THE UNIVERSAL ABELIAN VARIETY OVER A_5

GAVRIL FARKAS AND ALESSANDRO VERRA

ABSTRACT. We establish a structure result for the universal abelian variety over \mathcal{A}_5 . This implies that the boundary divisor of $\overline{\mathcal{A}}_6$ is unirational and leads to a lower bound on the slope of the cone of effective divisors on $\overline{\mathcal{A}}_6$.

The general principally polarized abelian variety $[A,\Theta] \in \mathcal{A}_g$ of dimension $g \leq 5$ can be realized as a Prym variety. Abelian varieties of small dimension can be studied in this way via the rich and concrete theory of curves, in particular, one can establish that \mathcal{A}_g is unirational in this range. In the case g=5, the Prym map $P:\mathcal{R}_6 \to \mathcal{A}_5$ is finite of degree 27, see [DS]; three different proofs [Don], [MM], [Ve1] of the unirationality of \mathcal{R}_6 are known. The moduli space \mathcal{A}_g is of general type for $g \geq 7$, see [Mu], [T]. Determining the Kodaira dimension of \mathcal{A}_6 is a notorious open problem.

The aim of this paper is to give a simple unirational parametrization of the universal abelian variety over \mathcal{A}_5 and hence of the boundary divisor of a compactification of \mathcal{A}_6 . We denote by $\phi: \mathcal{X}_{g-1} \to \mathcal{A}_{g-1}$ the universal abelian variety of dimension g-1. The moduli space $\widetilde{\mathcal{A}}_g$ of principally polarized abelian varieties of dimension g and their rank 1 degenerations is a partial compactification of \mathcal{A}_g obtained by blowing-up \mathcal{A}_{g-1} in the Satake compactification, cf. [Mu]. Its boundary $\partial \widetilde{\mathcal{A}}_g$ is isomorphic to the universal Kummer variety in dimension g-1 and there exist a surjective double covering $j: \mathcal{X}_{g-1} \to \partial \widetilde{\mathcal{A}}_g$. We establish a simple structure result for the boundary $\partial \widetilde{\mathcal{A}}_6$:

Theorem 0.1. The universal abelian variety \mathcal{X}_5 is unirational.

This immediately implies that the boundary divisor $\partial\widetilde{\mathcal{A}}_6$ is unirational as well. What we prove is actually stronger than Theorem 0.1. Over the moduli space \mathcal{R}_g of smooth Prym curves of genus g, we consider the universal Prym variety $\varphi:\mathcal{Y}_g\to\mathcal{R}_g$ obtained by pulling-back $\mathcal{X}_{g-1}\to\mathcal{A}_{g-1}$ via the Prym map $P:\mathcal{R}_g\to\mathcal{A}_{g-1}$. Let $\overline{\mathcal{R}}_g$ be the moduli space of stable Prym curves of genus g together with the universal Prym curve $\tilde{\pi}:\widetilde{\mathcal{C}}\to\overline{\mathcal{R}}_g$ of genus 2g-1. If $\widetilde{\mathcal{C}}^{g-1}:=\widetilde{\mathcal{C}}\times_{\overline{\mathcal{R}}_g}\ldots\times_{\overline{\mathcal{R}}_g}\widetilde{\mathcal{C}}$ is the (g-1)-fold product, one has a universal Abel-Prym rational map $\mathfrak{ap}:\widetilde{\mathcal{C}}^{g-1}\longrightarrow\mathcal{Y}_g$, whose restriction on each individual Prym variety is the usual Abel-Prym map. The rational map \mathfrak{ap} is dominant and generically finite (see Section 4 for details). We prove the following result:

Theorem 0.2. The five-fold product \widetilde{C}^5 of the universal Prym curve over $\overline{\mathcal{R}}_6$ is unirational.

