ∈ R|Ωu|:

z = K(h(true))u(true) + noise. (3.3.1)

Here the noise is assumed to be white Gaussian noise. We denote by L(R|Ωu|) the set of all

continuous linear maps from R|Ωu| to itself and assume that K : h ∈ Qh 7→ K(h) ∈ L(R|Ωu|)
is a given continuously differentiable mapping over a convex and compact domain Qh in Rm.
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In our theoretical and algorithmic development each K(h) is only required to be a continuous

linear operator on R|Ωu|, while in our numerics we focus on the cases where K(h) represents a

2D convolution with some point spread function h, denoted by K(h)u := h ∗ u. Thus, our task

is to restore both unknowns, u(true) and h(true), from the observation z.

Whenever h is given, restoration of u (as non-blind deconvolution) can be carried out by

solving the following variational problem:

minimize
µ

2
‖∇u‖2 +

1

2
‖K(h)u− z‖2 + α‖∇u‖1 over u ∈ R|Ωu|, (3.3.2)

for some manually chosen parameters α > 0 and 0 ≤ µ � α. Here ∇ : R|Ωu| →
(
R|Ωu|

)2
is

the discrete gradient operator, and we shall denote the discrete Laplacian by ∆ := −∇>∇.

Besides, ‖ · ‖ is the Euclidean norm in R|Ωu| or
(
R|Ωu|

)2
, and ‖ · ‖1 is the `1-norm defined by

‖p‖1 :=
∑

j∈Ωu
|pj | for p ∈

(
R|Ωu|

)2
where each |pj | is the Euclidean norm of the vector pj ∈ R2.

We also denote by 〈·, ·〉 the standard inner product in R2, R|Ωu|, or
(
R|Ωu|

)2
.

The variational model (3.3.2) represents a discrete version of the Hilbert-space approach

[IK99, HS06] to total variation (TV) image restoration:

minimize

∫

Ω

(
µ

2
|∇u|2 +

1

2
|K(h)u− z|2 + α|∇u|

)
dx over u ∈ H1

0 (Ω).

Throughout this chapter, we shall assume for all feasible h ∈ Qh that

Ker∇∩KerK(h) = {0}, (3.3.3)

or equivalently that −µ∆ + K(h)>K(h) is positive definite. This assumption indicates that

K(h), for any h ∈ Qh, does not annihilate constant vectors, as is indeed the case for the

convolution with commonly encountered point spread functions. Provided that (3.3.3) holds

true, the problem (3.3.2) always admits a unique global minimizer due to the strict convexity of

the objective, for which the sufficient and necessary optimality condition is given by the following

set-valued equation:

0 ∈ F (u, h) +G(u), (3.3.4)

where F : R|Ωu| ×Qh → R|Ωu| and G : R|Ωu| ⇒ R|Ωu| are respectively defined as

F (u, h) = (−µ∆ +K(h)>K(h))u−K(h)>z, (3.3.5)

G(u) =

{
α∇>p : p ∈ (R|Ωu|)2,

{
pj =

(∇u)j
|(∇u)j | if j ∈ Ωu, (∇u)j 6= 0

|pj | ≤ 1 if j ∈ Ωu, (∇u)j = 0

}
. (3.3.6)

We remark that in the original work by Robinson [Rob80] the term generalized equations was

used for set-valued equations.

In this work, we propose a bilevel optimization approach to blind deconvolution. In an

abstract setting, the corresponding model reads

min J(u, h)
s.t. 0 ∈ F (u, h) +G(u),

u ∈ R|Ωu|, h ∈ Qh.
(3.3.7)
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Here the total-variation model (3.3.2) represents the lower-level problem equivalently formulated

as the first-order optimality condition (3.3.4), while in the upper-level problem we minimize a

given objective J : R|Ωu| ×Qh → R known to be continuously differentiable and bounded from

below. In this context, the set-valued equation (3.3.4) may be referred to as the state equation

for the bilevel optimization (3.3.7), which implicitly induces a parameter-to-state mapping,

i.e. h 7→ u.

3.4 Solution mapping for lower-level problem: existence, conti-
nuity, and differentiability

In this section, we investigate the solution mapping associated with the lower-level problem in

(3.3.7). To begin with, we establish the existence of such a solution mapping and its Lipchitz

property by following Robinson’s approach to set-valued equations [Rob80]. In this context,

the notion of the strong regularity condition [Rob80] plays an important role. Essentially, the

strong regularity condition for set-valued equations generalizes the invertibility condition in the

classical implicit function theorem (for single-valued equations), and thus allows the application

of Robinson’s generalized implicit function theorem; see Theorem 3.2.2. In Theorem 3.4.1, we

justify the strong regularity condition at any feasible point and its consequence turns out to be

far-reaching. In what follows, we write DuF (u, h) for the (partial) differential of F with respect

to u.

Theorem 3.4.1 (Strong regularity and implicit function). The strong regularity condition, see

Definition 3.2.1, holds at any feasible solution (u0, h0) of (3.3.4), i.e. the mapping w ∈ R|Ωu| 7→
{u ∈ R|Ωu| : w ∈ F (u0, h0)+DuF (u0, h0)(u−u0)+G(u)} is (globally) single-valued and Lipschitz

continuous. Consequently, there exists a locally Lipschitz continuous solution mapping S : h 7→ u

such that u = S(h) satisfies the set-valued equation (3.3.4) for all h.

Proof. Due to Theorem 3.2.2, it suffices to show that the mapping w 7→ {u ∈ R|Ωu| : w ∈
F (u0, h0) +DuF (u0, h0)(u− u0) +G(u)} is globally single-valued and Lipschitz continuous.

First, note that F (u0, h0) + DuF (u0, h0)(u − u0) = (−µ∆ + K(h0)>K(h0))u − K(h0)>z.

Then the single-valuedness follows directly from the fact that the mapping

0 ∈ (−µ∆ +K(h0)>K(h0))u−K(h0)>z − w +G(u)

is the sufficient and necessary condition for the (strictly) convex minimization

min
u

µ

2
‖∇u‖2 +

1

2
‖K(h0)u− z‖2 − 〈w, u〉+ α‖∇u‖1,

which admits a unique solution.

To prove the Lipschitz property, consider pairs (u1, w1) and (u2, w2) that satisfy

0 ∈ (−µ∆ +K(h0)>K(h0))u1 −K(h0)>z − w1 +G(u1),

0 ∈ (−µ∆ +K(h0)>K(h0))u2 −K(h0)>z − w2 +G(u2).
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Then there exist subdifferentials p1 ∈ ∂‖ · ‖1(∇u1) and p2 ∈ ∂‖ · ‖1(∇u2) such that

0 = (−µ∆ +K(h0)>K(h0))u1 −K(h0)>z − w1 + α∇>p1,

0 = (−µ∆ +K(h0)>K(h0))u2 −K(h0)>z − w2 + α∇>p2.

It follows from the property of subdifferentials in convex analysis, see e.g. Proposition 8.12 in

[RW98], that

‖∇u2‖1 ≥ ‖∇u1‖1 + 〈p1,∇u2 −∇u1〉,
‖∇u1‖1 ≥ ‖∇u2‖1 + 〈p2,∇u1 −∇u2〉,

which further implies that

〈p1 − p2,∇u1 −∇u2〉 ≥ 0.

Thus, we have

0 = 〈(−µ∆ +K(h0)>K(h0))(u1 − u2)− (w1 − w2) + α∇>(p1 − p2), u1 − u2〉
≥ 〈(−µ∆ +K(h0)>K(h0))(u1 − u2), u1 − u2〉 − 〈w1 − w2, u1 − u2〉,

and therefore the following Lipschitz property holds, i.e.

‖u1 − u2‖ ≤ 1

λmin(−µ∆ +K(h0)>K(h0))
‖w1 − w2‖,

where λmin(·) denotes the minimal eigenvalue of a matrix. This completes the proof.

In view of Theorem 3.4.1, we may conveniently consider the reduced problem

min Ĵ(h) := J(u(h), h)
s.t. h ∈ Qh,

(3.4.1)

which is equivalent to (3.3.7). It is immediately observed from (3.4.1) that there exists a global

minimizer for (3.4.1) and thus also for (3.3.7).

Note that the state equation (3.3.4) can be expressed in terms of (u, h, p) as follows:

{
F (u, h) + α∇>p = 0,

(u, α∇>p) ∈ gphG,
(3.4.2)

where p is included as an auxiliary variable lying in the set

Qp :=
{
p ∈ (R|Ωu|)2 : |pj | ≤ 1 ∀j ∈ Ωu

}
,

and gphG denotes the graph of the set-valued mapping G, i.e. gphG = {(u, v) : u ∈ R|Ωu|, v ∈
G(u)}. We call the triplet (u, h, p) a feasible point for (3.3.7) if (u, h, p) satisfies (3.4.2).

In the following, we briefly introduce notions from variational geometry such as tangent/normal

cones and graphical derivatives. The interested reader may find further details in Chapter 6 of
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the monograph [RW98]. Recall that the definitions of tangent and normal cones are given in

Definition 3.2.3. In our context, the tangent and normal cones of gphG can be progressively

calculated as:

TgphG(u, α∇>p) =

{
(δu, α∇>δp) :





|(∇u)j |δpj = (∇δu)j − 〈(∇δu)j , pj〉pj if (∇u)j 6= 0,

(∇δu)j = 0, δpj ∈ R2 if |pj | < 1,

(∇δu)j = 0, 〈δpj , pj〉 ≤ 0, or

(∇δu)j = cpj (c ≥ 0), 〈δpj , pj〉 = 0 if (∇u)j = 0, |pj | = 1.

}
, (3.4.3)

NgphG(u, α∇>p) =

{
(α∇>w,−v) :





wj = ξj − 〈ξj , pj〉pj , (∇v)j = |(∇u)j |ξj (ξj ∈ R2) if (∇u)j 6= 0,

wj ∈ R2, (∇v)j = 0 if |pj | < 1,

〈wj , pj〉 ≤ 0, (∇v)j = cpj (c ≤ 0) if (∇u)j = 0, |pj | = 1.

}
.

(3.4.4)

The directional differentiability of the solution mapping S invokes the following notion.

Definition 3.4.2 (Graphical derivative). Let S : V ⇒ W be a set-valued mapping between two

normed vector spaces V and W . The graphical derivative of S at (v, w) ∈ gphS, denoted by

DS(v, w), is a set-valued mapping from V to W such that gphDS(v, w) = TgphS(v, w), i.e.

δw ∈ DS(v, w)[δv] if and only if (δv, δw) ∈ TgphS(v, w).

Notably, when S is single-valued and locally Lipchitz near (v, w) ∈ gphS and DS(v, w) is

also single-valued such that δw = DS(v, w)[δv], one infers that S is directionally differentiable

at v along δv with the directional derivate S′(v; δv) = δw; see, e.g., [Lev01]. The directional

differentiability of the lower-level solution mapping S is asserted in the following theorem.

Theorem 3.4.3 (Directional differentiability). Let S : Qh → R|Ωu| be the solution mapping in

Theorem 3.4.1 and (u, h, p) be a feasible solution satisfying the state equation (3.4.2). Then S

is directionally differentiable at h along any δh ∈ TQh(h). Moreover, the directional derivative

δu := S′(h; δh) is uniquely determined by the following sensitivity equation:

{
DuF (u, h)δu+DhF (u, h)δh+ α∇>δp = 0,

(δu, α∇>δp) ∈ TgphG(u, α∇>p). (3.4.5)

Proof. By Theorem 4.1 in [Sha05], the following estimate on the graphical derivative of S holds

true:

DS(h, u)[δh] ⊂
{
δu ∈ R|Ωu| : 0 ∈ DuF (u, h)δu+DhF (u, h)δh+DG(u,−F (u, h))[δu]

}
.

(3.4.6)
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With the introduction of the auxiliary variables p and δp such that (u, h, p) satisfies (3.4.2) and

(δu, α∇>δp) ∈ TgphG(u, α∇>p), the relation (3.4.6) is equivalent to

DS(h, u)[δh] ⊂
{
δu ∈ R|Ωu| : (δu, δh, δp) satisfies the sensitivity equation (3.4.5)

}
. (3.4.7)

Let δh ∈ TQh(h) be arbitrarily fixed in the following.

We first show that the set DS(h, u)[δh] is nonempty. Following the definition of a tangent

cone in (3.2.4), there exists ti → 0+, δhi → δh such that h+ tiδhi ∈ Qh for all i. Then we have

lim sup
i→∞

‖S(h+ tiδhi)− S(h)‖
ti

≤ κ‖δh‖,

where κ is the Lipschitz constant for S near h. As a result, possibly along a subsequence, we

have

lim
i→∞

S(h+ tiδhi)− S(h)

ti
= δu

for some δu ∈ R|Ωu|. Thus, we assert that (δh, δu) ∈ TgphS(h, u), or equivalently δu ∈
DS(h, u)[δh].

Next we show that δu must be unique among all solutions (δu, δp) for (3.4.5). Fixing h ∈ Qh,

let (δu1, δp1) and (δu2, δp2) be two solutions for (3.4.5). Then we have

DuF (u, h)(δu1 − δu2) + α∇>(δp1 − δp2) = 0,

which further implies

〈δu1 − δu2, DuF (u, h)(δu1 − δu2)〉+ α〈∇δu1 −∇δu2, δp1 − δp2〉 = 0.

We claim that 〈∇δu1 − ∇δu2, δp1 − δp2〉 ≥ 0. Indeed, we component-wisely distinguish the

following three cases.

(1) Consider j ∈ Ωu where |pj | < 1. Then it follows immediately from (3.4.3) that (∇δu1)j −
(∇δu2)j = 0.

(2) Consider j ∈ Ωu where (∇u)j 6= 0. Then from (3.4.3) we have

〈(∇δu1)j − (∇δu2)j , δp
1
j − δp2

j 〉

= 〈(∇δu1)j − (∇δu2)j ,
1

|(∇u)j |
(I − pjp>j )((∇δu1)j − (∇δu2)j)〉

≥ 1

|(∇u)j |
(1− |pj |2)|(∇δu1)j − (∇δu2)j |2 ≥ 0.

(3) The last case where j ∈ Ωu with (∇u)j = 0 and |pj | = 1 further splits into three subcases.

(3a) Consider (∇δu1)j = 0, 〈δp1
j , pj〉 ≤ 0 and (∇δu2)j = 0, 〈δp2

j , pj〉 ≤ 0. Then as in case

(1) we have (∇δu1)j − (∇δu2)j = 0.
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(3b) Consider (∇δu1)j = c1pj (c1 ≥ 0), 〈δp1
j , pj〉 = 0 as well as (∇δu2)j = c2pj (c2 ≥

0), 〈δp2
j , pj〉 = 0. Then 〈(∇δu1)j − (∇δu2)j , δp

1
j − δp2

j 〉 = (c1− c2)〈pj , δp1
j − δp2

j 〉 = 0.

(3c) Consider (∇δu1)j = 0, 〈δp1
j , pj〉 ≤ 0 and (∇δu2)j = cpj (c ≥ 0), 〈δp2

j , pj〉 = 0. Then

we have 〈(∇δu1)j − (∇δu2)j , δp
1
j − δp2

j 〉 = 〈−cpj , δp1
j − δp2

j 〉 ≥ 0. The analogous

conclusion holds true if we interchange the upper indices 1 and 2.

Altogether, our claim is proven. Moreover, since DuF (u, h) is strictly positive definite, we arrive

at δu1 = δu2.

Thus, the equality holds in (3.4.7) with both sides being singletons, which concludes the

proof.

Thus, it has been asserted that the solution mapping S : h 7→ u(h) for the lower-level

problem is B(ouligand)-differentiable [Rob87], i.e. locally Lipschitz continuous and directionally

differentiable, everywhere on Qh such that, with δu(h; δh) = S′(h; δh), we have

u(h+ δh) = u(h) + δu(h; δh) + o(‖δh‖) as δh→ 0.

Furthermore, according to the chain rule, the reduced objective Ĵ : h→ R is also B-differentiable

such that

Ĵ(h+δh) = J(u(h), h)+DhJ(u(h), h)δh+DuJ(u(h), h)δu(h; δh)+o(‖δh‖) as δh→ 0. (3.4.8)

3.5 Stationarity conditions for bilevel optimization

Our bilevel optimization problem (3.3.7) is a special instance of a mathematical program with

equilibrium constraints (MPEC). The derivation of appropriate stationarity conditions is a per-

sistent challenge for MPECs; see [LPR96, OKZ98] for more backgrounds on MPECs. Very

often, the commonly used constraint qualifications like linear independence constraint qualifica-

tion (LICQ) or Mangasarian-Fromovitz constraint qualification (MFCQ) are violated for MPECs

[YZZ97], and therefore a theoretically sharp and computationally amenable characterization of

the variational geometry (such as tangent and normal cones) of the solution set induced by

the lower-level problem becomes a major challenge. In this vein, various stationarity concepts

are introduced in [SS00] when the lower-level problems are so-called complementarity problems.

These stationarity concepts have been further developed and extended during the past decade;

see, e.g., [LPR96, OKZ98, Mor06, SS00, Ye05, HK09, HS14]. This research field still remains

active in its own right.

In our context of the bilevel optimization problem (3.3.7), it is straightforward to deduce

from the expansion formula (3.4.8) that

DhJ(u(h), h)δh+DuJ(u(h), h)δu(h; δh) ≥ 0 ∀δh ∈ TQh(h) (3.5.1)
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must hold at any local minimizer (h, u(h)) for (3.3.7). In fact, condition (3.5.1) is referred to as

B(ouligand)-stationarity; see [LPR96]. However, such “primal” stationarity is difficult to realize

numerically, since the mapping δh 7→ δu(h; δh) need not be linear. For this reason, we are

motivated to search for stationarity conditions in “primal-dual” form, as they typically appear

in the classical KKT conditions for constrained optimization.

Based on the strong regularity condition proven in Theorem 3.4.1 above and the Mor-

dukhovich calculus (see the two-volume monograph [Mor06] for reference), we shall derive the

M(ordukhovich)-stationarity for (3.3.7) in Theorem 3.5.1. There the Mordukhovich (or limit-

ing) normal cone of gphG will appear in the stationarity condition; recall Definition 3.2.4. In

particular, one has N
(M)
Q (·) = NQ(·) whenever Q is convex. Following (3.4.3) and (3.4.4), the

Mordukhovich normal cone of gphG can be calculated as:

N
(M)
gphG(u, α∇>p) =

{
(α∇>w,−v) :





wj = ξj − 〈ξj , pj〉pj , (∇v)j = |(∇u)j |ξj (ξj ∈ R2) if (∇u)j 6= 0,

wj ∈ R2, (∇v)j = 0 if |pj | < 1,

wj ∈ R2, (∇v)j = 0, or

〈wj , pj〉 = 0, (∇v)j = cpj (c ∈ R), or

〈wj , pj〉 ≤ 0, (∇v)j = cpj (c ≤ 0) if (∇u)j = 0, |pj | = 1.

}
.

(3.5.2)

We are now ready to present the M-stationarity condition for (3.3.7). Given that the strong

regularity condition is satisfied at any feasible solution (u, h, p) as justified in Theorem 3.4.1,

M-stationarity of a local minimizer for (3.3.7) follows as a direct consequence of Theorem 3.2.16.

Notably, the strong regularity condition serves as a proper constraint qualification in deriving

the M-stationarity.

Theorem 3.5.1 (M-stationarity). Let (u, h, p) ∈ R|Ωu|×Qh×Qp be any feasible point satisfying

(3.4.2). If (u, h) is a local minimizer for the bilevel optimization problem (3.3.7), then the

following M-stationarity condition must hold true for some (w, v) ∈
(
R|Ωu|

)2 × R|Ωu|:




DuJ(u, h)> + α∇>w +DuF (u, h)>v = 0,
0 ∈ DhJ(u, h)> +DhF (u, h)>v +NQh(h),

(α∇>w,−v) ∈ N (M)
gphG(u, α∇>p),

(3.5.3)

where N
(M)
gphG is the Mordukhovich normal cone of gphG given in (3.5.2).