The key idea in the proof of Theorem 0.2 is to view smooth Prym curves of genus 6 as discriminants of conic bundles, via their representation as symmetric determinants of quadratic forms in three variables. We fix four general points $u_1, \ldots, u_4 \in \mathbf{P}^2$, set $w_i := (u_i, u_i) \in \mathbf{P}^2 \times \mathbf{P}^2$, then consider the linear system

$$\mathbf{P}^{15} := \left| \mathcal{I}^2_{\{w_1,\dots,w_4\}}(2,2) \right| \subset \left| \mathcal{O}_{\mathbf{P}^2 \times \mathbf{P}^2}(2,2) \right|$$

of hypersurfaces $Q \subset \mathbf{P}^2 \times \mathbf{P}^2$ of bidegree (2,2) which are nodal at w_1,\ldots,w_4 . Fixing the points $w_1,\ldots,w_4 \in \mathbf{P}^2 \times \mathbf{P}^2$ neutralizes the action of $\operatorname{Aut}(\mathbf{P}^2) \times \operatorname{Aut}(\mathbf{P}^2)$. For a general threefold $Q \in \mathbf{P}^{15}$, the first projection $p:Q \to \mathbf{P}^2$ induces a conic bundle structure with a sextic discriminant curve $\Gamma \subset \mathbf{P}^2$ such that $p(\operatorname{Sing}(Q)) = \operatorname{Sing}(\Gamma)$. The discriminant curve Γ is nodal precisely at the points u_1,\ldots,u_4 . Furthermore, Γ is equipped with an unramified double cover $p_{\Gamma}:\widetilde{\Gamma} \to \Gamma$, parametrizing the lines which are components of the singular fibres of $p:Q \to \mathbf{P}^2$. By normalizing, p_{Γ} lifts to an unramified double cover $f:\widetilde{C} \to C$ between the normalization \widetilde{C} of $\widetilde{\Gamma}$ and the normalization C of Γ respectively. Note that there exists an exact sequence of generalized Prym varieties

$$0 \longrightarrow (\mathbf{C}^*)^4 \longrightarrow P(\widetilde{\Gamma}/\Gamma) \longrightarrow P(\widetilde{C}/C) \longrightarrow 0.$$

One can show without much effort that the assignment $\mathbf{P}^{15} \ni Q \mapsto [\widetilde{C} \xrightarrow{f} C] \in \mathcal{R}_6$ is dominant. This offers an alternative, much simpler, proof of the unirationality of \mathcal{R}_6 . However, much more can be obtained with this construction.

Let $\mathbf{G} := \mathbf{P}^2 \times (\mathbf{P}^2)^\vee = \left\{ (o,\ell) : o \in \mathbf{P}^2, \ell \in \{o\} \times (\mathbf{P}^2)^\vee \right\}$ be the Hilbert scheme of lines in the fibres of the first projection $p : \mathbf{P}^2 \times \mathbf{P}^2 \to \mathbf{P}^2$. Since containing a given line in a fibre of p imposes three conditions on the linear system \mathbf{P}^{15} of threefolds $Q \subset \mathbf{P}^2 \times \mathbf{P}^2$ as above, it follows that imposing the condition $\{o_i\} \times \ell_i \subset Q$ for *five* general lines, singles out a *unique* conic bundle $Q \in \mathbf{P}^{15}$. This induces an étale double cover $f : \widetilde{C} \to C$, as above, over a smooth curve of genus 6. Moreover, f comes equipped with five marked points $\ell_1, \ldots, \ell_5 \in \widetilde{C}$. To summarize, we have a well-defined rational map

$$\zeta: \mathbf{G}^5 \dashrightarrow \widetilde{\mathcal{C}}^5, \quad \zeta\Big((o_1, \ell_1), \dots, (o_5, \ell_5)\Big) := \Big(f: \widetilde{C} \to C, \ell_1, \dots, \ell_5\Big),$$

between two 20-dimensional varieties.

Theorem 0.3. The morphism $\zeta: G^5 \dashrightarrow \widetilde{C}^5$ is dominant, so that \widetilde{C}^5 is unirational.

More precisely, we show that \mathbf{G}^5 is birationally isomorphic to the fibre product $\mathbf{P}^{15} \times_{\overline{\mathcal{R}}_6} \widetilde{\mathcal{C}}^5$. In order to set Theorem 0.3 on the right footing and in view of enumerative calculations, we introduce a \mathbf{P}^2 -bundle $\pi: \mathbf{P}(\mathcal{M}) \to S$ over the quintic del Pezzo surface S obtained by blowing-up \mathbf{P}^2 at the points u_1,\ldots,u_4 . The rank 3 vector bundle \mathcal{M} on S is obtained by making an elementary transformation along the four exceptional divisors E_1,\ldots,E_4 over u_1,\ldots,u_4 . The nodal threefolds $Q\subset\mathbf{P}^2\times\mathbf{P}^2$ considered above can be thought of as sections of a tautological linear system on $\mathbf{P}(\mathcal{M})$, and via the identification

$$\left| \mathcal{I}^2_{\{w_1,\dots,w_4\}}(2,2) \right| = \left| \mathcal{O}_{\mathbf{P}(\mathcal{M})}(2) \right|,$$

we can view 4-nodal conic bundles in $\mathbf{P}^2 \times \mathbf{P}^2$ as *smooth* conic bundles over S. In this way the numerical characters of a pencil of such conic bundles can be computed (see Sections 2 and 3 for details).

Theorem 0.3 is then used to give a lower bound for the slope of the effective cone of $\overline{\mathcal{A}}_6$ (though we stop short of determining the Kodaira dimension of $\overline{\mathcal{A}}_6$). Recall that if E is an effective divisor on the perfect cone compactification $\overline{\mathcal{A}}_g$ of \mathcal{A}_g with no component supported on the boundary $D_g := \overline{\mathcal{A}}_g - \mathcal{A}_g$ and $[E] = a\lambda_1 - b[D_g]$, where $\lambda_1 \in CH^1(\widetilde{\mathcal{A}}_g)$ is the Hodge class, then the slope of E is defined as $s(E) := \frac{a}{b} \geq 0$. The slope $s(\overline{\mathcal{A}}_g)$ of the effective cone of divisors of $\overline{\mathcal{A}}_g$ is the infimum of the slopes

of all effective divisors on $\overline{\mathcal{A}}_g$. This important invariant governs to a large extent the birational geometry of \mathcal{A}_g ; for instance, since $K_{\overline{\mathcal{A}}_g} = (g+1)\lambda_1 - [\partial \overline{\mathcal{A}}_g]$, the variety $\overline{\mathcal{A}}_g$ is of general type if $s(\overline{\mathcal{A}}_g) < g+1$, and uniruled when $s(\overline{\mathcal{A}}_g) > g+1$.

It is known that $s(\overline{\mathcal{A}}_4)=8$ and that the Jacobian locus $\overline{\mathcal{M}}_4\subset\overline{\mathcal{A}}_4$ achieves the minimal slope [SM]; one of the results of [FGSMV] is the calculation $s(\overline{\mathcal{A}}_5)=\frac{54}{7}$. Furthermore, the only irreducible effective divisor on $\overline{\mathcal{A}}_5$ of minimal slope is the closure of the Andreotti-Mayer divisor N_0' consisting of 5-dimensional ppav $[A,\Theta]$ for which the theta divisor Θ is singular at a point which is not 2-torsion. Concerning $\overline{\mathcal{A}}_6$, we establish the following estimate:

Theorem 0.4. The following lower bound holds: $s(\overline{\mathcal{A}}_6) \geq \frac{53}{10}$.

Note that this is the first concrete lower bound on the slope of $\overline{\mathcal{A}}_6$. The idea of proof of Theorem 0.4 is very simple. Since $\widetilde{\mathcal{C}}^5$ is unirational, we choose a suitable sweeping rational curve $i: \mathbf{P}^1 \to \widetilde{\mathcal{C}}^5$, which we then push forward to $\overline{\mathcal{A}}_6$ as follows:

$$\mathbf{P}^1 \xrightarrow{i} \widetilde{\mathcal{C}}^5 \xrightarrow{\mathfrak{ap}} \widetilde{\mathcal{Y}}_6 \longrightarrow \widetilde{\mathcal{X}}_5 \xrightarrow{j} \partial \overline{\mathcal{A}}_6$$

Here $\widetilde{\mathcal{Y}}_6$ and $\widetilde{\mathcal{X}}_5$ are partial compactifications of \mathcal{Y}_6 and \mathcal{X}_5 respectively, which are described in Section 4. The curve $h(\mathbf{P}^1)$ sweeps the boundary divisor of $\overline{\mathcal{A}}_6$ and intersects non-negatively any effective divisor on $\overline{\mathcal{A}}_6$ not contained in $\partial \overline{\mathcal{A}}_6$. In particular,

$$s(\overline{\mathcal{A}}_6) \ge \frac{h(\mathbf{P}^1) \cdot [\partial \overline{\mathcal{A}}_6]}{h(\mathbf{P}^1) \cdot \lambda_1}.$$