Though theoretically sharp, the M-stationarity condition in the above theorem is in general

not guaranteed by numerical algorithms. Instead, we resort to a Clarke-type stationarity, termed

C-stationarity in the following corollary. The C-stationarity is slightly weaker than the M-

stationarity due to the relation N
(M)
gphG(u, α∇>p) ⊂ N (C)

gphG(u, α∇>p), but can be guaranteed by

a projected-gradient-type algorithm proposed in section 3.6 below.
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Corollary 3.5.2 (C-stationarity). Let (u, h, p) ∈ R|Ωu|×Qh×Qp be any feasible point satisfying

(3.4.2). If (u, h) is a local minimizer for the bilevel optimization problem (3.3.7), the following

C-stationarity condition must hold true for some (w, v) ∈
(
R|Ωu|

)2 × R|Ωu|:




DuJ(u, h)> + α∇>w +DuF (u, h)>v = 0,
0 ∈ DhJ(u, h)> +DhF (u, h)>v +NQh(h),

(α∇>w,−v) ∈ N (C)
gphG(u, α∇>p),

(3.5.4)

where

N
(C)
gphG(u, α∇>p) =

{
(α∇>w,−v) :





wj = ξj − 〈ξj , pj〉pj , (∇v)j = |(∇u)j |ξj (ξj ∈ R2) if (∇u)j 6= 0,

wj ∈ R2, (∇v)j = 0 if |pj | < 1,

(∇v)j = cpj (c ∈ R), 〈wj , (∇v)j〉 ≥ 0 if (∇u)j = 0, |pj | = 1.

}
.

(3.5.5)

We say that strict complementarity holds at a feasible point (u, h, p) whenever the biactive

set is empty, i.e.

{j ∈ Ωu : (∇u)j = 0, |pj | = 1} = ∅. (3.5.6)

Under strict complementarity, one immediately observes the equivalence of M- and C-stationarity

as N
(M)
gphG(u, α∇>p) = N

(C)
gphG(u, α∇>p). The scenarios of strict complementarity are studied in

detail in section 3.6.1, where it will become evident to the reader that all B-, M-, and C-

stationarity concepts are equivalent under the strict complementarity; see Corollary 3.6.3.

3.6 Hybrid projected gradient method

This section is devoted to the development and the convergence analysis of a hybrid projected

gradient algorithm to compute a C-stationary point for the bilevel optimization problem (3.3.7).

Most existing numerical solvers for MPECs adopt regularization/smoothing/relaxation on the

complementary structure in the lower-level problem, see e.g. [FLP98, Sch01, FLRS06], even

though the complementary structure induced by (3.4.2) is more involved than those in the

previous works due to the presence of nonlinearity. Motivated by the recent work in [HS14],

here we devise an algorithm which avoids redundant regularization, e.g., when the current iterate

is a continuously differentiable point for the reduced objective Ĵ .

3.6.1 Differentiability given strict complementarity

In this subsection, we assume that strict complementarity, i.e. condition (3.5.6), holds at a

feasible point (u, h, p). In this scenario, the sensitivity equation (3.4.5) is fully characterized by

the following linear system:
[

DuF (u, h) α∇>
(−I + pp>)∇ diag(|∇u|e)

] [
δu
δp

]
=

[
−DhF (u, h)δh

0

]
. (3.6.1)
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Here e is the identity vector in
(
R|Ω|

)2
, i.e. ej = (1, 1) for all j ∈ Ωu, and diag(|∇u|e) denotes

a diagonal matrix with its diagonal elements given by the vector |∇u|e. As a special case in

Theorem 3.4.3, for any given δh ∈ TQh(h), the linear system (3.6.1) always admits a solution

(δu, δp) which is unique in δu. Thus, the differential mapping δu
δh(h) : δh 7→ δu defined by

equation (3.6.1) is a continuous linear mapping, and therefore the reduced objective Ĵ in (3.4.1)

is continuously differentiable at h. On the other hand, the adjoint of the differential δu
δh(h),

denoted by δu
δh(h)>, is required when computing DhĴ(h). This will be addressed through the

adjoint equation in Theorem 3.6.2 below.

Lemma 3.6.1. Assume that (u, h, p) is a feasible point satisfying (3.4.2) and strict complemen-

tarity holds at (u, h, p). Let Πδu be a canonical projection such that Πδu(δu, δp) = (δu, 0) for all

(δu, δp) ∈ R|Ωu| ×
(
R|Ωu|

)2
. Then the following relations hold true:

(i) Ker

[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

]
⊂ Ker Πδu.

(ii) Ran Πδu ⊂ Ran

[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

]
.

Proof. We first prove (i). For this purpose, let
[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

] [
v
η

]
=

[
0
0

]
,

which implies

0 = 〈v,DuF (u, h)>v〉+ 〈∇v, (−I + pp>)η〉

= 〈v,DuF (u, h)>v〉+
1

α
〈|∇u|η, (I − pp>)η〉

= 〈v,DuF (u, h)>v〉+
1

α

∑

j∈Ωu

|(∇u)j |(|ηj |2 − |〈pj , ηj〉|2).

Owing to the strict positive definiteness of DuF (u, h) as well as the non-negativity of the second

term in the above equation, we verify that v = 0.

To justify (ii), in view of the fundamental theorem of linear algebra, it suffices to prove

Ker

[
DuF (u, h) α∇>

(−I + pp>)∇ diag(|∇u|e)

]
⊂ Ker Πδu.

For this purpose, consider
[

DuF (u, h) α∇>
(−I + pp>)∇ diag(|∇u|e)

] [
δu
δp

]
=

[
0
0

]
. (3.6.2)

Then we have

〈δu,DuF (u, h)δu〉+ α〈δp, pp>∇δu〉+ α〈δp, |∇u|δp〉 = 0. (3.6.3)

Due to the strict complementarity, only two possible scenarios may occur. If (∇u)j 6= 0, then the

second row of equation (3.6.2) yields δpj = 1
|(∇u)j |(I−pjp

>
j )(∇δu)j , and thus 〈δpj , pjp>j (∇δu)j〉 ≥
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0. If |pj | < 1, then (∇u)j = 0 and 0 = |(I − pjp>j )(∇δu)j | ≥ (1 − |pj |2)|(∇δu)j |, which implies

〈δpj , pjp>j (∇δu)j〉 = 0. Altogether, we have shown 〈δp, pp>∇δu〉 ≥ 0. Moreover, since the third

term in (3.6.3) is also non-negative and DuF (u, h) = −µ∆ + K(h)>K(h) is strictly positive

definite, we must have δu = 0. Thus, (ii) is proven.

Theorem 3.6.2. As in Lemma 3.6.1, assume that (u, h, p) is a feasible point satisfying (3.4.2)

and strict complementarity holds at (u, h, p). Then δu
δh(h)> is a linear mapping such that δu

δh(h)> :

ζ 7→ DhF (u, h)>v with (ζ, v, η) ∈ R|Ωu|×R|Ωu|×
(
R|Ωu|

)2
satisfying the following adjoint equation:

[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

] [
v
η

]
=

[
−ζ
0

]
. (3.6.4)

Proof. It follows from Lemma 3.6.1 that ζ 7→ v is a continuous linear mapping and, therefore,

so is δu
δh(h)>. To show the adjoint relation between δu

δh(h) and δu
δh(h)>, consider an arbitrary pair

(δu, δh, δp) which satisfies (3.6.1), i.e. δu = δu
δh(h)δh, and (ζ, v, η) which satisfies (3.6.4). Then

we derive that
〈
ζ,
δu

δh
(h)δh

〉
= −

〈[
δu
δp

]
,

[
DuF (u, h)> ∇>(−I + pp>)

α∇ diag(|∇u|e)

] [
v
η

]〉

= −
〈[

DuF (u, h) α∇>
(−I + pp>)∇ diag(|∇u|e)

] [
δu
δp

]
,

[
v
η

]〉

= 〈v,DhF (u, h)δh〉 = 〈DhF (u, h)>v, δh〉 =

〈
δu

δh
(h)>ζ, δh

〉
,

which concludes the proof.

As a consequence of Theorem 3.6.2, at a feasible point (u, h, p) where the strict complemen-

tarity holds, the gradient of the reduced objective can be calculated as

DhĴ(h)> = DhJ(u, h)> +
δu

δh
(h)>DuJ(u, h)> = DhJ(u, h)> +DhF (u, h)>v, (3.6.5)

where (v, η) satisfies the adjoint equation (3.6.4) with ζ = DuJ(u, h)>. For the sake of our

convergence analysis in section 3.6.3, we also introduce an auxiliary variable w defined by

w :=
1

α
(−I + p(p)>)η, (3.6.6)

which parallels the auxiliary variable wγ later in (3.6.16) for the smoothing case. To conclude

section 3.6.1, we point out that one can readily deduce from (3.6.5) the equivalence among the

B-, M-, and C-stationarity under strict complementarity.

Corollary 3.6.3 (Stationarity under strict complementarity). If strict complementarity holds at

a feasible point (u, h, p), then B-stationarity (3.5.1), M-stationarity (3.5.3), and C-stationarity

(3.5.4) are all equivalent.
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3.6.2 Local smoothing at a non-differentiable point

The solution mapping h 7→ u for the lower-problem in (3.3.7) is only B-differentiable (rather

than continuously differentiable) at a feasible point (u, h, p) where the biactive set {j ∈ Ωu :

(∇u)j = 0, |pj | = 1} is nonempty. In this scenario, continuous optimization techniques are not

directly applicable. Instead, we utilize a local smoothing approach by replacing the Lipschitz

continuous function ‖ · ‖1 in (3.3.2) by a C2-approximation ‖ · ‖1,γ :
(
R|Ωu|

)2 → R, which is

defined for each γ > 0 by ‖p‖1,γ :=
∑

j∈Ωu
ϕγ(pj) with

ϕγ(s) =

{
− 1

8γ3 |s|4 + 3
4γ |s|2 if |s| < γ,

|s| − 3γ
8 if |s| ≥ γ.

(3.6.7)

The first-order and second-order derivatives of ϕγ can be calculated as

ϕ′γ(s) =

{
( 3

2γ − 1
2γ3 |s|2)s if |s| < γ,

1
|s|s if |s| ≥ γ.

(3.6.8)

and

ϕ′′(s) =

{
( 3

2γ − 1
2γ3 |s|2)IR2 − 1

γ3 ss
> if |s| < γ,

1
|s|IR2 − 1

|s|3 ss
> if |s| ≥ γ. (3.6.9)

We remark that the same smoothing function was used in [KP13] for parameter learning, but

other choices are possible as well.

The resulting smoothed bilevel optimization problem appears as

min J(uγ , h)

s.t. uγ = arg minu
µ

2
‖∇u‖2 +

1

2
‖K(h)u− z‖2 + α‖∇u‖1,γ ,

uγ ∈ R|Ωu|, h ∈ Qh.
(3.6.10)

The corresponding Euler-Lagrange equation for the lower-level problem in (3.6.10) is given by

r(uγ ;h, γ) := (−µ∆ +K(h)>K(h))uγ −K(h)>z + α∇>(ϕ′γ(∇uγ)) = 0, (3.6.11)

which induces a continuously differentiable mapping h 7→ uγ(h) according to the (classical)

implicit function theorem. Moreover, the sensitivity equation for (3.6.11) is given by

(
DuF (uγ , h) + α∇>ϕ′′γ(∇uγ)∇

)
Dhu

γ(h) = −DhF (uγ , h). (3.6.12)

Analogous to (3.4.1), we may also reformulate the smoothed bilevel problem (3.6.10) in the

reduced form as
min J̆γ(h) := J(uγ(h), h)
s.t. h ∈ Qh.

(3.6.13)

The gradient of J̆γ can be calculated as

DhJ̆γ(h)> = DhJ(uγ , h)> +DhF (uγ , h)>vγ , (3.6.14)
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where vγ satisfies the adjoint equation

(
DuF (uγ , h)> + α∇>ϕ′′γ(∇uγ)∇

)
vγ = −DuJ(uγ , h)>. (3.6.15)

Thus, any stationary point (uγ , h) of the smoothed bilevel optimization problem (3.6.10) must

satisfy the following stationarity condition





F (uγ , h) + α∇>pγ = 0,
pγ = ϕ′γ(∇uγ),

DuF (uγ , h)>vγ + α∇>wγ = −DuJ(uγ , h)>,
wγ = ϕ′′γ(∇uγ)∇vγ ,
0 ∈ DhJ(uγ , h)> +DhF (uγ , h)>vγ +NQh(h),

(3.6.16)

for some pγ ∈
(
R|Ωu|

)2
, wγ ∈

(
R|Ωu|

)2
, and vγ ∈ R|Ωu|.

We remark that finding a stationary point of the (smooth) constrained minimization problem

(3.6.13) can be accomplished by standard optimization algorithms; see [NW06]. As a subroutine

in Algorithm 3.6.5 below, we adopt a simple projected gradient method whose convergence

analysis can be found in [GB82]. The following theorem establishes the consistency on how a

stationary point of the smoothed bilevel problem (3.6.10) approaches a C-stationary point of

the original bilevel problem (3.3.7) as γ vanishes.

Theorem 3.6.4 (Consistency of smoothing). Let {γk} be any sequence of positive scalars such

that γk → 0+. For each γk, let (uk, hk) ∈ R|Ωu| × Qh be a stationary point of (3.6.10) such

that condition (3.6.16) holds for some (pk, wk, vk) ∈
(
R|Ωu|

)2 ×
(
R|Ωu|

)2 × R|Ωu|. Then any

accumulation point of {(uk, hk, pk, wk, vk)} is a feasible C-stationary point for (3.3.7) satisfying

(3.4.2) and (3.5.4).

Proof. Let (u∗, h∗, p∗, w∗, v∗) be an arbitrary accumulation point of {(uk, hk, pk, wk, vk)}. Then

the first condition in (3.4.2) and the first condition in (3.5.4) immediately follow from continuity.

The second condition in (3.5.4) also follows due to the closedness of the normal cone mapping

NQh(·); see, e.g., Proposition 6.6 in [RW98].

For those j ∈ Ωu where (∇u∗)j 6= 0, we have for all sufficiently large k that pkj =
(∇uk)j
|(∇uk)j | ,

and therefore p∗j =
(∇u∗)j
|(∇u∗)j | . On the other hand, p∗j ∈ Qp clearly holds if (∇u∗)j = 0. Altogether,

the feasibility of (u∗, h∗, p∗) is verified.

It remains to show (α∇>w∗,−v∗) ∈ N (C)
gphG(u∗, α∇>p∗), for which the proof is divided into

three cases as follows.

(1) If (∇u∗)j 6= 0, then we have for all sufficiently large k that |(∇uk)j | ≥ γk and therefore

wkj =
1

|(∇uk)j |
(∇vk)j −

1

|(∇uk)j |
〈(∇vk)j , pkj 〉pkj .

Passing k →∞, the first condition in (3.5.5) is fulfilled with ξj = 1
|(∇u∗)j |(∇v

∗)j .
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(2) If |p∗j | < 1, then we have for all sufficiently large k that |pkj | < 1 and, therefore, |(∇uk)j | <
γk. This implies (∇u∗)j = 0. Let qj ∈ R2 be an arbitrary accumulation point of the

uniformly bounded sequence {(∇uk)j/γk}. We obviously have |qj | ≤ 1. Then it follows

from pk = ϕ′
γk

(∇uk) that p∗j = (3/2 − |qj |2/2)qj . Since |p∗j | < 1, we must have |qj | < 1.

Since wk = ϕ′′
γk

(∇uk)∇vk, we have

γkwkj =

(
3

2
− |(∇u

k)j |2
2(γk)2

)
(∇vk)j −

〈
(∇vk)j ,

(∇uk)j
γk

〉
(∇uk)j
γk

.

Passing k →∞, we obtain

3− |qj |2
2

(∇v∗)j − 〈qj , (∇v∗)j〉qj = 0,

which indicates that (∇v∗)j = cqj for some c ∈ R. Thus it follows that 3
2(1−|qj |2)(∇v∗)j =

0, and thus (∇v∗)j = 0 as requested by the second condition in (3.5.5).

(3) Now we investigate the third condition in (3.5.5) where (∇u∗)j = 0 and |p∗j | = 1 under the

following two circumstances.

(3a) There exists an infinite index subset {k′} ⊂ {k} such that (∇uk′)j ≥ γk
′

for all k′.

Then it holds for all k′ that



|pk′j | = 1,

wk
′
j =

1

|(∇uk′)j |
(∇vk′)j −

1

|(∇uk′)j |
〈(∇vk′)j , pk′j 〉pk

′
j ,

(3.6.17)

and therefore {
〈wk′j , pk

′
j 〉 = 0,

|(∇uk′)j |wk′j = (∇vk′)j − 〈(∇vk′)j , pk′j 〉pk
′
j .

Passing k′ → ∞, we have 〈w∗j , p∗j 〉 = 0 and (∇v∗)j − 〈(∇v∗)j , p∗j 〉p∗j = 0. Thus the

third condition in (3.5.5) is fulfilled.

(3b) There exists an infinite index subset {k′} ⊂ {k} such that (∇uk′)j < γk
′

for all k′.

Then analogous to case (2), we have for all k′ that





pk
′
j =

(
3

2γk′
−
|∇uk′j |2
2(γk′)3

)
∇uk′j ,

γk
′
wk
′
j =

(
3

2
− |(∇u

k′)j |2
2(γk′)2

)
(∇vk′)j −

〈
(∇vk′)j ,

(∇uk′)j
γk′

〉
(∇uk′)j
γk′

.

(3.6.18)

Let qj ∈ R2 be an arbitrary accumulation point of the uniformly bounded sequence

{(∇uk′)j/γk′}. Then we have p∗j = (3
2 − 1

2 |qj |2)qj . It follows from |p∗j | = 1 that

|qj | = 1 must hold. Since this holds true for an arbitrary accumulation point qj , we

infer that limk′→∞(∇uk′)j/γk = p∗j and further from the second equation in (3.6.18)
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that (∇v∗)j − 〈(∇v∗)j , p∗j 〉p∗j = 0, i.e. (∇v∗)j = cp∗j for some c ∈ R. On the other

hand, equation (3.6.18) also yields that

〈wk′j , (∇vk
′
)j〉 =

(
3

2γk′
− |(∇u

k′)j |2
2(γk′)3

)
|(∇vk′)j |2 −

1

γk′

∣∣∣∣∣

〈
(∇vk′)j ,

(∇uk′)j
γk′

〉∣∣∣∣∣

2

≥ 3

2γk′


1−

∣∣∣∣∣
(∇uk′)j
γk′

∣∣∣∣∣

2

 |(∇vk′)j |2 ≥ 0.

Passing k′ →∞, the third condition in (3.5.5) is again fulfilled.

3.6.3 Hybrid projected gradient method

Now we present a hybrid projected gradient method for finding a C-stationary point of the

bilevel optimization problem (3.3.7). In a nutshell, at a feasible point (uk, hk, pk) where the

strict complementarity holds, we calculate DhĴ(hk)> according to formula (3.6.5) and perform

a projected gradient step by setting

ĥk(τk) := ProjQh [hk − τkDhĴ(hk)>] (3.6.19)

for some proper step size τk > 0. If the strict complementarity is violated at (uk, hk, pk),

we rather perform a projected gradient step on the smoothed bilevel problem (3.6.10) with

γ = γk > 0, i.e.

h̆k(τk) := ProjQh [hk − τkDhJ̆γk(hk)>]. (3.6.20)

In addition, we are cautioned against a critical case where the step size τk in (3.6.19) tends to zero

along the iterations. This case may possibly occur, provided that the {(uk, hk, pk)} converges to

some {(u∗, h∗, p∗)} where the strict complementarity breaks, even if the strict complementarity

holds for each feasible point (uk, hk, pk). In such a critical case, we also resort to the smoothed

bilevel problem as in (3.6.20). The overall hybrid algorithm is detailed below.

Algorithm 3.6.5 (Hybrid projected gradient method).