To define $i: \mathbf{P}^1 \to \widetilde{\mathcal{C}}^5$, we fix general points $(o_1, \ell_1), \dots, (o_4, \ell_4) \in \mathbf{G}$ and a further general point $o \in \mathbf{P}^2$. Then we consider the image under ζ of the pencil of lines in \mathbf{P}^2 through o, that is, the sweeping curve i is defined as

$$\mathbf{P}(T_o(\mathbf{P}^2)) \ni \ell \mapsto \zeta((o_1, \ell_1), \dots, (o_4, \ell_4), (o, \ell)) \in \widetilde{\mathcal{C}}^5.$$

The calculation of the numerical characters of $h(R) \subset \overline{\mathcal{A}}_6$ is a consequence of the geometry of the map ζ and is completed in Section 4.

Acknowledgment: We are grateful to Sam Grushevsky for explaining to us important aspects of the geometry of the universal Kummer variety (especially Proposition 4.1).

1. Determinantal nodal sextics and a parametrization of \mathcal{X}_5

In this section we prove Theorem 0.3. We begin by recalling basic facts about determinantal representation of nodal plane sextics, see [B2], [Dol], [DIM]. Let $\Gamma \subset \mathbf{P}^2$ be an integral 4-nodal sextic and $\nu : C \to \Gamma$ the normalization map, thus C is a smooth curve of genus 6. One has an exact sequence at the level of 2-torsion groups

$$0 \longrightarrow \mathbb{Z}_2^{\oplus 4} \longrightarrow \operatorname{Pic}^0(\Gamma)[2] \stackrel{\nu^*}{\longrightarrow} \operatorname{Pic}^0(C)[2] \longrightarrow 0.$$

In particular, unsplit étale double covers $f: \Gamma' \to \Gamma$ are induced by 2-torsion points $\eta \in \text{Pic}^0(\Gamma)[2]$, such that $\eta_C := \nu^*(\eta) \neq \mathcal{O}_C$.

Definition 1.1. We denote by \mathcal{P}_6 the quasi-projective moduli space of pairs (Γ, η) as above, where $\Gamma \subset \mathbf{P}^2$ is an integral 4-nodal sextic and $\eta \in \operatorname{Pic}^0(\Gamma)[2]$ is a torsion point inducing a non-split double cover $\Gamma' \to \Gamma$, or equivalently, $\eta_C \neq \mathcal{O}_C$.

Starting with a general element $[C, \eta_C] \in \mathcal{R}_6$, since $|W_6^2(C)| = 5$, there are five sextic nodal plane models $\nu : C \to \Gamma$. For each of them, there are 2^4 further ways of choosing $\eta \in (\nu^*)^{-1}(\eta_C)$. Thus there is a degree $80 = 5 \cdot 2^4$ covering $\rho : \mathcal{P}_6 \to \mathcal{R}_6$.

Suppose now that $(\Gamma, \eta) \in \mathcal{P}_6$ is a general point¹. In particular $h^0(\Gamma, \eta(1)) = 0$, or equivalently, $h^0(\Gamma, \eta(2)) = 3$. Indeed, the condition $h^0(\Gamma, \eta(1)) \geq 1$ implies that $\Gamma \subset \mathbf{P}^2$ possesses a totally tangent conic, that is, there exists a reduced conic $B \subset \mathbf{P}^2$ such that $\nu^*(B) = 2b$, with b being an effective divisor of C. This condition is satisfied only if $\rho(\Gamma, \eta)$ lies in the ramification divisor of the Prym map $P : \mathcal{R}_6 \to \mathcal{A}_5$, see [FGSMV]. Thus we may assume that $h^0(\Gamma, \eta(2)) = 3$, for a general point $(\Gamma, \eta) \in \mathcal{P}_6$.