Require: inputs α > 0, 0 ≤ µ � α, 0 < τ � τ̄ , 0 < σJ < 1, 0 < ρτ < 1, 0 < ργ < 1, σh > 0,

tolh > 0, tolγ > 0.

1: Initialize γ1 > 0, a feasible point (u1, h1, p1) ∈ R|Ωu| × Qh ×
(
R|Ωu|

)2
satisfying (3.4.2),

ũ1 := u1, p̃1 := p1, I := {1}, and k := 1.

2: loop

3: if the strict complementarity condition (3.5.6) is violated at (ũk, hk, p̃k) (i.e. the biactive

set {j ∈ Ωu : (∇ũk)j = 0, |p̃kj | = 1} is nonempty) or J(ũk, hk) > J(umax(I), hmax(I))

then

4: Go to step 16.
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5: end if

6: Set uk := ũk, pk := p̃k. Compute DhĴ(hk)> using formula (3.6.5). Define ĥk(·) as in

(3.6.19).

7: if ‖ĥk(τ̄)− hk‖ ≤ tolh then

8: Return (uk, hk) as a C-stationary point of (3.3.7) and terminate the algorithm.

9: end if

10: Perform the backtracking line search on ĥk(·), i.e. find τk as the largest element in {τ̄(ρτ )l :

l = 0, 1, 2, ...} such that ĥk(τk) fulfills the following Armijo-type condition:

Ĵ(ĥk(τk)) ≤ Ĵ(hk) + σJDhĴ(hk)(ĥk(τk)− hk). (3.6.21)

11: if τk < τ then

12: Go to step 16.

13: end if

14: Set hk+1 := ĥk(τk) and I := I ∪ {k}. Generate ũk+1 ∈ R|Ωu| and p̃k+1 ∈
(
R|Ωu|

)2
such

that (ũk+1, hk+1, p̃k+1) satisfies the state equation (3.4.2).

15: Set γk+1 := γk. Go to step 26.

16: Solve equation (3.6.11) with (γ, h) = (γk, hk) for uγ =: uk, and equation (3.6.15) with

(γ, uγ , h) = (γk, uk, hk) for vγ =: vk. Then calculate DhJ̆γk(hk)> using formula (3.6.14).

Define h̆k(·) as in (3.6.20).

17: if ‖h̆k(τ̄)− hk‖ ≤ σhγk then

18: if γk = tolγ then

19: Return (uk, hk) as a C-stationary point of (3.3.7) and terminate the algorithm.

20: else

21: Set γk+1 := max(ργγ
k, tolγ) and (ũk+1, hk+1, p̃k+1) := (ũk, hk, p̃k). Go to step 26.

22: end if

23: end if

24: Perform the backtracking line search on h̆k(·), i.e. find τk as the largest element in {τ̄(ρτ )l :

l = 0, 1, 2, ...} such that h̆k(τk) fulfills the following Armijo-type condition:

J̆γk(h̆k(τk)) ≤ J̆γk(hk) + σJDhJ̆γk(hk)(h̆k(τk)− hk). (3.6.22)

25: Set hk+1 := h̆k(τk). Generate ũk+1 ∈ R|Ωu| and p̃k+1 ∈
(
R|Ωu|

)2
such that (ũk+1, hk+1, p̃k+1)

satisfies the state equation (3.4.2). Set γk+1 := γk.

26: Set k := k + 1.

27: end loop

In the following, we prove convergence of Algorithm 3.6.5 towards C-stationarity. To begin

with, we collect a technical result from Lemma 3 in [GB82], which will be used several times in

our convergence analysis.
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Lemma 3.6.6. The mappings τk 7→ ‖ĥk(τk) − hk‖/τk and τk 7→ ‖h̆k(τk) − hk‖/τk are both

monotonically decreasing on [0,∞).

Based on Lemma 3.6.6, it is shown in the following lemma that the backtracking line searches

in Algorithm 3.6.5 enjoy good properties.

Lemma 3.6.7. The backtracking line searches in steps 10 and 24 of Algorithm 3.6.5 always

terminate with success after finitely many trails.

Proof. As the line search in step 24 is performed on the continuously differentiable objective

J̆γk , the proof of Proposition 2 in [GB82] can be directly applied.

However, this proof needs to be adapted for step 10 since it is performed on the B-differentiable

objective Ĵ . In this case, we proceed with a proof by contradiction. Assume that (3.6.21) is vi-

olated for all τk = τkl := τ̄(ρτ )l with l = 0, 1, 2, ... Then hk cannot be stationary, since otherwise

ĥk(τk) = hk and (3.6.21) holds true for any τk > 0.

Since Ĵ is B-differentiable, we have

Ĵ(ĥk(τkl ))− Ĵ(hk) = DhĴ(hk)(ĥk(τkl )− hk) + o(‖ĥk(τkl )− hk‖), as l→∞. (3.6.23)

This, together with the violation of (3.6.21), gives

(1− σJ)DhĴ(hk)(ĥk(τkl )− hk) + o(‖ĥk(τkl )− hk‖) > 0, as l→∞. (3.6.24)

Moreover, due to the relation (3.6.19), we also have

DhĴ(hk)(hk − ĥk(τkl )) ≥ ‖ĥ
k(τkl )− hk‖2

τkl
, (3.6.25)

which further implies

o(‖ĥk(τkl )− hk‖) > (1− σJ)DhĴ(hk)(hk − ĥk(τkl )) ≥ (1− σJ)
‖ĥk(τkl )− hk‖2

τkl
, as l→∞.

(3.6.26)

Thus, it follows from Lemma 3.6.6 that

‖ĥk(τ̄)− hk‖
τ̄

≤ ‖ĥ
k(τkl )− hk‖

τkl
→ 0, as l→∞. (3.6.27)

This contradicts that hk is not stationary.

For the sake of our convergence analysis, we consider tolh = tolγ = 0 in the remainder of

this section.

Lemma 3.6.8. Let the sequence {(uk, hk, pk) : k ∈ I} be generated by Algorithm 3.6.5. If |I| is

infinite, then we have

lim inf
k→∞, k∈I

∥∥∥hk − ProjQh [hk − τ̄DhĴ(hk)>]
∥∥∥ = 0. (3.6.28)
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Proof. We restrict ourselves to k ∈ I throughout this proof. It follows from Lemma 3.6.6 and

the satisfaction of the Armijo-type condition (3.6.21) that

Ĵ(hk)− Ĵ(hk+1) = Ĵ(hk)− Ĵ(ĥk(τk)) ≥ σJDhĴ(hk)(hk − ĥk(τk))

≥ σJ
‖hk − ĥk(τk)‖2

τk
≥ σJτk

‖hk − ĥk(τ̄)‖2
τ̄2

≥ σJτ

τ̄2
‖hk − ĥk(τ̄)‖2,

for all sufficiently large k. Moreover, since the sequence {Ĵ(hk) : k ∈ I} is monotonically

decreasing and Ĵ is bounded from below, the conclusion follows.

Now we are in a position to present the main result of our convergence analysis.

Theorem 3.6.9. Let the sequence {(uk, hk)} be generated by Algorithm 3.6.5. In addition,

assume that the auxiliary variables {wk}, recall (3.6.6) and (3.6.16) for the respective cases

k ∈ I and k /∈ I and also see equations (3.6.30) and (3.6.32) below, are uniformly bounded.

Then there exists an accumulation point {(u∗, h∗)} which is feasible and C-stationary for (3.3.7),

i.e. {(u∗, h∗)} satisfies (3.4.2) and (3.5.3) for some p∗ ∈
(
R|Ωu|

)2
, w∗ ∈

(
R|Ωu|

)2
, v∗ ∈ R|Ωu|.

Proof. The proof is divided into two cases.

Case I: Let us consider the case where |I| is infinite. In view of Lemma 3.6.8, let {(uk, hk, pk)}
be a subsequence (the index k is kept throughout this proof for brevity) such that k ∈ I for all

k and

lim
k→∞

∥∥∥hk − ProjQh [hk − τ̄DhĴ(hk)>]
∥∥∥ = 0. (3.6.29)

Let (u∗, h∗, p∗) be an accumulation point of {(uk, hk, pk)}. Note that (u∗, h∗, p∗) is feasible,

i.e. satisfies the state equation (3.4.2), owing to the continuity of F and the closedness of G. If

the strict complementarity holds at (u∗, h∗, p∗), then Ĵ is continuously differentiable at h∗, and

therefore we have h∗ = ProjQh [h∗ − τ̄DhĴ(h∗)>], or equivalently (u∗, h∗, p∗) is (C-)stationary.

Now assume that (u∗, h∗, p∗) lacks strict complementarity. For each k, let gk := DhĴ(hk)>.

Then from (3.6.5) we have




gk = DhJ(uk, hk)> +DhF (uk, hk)>vk,
DuF (uk, hk)>vk + α∇>wk +DuJ(uk, hk)> = 0,
wk = 1

α(−I + pk(pk)>)ηk,
α∇vk + |∇uk|ηk = 0,

(3.6.30)

with vk → v∗, gk → g∗, wk → w∗ as k →∞, possibly along yet another subsequence.

We claim that (u∗, h∗, p∗, w∗, v∗) satisfies the C-stationarity (3.5.4). From (3.6.29) and

(3.6.30), one readily verifies the first and the second conditions in (3.5.4). In view of the sat-

isfaction of strict complementarity at each (uk, hk, pk), the proof of the third condition that

(α∇>w∗,−v∗) ∈ N (C)
gphG(u∗, α∇>p∗) separates into two cases for each j ∈ Ωu.

(I-1) There exists a subsequence {(uk, hk, pk)} such that (∇uk)j 6= 0 and |pkj | = 1 for all k.

Then it follows from (3.6.30) that

|(∇uk)j |wkj = (∇vk)j − 〈(∇vk)j , pkj 〉pkj .
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Analogous to (3.6.17), this eventually yields 〈w∗j , (∇v∗)j〉 ≥ 0 and (∇v∗)j−〈(∇v∗)j , p∗j 〉p∗j =

0.

(I-2) There exists a subsequence {(uk, hk, pk)} such that (∇uk)j = 0 and |pkj | < 1 for all k.

Then it follows from (3.6.30) that (∇v∗)j = 0.

In both cases above, (α∇>w∗,−v∗) ∈ N (C)
gphG(u∗, α∇>p∗) holds true.

Case II: Now we turn to the case where |I| is finite. We claim that limk→∞ γk = 0 in

this scenario. Assume for the sake of contradiction that for all sufficiently large k we have

γk = γ̄ for some γ̄ > 0 and ‖h̆k(τ̄) − hk‖ > σhγ̄. Then Algorithm 3.6.5, for all sufficiently

large k, reduces to a projected gradient method on the constrained minimization (3.6.13) with a

continuously differentiable objective. This leads to a contradiction as limk→∞ ‖h̆k(τ̄)− hk‖ = 0

due to Proposition 2 in [GB82]. Thus, we must have limk→∞ γk = 0.

As a consequence, steps 17–23 in Algorithm 3.6.5 yields the existence of a subsequence

{(uk, hk)} such that k /∈ I for all k and

‖h̆k(τ̄)− hk‖ =
∥∥∥hk − ProjQh [hk − τ̄DhJ̆γk(hk)>]

∥∥∥ ≤ σhγk → 0, (3.6.31)

as k →∞. Let gkγ := DhJ̆γk(hk)>, and we have





F (uk, pk) + α∇>pkγ = 0,

pkγ := ϕ′
γk

(∇uk),
gkγ = DhJ(uk, hk)> +DhF (uk, hk)>vk,
DuF (uk, hk)>vk + α∇>wk = −DuJ(uk, hk)>,
wk = ϕ′′

γk
(∇uk)∇vk,

(3.6.32)

for all k such that hk → h∗, uk → u∗, pkγ → p∗, vk → v∗, wk → w∗, gkγ → g∗γ as k → ∞,

possibly along another subsequence. Then from (3.6.31) and (3.6.32), the first and the second

conditions in the C-stationarity condition (3.5.4) immediately follow. The satisfaction of the

third condition in (3.5.4) can be verified using an argument analogous to that in the proof of

cases (1)–(3) in Theorem 3.6.4. Thus, we conclude that (u∗, h∗) is C-stationary.

3.7 Numerical experiments

In this section, we report our numerical experiments on the bilevel optimization framework for

blind deconvolution problems. In order to achieve practical efficiency, in section 3.7.1 we will

utilize a simplified version of Algorithm 3.6.5. In particular, the smoothed lower-level problem

can be efficiently handled by a semismooth Newton solver, which is described in section 3.7.1.

Numerical results on PSF calibration and multiframe blind deconvolution are given in sections

3.7.2 and 3.7.3, respectively.
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3.7.1 Implementation issues

Here our concern is to implement a practically efficient version of the hybrid projected gradient

method (i.e. Algorithm 3.6.5) developed in section 3.6.3. At each iteration of that algorithm,

step 14 requires the numerical solution of the set-valued equation (3.4.2) for obtaining a feasible

point. In this vein, first-order methods are typically used, see, e.g., [CP11] and its variants,

but they only converge sublinearly. We note that the semismooth Newton method without any

regularization is not directly applicable for solving (3.4.2) due to non-uniqueness in the (dual)

variable p. As a remedy, a null-space regularization on the predual problem is introduced in

[HK04]. A more computationally amenable Tikhonov regularization (on the dual problem),

which is equivalent to Huber-type smoothing on the primal objective, is proposed in [HS06].

Following [HS06], the Euler-Lagrange equation (3.6.11) in the smoothing step (i.e. steps 16–26)

of Algorithm 3.6.5 can be solved by a superlinearly convergent semismooth Newton method. To

take advantage of this fact, we will simplify Algorithm 3.6.5 by implementing the smoothing

step only in Algorithm 3.7.2. In the meantime, we first describe a semismooth Newton solver

for the smoothed lower-level problem.

Semismooth Newton solver for the smoothed lower-level problem

We only present essentials of the semismooth Newton method as a subroutine in solving the

bilevel problem and refer the interested reader to [HS06, HW13, HW14b] for further details. For

the smoothed lower-level problem in (3.6.10), we fix γ > 0 and h ∈ Qh. With the introduction a

dual variable pγ ∈
(
R|Ωu|

)2
, the Euler-Lagrange equation (3.6.11) associated with the smoothing

parameter γ can be reformulated as follows:





(−µ∆ +K(h)>K(h))uγ + α∇>pγ = K(h)>z,

max(|∇uγ |, γ)pγ =
(3

2
− |∇uγ |2

2 max(|∇uγ |, γ)2

)
∇uγ .

To ease our presentation, we temporarily omit the superscript γ in uγ and pγ , and denote the

iterates in the lower-level solver (i.e. inner loop) by (ul, pl). A generalized Newton step on the

above Euler-Lagrange equation refers to the solution of the following linear system:

[
−µ∆ +K(h)>K(h) α∇>

−C l∇ diag(mle)

] [
δul

δpl

]
=



−(−µ∆ +K(h)>K(h))ul − α∇>pl +K(h)>z

−mlpl +
(3

2
− |∇u

l|2
2(ml)2

)
∇ul


 ,

where

ml := max(|∇ul|, γ),

(χl)j :=

{
1 if |(∇ul)j | ≥ γ
0 if |(∇ul)j | < γ

∀j ∈ Ωu,

C l := χl
(
I − (ml)−1pl(∇ul)>

)
+ (1− χl)

(
3

2
I − diag

( |∇ul|2e
2γ2

)
− (∇ul)(∇ul)>

γ2

)
.
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After eliminating δpl in the above Newton system, we arrive at

(
−µ∆ +K(h)>K(h) + α∇>(ml)−1C l∇

)
δul = −r(ul;h, γ),

recall (3.6.11) for the definition of the residual term r(·). In order to guarantee that δul be a

descent direction for the lower-level minimization problem, we further introduce a modification

on C l, i.e. we replace C l by

Ĉ l :=χl
(
I − 1

2
(ml)−1

(
p̂l(∇ul)> + (∇ul)(p̂l)>

))

+ (1− χl)
(

3

2
I − diag

( |∇ul|2e
2γ2

)
− (∇ul)(∇ul)>

γ2

)
,

where p̂l is the projection of pl onto Qp, i.e. p̂l := pl

max(|pl|,1)
. Thus, the final modified Newton

system appears as

(
−µ∆ +K(h)>K(h) + α∇>(ml)−1Ĉ l∇

)
δul = −r(ul;h, γ). (3.7.1)

Once δul is obtained, δpl can be computed by

δpl := −pl + (ml)−1
(3

2
− |∇u

l|2
2(ml)2

)
∇ul + (ml)−1Ĉ l∇δul. (3.7.2)

The overall semismooth Newton solver for the smoothed lower-level problem is summarized

in Algorithm 3.7.1 below. The superlinear convergence of this solver can be justified following

the approach in [HS06, HW13].

Algorithm 3.7.1 (Semismooth Newton solver).

Require: (ordered) inputs α > 0, 0 ≤ µ � α, h ∈ Qh, γ > 0, u1 ∈ R|Ωu|, tolr > 0. Return:

u∗ ∈ R|Ωu|.
1: Initialize p1 :=

∇u1

max(|∇u1|, γ)
, l := 1.

2: loop

3: Generate the Newton system in (3.7.1).

4: if
‖r(ul;h, γ)‖

max(‖r(u1;h, γ)‖, 1)
≤ tolr then

5: return u∗ := ul and terminate the algorithm.

6: end if

7: Solve (3.7.1) for δul, and compute δpl using formula (3.7.2).

8: Determine the step size al > 0 via backtracking Armijo line search along δul.

9: Generate the next iterates: ul+1 := ul + alδul and pl+1 := pl + alδpl.

10: Set l := l + 1.

11: end loop
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Simplified projected gradient method

Based on Algorithm 3.7.1, we present the simplified projected gradient method for the bilevel

problem (3.3.7) in the following. We remark that while the proximity measure κk in step 3 is

chosen in our algorithm as a signal for reducing γk, other choices may be considered as well.

Algorithm 3.7.2 (Simplified projected gradient method).

Require: inputs α > 0, 0 ≤ µ� α, tolr > 0, 0 < σJ < 1, σh > 0, τ̄ > 0, tolγ > 0, 0 < ργ < 1,

0 < ρτ < 1.

1: Initialize h1 ∈ Qh, γ1 > 0, u0 ∈ R|Ωu|, k := 1.

2: loop

3: Apply Algorithm 3.7.1 with ordered inputs α, µ, hk, γk, uk−1, tolr, which returns uk as

the solution of (3.6.11).

4: Solve the adjoint equation
(
DuF (uk, hk)> + α∇>ϕ′′γk(∇uk)∇

)
vk = −DuJ(uk, hk)>

for vk. Then compute the gradient DhJ̆γk(hk)> := DhJ(uk, hk)> + DhF (uk, hk)>vk and

evaluate the proximity measure

κk :=
∥∥∥ProjQh [hk − τ̄DhJ̆γk(hk)>]− hk

∥∥∥ .

5: if κk ≤ σhγk then

6: if γk = tolγ then

7: return (uk, hk) as a C-stationary point of (3.3.7) and terminate the algorithm.

8: else

9: Set γk+1 := max(ργγ
k, tolγ). Go to step 13.

10: end if

11: end if

12: Set hk+1 := ProjQh [hk − τkDhJ̆γk(hk)>], where τk the largest element in {τ̄(ρτ )l : l =

0, 1, 2, ...} which fulfills the following Armijo-type condition:

J̆γk
(

ProjQh [hk − τkDhJ̆γk(hk)>]
)
≤ J̆γk(hk) + σJDhJ̆γk(hk)(ProjQh [hk − τkDhJ̆γk(hk)>]− hk).

13: Set k := k + 1.

14: end loop

We further specify the parameter choices for Algorithm 3.7.2 in our numerical experiments.