Following [B2] Theorem B, it is known that such a sheaf η admits a resolution

$$(1) 0 \longrightarrow \mathcal{O}_{\mathbf{P}^2}(-4)^{\oplus 3} \stackrel{A}{\longrightarrow} \mathcal{O}_{\mathbf{P}^2}(-2)^{\oplus 3} \longrightarrow \eta \longrightarrow 0,$$

where the map A is given by a symmetric matrix $\left(a_{ij}(x_1, x_2, x_3)\right)_{i,j=1}^3$ of quadratic forms. More precisely, we can view the resolution (1) as a twist of the exact sequence

$$(2) 0 \longrightarrow H^{0}(\Gamma, \eta(2))^{\vee} \otimes \mathcal{O}_{\mathbf{P}^{2}}(-2) \stackrel{A}{\longrightarrow} H^{0}(\Gamma, \eta(2)) \otimes \mathcal{O}_{\mathbf{P}^{2}} \stackrel{\operatorname{ev}}{\longrightarrow} \eta(2) \longrightarrow 0,$$

where ev is the evaluation map. Since η is invertible, for each point $x \in \Gamma$ one has

$$1 = \dim_{\mathbb{C}} \eta(x) = 3 - \operatorname{rk} A(x),$$

where, as usual, $\eta(x) := \eta_x \otimes_{\mathcal{O}_{\Gamma,x}} \mathbb{C}(x)$ is the fibre of the sheaf η at the point x. Thus $\operatorname{rk} A(x) = 2$, for each $x \in \Gamma$.

To the matrix $A\in M_3ig(H^0(\mathcal{O}_{\mathbf{P}^2}(2))ig)$ we can associate the following (2,2) threefold in $\mathbf{P}^2_{[x_1:x_2:x_3]}\times\mathbf{P}^2_{[y_1:y_2:y_3]}=\mathbf{P}^2\times\mathbf{P}^2$

$$Q: \sum_{i,j=1}^{3} a_{ij}(x_1, x_2, x_3) y_i y_j = 0,$$

which is a conic bundle with respect to the two projections. Alternatively, if

$$A: H^0(\Gamma, \eta(2))^{\vee} \otimes H^0(\Gamma, \eta(2))^{\vee} \to H^0(\Gamma, \mathcal{O}_{\Gamma}(2))$$

is the symmetric map appearing in (2), then A induces the (2,2) hypersurface

$$Q \subset \mathbf{P}\Big(H^0(\Gamma, \mathcal{O}_{\Gamma}(1))^{\vee}\Big) \times \mathbf{P}\Big(H^0(\Gamma, \eta(2))^{\vee}\Big) = \mathbf{P}^2 \times \mathbf{P}^2.$$

We denote by $p:Q\to {\bf P}^2$ the first projection and then $\Gamma\subset {\bf P}^2$ is precisely the discriminant curve of Q given by determinantal equation $\Gamma:=\{\det A(x_1,x_2,x_3)=0\}$. Let Γ' denote the Fano scheme of lines $F_1\big(p^{-1}(\Gamma)/\Gamma\big)$ over the discriminant curve Γ and $f:\Gamma'\to \Gamma$ be the forgetful map $f(x,\ell):=x$, where ℓ is an irreducible component of $p^{-1}(x)$. Since $\operatorname{rk} A(x)=2$ for all $x\in \Gamma$, it follows that f is an étale double cover.

Proposition 1.2. For $(\Gamma, \eta) \in \mathcal{P}_6$, the restriction map $p_{|\operatorname{Sing}(Q)} : \operatorname{Sing}(Q) \to \operatorname{Sing}(\Gamma)$ is bijective.

¹We shall soon establish that \mathcal{P}_6 is irreducible, but here we just require that $\rho(\Gamma, \eta)$ be a general point of the irreducible variety \mathcal{R}_6 .

Proof. Let $x \in \Gamma$ and $R := \mathcal{O}_{\mathbf{P}^2,x}$ be the local ring of \mathbf{P}^2 and \mathfrak{m} its maximal ideal. After a linear change of coordinates, we may assume that the matrix $A \mod \mathfrak{m} =: A(x)$ equals

$$A(x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Suppose $(x,y=[y_1,y_2,y_3]) \in \operatorname{Sing}(Q)$. Then $A(x) \cdot^t y=0$, hence $y_1=y_2=0$. Imposing that the partials of the defining equation of Q with respects to x_1,x_2,x_3 vanish, we obtain that $a_{33} \in \mathfrak{m}^2$. Since $\det(a_{ij}) \equiv a_{33} \mod \mathfrak{m}^2$, this implies that Γ is singular at x. Conversely, for $x \in \operatorname{Sing}(\Gamma)$, we obtain that $\operatorname{Sing}(Q) \cap p^{-1}(x) = \{(x,y)\}$, where $y \in \mathbf{P}^2$ is uniquely determined by the condition $A(x) \cdot^t y = 0$ (use once more that $\operatorname{rk} A(x) = 2$). \square

Proposition 1.3. $f_*(\mathcal{O}_{\Gamma'}) = \mathcal{O}_{\Gamma} \oplus \eta$, that is, the double cover f is induced by η .