For an image of nx × ny pixels, we set the mesh size ω :=
√

1/(nxny) and discretize the spatial

gradient by forward differences, i.e. for each j = (jx, jy) ∈ Ωu

(∇u)(jx,jy) :=

(
u(jx+1,jy) − u(jx,jy))

ω
,
u(jx,jy+1) − u(jx,jy)

ω

)
,

97



with homogenous Dirichlet boundary condition. The following parameters are chosen throughout

the experiments: α = 10−5, µ = 10−4α, σJ = σh = 0.01, ργ = ρτ = 1/2, u0 = z, γ1 = 0.05/ω,

tolγ = 0.001/ω, tolr = 10−7. The conjugate gradient method is utilized for solving the linear

systems in step 3 of Algorithm 3.7.1 with residual tolerance 0.01 and in step 3 of Algorithm

3.7.2 with residual tolerance 10−9, respectively. All experiments are performed under Matlab

R2011b.

3.7.2 Calibration of point spread functions

We first test our method on a point spread function (PSF) calibration problem. Let h be a point

spread function on a 2D index domain Ωh, and Qh = {h ∈ R|Ωh| :
∑

j∈Ωh
hj = 1, hj ≥ 0 ∀j ∈

Ωh}. The blurring operator K is defined through a 2D convolution, i.e. K(h)u = h ∗ u, with

zero boundary condition. Given the true PSF h(true) ∈ Qh and the source image u(true) ∈ R|Ωu|,
the observed image z is generated as h(true) ∗ u(true) + noise, where the noise is white Gaussian

and of zero mean and standard deviation 0.02. In addition to the observation, we are supplied

with a reference image u(ref), which is generated as the (non-blurred) source image corrupted

by white Gaussian noise of zero mean and standard deviation 0.02. Our aim is to calibrate the

underlying PSF using a blurred observation image and a noisy reference image.

In this problem, we utilize a tracking-type objective

J(u, h) =
1

2
‖u− u(ref)‖2 +

β

2
‖∇h‖2

in the upper level, where a Tikhonov regularization on h is also included to stabilize the solution

and the regularization parameter β = 0.05 is chosen. The relevant partial derivatives of J and

F required for the implementation of Algorithm 3.7.2 are listed below

DuJ(u, h)> = u− u(ref),

DhJ(u, h)> = −β∆h,

DuF (u, h)> = (−µ∆ +K(h)>K(h)), (3.7.3)

〈DhF (u, h)>v, δh〉 = 〈v,DhF (u, h)δh〉
= 〈v, δh(−·) ∗ (h ∗ u− z)〉+ 〈v, h(−·) ∗ (δh ∗ u)〉. (3.7.4)

Here h(−·) is a PSF in Qh defined by (h(−·))j = h−j for all j ∈ Ωh, and similar for δh(−·).
The size of Ωh is always chosen to be slightly larger than the support size of the true PSF. Note

that for DhF (u, h)> only the matrix-vector product DhF (u, h)>v is needed in the numerical

computation, which is given by (3.7.4) in a dual form. Concerning the initializations, we set the

initial line search step size τ̄ = 2 × 10−5 and the initial PSF h1 to be the discrete Dirac delta

function.

Our experiments are performed on three different pairs of images and PSFs, namely Gaussian

blur on the “Satellite” image, motion blur on the “Cameraman” image, and out-of-focus blur
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on the “Grain” image. In Figure 3.1, the ground-truth images are displayed in (a)–(c), the

underlying PSFs in (d)–(f), and the corresponding blurred observations in (g)–(i). The results

of the bilevel-optimization calibration are shown in the last two rows: (j)–(l) for the estimated

PSFs and (m)–(o) for the deblurred images from the lower-level problem. It is observed that

the calibrations are reasonably good in all three cases in the sense that the calibrated PSFs

resemble their true counterparts and yield the deblurred images of high visual quality.

In Figure 3.2, we also illustrate the typical numerical behavior of Algorithm 3.7.2 in the

“satellite” example. Subplot (a) records the history of the smoothing parameter γk. The

objective values Jγk(uk, hk) are shown in (b), which exhibit regular decrease along iterations.

The proximity measure κk in step 4 of Algorithm 3.7.2, shown in subplot (c), also behaves well.

3.7.3 Multiframe blind deconvolution

Now we apply our algorithmic framework to multiframe blind deconvolution [CE07]. In this

problem, the observation ~z consists of f frames, i.e. ~z = (~z1, ..., ~zf ), where each frame is generated

from the convolution between the source image u(true) and a frame-varying PSF ~hi over Ωh plus

some additive Gaussian noise ~ηi, i.e.

~zi = ~hi ∗ u(true) + ~ηi, ∀i ∈ {1, 2, ..., f}.

Furthermore, each PSF ~hi follows a (normalized) multivariate Gaussian distribution, i.e. ~hi =

h(~σix, ~σ
i
y,
~θi) with unknown frame-dependent parameters ~σix, ~σ

i
y ∈ Qσ, ~θi ∈ Qθ. The parameter-

ization of the Gaussian PSF h : Qσ ×Qσ ×Qθ → Qh is defined by

h(σx, σy, θ) :=
h̃(σx, σy, θ)

∑
(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

,

where for all (jx, jy) ∈ Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

:=
1

2πσxσy
exp

(
−(jx cos θ − jy sin θ)2

2(σx)2
− (jx sin θ + jy cos θ)2

2(σy)2

)
.

Our task is to simultaneously recover the image u(true) and the PSF parameters ~σx, ~σy ∈ (Qσ)f

and ~θ ∈ (Qθ)
f .

For such a multiframe blind deconvolution problem, we formulate the bilevel optimization

model as follows:

min J(~u) =
1

2

∑f
k=1

∥∥∥~uk − 1
f

∑f
l=1 ~u

l
∥∥∥

2

s.t. ~ui = arg minu∈R|Ωu|
1

2

∥∥∥h(~σix, ~σ
i
y,
~θi) ∗ u− ~zi

∥∥∥
2

+ α‖∇u‖1, ∀i ∈ {1, 2, ...f},
~σx, ~σy ∈ (Qσ)f , ~θ ∈ (Qθ)

f .

The upper-level objective represents a (rescaled) sample variance of {~u1, ..., ~uf}. Upon Huber-

type smoothing on each lower-level problem respectively, the derivative of the reduced objective
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(a) Satellite. (b) Cameraman. (c) Grain.

(d) 15× 15 Gaussian PSF. (e) 9× 11 motion PSF. (f) 13× 13 out-of-focus PSF.

(g) Observed satellite. (h) Observed cameraman. (i) Observed grain.

(j) Estimated Gaussian PSF. (k) Estimated motion PSF. (l) Estimated out-of-focus PSF.

(m) Deblurred satellite. (n) Deblurred cameraman. (o) Deblurred grain.

Figure 3.1: Calibration of point spread functions.
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Figure 3.2: Numerical behavior.

Ĵ(~σx, ~σy, ~θ) := J(~u1(~σ1
x, ~σ

1
y ,
~θ1), ..., ~uf (~σfx , ~σ

f
y , ~θf )) can be calculated for all i ∈ {1, ..., f} as

D
(~σix,~σ

i
y ,
~θi)
Ĵ(~σx, ~σy, ~θ)

> = D(σx,σy ,θ)h(~σix, ~σ
i
y,
~θi)>DhF (~ui,~hi)>~vi,

where each ~vi ∈ R|Ωu| satisfies the adjoint equation

(
DuF (~ui,~hi)> + α∇>ϕ′′γ(∇~ui)∇

)
~vi = −D~uiJ(~u)> = −

(
~ui − 1

f

f∑

l=1

~ul

)
.

In addition, the formulae for DuF (·)> and DhF (·)> are identical to (3.7.3) and (3.7.4), and the

partial derivatives of h are respectively given by

(
Dσx h̃(σx, σy, θ)

>
)

(jx,jy)
=
(
h̃(σx, σy, θ)

)
(jx,jy)

(
(jx cos θ − jy sin θ)2

(σx)3
− 1

σx

)
,

Dσxh(σx, σy, θ)
> =

1
∑

(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

·


Dσx h̃(σx, σy, θ)

> − h(σx, σy, θ)
∑

(jx,jy)∈Ωh

(
Dσx h̃(σx, σy, θ)

>
)

(jx,jy)


 ,

(
Dσy h̃(σx, σy, θ)

>
)

(jx,jy)
=
(
h̃(σx, σy, θ)

)
(jx,jy)

(
(jx sin θ + jy cos θ)2

(σy)3
− 1

σy

)
,

Dσyh(σx, σy, θ)
> =

1
∑

(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

·


Dσy h̃(σx, σy, θ)

> − h(σx, σy, θ)
∑

(jx,jy)∈Ωh

(
Dσy h̃(σx, σy, θ)

>
)

(jx,jy)


 ,

(
Dθh̃(σx, σy, θ)

>
)

(jx,jy)
=
(
h̃(σx, σy, θ)

)
(jx,jy)

(
1

(σx)2
− 1

(σy)2

)
·

(jx cos θ − jy sin θ)(jx sin θ + jy cos θ),
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Dθh(σx, σy, θ)
> =

1
∑

(jx,jy)∈Ωh

(
h̃(σx, σy, θ)

)
(jx,jy)

·


Dθh̃(σx, σy, θ)

> − h(σx, σy, θ)
∑

(jx,jy)∈Ωh

(
Dθh̃(σx, σy, θ)

>
)

(jx,jy)


 .

In our experiments, Qσ = [1, 3] and Qθ = [−π/2, π/2] are fixed, and the underlying param-

eters (~σ
(true)
x , ~σ

(true)
y , ~θ(true)) are (uniform-)randomly drawn from (Qσ)f × (Qσ)f × (Qθ)

f . The

first and third rows of Figure 3.3 show the random PSFs in a trial run with 8 frames, i.e. f = 8.

The corresponding observations are given in the first and third rows of Figure 3.4. Concerning

the initializations in our implementation, we always choose τ̄ = 0.005 and (~σix)1 = (~σiy)
1 = 2,

(~θi)1 = 0 for all i.

The results of the 8-frame trial run, both PSFs and images, are displayed in Figures 3.3 and

3.4 respectively. It is observed from the comparison in Figure 3.3 that our method well captures

the underlying PSFs, especially the widths and the orientations in case of strongly skewed PSFs

(see #2, #3, #4, #7, #8). Furthermore, all deblurred frames yield significant improvement in

visual quality over the corresponding observations.

We are also interested in the effect of the number of frames on the image restoration quality.

For this sake, we track the mean peak signal-to-noise ratio (mPSNR) of all individual frames

for f ∈ {4, 6, 8, 10, 12}. For each f , the mean and the standard deviation (stdev) of mPSNR

after 10 trial runs are reported in Table 3.1, where the mean is rising and the standard deviation

is falling as f becomes larger. Thus, we conclude from our experiments that, as is expected,

more observations typically enhance the frame-wise image restoration quality in the bilevel-

optimization based multiframe blind deconvolution.

f 4 6 8 10 12

mean 23.6019 23.7170 23.7639 23.7883 24.0026
stdev 0.6020 0.4380 0.3381 0.2889 0.2720

Table 3.1: Mean peak signal-to-noise ratio.
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(a) True PSF #1. (b) True PSF #2. (c) True PSF #3. (d) True PSF #4.

(e) Estimated PSF #1. (f) Estimated PSF #2. (g) Estimated PSF #3. (h) Estimated PSF #4.

(i) True PSF #5. (j) True PSF #6. (k) True PSF #7. (l) True PSF #8.

(m) Estimated PSF #5. (n) Estimated PSF #6. (o) Estimated PSF #7. (p) Estimated PSF #8.

Figure 3.3: Multiframe blind deconvolution — PSFs.
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(a) Observation #1. (b) Observation #2. (c) Observation #3. (d) Observation #4.

(e) Deblurred frame #1. (f) Deblurred frame #2. (g) Deblurred frame #3. (h) Deblurred frame #4.

(i) Observation #5. (j) Observation #6. (k) Observation #7. (l) Observation #8.

(m) Deblurred frame #5. (n) Deblurred frame #6. (o) Deblurred frame #7. (p) Deblurred frame #8.

Figure 3.4: Multiframe blind deconvolution — images.
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Chapter 4

Robust principal component pursuit:
a Riemannian optimization approach

This chapter is concerned with low-rank matrices, which can be viewed as being sparse in singular

values. Such a distinct nature of sparsity leads to very different variational models as well as

numerical techniques in comparison with the previous two chapters.

4.1 Introduction

A typical approach in understanding big and complex data in many different application ar-

eas utilizes data decomposition additively splitting the given data into several components of

respective low complexity. For this purpose, robust principal component pursuit (RPCP), in-

troduced in [CLMW11], aims at recovering a low-rank component and a sparse component from

a possibly noisy data matrix. The low-rank component often refers to a certain intrinsically low

dimensional pattern in the data, while the sparse component corresponds to either grossly cor-

rupted measurements or pattern-irrelevant data. In this sense, RPCP is more robust in practice

than the classical principal component analysis. The RPCP and its variants have found vari-

ous promising applications, particularly in image and signal processing; e.g. video surveillance

[CLMW11], face recognition [JCM12], texture modeling [ZGLM12], video inpainting [JHSX11],

audio separation [HCSHJ12], latent semantic indexing [MZWM10], etc.

Concerning the numerical solution of RPCP in the large-scale setting, a popular approach

[CLMW11, CSPW11] is to solve a “relaxed” convex program, where the rank functional is re-

laxed by the nuclear norm, i.e. the sum of the singular values, and the cardinality function is

relaxed by the `1-norm, i.e. the sum of all entries in absolute values. In [CLMW11], it was proven

that the convex-relaxation model provides the exact recovery with dominating probability given

some mild assumptions on the underlying low-rank and sparse components. A somewhat more

deterministic argument can be found in [CSPW11], where a sufficient condition for exact recov-

ery, based on the notion of rank-sparsity incoherence, is invoked. This condition holds true with

high probability for random low-rank and sparse components. Based on the convex-relaxation
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formulation, for the numerical solution of the associated minimization problem an augmented

Lagrangian method (ALM) is utilized in [CLMW11]. A related work on ALM, improving ef-

ficiency of the method and expanding its scope with respect to applications, can be found in

[TY11]. A list of works concerning numerical solvers relevant to the convex-relaxation approach

is contained in [LRM]. Typically, at each iteration such solvers involve the computation of a

singular value decomposition (SVD) in full dimension, which becomes highly expensive in large-

scale applications. Acceleration of this SVD step can be possibly done via a Lancoz-based partial

SVD technique (see, e.g., [PRO] for an efficient implementation under Matlab) as suggested in

[CCS10, TY11], but its practical efficiency largely relies on the properties of the target matrix

of the SVD such as relatively low rank and/or fast matrix-vector multiplication. Finally, be-

sides the convex-relaxtion based approaches, we also mention a (nonconvex) factorization-based

augmented Lagrangian alternating direction method for RPCP [WYZ12], for which an online

code is available [LMa].

In this work, we solve RPCP by formulating a (regularized) least-squares problem with rank

and cardinality constraints; see (4.3.1) below. Then an alternating minimization scheme (AMS)

is employed to seek a stationary point which satisfies the first-order necessary optimality condi-

tion. If each subproblem in AMS is solved exactly by global minimization (i.e. metric projection)

along the iterations, then AMS essentially becomes a heuristic method of (generalized) alternat-

ing projection onto manifolds (see the Appendix and also [LM08]), which is known to be locally

convergent for transversal manifolds. However, the convergence of this alternating projection

method can be possibly spoiled by defective initial guesses, which calls upon proper globalization

(or safeguard) strategies on AMS.

For this sake, we propose a general framework sufficient for AMS to converge globally, which

is then activated algorithmically. In particular, the low-rank subproblem is solved inexactly by

a Riemannian (manifold) optimization step such that SVDs in full dimension can be favorably

avoided. We point out that Riemannian optimization is an active research area in its own right;

see [AMS08] and the references therein for an introduction on the subject and [BMAS14] for a

miscellaneous toolbox available online. Concerning the applications of Riemannian optimization

related to low-rank matrices, we refer to [KMO10a, KMO10b, SE10, BA11, MBS11, Van13]

among other references which appeared very recently. Nevertheless, most of these papers, if

not all, address the context of low-rank matrix completion [CR09] rather than RPCP, i.e. the

sparse component is of no concern. In the present work, however, we include such a sparse

component (in addition to the low-rank part) by embedding a tailored Riemannian optimization

technique, namely the projected dogleg step, into the overall AMS. A q-linear convergence theory

is established from the perspective of an inexact Newton method on the underlying matrix

manifold. For the implementation of AMS, we also propose a heuristic trimming procedure which

performs a proper tuning of the underlying rank and cardinality constraints. This procedure

aims at automatically identifying the appropriate rank and sparsity of the two target components
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within the given data.

The remainder of the chapter is organized as follows. Preliminaries on Riemannian optimiza-

tion, as a major component of our algorithmic development later on, are provided in section 4.2.

In section 4.3, we formulate our variational model for RPCP and investigate the existence of a

solution as well as the first-order optimality condition. The overall AMS and its convergence

analysis are presented in detail in section 4.4. Section 4.5 concludes the chapter with a series of

numerical experiments on the proposed method, including a comparison with a currently state-

of-the-art augmented Lagrangian method. An appendix on local convergence of an alternating

projection method for RPCP is attached in section 4.6.

4.2 Preliminaries on Riemannian optimization

In this section, we provide a concise review on the essential elements of differential geometry in

a general context, which facilitate the Riemannian optimization technique used in our algorith-

mic development later on. Most of the presented materials can be found in standard differential

geometry textbooks [Boo03, O’n83]. The concepts related to Riemannian optimization, e.g. Rie-

mannian gradient, Riemannian Hessian, and retraction, are less standard in the literature, on

which we refer to the monograph [AMS08] for a more comprehensive introduction.

Smooth manifold

LetM be an n-dimensional smooth manifold. Given any p ∈M, there exists a homeomorphism

ϕ (termed a local chart) mapping from a neighborhood U of p on M onto an open subset ϕ(U)

in Rn. Sometimes it is also convenient to denote ϕ = (x1, ..., xn) where each xi : U → R is

a coordinate function. If M = Rn, for any p = (p1, ..., pn), we call ui : p ∈ Rn 7→ pi ∈ R a

natural coordinate function. Thus, each coordinate function can be understood as a composition

xi = ui ◦ ϕ.

Tangent vector

In differential geometry, a tangent vector v is often considered as a derivation which maps from

a smooth function (or a scalar field) f on the manifold M to the directional derivative of f

along v. Denote the set of all scalar fields on M by F(M). Then a tangent vector of M at p is

formally defined as a mapping v : F(M)→ R such that

1. v is R-linear, i.e. v(af + bg) = av(f) + bv(g) for any a, b ∈ R.

2. v is Leibnizian, i.e. v(fg) = v(f)g(p) + v(g)f(p) for any f, g ∈ F(M).

Note that all tangent vectors at p form a vector space. We call this vector space, denoted by

TM(p), the tangent space toM at p. Given a local chart ϕ around p, one can define a coordinate
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basis vector ∂i(p) for the tangent space TM(p) by

∂i(p)f =
∂(f ◦ ϕ−1)

∂ui
(ϕ(p)) for all f ∈ F(M),

where ui is a natural coordinate function. It turns out that {∂i(p) : i = 1, ..., n} forms a basis for

TM(p), and we have for any v ∈ TM(p) that v =
∑n

i=1 v(xi)∂i(p); see Theorem 1.12 in [O’n83].

In accordance with a tangent vector, a vector field ξ onM is a smooth function which maps

any p ∈ M to a tangent vector v ∈ TM(p). The set of all vector fields on M is denoted by

X(M).

Riemannian metric

The first-order geometry on a manifold requires the notion of Riemannian metric. Let each

tangent space TM(p) be endowed with an inner product 〈·, ·〉p, which is a bilinear, symmetric

positive definite form. If 〈·, ·〉p is smoothly varying with p overM, then we call 〈·, ·〉 a Riemannian

metric and (M, 〈·, ·〉) a Riemannian manifold. In fact, any second-countable Hausdorff manifold

admits a Riemannian metric; see pp. 45 in [AMS08]. Given any two vector fields ξ, η ∈ X(M)

expanded in coordinate vector fields, i.e. ξ =
∑n

i=1 ξ
i∂i and η =

∑n
j=1 η

j∂j , the Riemannian

metric 〈·, ·〉 can be encoded by 〈ξ, η〉 =
∑

i,j〈∂i, ∂j〉ξiηj in matrix form with entries {〈∂i, ∂j〉 :

i, j = 1, ..., n}.