Proof. Essentially identical to [B1] Lemme 6.14.

Summarizing the discussion so far, to give a general point $(\Gamma, \eta) \in \mathcal{P}_6$ is equivalent to specify a 4-nodal conic bundle as above. Let $\mathbf{T} \subset \left|\mathcal{O}_{\mathbf{P}^2 \times \mathbf{P}^2}(2,2)\right|$ be the subvariety consisting of 4-nodal hypersurfaces of bidegree (2,2). This is an irreducible 31-dimensional variety endowed with an action of $\mathrm{Aut}(\mathbf{P}^2 \times \mathbf{P}^2)$.

Theorem 1.4. A general Prym curve $(\Gamma, \eta) \in \mathcal{P}_6$ is the discriminant of a 4-nodal conic bundle $p: Q \to \mathbf{P}^2$, where $Q \subset \mathbf{P}^2 \times \mathbf{P}^2$ is a 4-nodal threefold of bidegree (2,2). More precisely, we have a birational isomorphism $\mathbf{T}/\!/\mathrm{Aut}(\mathbf{P}^2 \times \mathbf{P}^2) \stackrel{\cong}{\longrightarrow} \mathcal{P}_6$.

Remark 1.5. A similar isomorphism between the moduli space of Prym curves over *smooth* plane sextics and the quotient $\left|\mathcal{O}_{\mathbf{P}^2\times\mathbf{P}^2}(2,2)\right|/\!/\mathrm{Aut}(\mathbf{P}^2\times\mathbf{P}^2)$ has already been established and used in [B1] and [Ve2].

Remark 1.6. Theorem 1.4 yields another (shorter) proof of the unirationality of \mathcal{R}_6 .

The automorphism group of $\mathbf{P}^2 \times \mathbf{P}^2$ sits in an exact sequence

$$0 \longrightarrow PGL(3) \times PGL(3) \longrightarrow \operatorname{Aut}(\mathbf{P}^2 \times \mathbf{P}^2) \longrightarrow \mathbb{Z}_2 \longrightarrow 0.$$

In particular, we can fix four general points $u_1, \ldots, u_4 \in \mathbf{P}^2$, as well as diagonal points $w_i := (u_i, u_i) \in \mathbf{P}^2 \times \mathbf{P}^2$, and consider the linear system $\mathbf{P}^{15} := \left|\mathcal{I}^2_{\{w_1, \ldots, w_4\}}(2, 2)\right|$ of (2, 2) threefolds with assigned nodes at these points. Theorem 1.4 implies the existence of a dominant discriminant map $\mathfrak{d}: \mathbf{P}^{15} \dashrightarrow \mathcal{P}_6$ assigning $\mathfrak{d}(Q) := (\Gamma' \xrightarrow{f} \Gamma)$.

Proof of Theorem 0.3. Using the notation introduced in this section and in the Introduction, setting $\mu := \varphi \circ \mathfrak{ap} : \widetilde{C}_5 \dashrightarrow \overline{\mathcal{R}}_6$, one has the following commutative diagram:

$$\mathbf{G}^{5} \longrightarrow \mathcal{P}_{6} \times_{\mathcal{R}_{6}} \widetilde{\mathcal{C}}^{5} \longrightarrow \widetilde{\mathcal{C}}^{5}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{P}^{15} \longrightarrow \mathcal{P}_{6} \longrightarrow \mathcal{\overline{R}}_{6}$$

The dominance of the composite map $\zeta: \mathbf{G}^5 \dashrightarrow \widetilde{\mathcal{C}}^5$ follows once we observe, that the above diagram is birationally a fibre product, that is, $\mathbf{G}^5 \stackrel{\cong}{\dashrightarrow} \mathbf{P}^{15} \times_{\overline{\mathcal{R}}_6} \widetilde{\mathcal{C}}^5$.