Riemannian gradient

On a Riemannian manifold (M, 〈·, ·〉), the Riemannian gradient of a scalar field f ∈ F(M),

denoted by gradf , is defined as a vector field on M such that

〈gradf, ξ〉 = ξf, (4.2.1)

for all ξ ∈ X(M). When M is an embedded submanifold, gradf can be calculated through an

orthogonal projection as in the following theorem; see pp. 48 in [AMS08].

Theorem 4.2.1. Let M be an embedded submanifold of a Riemannian manifold (M̂, 〈·, ·〉)
endowed with the induced metric 〈·, ·〉. Let f be the restriction of a scalar field f̂ ∈ F(M̂) on

M, i.e. f(p) = f̂(p) for all p ∈M. Then we have for all p ∈M that

gradf(p) = ProjTM(p)(gradf̂(p)),

where ProjTM(p) denotes the orthogonal projection from TM̂(p) to TM(p).

Proof. The conclusion follows since ProjTM(p)(gradf̂(p)) ∈ TM(p) and for all v ∈ TM(p) we have

〈ProjTM(p)(gradf̂(p)), v〉 = 〈gradf̂(p), v〉 = (vf̂)(p) = (vf)(p) = 〈gradf(p), v〉.
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Riemannian connection

The second-order geometry on a manifold relies on the notion of the Riemannian connection. Any

Riemannian manifold (M, 〈·, ·〉) admits a unique Riemannian connection ∇ : (ξ, η) ∈ X(M) ×
X(M) 7→ ∇ηξ ∈ X(M) such that the following properties are satisfied for any ξ, η, ζ ∈ X(M),

f, g ∈ F(M), and a, b ∈ R:

1. ∇ is F(M)-linear in η, i.e. ∇fη+gζξ = f∇ηξ + g∇ζξ.

2. ∇ is R-linear in ξ, i.e. ∇η(aξ + bζ) = a∇ηξ + b∇ηζ.

3. ∇ is Leibnizian, i.e. ∇η(fξ) = (ηf)ξ + f∇ηξ.

4. ∇ is symmetric, i.e. (∇ηξ)f − (∇ξη)f = η(ξf)− ξ(ηf).

5. ∇ is metric-compatible, i.e. ζ〈ξ, η〉 = 〈∇ζξ, η〉+ 〈ξ,∇ζη〉.

See Theorem 3.11 in [O’n83]. The vector field ∇ηξ is termed a covariant derivative.

It is often convenient to represent a covariant derivative in terms of Christoffel symbols.

Given a local chart on a neighborhood U of M and ξ =
∑n

i=1 ξ
i∂i, η =

∑n
j=1 η

j∂j expanded in

coordinate vector fields, we write for each p ∈ U that

∇ηξ(p) =
∑

i,j,k

Γijkp ηj(p)ξi(p)∂k(p) +
∑

i,j

ηj(p)(∂jξ
i)(p)∂i(p),

where the Christoffel symbols {Γijkp ∈ R : i, j, k = 1, ..., n} are defined by∇∂j∂i(p) =
∑

k Γijkp ∂k(p)

for all p ∈ U and i, j = 1, ..., n. In the remainder of our presentation, we prefer a matrix notation

of the Christoffel symbols (see, e.g., [EAS98]), i.e.

∇ηξ(p) = Dξ(p)[η(p)] + Γp[ξ(p), η(p)] (4.2.2)

holds for p ∈ U and a symmetric, F(M)-bilinear map Γp : TM(p) × TM(p) → TM(p). Here

Dξ(p)[η(p)] denotes the directional derivative of ξ along η(p) at p.

Parallel translation, geodesic, and exponential mapping

Let γ : t ∈ Q(⊂ R) 7→ γ(t) ∈ M be a smooth curve, parameterized over an interval Q, on the

Riemannian manifold (M, 〈·, ·〉) equipped with the Riemannian connection ∇. Denote the set of

all scalar fields and the set of all vector fields on the curve γ by F(γ) and X(γ) respectively. In

particular, the velocity field γ̇ defined by γ̇ : f ∈ F(γ) 7→ d
dt(f ◦ γ) ∈ R is a vector field on γ. It

can be shown, see Proposition 3.18 in [O’n83], that there is a unique function D
dt : X(γ)→ X(γ)

such that the following properties are satisfied for any ξ, η ∈ X(γ), ζ ∈ X(M), f ∈ F(γ), and

a, b ∈ R:

1. D
dt(aξ + bη) = aDdtξ + bDdtη.
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2. D
dt(fξ) = df

dt ξ + f Ddtξ.

3. D
dt(ζ ◦ γ)(τ) = ∇γ̇(τ)ζ(γ(τ)) for each τ ∈ Q.

4. d
dt〈ξ, η〉 = 〈Ddtξ, η〉+ 〈ξ, Ddtη〉.

We call D
dtξ the induced covariant derivative of ξ on γ. Given a local chart around γ(τ), the

induced covariant derivative can be represented by the Christoffel symbol as

D

dt
ξ(τ) =

d

dt
ξ(τ) + Γγ(τ)[γ̇(τ), ξ(τ)].

The vector field ξ ∈ X(γ) is said to be parallel along γ if D
dtξ = 0 everywhere on Q. For a

curve γ : Q→M with τ0 ∈ Q and v0 ∈ TM(γ(τ0)), it follows from the fundamental theorem of

existence and uniqueness for ordinary differential equations that there exists a unique parallel

vector field π ∈ X(γ) along γ such that π(τ0) = v0; see Proposition 3.19 in [O’n83]. We call the

operator v0 ∈ TM(γ(τ0)) 7→ π(τ1) ∈ TM(γ(τ1)) the parallel translation onM along γ from γ(τ0)

to γ(τ1).

Geodesics generalize straight lines in Euclidean spaces. Define the acceleration field γ̈ on

γ by γ̈ = D
dt γ̇. Then γ qualifies as a geodesic if γ̈(τ) = 0 for every τ ∈ Q. In terms of the

Christoffel symbols, γ̈(τ) = 0 is equivalent to

d2

dt2
γ(τ) + Γγ(τ)[γ̇(τ), γ̇(τ)] = 0.

For p = γ(0) and v ∈ TM(p), there exists an interval Q containing 0 and a unique geodesic

γ : Q → M such that γ̇(0) = v; see Lemma 3.22 in [O’n83]. We call such a curve γ(t; p, v) a

geodesic starting at p with initial velocity v. Note that t 7→ γ(t; p, v) is homogenous in the sense

that, as long as t, at ∈ Q, we have γ(at; p, v) = γ(t; p, av) for any a ∈ R.

Thus far, we are able to define the exponential mapping at p by expp : v ∈ TM(p) 7→
γ(1; p, v) ∈ M. It can be easily verified that the differential of the exponential mapping at

0p ∈ TM(p) is an identity map on TM(p), i.e. D expp(0p)[v] = v for all v ∈ TM(p). Consequently,

expp is a local diffeomorphism from TM(p) to M around 0p; see Proposition 3.30 in [O’n83].

Riemannian Hessian

Riemannian Hessian is central to second-order methods in Riemannian optimization, e.g. Rie-

mannian Newton method and Riemannian trust-region method; see [Smi93, EAS98, AMS08].

On a Riemannian manifold (M, 〈·, ·〉) equipped with the Riemannian connection ∇, the Rie-

mannian Hessian of f ∈ F(M) at p ∈M, denoted by Hessf(p), is a linear mapping from TM(p)

to itself such that

Hessf(p)[ξ(p)] = ∇ξgradf(p), (4.2.3)

for each ξ ∈ X(M).

In comparison with the Riemannian gradient, the explicit calculation of Riemannian Hessian

is in general more involved, for which an alternative is to make use of a retraction.
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Retraction

Conceptually, a retraction is a map from the tangent space of the manifold to the manifold itself

which, to some extent, behaves locally as the exponential mapping. In fact, the exponential

mapping, as a special example of retractions, played a dominating role in the early literature

of Riemannian optimization. However, very often the exponential mapping, which involves

the solutions of certain ordinary differential equations, is computationally expensive or even

infeasible. Not until recently is the notion of retractions proposed, which stimulates a significant

boost in practical efficiency of Riemannian optimization methods. We refer to the monograph

[AMS08] for more information on the history and the background of this subject.

On a Riemannian manifold (M, 〈·, ·〉) equipped with the Riemannian connection ∇, let

p ∈ M, Rp : TM(p) →M be a smooth mapping on a neighborhood of p, and γ be a curve on

M such that γ(t; p, v) = Rp(tv) is defined for any v ∈ TM(p) and t ∈ R near 0. Consider the

following conditions for an arbitrary v ∈ TM(p):

1. γ(0; p, v) = p.

2. γ̇(0; p, v) = v.

3. γ̈(0; p, v) = 0.

If the first two conditions are satisfied, then R is said to be a (first-order) retraction on M
at p. If all three conditions are satisfied, then R is a second-order retraction. When p ∈ M
also varies, the retraction R can be considered as a mapping on the tangent bundle such that

R(p, v) = Rp(v) for any p ∈M and v ∈ TM(p).

As we shall see in the next theorem, retractions provide a natural connection between the

Riemannian gradient and Hessian and their Euclidean counterparts over the tangent space.

Theorem 4.2.2. If Rp : TM(p)→M is a retraction on M at p, then we have

gradf(p) = grad(f ◦Rp)(0p). (4.2.4)

Furthermore, if the retraction Rp is of second-order, then we have

Hessf(p) = Hess(f ◦Rp)(0p). (4.2.5)

Proof. Our proof closely follows Proposition 5.5.4 in [AMS08].

Since the right-hand side of (4.2.4) is a Euclidean gradient, we have for an arbitrary v ∈
TM(p) that

〈grad(f ◦Rp)(0p), v〉 =
d

dt
(f ◦Rp)(tv)

∣∣∣∣
t=0

= Df(Rp(tv))

[
d

dt
Rp(tv)

] ∣∣∣∣
t=0

=

〈
gradf(Rp(tv)),

d

dt
Rp(tv)

〉 ∣∣∣∣
t=0

= 〈gradf(γ(0; p, v)), γ̇(0; p, v)〉
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= 〈gradf(p), v〉.

The second equality in the above equation follows from the chain rule of differential maps; see

Lemma 1.15 in [O’n83]. Thus, (4.2.4) is proven.

Analogously, since the right-hand side of (4.2.5) is a Euclidean Hessian, we have for an

arbitrary v ∈ TM(p) that

〈Hess(f ◦Rp)(0p)[v], v〉 =
d

dt

(
d

dt
f(Rp(tv))

) ∣∣∣∣
t=0

=
d

dt
〈gradf(Rp(tv)), γ̇(t; p, v)〉

∣∣∣∣
t=0

=

〈
D

dt
gradf(γ(t; p, v)), γ̇(t; p, v)

〉 ∣∣∣∣
t=0

+ 〈gradf(Rp(tv)), γ̈(t; p, v)〉
∣∣∣
t=0

= 〈∇γ̇(0;p,v)gradf(p), γ̇(0; p, v)〉 = 〈Hessf(p)[v], v〉.

In the above derivation, the third and fourth equalities are due to the properties of the induce

covariant derivative. In view of the polarization identity, (4.2.5) is also proven.

Riemannian Newton method

Based on what I have gathered in this section, we are now ready to transfer classical optimization

algorithms over Euclidean spaces to their variants on Riemannian manifolds. Here we only focus

on the simple yet classical Newton’s method; see, e.g., [Smi93, EAS98, ADM+02] for the early

literature on Riemannian Newton method.

Let (M, 〈·, ·〉) be a Riemannian manifold equipped with the Riemannian connection ∇. Our

aim is to find a stationary point p∗ of f ∈ F(M) over M, i.e. gradf(p∗) = 0. Assume that we

are supplied with a retraction R everywhere on M.

Algorithm 4.2.3 (Riemannian Newton method).

Initialize p0 ∈M. Iterate with k = 0, 1, 2, ...:

1. Solve the following Newton system for vk ∈ TM(pk):

Hessf(pk)[vk] = −gradf(pk).

2. Set pk+1 := Rpk(vk).

3. If the stopping criterion is not satisfied, set k := k + 1 and go to step 1.

The following theorem asserts that the above Riemannian Newton method attains local

quadratic convergence just as for the classical Newton’s method over a Euclidean space. Our

proof for this theorem essentially utilizes a calculus approach in section 6.3.1 of [AMS08].

Theorem 4.2.4. Assume that pk ∈ M is sufficiently close to some stationary point p∗ ∈ M
where the Riemannian Hessian Hessf(p∗) : TM(p∗) → TM(p∗) is nonsingular. It follows that
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the sequence {pk} generated by Algorithm 4.2.3 converges locally quadratically to the stationary

point p∗, i.e.

lim sup
k→∞

‖ϕ(pk+1)− ϕ(p∗)‖
‖ϕ(pk)− ϕ(p∗)‖2 ≤ Cq,

for a positive constant Cq and a local chart ϕ around p∗.

Proof. Consider the mapping φ :M→M such that pk+1 = φ(pk) is generated by the Rieman-

nian Newton algorithm. The mapping pk ∈M 7→ vk ∈ TM(pk) is implicitly defined through the

Newton equation Hessf(pk)[vk] = ∇vkgradf(pk) = −gradf(pk). Note that in case pk = p∗ we

have vk(p∗) = 0 and pk+1 = φ(p∗) = p∗.

In view of Theorem 4.5.3 in [AMS08], it suffices to prove Dφ(p∗) = 0. By perturbing φ at

p∗ along some w ∈ TM(p∗), we have

Dφ(p∗)[w] = DpR(p∗, 0)[w] +DvR(p∗, 0)[Dv(p∗)[w]] = w +Dv(p∗)[w].

Let us reformulate the Newton equation at p∗ using the Christoffel symbol, i.e.

Dgradf(p∗)[v(p∗)] + Γp∗ [gradf(p∗), v(p∗)] = −gradf(p∗).

Perturbing p∗ the above equation along w yields that

Dgradf(p∗)[Dv(p∗)[w]] = −Dgradf(p∗)[w].

Since Hessf(p∗) is nonsingular and Γp∗ [gradf(p∗), ·] = 0, we have that Dgradf(p∗) : TM(p∗)→
TM(p∗) is also nonsingular, and therefore Dφ(p∗)[w] = 0. Since the choice of w ∈ TM(p∗) can

be arbitrary, we conclude that Dφ(p∗) = 0 as desired.

4.3 Robust principal component pursuit

Now we turn our attention to the problem of robust principal component pursuit. Let the

observed data Z be composed in the following way:

Z = Atrue +Btrue +N,

where Atrue ∈ M(r) = {A ∈ Rm×n : rank(A) ≤ r}, Btrue ∈ N (s) = {B ∈ Rm×n : ‖B‖0 ≤ s},
and N is an m-by-n matrix of white Gaussian noise. Moreover, ‖ · ‖0 denotes the number of

nonzero entries of a matrix. In what follows, we omit the arguments r and s whenever their values

stay constant in the context. Let the inner product 〈·, ·〉 be defined as 〈A,B〉 = trace(A>B) for

any A,B ∈ Rm×n and ‖ · ‖ be the Frobenius norm. Throughout this chapter, we assume that r

and s are natural numbers such that r � n ≤ m and s� mn.

Our goal is to recover the matrices Atrue and Btrue by solving the following optimization

problem:

minimize f(A,B) =
1

2
‖A+B − Z‖2 +

µ

2
‖A‖2,

subject to (A,B) ∈M×N .
(4.3.1)
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Note that a quadratic regularization on A with 0 < µ � 1 is introduced into the objective in

order to enforce the existence of solution, as provided by the following theorem.

Theorem 4.3.1. The variational problem (4.3.1) admits a global minimizer.

Proof. Let (Ak, Bk) ∈M×N form an infimizing sequence for (4.3.1), i.e.

lim
k→∞

f(Ak, Bk) = inf
(A,B)∈M×N

f(A,B).

Since f is bounded from below and coercive with respect to A and A + B (i.e. f(A,B) → ∞
if either ‖A‖ → ∞ or ‖A + B‖ → ∞), the sequences {Ak} and {Ak + Bk} are both uniformly

bounded and, therefore, {Bk} is also uniformly bounded. By compactness, {(Ak, Bk)} admits

an accumulation point (A∗, B∗). Moreover, note that the feasible set M × N is closed and

f :M×N → R is continuous. Thus, we conclude that (A∗, B∗) is a global minimizer.

Any global minimizer (A∗, B∗) ∈ M × N of (4.3.1) satisfies the first-order necessary opti-

mality condition:

{
〈∆, (1 + µ)A∗ +B∗ − Z〉 ≥ 0, for any ∆ ∈ TM(A∗),

〈∆, A∗ +B∗ − Z〉 ≥ 0, for any ∆ ∈ TN (B∗).
(4.3.2)

Here, TM(A∗) denotes the tangent cone of the setM at A∗, and analogously for TN (B∗). Note

that the structure of the optimality condition (4.3.2) is due to the separability of the constraints.

Whenever rank(A∗) = r, the set M is locally (around A∗) a Riemannian manifold with the

Riemannian metric 〈·, ·〉. Hence, TM(A∗) reduces to a linear subspace in Rm×n, namely the

tangent space of M at A∗, and the first variational inequality in (4.3.2) becomes

PTM(A∗)((1 + µ)A∗ +B∗ − Z) = 0. (4.3.3)

Here PTM(A∗) denotes the orthogonal projection onto the linear subspace TM(A∗). Let UΣV >

be the compact singular value decomposition (SVD) of the matrix A∗. Then the tangent space

TM(A∗) is given by

TM(A∗) = {UMV > + UpV
> + UV >p : M ∈ Rr×r, Up ∈ Rm×r, U>p U = 0, Vp ∈ Rn×r, V >p V = 0};

see, e.g., [Van13]. Analogously, whenever ‖B∗‖0 = s, N is a Riemannian manifold around B∗

with the Riemannian metric 〈·, ·〉. Hence, TN (B∗) reduces to the tangent space of N at B∗, and

correspondingly the second variational inequality in (4.3.2) becomes

PTN (B∗)(A
∗ +B∗ − Z) = 0, (4.3.4)

where the tangent space TN (B∗) is given by

TN (B∗) = {∆ ∈ Rm×n : supp(∆) ⊂ supp(B∗)}.
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4.4 Alternating minimization on matrix manifolds

In this section, we investigate the numerical solution of the variational problem (4.3.1). While

(4.3.1) is handled by a rather straightforward alternating minimization scheme, the respective

subproblems are sophisticated due to the respective constraint sets.

4.4.1 Alternating minimization scheme and its convergence property

We first formulate our alternating minimization scheme in Algorithm 4.4.1 below. Then a rather

macroscopic convergence result for this algorithm is given in Theorem 4.4.2. While the proof

for Theorem 4.4.2 is straightforward, the major work is to figure out appropriate algorithmic

steps for solving the respective subproblems that activate the convergence criteria, which are

the subjects of sections 4.4.2 and 4.4.3.

Algorithm 4.4.1 (Alternating minimization scheme).

Initialize A0 ∈M, B0 ∈ N . Set k := 0 and iterate:

1. Compute Ak+1 ∈ M as an approximate solution for the A-subproblem: minA∈M 1
2‖A +

Bk − Z‖2 + µ
2‖A‖2.

2. Compute Bk+1 ∈ N as an approximate solution for the B-subproblem: minB∈N 1
2‖Ak+1 +

B − Z‖2.

3. If a suitable stopping criterion is satisfied, then stop; otherwise set k := k + 1 and return

to step 1.

Theorem 4.4.2. Let {(Ak, Bk)} ⊂ M × N be the sequence generated by Algorithm 4.4.1.