2. CONIC BUNDLES OVER A DEL PEZZO SURFACE

With view to further applications, we analyze the linear system of conic bundles of type (2,2) in ${\bf P}^2\times {\bf P}^2$ which are singular at four fixed general points and birationally, we reconstruct such a linear system as the complete linear system of smooth conic bundles in a certain ${\bf P}^2$ -bundle over a smooth quintic del Pezzo surface.

We fix four general points $u_1, \ldots, u_4 \in \mathbf{P}^2$ and set $w_i := (u_i, u_i) \in \mathbf{P}^2 \times \mathbf{P}^2$. Let S be the Del Pezzo surface defined by the blow-up $\sigma: S \to \mathbf{P}^2$ of u_1, \ldots, u_4 . For $i = 1, \ldots, 4$, we denote by $E_i := \sigma^{-1}(u_i)$ the exceptional line over u_i . Set $E := E_1 + \cdots + E_4$ and denote by $L \in |\sigma^*\mathcal{O}_{\mathbf{P}^2}(1)|$ the pull-back of a line in \mathbf{P}^2 under σ . An important role is played by the rank 3 vector bundle \mathcal{M} on S defined by the following sequence

(3)
$$0 \longrightarrow \mathcal{M} \stackrel{j}{\longrightarrow} H^0(S, L) \otimes \mathcal{O}_S(L) \stackrel{r}{\longrightarrow} \bigoplus_{i=1}^4 \mathcal{O}_{E_i}(2L) \longrightarrow 0.$$

Here $r_i: H^0(S, \mathcal{O}_S(L)) \otimes \mathcal{O}_S(L) \to \mathcal{O}_{E_i}(2L)$ is the evaluation map and $r:=\bigoplus_{i=1}^4 r_i$. Since $\mathcal{O}_{E_i}(L)$ is trivial, it follows that $h^0(r)$ is surjective. Passing to cohomology, we write the exact sequence

$$0 \longrightarrow H^0(S, \mathcal{M}) \stackrel{h^0(j)}{\longrightarrow} H^0(S, O_S(L)) \otimes H^0(S, \mathcal{O}_S(L)) \stackrel{h^0(r)}{\longrightarrow} \bigoplus_{i=1}^4 H^0(\mathcal{O}_{E_i}(2L)) \longrightarrow 0.$$

In particular, we obtain that $h^0(S, \mathcal{M}) = 5$. By direct calculation, we also find that

(4)
$$c_1(\mathcal{M}) = \mathcal{O}_S(-K_S)$$
 and $c_2(\mathcal{M}) = 3$.

Under the decomposition $H^0(\mathcal{O}_S(L))\otimes H^0(\mathcal{O}_S(L))=\wedge^2 H^0(\mathcal{O}_S(L))\oplus H^0(\mathcal{O}_S(2L))$ into symmetric and anti-symmetric tensors, the space $j(H^0(S,\mathcal{M}))$ decomposes as

$$H^0(S,\mathcal{M}) = H^0(S,\mathcal{M})^- \oplus H^0(S,\mathcal{M})^+ = \bigwedge^2 H^0(S,\mathcal{O}_S(L)) \oplus H^0(S,\mathcal{O}_S(2L-E)).$$

Lemma 2.1. The vector bundle \mathcal{M} is globally generated.

Proof. Clearly, we only need to address the global generation of \mathcal{M} along $\bigcup_{i=1}^{4} E_i$ and to that end, we consider the restriction of the sequence (3) to E_i ,

$$\mathcal{M}_{|E_i} \xrightarrow{j_{|E_i}} H^0(S, \mathcal{O}_S(L)) \otimes \mathcal{O}_{E_i} \xrightarrow{r_{|E_i}} \mathcal{O}_{E_i} \longrightarrow 0.$$

The sheaf $H^0(\mathcal{O}_S(L-E_i))\otimes \mathcal{O}_{E_i}=\mathcal{O}_{\mathbf{P}^1}^{\oplus 2}$ is the kernel of $r_{|E_i}$. Since $\det(\mathcal{M}_{|E_i})=\mathcal{O}_{E_i}(1)$, it follows that $\mathcal{M}_{|E_i}$ fits into an exact sequence of bundles on \mathbf{P}^1 :