Suppose that there exists a positive constant δ and two sequences of nonnegative scalars {εka}
and {εkb} such that the following conditions are satisfied for all k:

f(Ak+1, Bk) ≤ f(Ak, Bk)− δ‖Ak+1 −Ak‖2, (4.4.1)

f(Ak+1, Bk+1) ≤ f(Ak+1, Bk)− δ‖Bk+1 −Bk‖2, (4.4.2)

〈∆, (1 + µ)Ak+1 +Bk − Z〉 ≥ −εka‖∆‖, for any ∆ ∈ TM(Ak+1), (4.4.3)

〈∆, Ak+1 +Bk+1 − Z〉 ≥ −εkb‖∆‖, for any ∆ ∈ TN (Bk+1). (4.4.4)

Furthermore, let {(Akl , Bkl)} be any convergent subsequence of {(Ak, Bk)} with the limit point

(A∗, B∗) ∈M×N such that rank(A∗) = r, ‖B∗‖0 = s, and liml→∞ εk
l

a = liml→∞ εk
l

b = 0. Then

(A∗, B∗) satisfies the first-order optimality conditions (4.3.3)–(4.3.4).

Proof. First note that f(Ak+1, Bk+1) ≤ f(Ak+1, Bk) ≤ f(Ak, Bk) for all k. Since f is bounded

from below, we have limk→∞ f(Ak+1, Bk)−f(Ak, Bk) = limk→∞ f(Ak+1, Bk)−f(Ak+1, Bk+1) =

0, which by conditions (4.4.1)–(4.4.2) implies that limk→∞ ‖Ak−Ak+1‖ = limk→∞ ‖Bk−Bk+1‖ =

0.
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Now let {(Akl , Bkl)} be a subsequence that converges to some (A∗, B∗) with rank(A∗) = r

and ‖B∗‖0 = s. Then we have rank(Ak
l
) = r and ‖Bkl‖0 = s for all sufficiently large l.

Since M is a smooth manifold in a neighborhood of A∗ and N is a smooth manifold in a

neighborhood B∗, conditions (4.4.3)–(4.4.4) yield that ‖P
TM(Akl+1)

((1+µ)Ak
l+1+Bkl−Z)‖ ≤ εkla

and ‖P
TN (Bkl+1)

(Ak
l+1 + Bkl+1 − Z)‖ ≤ εk

l

b for all sufficiently large l. Due to the continuity of

the mappings (A,M) ∈M× Rm×n 7→ PTM(A)(M) and (B,M) ∈ N × Rm×n 7→ PTN (B)(M), we

conclude that the optimality conditions (4.3.3)–(4.3.4) hold true by passing l→∞.

In the following, we discuss in detail the resolution of the subproblems in Algorithm 4.4.1

such that the conditions (4.4.1)–(4.4.4) in Theorem 4.4.2 are fulfilled. We start by studying step

2 of Algorithm 4.4.1.

4.4.2 Sparse matrix (B-)subproblem

The global minimizer of the sparse matrix subproblem minB∈N 1
2‖Ak+1+B−Z‖2 can be obtained

explicitly in closed form by utilizing the projection operator PN . For this purpose, for a given

matrix M ∈ Rm×n, one aligns its entries in decreasing order with respect to the absolute value;

i.e. |Mi1j1 | ≥ |Mi2j2 | ≥ ... ≥ |Mimnjmn |. Then one obtains PN (M) by setting

(PN (M))iljl =

{
Miljl , if l ≤ s,
0, otherwise.

Note that PN (M) is not unique if Misjs = Mis+1js+1 . In this case we simply take PN (M) to be

any one of the valid candidates. With PN at hand, the global minimizer of the sparse matrix

subproblem is computed as in step 1 of Algorithm 4.4.3 below. On the other hand, such a global

minimizer does not necessarily guarantee a sufficient decrease in the objective as required by

condition (4.4.2). When the global minimizer fails to fulfill condition (4.4.2), we resort to a local

minimizer as specified by step 3 in Algorithm 4.4.3.

Algorithm 4.4.3 (B-subproblem solver).

Let (Ak+1, Bk) ∈M×N be given. Choose 0 < δ ≤ 1/2.

1. Compute the global minimizer of the B-subproblem B̂k+1 = PN (Z −Ak+1).

2. If f(Ak+1, B̂k+1) ≤ f(Ak+1, Bk) − δ‖B̂k+1 − Bk‖2, then accept Bk+1 = B̂k+1; otherwise

reject B̂k+1 and continue with step 3.

3. Return Bk+1 with

Bk+1
ij =

{
(Z −Ak+1)ij , if Bk

ij 6= 0,

0, otherwise.
(4.4.5)

Theorem 4.4.4. The solution Bk+1 computed by Algorithm 4.4.3 satisfies condition (4.4.2).

Moreover, if ‖Bk+1‖0 = s, condition (4.4.4) holds with εkb = 0.
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Proof. (Case 1). We first prove the conclusion in the case that B̂k+1 is accepted. It follows

immediately from step 2 of Algorithm 4.4.3 that condition (4.4.2) holds.

Now assume that ‖Bk+1‖0 = s, which implies that the tangent space TN (Bk+1) = {∆ ∈
Rm×n : supp(∆) ⊂ supp(Bk+1)}. Then it follows that ∆ij = 0 whenever (i, j) 6∈ supp(Bk+1) and

that Bk+1
ij = (Z −Ak+1)ij whenever (i, j) ∈ supp(Bk+1). Therefore, 〈∆, Ak+1 +Bk+1 − Z〉 = 0

for any ∆ ∈ TN (Bk+1) and (4.4.4) holds with εkb = 0.

(Case 2). Now consider the case where B̂k+1 is not accepted. Then (4.4.5) must hold true;

i.e. we have that Bk+1
ij = (Z − Ak+1)ij whenever (i, j) ∈ supp(Bk) and that (Bk − Bk+1)ij = 0

whenever (i, j) 6∈ supp(Bk). Thus condition (4.4.2) is fulfilled since

f(Ak+1, Bk)− f(Ak+1, Bk+1) =
1

2
‖Bk −Bk+1‖2 + 〈Bk −Bk+1, Ak+1 +Bk+1 − Z〉

=
1

2
‖Bk −Bk+1‖2 ≥ δ‖Bk −Bk+1‖2.

The argument for the satisfaction of condition (4.4.4) with εkb = 0 is analogous to the one given

in Case 1.

In the numerical implementation of step 1 of Algorithm 4.4.3, we call the Matlab command

sort, which is based on a Quicksort algorithm of complexity O(mn log(mn)) in average. We

remark that, according to our numerical experience, the overall cost of the alternating minimiza-

tion scheme is dominated by the A-subproblem solve. Therefore, in this work we do not pursue

more advanced randomized partial ordering algorithms [Knu97], e.g. Quickselect, for further

CPU gain. We also remark that the choice of the parameter δ in Algorithm 4.4.3 represents a

tradeoff between the convergence of the iterates and the global optimality of their limit. In fact,

if δ is too large, then the iterates may possibly converge to one among many undesired local

solutions. On the other hand, it may slow down the speed of convergence by choosing δ too

close to 0.

4.4.3 Low-rank matrix (A-)subproblem

Now we turn our attention to solving the A-subproblem, namely the task of step 1 of Algorithm

4.4.1. Unlike solving the B-subproblem in section 4.4.2, the A-subproblem will be resolved

inexactly by a single update of a gradient-based algorithm. The organization of this subsection

is as follows. In this subsection, we first review the global minimizer via SVD and discuss its

drawbacks in numerical computation. We then develop a projected dogleg method on the fixed-

rank matrix manifold for resolving the A-subproblem and its convergence property is studied in

detail.

Global minimizer via (partial) SVD

The low-rank matrix subproblem minA∈M 1
2‖A+Bk −Z‖2 + µ

2‖A‖2 admits a global minimizer

in closed form for any µ ≥ 0. It is obtained by the projection of 1
1+µ(Z − Bk) onto M,
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denoted by PM( 1
1+µ(Z − Bk)). Let Ukz Σk

z(V
k
z )> be the singular-value decomposition (SVD) of

the matrix 1
1+µ(Z −Bk), where Ukz ∈ Rm×m and V k

z ∈ Rn×n are both orthogonal matrices, and

Σk
z is a diagonal matrix in Rm×n with nonnegative diagonal elements (σkz )1, (σkz )2, ..., (σkz )m in

decreasing order. Then, by the well-known Eckart-Young theorem [EY36], a global minimizer

of the A-subproblem is given by PM(Z −Bk) = Ukz Σ̂k
z(V

k
z )>, where Σ̂k

z is a diagonal matrix in

Rm×n with diagonal elements (σkz )1, (σkz )2, ..., (σkz )r, 0, ..., 0.

The classical SVD of an m-by-n matrix has a complexity of O(mn2) flops [TB97], which

is rather expensive in large-scale computation. In the context of our low-rank subproblem,

however, this can be accelerated by a partial SVD technique of complexity O(mnr), see e.g. the

package PROPACK [PRO] available online, since only the first r-th singular values and vectors

are needed. Although such a global minimization strategy often works quite efficiently, see the

corresponding numerical tests in section 4.5, it does not guarantee for the overall alternating

minimization scheme (global) convergence towards a stationary point from an arbitrary initial

guess. In particular, satisfaction of the sufficient conditions for global convergence, i.e. conditions

(4.4.1) and (4.4.3), is not ensured. For this sake, in the following we investigate in detail an

inexact-solution strategy for the low-rank subproblem based on Riemannian optimization, which

fulfills conditions (4.4.1) and (4.4.3), thus admitting a global convergence theory for Algorithm

4.4.1. The proposed method also enjoys good practical efficiency as will be demonstrated in

section 4.5.

Projected dogleg method on a fixed-rank matrix manifold

Riemannian optimization techniques have been developed in the past two decades; see, e.g., [Smi93,

EAS98]. More recently, these methods have been successfully applied to optimization problems

related to low-rank matrices [SE10, BA11, Van13]. In the following, we develop a tailored Rie-

mannian optimization approach, namely a projected dogleg method, on a rank-r matrix manifold

M̄(r) = {A ∈ Rm×n : rank(A) = r}. We emphasize that the ultimate goal of the projected

dogleg method under consideration is to fulfill conditions (4.4.1) and (4.4.3) with limk→∞ εka = 0

in order to guarantee the global convergence of the alternating minimization scheme. Other

Riemannian approaches, e.g. Riemannian trust-region method [AMS08, BMAS14], may also be

applicable in the context, but require a rather different, perhaps more involved, analysis.

Given Bk ∈ N , define the smooth mapping fkA : M̄ → R with fkA(A) = f(A,Bk) for

all A ∈ M̄. The Riemannian gradient of fkA at A on M̄, denoted by gradfkA(A), is defined

as a tangent vector in the tangent space TM̄(A) such that 〈gradfkA(A),∆〉 = DfkA(A)[∆] for

all ∆ ∈ TM̄(A). Here DfkA(A)[∆] is the directional derivative of fkA at A along the direction

∆. Let ∇ be the (unique) Riemannian connection on M̄, and let ∇η(A)ξ(A) ∈ TM̄(A) denote

the covariant derivative of two smooth vector fields ξ and η on M̄ at A. Then the Riemannian

Hessian of fkA at A on M̄, denoted by HessfkA(A), is a linear mapping from TM̄(A) to TM̄(A) such

that HessfkA(A)[∆] = ∇∆gradfkA(A) for any ∆ ∈ TM̄(A). By considering M̄ as an embedded
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submanifold in the Euclidean space (Rm×n, 〈·, ·〉), the Riemannian gradient is derived as

gradfkA(A) = PTM̄(A)(∇fkA(A)) = PTM̄(A)((1 + µ)A+Bk − Z),

see section 3.6.1 in [AMS08]. The derivation of the Riemannian Hessian is more involved in

general. For the rank-r matrix manifold, the following Hessian formula can be calculated by

constructing a factorization-based second-order retraction [Van13]:

HessfkA(A)[∆] = (1 + µ)∆ + (I − UU>)∇fkA(A)(I − V V >)∆>UΣ−1V >

+ UΣ−1V >∆>(I − UU>)∇fkA(A)(I − V V >)

= (1 + µ)∆ + (I − UU>)(Bk − Z)(I − V V >)∆>UΣ−1V >

+ UΣ−1V >∆>(I − UU>)(Bk − Z)(I − V V >), (4.4.6)

where A = UΣV > is the compact SVD of A with a full-rank diagonal matrix Σ ∈ Rr×r and two

orthonormal matrices U ∈ Rm×r and V ∈ Rn×r. It is worth noting that the Hessian formula

(4.4.6) should be handled in a matrix-free fashion so that computing each matrix-vector product

HessfkA(A)[∆] requires O(mnr) flops. To ease our presentation, in the remainder of section 4.4.3,

we use the notations gk := gradfkA(Ak), Hk := HessfkA(Ak), and assume that gk 6= 0.

One can approximate fkA around Ak in the tangent space TM̄(Ak) by a quadratic function

hk(∆k) := fkA(Ak) + 〈gk,∆k〉+ 1
2〈∆k, Hk[∆k]〉 for ∆k ∈ TM̄(Ak). Presuming that Hk is positive

definite on TM̄(Ak), based on the Cauchy point

∆k
C := − ‖gk‖2

〈gk, Hk[gk]〉g
k, (4.4.7)

and the Newton point

∆k
N := −(Hk)−1[gk], (4.4.8)

we define the dogleg path in the tangent space TM̄(Ak) as follows:

∆k(τk) =

{
τk∆k

C , if 0 ≤ τk ≤ 1,
∆k
C + (τk − 1)(∆k

N −∆k
C), if 1 ≤ τk ≤ 2.

(4.4.9)

Lemma 4.4.5. For the statements:

i. Hk is positive definite on TM̄(Ak); i.e. 〈∆, Hk[∆]〉 > 0 for any nonzero ∆ ∈ TM̄(Ak);

ii. 〈∆k
C ,∆

k
N −∆k

C〉 ≥ 0;

iii. ‖∆k(τk)‖ is an increasing function in τk ∈ [0, 2];

the following implication holds true: (i)⇒ (ii)⇒ (iii).

Proof. The proof is analogous to the one of Lemma 4.2 in [NW06].
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Given the current iterate Ak ∈ M̄, in order to generate the next iterate from the update

step in the tangent space at Ak, we use the metric projection PM̄ : Rm×n → M̄ defined by

PM̄(Z) = arg minA∈M̄ ‖A − Z‖, which makes a smooth mapping locally around Ak; see, e.g.,

[LM08]. Different from the scenario in section 4.4.3, given A ∈ M̄ and ∆ ∈ TM̄(A), the

projection PM̄(A + ∆) can be computed via a reduced SVD on a 2r-by-2r matrix thanks to

unitary invariance; see, e.g., [NS12, Van13]. The reduction of the computational cost, compared

to the approach in section 4.4.3, is significant in practice where r is typically much smaller

than m and n. For the reader’s convenience, we describe the implementation of the projection

operation in Algorithm 4.4.6 below.

Algorithm 4.4.6 (Projection onto fixed-rank matrix manifold via reduced SVD).

Let A ∈ M̄(r), represented in the compact SVD form A = UΣV >, and ∆ ∈ TM̄(r)(A) be given.

Choose 0 < εs � 1.

1. Compute M = U>∆V , Up = ∆V − UM , Vp = ∆>U − VM>.

2. Perform the QR-factorization of Up and Vp such that Up = QuRu and Vp = QvRv with

two orthonormal matrices Qu ∈ Rm×r, Qv ∈ Rn×r and two upper-triangular matrices

Ru, Rv ∈ Rr×r.

3. Perform an SVD of the 2r-by-2r matrix on the left-hand side of the following equation:
[

Σ +M R>v
Ru 0

]
= Ũ Σ̃Ṽ >,

where Σ̃ = diag({σ̃j}2rj=1) ∈ R2r×2r is some diagonal matrix with positive diagonal entries

{σ̃j}2rj=1 in descending order, and Ũ , Ṽ ∈ R2r×2r are two orthogonal matrices.

4. Set Σ̂ = diag({max(σ̃j , εs)}rj=1) ∈ Rr×r, Û = [U Qu][{Ũj}rj=1] ∈ Rm×r, and V̂ =

[V Qv][{Ṽj}rj=1] ∈ Rn×r, where Ũj and Ṽj denote the j-th columns of Ũ and Ṽ , respectively.

Return PM̄(r)(A+ ∆) = Û Σ̂V̂ >.

Concerning the QR-factorization of the matrices Up and Vp required in step 2 of Algorithm

4.4.6, we remark that in a MATLAB environment one may call the command qr with the

“economy-size” option. In addition, we note that a small positive parameter εs is introduced in

step 4 in order to prevent rank deficiency of the projection. Ideally, it suffices to choose εs > 0

which is significantly smaller than the minimal nonzero singular value of the underlying low-

rank matrix A∗ that, together with B∗, solves (4.3.1). Throughout our numerical experiments

in section 4.5, we shall fix εs = 10−3 . For a proper tuning of the underlying rank r along the

overall iterative algorithm, we refer to the trimming procedure presented in section 4.4.4.

It is known [LM08, AM12] that for any point A on the smooth manifold M̄, the projection

PM̄ is a smooth diffeomorphism in a neighborhood of A, and moreover the differentiation rule

DPM̄(A)[∆] = PTM̄(A)(∆)
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holds for any ∆ ∈ Rm×n. Thus, the projected dogleg path τk 7→ PM̄(Ak + ∆k(τk)) is a well-

defined smooth function in a neighborhood of 0. We remark that, in the context of [AMS08,

AM12], PM̄ induces a second-order retraction on M̄ near A given by ∆ ∈ TM̄(A) 7→ PM̄(A +

∆) ∈ M̄, which locally fits the exponential mapping up to second order.

We are now in a position to present the projected dogleg method for solving the low-rank

matrix subproblem. Below, we have chosen a specific sequence of trial step sizes Fk, but

obviously other choices may be considered as well.

Algorithm 4.4.7 (A-subproblem solver via projected dogleg method).

Let (Ak, Bk) ∈ M̄ ×N be given. Choose δ > 0.

0.
#

(Optional) Compute the global minimizer of the A-subproblem Âk+1 = PM( 1
1+µ(Z−Bk)).

If fkA(Âk+1) ≤ fkA(Ak)− δ‖Âk+1−Ak‖2, then accept Ak+1 = Âk+1; otherwise, reject Âk+1

and continue with step 1.

1. Compute gk, Hk. If 〈gk, Hk[gk]〉 > 0, then compute ∆k
C by formula (4.4.7); otherwise, set

∆k(τk) := −τkgk, Fk := {1, 1/2, 1/4, 1/8, 1/16, ...}, and go to step 3.

2. Compute ∆k
N by formula (4.4.8). If 〈∆k

C ,∆
k
N − ∆k

C〉 < 0 or any non-positive definite-

ness of Hk is detected during the computation, then set ∆k(τk) := τk∆k
C and Fk :=

{1, 1/2, 1/4, 1/8, 1/16, ...}; otherwise define the dogleg path ∆k : [0, 2] → TM̄(Ak) as in

(4.4.9) and set Fk := {2, 3/2, 1, 1/2, 1/4, 1/8, 1/16, ...}.

3. Set τk to be the largest element in Fk that fulfills

fkA(Ak)− fkA(PM̄(Ak + ∆k(τk))) ≥ δ‖Ak − PM̄(Ak + ∆k(τk))‖2. (4.4.10)

Return Ak+1 = PM̄(Ak + ∆k(τk)).

We remark that step 0 is included in the above algorithm as an optional trial step, only

recommended for utility when the global minimizer Âk+1 tends to be accepted and can be

computed at low cost, say e.g. via partial SVD [PRO]. Since the projected dogleg method

works practically well in its own right, unless otherwise specified, this trial step is skipped in

our subsequent algorithmic development and analysis. Nevertheless, in section 4.5.2 we shall

numerically compare the performances of Algorithm 4.4.7 both with and without step 0, together

with the augmented Lagrangian method based on a convex variational model.

Lemma 4.4.8. There exists τ̄k > 0 such that condition (4.4.10) is fulfilled for all τk ∈ (0, τ̄k].

Consequently, step 3 in Algorithm 4.4.7 always returns some admissible step size τk > 0 fulfilling

condition (4.4.1) after finitely many trials.
#

This trial step is optional, which is only recommended for utility if the global minimizer tends to be accepted
and can be computed at low cost. Unless otherwise specified, this step is skipped in our algorithmic development
and analysis.

121



Proof. Let φ(τk) := fkA(Ak)− fkA(PM̄(Ak + ∆k(τk)))− δ‖Ak − PM̄(Ak + ∆k(τk))‖2, which is a

well-defined smooth function in a neighborhood of 0. Then it follows that φ(0) = 0 and

φ′(0) = −〈gk, (∆k)′(0)〉 ≥ min

(
1,

‖gk‖2
〈gk, Hk[gk]〉

)
‖gk‖2 ≥ min

(
1,

1

λmax(Hk)

)
‖gk‖2 > 0.

Since φ is continuously differentiable in a neighborhood of 0, there exists some τ̄k > 0 such that

φ′(·) > 0 on the interval (0, τ̄k]. By utilizing the mean value theorem, we conclude that φ(·) ≥ 0

on the interval (0, τ̄k].

Lemma 4.4.9. Let {Ak} ⊂ M̄ be generated by Algorithm 4.4.7 along with some sequence

{Bk} ⊂ N satisfying condition (4.4.2). Then the following statements hold true:

i. limk→∞ ‖Ak −Ak+1‖ = 0.

ii. limk→∞ ‖∆k(τk))‖ = 0.

iii. Any convergent subsequence {Akl} of {Ak} satisfies liml→∞ ‖gk
l‖ = 0.

Proof. Owing to Lemma 4.4.8, the proof of (i) essentially resembles the first part of the proof

for Theorem 4.4.2.

Concerning (ii), note that Ak+1 = PM̄(Ak + ∆k(τk)), which satisfies the necessary condition

PTM̄(Ak+1)(A
k+1 −Ak −∆k(τk)) = 0. Then it follows from the reverse triangle inequality that

‖PTM̄(Ak+1)(∆
k(τk))‖ ≤ ‖PTM̄(Ak+1)(A

k+1 −Ak −∆k(τk))‖+ ‖Ak −Ak+1‖ → 0,

and therefore

‖∆k(τk)‖ = ‖PTM̄(Ak)(∆
k(τk))‖

≤ ‖PTM̄(Ak+1)(∆
k(τk))‖+ ‖PTM̄(Ak)(∆

k(τk))− PTM̄(Ak+1)(∆
k(τk))‖ → 0,

as k →∞.

We prove (iii) by contradiction. For this purpose, let {Akl} be a convergent subsequence of

{Ak} and ε > 0 such that ‖gkl‖ ≥ ε for all l. Based on an observation of the structure of the

Riemannian Hessian given in (4.4.6), the sequence {Hkl} is uniformly bounded, and we denote

κh := supl λmax(Hkl). Making use of Lemma 4.4.5(iii), we obtain a lower bound for ‖∆kl(τk
l
)‖

as follows:

‖∆kl(τk
l
)‖ ≥ min

(
τk

l‖gkl‖,min(1, τk
l
)

‖gkl‖3
〈gkl , Hkl [gkl ]〉

)
≥ εmin(1, 1/κh) min(1, τk

l
).

Then the result in (ii) yields that liml→∞ τk
l

= 0. Due to the nature of the backtracking dogleg

search in step 3 of Algorithm 4.4.7, this further implies that the trial step 2τk
l

is not admissible

at iteration l for all sufficiently large l; i.e.

fk
l

A (Ak
l
)− fklA (PM̄(Ak

l
+ ∆kl(2τk

l
))) < δ‖Akl − PM̄(Ak

l
+ ∆kl(2τk

l
))‖2,

122



for all l. Dividing both sides above by 2τk
l

and passing l→∞, we find

0 ≥ lim
l→∞
−〈gkl , (∆kl)′(0)〉 ≥ min

(
1,

1

κh

)
lim
l→∞
‖gkl‖2,

which leads to a contradiction.

Lemma 4.4.10. Let (A∗, B∗) ∈ M̄ × N satisfy the first-order optimality conditions (4.3.3)–

(4.3.4) with ‖B∗‖0 = s. Further assume that the Riemannian Hessian Hessf(A∗, B∗) : TM̄(A∗)×
TN (B∗) → TM̄(A∗) × TN (B∗) is strictly positive definite when µ = 0. Then the following

statements hold true:

i. The Riemannian Hessian of f with respect to the first argument, denoted by HessAf(A∗, B∗) :

TM̄(A∗)→ TM̄(A∗), is strictly positive definite for any µ ≥ 0.

ii. The following tangent space transversality holds true:

TM̄(A∗) ∩ TN (B∗) = {0}. (4.4.11)

iii. The linear operator PTM̄(A∗) ◦ PTN (B∗) : Rm×n → Rm×n is a contraction; i.e. there exists

a constant κp ∈ [0, 1) such that

‖(PTM̄(A∗) ◦ PTN (B∗))(∆)‖ ≤ κp‖∆‖, (4.4.12)

for all ∆ ∈ Rm×n.

Proof. Given an arbitrary nonzero element ∆A in TM̄(A∗), we have

0 < 〈(∆A, 0),Hessf(A∗, B∗)[(∆A, 0)]〉TM̄(A∗)×TN (B∗)

∣∣∣
µ=0

= 〈(∆A, 0),∇(∆A,0)gradf(A∗, B∗)〉TM̄(A∗)×TN (B∗)

∣∣∣
µ=0

= 〈∆A,∇∆A
gradAf(A∗, B∗)〉TM̄(A∗)

∣∣∣
µ=0

= 〈∆A,HessAf(A∗, B∗)[∆A]〉TM̄(A∗)

∣∣∣
µ=0

≤ 〈∆A,HessAf(A∗, B∗)[∆A]〉TM̄(A∗)

∣∣∣
µ≥0

.

The last inequality follows from an observation of the Hessian formula (4.4.6). Thus, (i) is

proven.

We prove (ii) by contradiction. For this purpose, assume that µ = 0 and there exists a

nonzero element ∆ ∈ TM̄(A∗) ∩ TN (B∗). Since M̄ is an embedded submanifold of Rm×n, we

have

Hessf(A∗, B∗)[(∆,−∆)]

=PTM̄(A∗)×TN (B∗)

(
D(A,B)gradf(A∗, B∗)[(∆,−∆)]

)
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=PTM̄(A∗)×TN (B∗)

(
D(A,B)

(
PTM̄(A)(A+B − Z), PTN (B)(A+B − Z)

)
[(∆,−∆)]

∣∣∣
(A,B)=(A∗,B∗)

)

= (0, 0). (4.4.13)

In the above formulae, note that the first equality follows from Proposition 5.3.2 in [AMS08]. The

last equality is a consequence of conditions (4.3.3)–(4.3.4) and the chain rule of differentiation.

Thus, (4.4.13) yields 〈(∆,−∆),Hessf(A∗, B∗)[(∆,−∆)]〉 = 0, which contradicts the positive

definiteness of Hessf(A∗, B∗).

We prove (iii) again by contradiction. Note that the composition of projections PTM̄(A∗) ◦
PTN (B∗) is nonexpansive, and therefore condition (4.4.12) always hold true for κp = 1. Now

assume that (iii) does not hold. Then there must exist a sequence {κlp}∞l=1 ∈ [0, 1) with

liml→∞ κlp = 1 and correspondingly {∆l} ⊂ Rm×n with ‖∆l‖ = 1 for all l such that it holds for

all l that

κlp‖∆l‖ < ‖(PTM̄(A∗) ◦ PTN (B∗))(∆
l)‖ ≤ ‖∆l‖.

Upon the extraction of a subsequence of {∆l}, whose limit point ∆ ∈ Rm×n satisfies ‖∆‖ = 1,

we have

‖(PTM̄(A∗) ◦ PTN (B∗))(∆)‖ = ‖∆‖.

Then it follows from the self-adjointness and idempotence of an orthogonal projection onto a

linear subspace that

〈∆,∆〉 = 〈(PTM̄(A∗) ◦ PTN (B∗))(∆), (PTM̄(A∗) ◦ PTN (B∗))(∆)〉
= 〈∆, (PTN (B∗) ◦ PTM̄(A∗) ◦ PTN (B∗))(∆)〉,

or equivalently 〈∆, (id−PTN (B∗) ◦PTM̄(A∗) ◦PTN (B∗))(∆))〉 = 0. By the self-adjointness we have

(id− PTN (B∗) ◦ PTM̄(A∗) ◦ PTN (B∗))(∆) = 0, and thus

(PTN (B∗) ◦ PTM̄(A∗) ◦ PTN (B∗))(∆) = PTN (B∗)(∆). (4.4.14)

In particular, note that PTN (B∗)(∆) ∈ TN (B∗) and PTN (B∗)(∆) 6= 0. Further manipulation of

(4.4.14) yields that 〈PTN (B∗)(∆), (id − PTM̄(A∗))(PTN (B∗)(∆))〉 = 0, and therefore by the self-

adjointness

PTN (B∗)(∆) = (PTM̄(A∗) ◦ PTN (B∗))(∆).

Thus, we have found PTN (B∗)(∆) 6= 0 such that PTN (B∗)(∆) ∈ TM̄(A∗)∩TN (B∗), which contra-

dicts the tangent space transversality in (ii).

We remark that in [CSPW11] the tangent space transversality condition (4.4.11) is discussed

in detail, and a sufficient condition on A∗ and B∗, which holds with high probability in practice,

is also provided for ensuring the tangent space transversality. From Lemma 4.4.10, we see that

tangent space transversality can be naturally regarded as a consequence of the second-order

sufficient optimality condition.
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Theorem 4.4.11. Let {Ak} ⊂ M̄ be a sequence generated by Algorithm 4.4.7 along with

some sequence {Bk} ⊂ N generated by Algorithm 4.4.3. At iteration k, assume that the it-

erate (Ak, Bk) is sufficiently close to some (A∗, B∗) ∈ M̄ × N with ‖B∗‖0 = s satisfying

the first-order optimality conditions (4.3.3)–(4.3.4). Moreover, assume that the Riemannian

Hessian Hessf(A∗, B∗)
∣∣∣
µ=0

is strictly positive definite as in Lemma 4.4.10 and that 0 < δ <

λmin(HessAf(A∗, B∗))/4. Then it follows:

i. For all sufficiently large k, ∆k(τk) = ∆k
N is admissible in the backtracking dogleg search

in step 3 of Algorithm 4.4.7; i.e. Ak+1 = PM̄(Ak + ∆k
N ) satisfies condition (4.4.1).

ii. The sequence {Ak} converges q-linearly to A∗ at rate κp; i.e.

lim sup
k→∞

‖Ak+1 −A∗‖
‖Ak −A∗‖ ≤ κp,

where κp ∈ [0, 1) is a qualified constant in Lemma 4.4.10(iii) such that condition (4.4.12)

holds.

iii. limk→∞ ‖PTM̄(Ak+1)((1+µ)Ak+1+Bk−Z)‖ = 0. Consequently, condition (4.4.3) is fulfilled

with limk→∞ εka = 0.

Proof. By the continuity of the mapping (Ak, Bk) 7→ Hk and Lemma 4.4.10(i), we have λmin(Hk) ≥
λmin(HessAf(A∗, B∗))/2 > 0 for all sufficiently large k. Thus the backtracking dogleg search in

step 3 of Algorithm 4.4.7 is initiated with τk = 2, or ∆k(τk) = ∆k
N = −(Hk)−1[gk]. Note that,

due to Lemma 4.4.9(iii), both ‖gk‖ and ‖∆k
N‖ can be assumed to be sufficiently close to 0. Since

∆ ∈ TM̄(A) 7→ PM̄(A+ ∆) ∈ M̄ is a second-order retraction on M̄ near A (see Example 18 in

[AM12]), we have the following Taylor expansion:

fkA(PM̄(Ak + ∆k
N )) = fkA(Ak) + 〈gk,∆k

N 〉+
1

2
〈∆k

N , H
k[∆k

N ]〉+ o(‖∆k
N‖2)

= fkA(Ak)− 1

2
〈∆k

N , H
k[∆k

N ]〉+ o(‖∆k
N‖2), as k →∞.

Meanwhile, it follows from Ak+1 = PM̄(Ak + ∆k
N ) = Ak + ∆k

N + o(‖∆k
N‖) that

‖Ak+1 −Ak‖2 = ‖∆k
N‖2 + o(‖∆k

N‖2), as k →∞.

Thus, altogether we have

f(Ak, Bk)− f(Ak+1, Bk) = fkA(Ak)− fkA(Ak+1) =
1

2
〈∆k

N , H
k[∆k

N ]〉+ o(‖∆k
N‖2)

≥ λmin(HessAf(A∗, B∗))
4

‖∆k
N‖2 + o(‖∆k

N‖2)

=
λmin(HessAf(A∗, B∗))

4
‖Ak+1 −Ak‖2 + o(‖∆k

N‖2) ≥ δ‖Ak+1 −Ak‖2,

i.e. ∆k(τk) = ∆k
N is admissible.
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Now consider Ak+1 = φA(Ak, Bk), where φA : M̄ × N → M̄ is defined by the following

system of equations:

φA(A,B) = PM̄(A+ ∆) =: ρ(A,∆), (4.4.15)

∇∆gradAf(A,B) = −gradAf(A,B). (4.4.16)

If (Ak, Bk) = (A∗, B∗), then we have gradAf(A∗, B∗) = 0. Moreover, since HessAf(A∗, B∗) is

invertible, we have ∆ = 0 and thus Ak+1 = ρ(A∗, 0) = A∗. Let us perturb φA at (A∗, B∗) with

respect to the first argument along some ΛA ∈ TM̄(A∗), which yields

DAφ
A(A∗, B∗)[ΛA] = DAρ(A∗, 0)[ΛA] +D∆ρ(A∗, 0)[DA∆(A∗, B∗)[ΛA]].

Since DAρ(A∗, 0)[ΛA] = ΛA and D∆ρ(A∗, 0)[·] = idTM̄(A∗)(·) on TM̄(A∗), we have

DAφ
A(A∗, B∗)[ΛA] = ΛA +DA∆(A∗, B∗)[ΛA].

The function ∆(A,B) is implicitly defined through equation (4.4.16), and in particular ∆(A∗, B∗) =

0.

Next we use a calculus approach to show the following identity:

DAgradAf(A∗, B∗)[DA∆(A∗, B∗)[ΛA]] = −DAgradAf(A∗, B∗)[ΛA]. (4.4.17)

Let ΓA denote the matrix-form Christoffel symbols of M̄ around A (see, e.g., [EAS98]) such

that ΓA is symmetric, bilinear, and ∇η(A)ξ(A) = Dξ(A)[η(A)] + ΓA[ξ(A), η(A)] ∈ TM̄(A) for

any two smooth vector fields ξ and η on M̄. Then equation (4.4.16) can be rewritten as follows:

DAgradAf(A,B)[∆(A,B)] + ΓA[gradAf(A,B),∆(A,B)] = −gradAf(A,B).

By perturbing the above equation at (A∗, B∗) along (ΛA, 0) ∈ TM̄(A∗)× TN (B∗), we have

D2
AgradAf(A∗, B∗)[∆(A∗, B∗),ΛA] +DAgradAf(A∗, B∗)[DA∆(A∗, B∗)[ΛA]]

+ ΓA∗ [DAgradAf(A∗, B∗)[ΛA],∆(A∗, B∗)] + ΓA∗ [gradAf(A∗, B∗), DA∆(A∗, B∗)[ΛA]]

=−DAgradAf(A∗, B∗)[ΛA].

Crossing out the vanishing terms, we obtain (4.4.17) as claimed. Note that gradAf(A,B) =

PTM̄(A)((1 + µ)A + B − Z) and thus DAgradAf(A∗, B∗)[·] = (1 + µ)idTM̄(A∗)(·) on TM̄(A∗).

Thus we have

DAφ
A(A∗, B∗) = 0.

Analogously, we perturb φA at (A∗, B∗) with respect to the second argument along (0,ΛB) ∈
TM̄(A∗)× TN (B∗). This leads to

DBφ
A(A∗, B∗)[ΛB] = DB∆(A∗, B∗)[ΛB].
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Again by the calculus approach, we derive

DAgradAf(A∗, B∗)[DB∆(A∗, B∗)[ΛB]] = −DBgradAf(A∗, B∗)[ΛB].

Note that DBgradAf(A∗, B∗)[ΛB] = PTM̄(A∗)(ΛB). Then it follows that

DBφ
A(A∗, B∗)[ΛB] = PTM̄(A∗)(ΛB).

By the Taylor expansion of φA at (A∗, B∗), we have the following estimate

‖Ak+1 −A∗‖ = ‖φA(Ak, Bk)− φA(A∗, B∗)‖
≤‖DAφ

A(A∗, B∗)(Ak −A∗)‖+ ‖DBφ
A(A∗, B∗)(Bk −B∗)‖+ o(‖Ak −A∗‖) + o(‖Bk −B∗‖)

= ‖PTM̄(A∗)(B
k −B∗)‖+ o(‖Ak −A∗‖) + o(‖Bk −B∗‖), as k →∞. (4.4.18)

In order to obtain an estimate on Bk−B∗, consider the mapping φB(A,B) := PTN (B)(A+B−Z).

Let Bk be sufficiently close to B∗ such that ‖Bk‖0 = s and Bk − B∗ ∈ TN (B∗). Due to our

assumption on the sequence {Bk} and Theorem 4.4.4, we have φB(Ak, Bk) = φB(A∗, B∗) = 0.

Moreover, the derivatives of φB are given by DAφ
B(A∗, B∗) = PTN (B∗) and DBφ

B(A∗, B∗) =

idTN (B∗). Thus the Taylor expansion of φB at (A∗, B∗) appears as

φB(Ak, Bk) = φB(A∗, B∗) +DAφ
B(A∗, B∗)(Ak −A∗) +DBφ

B(A∗, B∗)(Bk −B∗)
+ o(‖Ak −A∗‖) + o(‖Bk −B∗‖), as k →∞,

which further implies that

Bk −B∗ = −PTN (B∗)(A
k −A∗) + o(‖Ak −A∗‖) + o(‖Bk −B∗‖), as k →∞. (4.4.19)

In particular, we have ‖Bk −B∗‖ ≤ O(‖Ak −A∗‖) as k →∞.

By plugging (4.4.19) into (4.4.18), it follows from Lemma 4.4.10(iii) that

‖Ak+1 −A∗‖ ≤ ‖(PTM̄(A∗) ◦ PTN (B∗))(A
k −A∗)‖+ o(‖Ak −A∗‖)

≤ κp‖Ak −A∗‖+ o(‖Ak −A∗‖),

for all sufficiently large k. This proves our claim (ii).

Finally, in view of the convergence of {(Ak, Bk)} to (A∗, B∗) as well as Lemma 4.4.9(i), we

conclude that limk→∞ ‖PTM̄(Ak+1)((1 + µ)Ak+1 + Bk − Z)‖ = 0 and that condition (4.4.3) is

fulfilled with limk→∞ εka = 0.

We end this subsection by noting that the dependence of δ on (A∗, B∗) is certainly delicate.

In our numerics, however, the choice of δ turned out to be rather unproblematic, even for µ = 0

as in section 4.5. Concerning the complexity of the low-rank subproblem solver, note that the

computation of ∆k
N in step 2 of Algorithm 4.4.7 possibly requires solving the linear system

involving Hk. Under the assumption on the positive definiteness of the Riemannian Hessian
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in Theorem 4.4.11, which imitates the second-order sufficient optimality condition in classical

(unconstrained, Euclidean) optimization, each Hk-system solve, up to certain fixed tolerance

of the error, can be carried out by the conjugate gradient method within a uniformly bounded

number of iterations. Thus, the overall complexity for the low-rank subproblem solver at each

iteration is no more than O(mnr) flops. In addition, we remark that the constant κp in Lemma

4.4.10(iii), which in fact measures the angle between the tangent spaces TM̄(A∗) and TN (B∗),

is an intrinsic quantification of the local identifiability [CSPW11] at (A∗, B∗). Even though our

alternating minimizer scheme solves its subproblems only inexactly, its asymptotical convergence

rate (i.e. κp) is equally fast as that attained by the (exact) alternating projection method. When

0 ≤ κp < 1, (A∗, B∗) is a strict local minimizer, and {Ak} converges to A∗ q-linearly at rate

κp, as shown in Theorem 4.4.11(ii). In case κp = 0, or equivalently TM̄(A∗) and TN (B∗) are

perpendicular to each other, the convergence of {Ak} to A∗ is even superlinear.

4.4.4 Alternating minimization scheme with trimming

The favorable performance of Algorithm 4.4.1 depends on a proper choice of r and s. If either

r or s is too small, the constraint will rule out the desired solution. On the other hand, if

either r or s is too large, the convergence property of Algorithm 4.4.1 is in danger due to the

rank- or cardinality-deficiency at the desired solution. In this subsection we resolve this issue by

incorporating a heuristic trimming procedure into the alternating minimization scheme which

allows an adaptive tuning of r and s. The trimming of the matrix Ak is based on the k-means

clustering algorithm [Seb84], and the trimming of the matrix Bk is based on a hard-thresholding.

In brief, we initialize the algorithm by some safe choices of r1 and s1 that are larger than the

underlying r and s, respectively. As the iterates Ak ∈ M̄(rk) tend to settle, we partition the rk

largest singular values of Ak (in logarithmic scale) into two clusters by the k-means algorithm.

If the gap between the means of the two clusters is larger than some prescribed threshold, then

we set rk+1 to be the cardinality of the cluster of the larger mean, and replace the old Ak

by its projection onto M̄(rk+1). On the other hand, when the iterates Bk ∈ N (sk) tend to

stabilize along the sequence, we replace those entries of Bk, which are less than some threshold

in absolute value, by 0 and set sk+1 := ‖Bk‖0. The detailed implementation of the alternating

minimization scheme with trimming is specified in the following.

Algorithm 4.4.12 (Alternating minimization scheme with trimming).

Choose δ > 0, νa > 0, νb > 0, θa > 0, θb > 0. Initialize r1 ∈ N, s1 ∈ N, A0 ∈ M̄(r1),

B0 = PN (s1)(Z −A0). Set k = 1 and iterate:

1. Compute Ak as an approximate solution of the A-subproblem minA∈M̄(rk)
1
2‖A+Bk−1 −

Z‖2 by Algorithm 4.4.7, which is represented in the compact SVD form Ak = UkΣk(V k)>.

2. Compute Bk as an approximate solution of the B-subproblem minB∈N (sk)
1
2‖Ak+B−Z‖2

by Algorithm 4.4.3.
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3. If ‖Ak −Ak−1‖/‖Ak−1‖ > νa, then set rk+1 := rk; otherwise trim Ak as follows:

(a) Partition the logarithms of the rk largest singular values of Ak, namely {log σkj }r
k

j=1,

into two disjoint sets {log σkj }j∈I1 and {log σkj }j∈I2 by the k-means clustering algo-

rithm (with |I1|+ |I2| = rk).

(b) Evaluate the means of the two clusters; i.e. m1 := (
∑

j∈I1 log σkj )/|I1| and m2 :=

(
∑

j∈I2 log σkj )/|I2|. Assume m1 ≥ m2 without loss of generality.

(c) If m1 −m2 > θa, then set rk+1 := |I1|, Uk := [{Ukj }j∈I1 ], V k := [{V k
j }j∈I1 ], Σk :=

diag({σkj }j∈I1), and Ak := UkΣk(V k)>.

4. If ‖Bk − Bk−1‖/‖Bk−1‖ > νb, then set sk+1 := sk; otherwise set Bk
ij := 0 whenever

|Bk
ij | < θb and update sk+1 := ‖Bk‖0.

5. If a suitable stopping criterion is satisfied, then stop; otherwise increase k by 1 and return

to step 1.

4.5 Numerical experiments

In this section, we study the numerical performance of Algorithm 4.4.12. The following parame-

ters in the algorithm are fixed throughout the experiments: µ = 0, δ = 0.1, νa = νb = 0.2. Note

that although it is favorable to consider µ > 0 so as to guarantee the existence of a solution (see

Theorem 4.3.1), we experience no troubles in our numerical experiments when choosing µ = 0.

Concerning the initialization, given any A0 ∈ M̄(r1), we always take B0 = PN (s1)(Z − A0)

accordingly. The inversion of the linear system (4.4.8) for computing the Newton step ∆k
N is

carried out by the conjugate gradient method with fixed residual tolerance 0.01. It turns out

that this (approximate) Newton step in resolving the A-subproblem is so good that it is ad-

missible, i.e. ∆k(τk) = ∆k
N fulfills condition (4.4.10), in almost every iteration. In addition,

all partial SVDs are performed using the PROPACK routine lansvd [PRO], which should be

distinguished from the (full) SVDs using the MATLAB routine svd.

The experiments were performed under MATLAB R2011b on a 2.66 GHz Intel Core Laptop

with 4 GB RAM. All CPU-time reported in this section is measured in seconds.

4.5.1 Numerical behavior

We apply our algorithm to a test example of robust principal component pursuit. Let m = n =

400, r = 0.05n, s = 0.05n2, and the observation matrix is generated by Z = Atrue +Btrue +N .

The rank-r matrix Atrue = LtrueR
>
true is generated by the product of two matrices Ltrue ∈ Rm×r

and Rtrue ∈ Rn×r, both of which have entries independently sampled from a normal distribution

of mean 0 and standard deviation 1. The sparse matrix Btrue has s nonzero entries, whose

locations are randomly chosen and whose values are independently sampled from {±√n} with
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uniform probability. The matrix N contains white Gaussian noise of mean 0 and standard

deviation 0.001. In this example, we choose θa = log 5, θb = 0.2
√
n.

Since our algorithm intends to find a local solution for the nonconvex minimization problem

(4.3.1), it is important to check the quality of such a local solution as well as the dependence

on the initial guess (A0, B0). In the following test, we consider two different choices for A0,

namely A0 = PM̄(r1)(Z) and A0 being the projection of a random Gaussian matrix onto M̄(r1).

Meanwhile, we also investigate the effectiveness of the trimming procedure for tuning rk and

sk, provided that the true values of r and s are not available at the beginning. In this test, we

allow r1 and s1 to be overestimations with respect to the true r and s up to 100%. The iterative

algorithm is terminated once the relative error ‖Ak −Atrue‖/‖Atrue‖ drops below 2× 10−4.

In Table 4.1, we report the corresponding relative error and the CPU-time. It is observed

that the quality of the solutions produced by Algorithm 4.4.12, measured by the relative error,

is robust to different initializations. Nonetheless, we remark that the efficiency of the algorithm

is correlated to the choices of r1, s1, and A0. As it can be expected, the initial guess A0 =

PM̄(r1)(Z) is superior to a randomly chosen A0 with respect to CPU-time, while choosing r1

and s1 closer to the underlying r and s yields faster convergence.

We further illustrate the numerical behavior of the algorithm, for instance, when r1 = 1.5r,

s1 = 1.5s, and A0 = PM̄(r1)(Z). In Figure 4.1, we provide the semi-logarithmic plots of the

objective value f(Ak, Bk), the residual norm ‖gradAf(Ak, Bk)‖, and the convergence errors

‖Ak − A∗‖/‖A∗‖ and ‖Bk − B∗‖/‖B∗‖. The limit points A∗ and B∗ are precomputed with

sufficiently high accuracy. It is observed from Figure 4.1(c) that, as is theoretically justified in

Theorem 4.4.11, the sequence {Ak} indeed exhibits a linear convergence, and the asymptotical

convergence rate in this example is about 0.26.

A0 = PM̄(r1)(Z) random A0

r1 s1 error CPU error CPU

r s 1.78e-4 1.32 1.19e-4 1.76
1.25r 1.25s 1.73e-4 1.74 1.67e-4 2.05
1.5r 1.5s 1.84e-4 1.77 1.35e-4 2.36
1.75r 1.75s 1.32e-4 2.03 1.01e-4 2.64

2r 2s 1.16e-4 2.17 1.83e-4 2.75

Table 4.1: Initialization study.

4.5.2 Comparison with an augmented Lagrangian method

A comprehensive comparison of numerical solvers on the (convex) nuclear-plus-`1-norm model for

robust principal component pursuit can found on the webpage [LRM]. Among those solvers, the

augmented Lagrangian method [CLMW11, LCWM09, TY11] seems to be the most efficient one

in practice. Hence, in the following we compare the performances of our alternating minimization

scheme and the augmented Lagrangian method with implementation-wise variations on both
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Figure 4.1: Convergence behavior.

methods. More specifically, we implement Algorithm 4.4.12 both with and without the global

minimization trial step for the low-rank subproblem (i.e. step 0 of Algorithm 4.4.7), which

are abbreviated by “AMS#” and “AMS” respectively. The implementation of the augmented

Lagrangian method essentially follows Algorithm 1 in [CLMW11]. The major computational cost

of this algorithm lies in an SVD in full dimension for performing a “singular value thresholding”

at each iteration. As pointed out by [CCS10], it is possible to accelerate the singular value

thresholding via partial SVD [PRO]. Different from the context in [CCS10], however, the target

matrix (for SVD) in our matrix decomposition problem is dense and unstructured in general,

and thus this acceleration strategy should only be utilized when the rank of the target matrix

is predictably low. In our experiments, we implement the augmented Lagrangian method with

full SVDs only (abbreviated by “fSVD-ALM”), and also its partial-SVD variant (abbreviated by

“pSVD-ALM”) where one switches from full SVD to partial SVD once the rank of the low-rank

component Ak in the previous iteration drops below an empirical threshold equal to 0.2n.

The test data is generated in the same way as described in the first paragraph of section

4.5.1, except for N = 0. Thus, the exact recovery of Atrue and Btrue is expected for all candidate

methods, namely AMS, AMS#, fSVD-ALM, and pSVD-ALM. In this example, we choose θa =

log 5, θb = 0.2
√
n in AMS and AMS#. Besides, we assume a moderate initial estimate (rather

than the exact knowledge) of r and s such that r1 = 1.5r, s1 = 1.5s. For a fair comparison,

we use the same initial guesses, i.e. A0 = PM̄(r1)(Z), B0 = PN (s1)(Z − A0), for all candidate

methods. The experiments are performed with different combinations of n, r, and s.

The corresponding comparisons among the four candidate methods with respect to rela-
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tive errors, measured by ‖Ak − Atrue‖/‖Atrue‖ and ‖Bk − Btrue‖/‖Btrue‖, and CPU time are

demonstrated in Figure 4.2. It is observed in the experiments that AMS# always accepts the

global minimizers from both the A- and B-subproblems, and essentially behaves like a heuristic

alternating projection method (see the Appendix for a description) known to be locally linearly

convergent. In this particular example, AMS# works extremely well owing to a good initial

guess so that the local convergence of the alternating projection method is immediately acti-

vated from the beginning. Nevertheless, the reader should be cautioned that in general such

convergence behavior is not guaranteed for the alternating projection method with arbitrary

initial guesses, and under such circumstances the global minimization trial steps are most likely

wasteful. On the other hand, the plots on the relative errors in Figure 4.2 indicate that AMS,

with guaranteed global convergence, has rather close performance to AMS#, especially for larger

scales. Although partial SVDs typically improve the augmented Lagrangian method over the

asymptotical convergence rate, expensive full SVDs are inevitable at early iterations; see the

plots of the rank transitions of {Ak} (when n = 2000) in the rightmost column of Figure 4.2.

In comparison, AMS and AMS# capture the rank of the low-rank component and the cardinal-

ity of the sparse component efficiently, thanks to the heuristic trimming procedure, and thus

outperform fSVD-ALM and pSVD-ALM for large scales.

4.5.3 Application to background-foreground separation of surveillance video

We apply our algorithm to background-foreground separation of surveillance videos. Our first

test video, which is taken from [LHGT04, CLMW11] and also publicly available [Sur], is a

sequence of 200 frames taken in an airport. Each frame is a gray-level image of resolution

144 × 176, and is stacked as one column in the data matrix Z ∈ R25344×200; i.e. m = 25344,

n = 200. Our goal is to extract from Z the static background (as the low-rank matrix A) and

the moving foreground (as the sparse matrix B).

We implement the alternating minimization scheme (AMS) with θa = log 10, θb = 0.12,

A0 = PM̄(r1)(Z), r1 = 5, and s1 ≈ 0.1mn, which is terminated once the residual norm

‖gradAf(Ak, Bk)‖ is reduced by a factor of 10−4. It takes 39.4 seconds for AMS to converge,

and the ultimate value of rk is equal to 1 and sk ≈ 0.0483mn. The corresponding extractions for

three selected frames are displayed in columns (b) and (c) in Figure 4.3. For comparison, we also

perform the extraction using the augmented Lagrangian method (ALM). The implementation of

ALM again follows [CLMW11], and we terminate the iterations once ‖Z−Ak−Bk‖/‖Z‖ ≤ 10−4.

We note that only full SVDs are implemented in ALM, as partial SVDs do not lead to CPU

gain in this problem. The results by ALM are shown in columns (d) and (e), and it takes 124.4

seconds for ALM to converge.

Our second example is a 400-frame sequence taken in a lobby with varying illumination

[LHGT04, CLMW11, Sur]. Each frame is of resolution 128 × 160, and the data matrix Z is

formulated as a 20480-by-400 matrix (i.e. m = 20480, n = 400). We run AMS with the same
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(b) Relative error on {Ak}.
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(d) Relative error on {Bk}.

0 10 20 30 40 50 60 70 80
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CPU time

re
la

ti
v
e

 e
rr

o
r 

o
n

 B
k

 

 

AMS

AMS
#

fSVD−ALM

pSVD−ALM

(e) Relative error on {Bk}.
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(h) Relative error on {Ak}.
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(i) Rank transition of {Ak}.
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(j) Relative error on {Bk}.
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Figure 4.2: Comparison with augmented Lagrangian method.
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parameters as in the previous example except for θb = 0.06, which is smaller than before, so that

we allow more information in the sparse matrix. The algorithm converges after 69.19 seconds,

and the ultimate value of rk is equal to 2 and sk ≈ 0.00413mn. We also implement ALM using

the same setting as before, for which it takes 193.5 seconds to converge. The separation results

of both methods are displayed in Figure 4.4.

We conclude from the experiments that AMS performs well in background-foreground sepa-

ration of surveillance videos, which is robust to the variation of illumination. In comparison with

ALM, AMS typically eliminates the moving shadows in the backgrounds that occur in ALM,

and provides sharper extractions of the moving foregrounds. Moreover, AMS has considerable

advantage over ALM with respect to CPU-time.

(a) (b) (c) (d) (e)

Figure 4.3: Background-foreground separation (airport): (a) original frames; (b) background
via AMS; (c) foreground via AMS; (d) background via ALM; (e) foreground via AMS. The
CPU-time consumed by AMS and ALM is 39.4 and 124.4 seconds, respectively.

4.6 Appendix on local convergence of an alternating projection
method.

Here we consider a heuristic alternating projection method for the RPCP problem. This method,

which can be interpreted as an exact alternating minimizer scheme for the optimization problem

(1) with µ = 0, can be shortly described as follows. Given Ak ∈M, one generates

{
Bk+1 := PN (Z −Ak),
Ak+1 := PM(Z −Bk+1).

(4.6.1)
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(a) (b) (c) (d) (e)

Figure 4.4: Background-foreground separation (lobby): (a) original frames; (b) background via
AMS; (c) foreground via AMS; (d) background via ALM; (e) foreground via AMS. The CPU-
time consumed by AMS and ALM is 69.19 and 193.5 seconds, respectively.

The name “alternating projection method” is termed, since the iterative procedure (on {Ak})
can be expressed as

Ak+1 = ψ(Ak) := (PM ◦ ι ◦ PN ◦ ι)(Ak), (4.6.2)

with ι : A 7→ Z − A, and thus generalizes the classical alternating projection (where ι is the

identity map) in, e.g, [LM08]. The following theorem asserts the local convergence of the alter-

nating projection method. However, we note that the global convergence for this method is not

guaranteed in general.

Theorem 4.6.1. Given A0 ∈M, let the sequence {(Ak, Bk)} be iteratively generated by formula

(4.6.1). Assume that (Ak, Bk) is sufficiently close to some (A∗, B∗) such that rank(A∗) = r,

‖B∗‖ = s, TM(A∗) ∩ TN (B∗) = {0}, and moreover
{
B∗ := PN (Z −A∗),
A∗ := PM(Z −B∗). (4.6.3)

Then {(Ak, Bk)} converges to (A∗, B∗) q-linearly at rate κp; i.e.

lim sup
k→∞

‖(Ak+1, Bk+1)− (A∗, B∗)‖
‖(Ak, Bk)− (A∗, B∗)‖ ≤ κp,

where κp ∈ [0, 1) is a constant (same as in Lemma 4.4.10) such that

‖(PTM(A∗) ◦ PTN (B∗))(∆)‖ ≤ κp‖∆‖,

for all ∆ ∈ Rm×n.
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Proof. We only prove the q-linear convergence on {Ak}, as the proof for {Bk} is almost identical.

Note that M and N are two smooth manifolds near A∗ and B∗, respectively. For the existence

of a qualified constant κp, we refer to Lemma 4.4.10(iii).

In the following, we perturb both equations in (4.6.3) with respect to A∗ by an arbitrarily

fixed ∆ ∈ Rm×n. The perturbation of the first equation gives

PN (Z −A∗ −∆) = B∗ + PN (Z −A∗ −∆)− PN (Z −A∗) = B∗ + PTN (B∗)(−∆) +O(‖∆‖2).

Since A∗ is a fixed point of the map ψ in (4.6.2), the second equation in (4.6.3) can be written

as ψ(A∗) = PM(Z −B∗). Then we have

ψ(A∗ + ∆) = PM(Z − PN (Z −A∗ −∆)) = PM(Z −B∗ − PTN (B∗)(−∆) +O(‖∆‖2))

= A∗ + PM(Z −B∗ − PTN (B∗)(−∆) +O(‖∆‖2))− PM(Z −B∗)
= A∗ + (PTM(A∗) ◦ PTN (B∗))(∆) +O(‖∆‖2)).

Thus, by considering ∆ = Ak −A∗ and passing ∆→ 0, we conclude that

lim sup
k→∞

‖Ak+1 −A∗‖
‖Ak −A∗‖ ≤ κp.
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Chapter 5

Conclusion and outlook

This thesis has investigated nonconvex and nonsmooth minimization methods in three different

contexts, namely sparsity-promoting variational models with nonconvex priors, bilevel optimiza-

tion with nonsmooth low-level problem, and optimization over Riemannian manifolds. Through

the thesis, we conclude that such methods indeed yield advantages in a wide range of applica-

tions with respect to quality of the solutions or computational time. Nonconvex and nonsmooth

minimizations certainly require more efforts, both analytically and numerically, in comparison

with convex and/or smooth minimizations. Generally speaking, existence of solutions remains

an open challenge in infinite dimensions. Characterization of optimality condition becomes

challenging when the constraint set involves complex variational geometry. With careful de-

sign of solution algorithms, nonconvex and nonsmooth variational models can be numerically

competitive in practice, provided that they are equipped with state-of-the-art techniques from

optimization, analysis, and geometry.

To envisage our future research, we are interested in developing proper interpretation and

utilization of nonconvex priors under the context of Bayesian statistics. The bilevel ansatz in the

present thesis certainly admits extensions and applications to other imaging processing tasks.

Interestingly, this includes a quasi-variational inequality approach to adaptively regularized im-

age restoration. Besides, success of optimization algorithms over low-rank matrix manifolds

inspires further challenge on optimization over low-rank tensor manifolds. This line of research

is closely related to recent development in multilinear algebra.
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