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}^1}(1) \longrightarrow \mathcal{M}_{|E_i} \stackrel{j|E_i}{\longrightarrow} \mathcal{O}_{\mathbf{P}^1}^{\oplus 2} \longrightarrow 0.$$

This sequence is split, so that $\mathcal{M}_{|E_i} = \mathcal{O}_{\mathbf{P}^1}(1) \oplus \mathcal{O}_{\mathbf{P}^1}^{\oplus 2}$, which is globally generated. The same holds for \mathcal{M} if the map $H^0(\mathcal{M}) \to H^0(\mathcal{M}_{|E_i})$ is surjective; this is implied by the vanishing $H^1(S, \mathcal{M}(-E_i)) = 0$. We twist by $\mathcal{O}_S(-E_i)$ the sequence (3), and write

$$0 \longrightarrow \mathcal{M}(-E_i) \longrightarrow H^0(S, \mathcal{O}_S(L)) \otimes \mathcal{O}_S(L - E_i) \stackrel{r}{\longrightarrow} \bigoplus_{i=1}^4 \mathcal{O}_{E_i}(2L - E_i) \longrightarrow 0.$$

Since $h^0(r)$ is surjective and $h^1(S, \mathcal{O}_S(L-E_i)) = 0$, it follows $h^1(S, \mathcal{M}(-E_i)) = 0$.

From now on we set $\mathbf{P} := \mathbf{P}(\mathcal{M})$ and consider the \mathbf{P}^2 -bundle $\pi : \mathbf{P} \to S$. The linear system $|\mathcal{O}_{\mathbf{P}}(1)|$ is base point free, for \mathcal{M} is globally generated. We reserve the notation

$$h := \phi_{\mathcal{O}_{\mathbf{P}}(1)} : \mathbf{P} \to \mathbf{P}^4 := \mathbf{P}H^0(S, \mathcal{M})^{\vee}.$$

for the induced morphism. A Chern classes count implies that deg(h) = 2. The map j from the sequence (3) induces a birational morphism

$$\epsilon: S \times \mathbf{P}^2 \dashrightarrow \mathbf{P}$$
.

We describe a factorization of ϵ . Since j is an isomorphism along $U := S - \bigcup_{i=1}^4 E_i$, it follows that $\epsilon : U \times \mathbf{P}^2 \to \pi^{-1}(U)$ is biregular. The behaviour of ϵ along $E_i \times \mathbf{P}^2$ can be understood in terms of the restriction of the sequence (3) to E_i . Following the proof of Lemma 2.1, one has the exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}^1}(1) \longrightarrow \mathcal{M}_{|E_i} \stackrel{j_{|E_i}}{\longrightarrow} H^0(S, \mathcal{O}_S(L)) \otimes \mathcal{O}_{E_i} \stackrel{r_{|E_i}}{\longrightarrow} \mathcal{O}_{E_i} \longrightarrow 0,$$

where $\operatorname{Im}(j_{|E_i}) = H^0(\mathcal{O}_S(L - E_i)) \otimes \mathcal{O}_{E_i}$. Now $j_{|E_i}$ induces a rational map

$$\epsilon_{|E_i \times \mathbf{P}^2} : E_i \times \mathbf{P}^2 \dashrightarrow \mathbf{P}(\mathcal{M}_{|E_i}) \subset \mathbf{P}.$$

For a point $x \in E_i$, the restriction of ϵ to $\mathbf{P}^2 \times \{x\}$ is the projection $\{x\} \times \mathbf{P}^2 \to \mathbf{P}^1$ of center (x, u_i) . This implies that:

Lemma 2.2. The birational map ϵ contracts $E_i \times P^2$ to a surface which is a copy of $\mathbf{P}^1 \times \mathbf{P}^1$. Furthermore, the indeterminacy scheme of ϵ is equal to $\bigcup_{i=1}^4 E_i \times \{u_i\}$.

Let
$$D_i := E_i \times \{u_i\} \subset S \times \mathbf{P}^2$$
 and $D := D_1 + \cdots + D_4$. We consider the blow-up

$$\alpha:\widetilde{S\times\mathbf{P}^2}\to S\times\mathbf{P}^2$$

of $S \times \mathbf{P}^2$ along D, and the birational map

$$\epsilon_2 := \epsilon \circ \alpha : \widetilde{S \times \mathbf{P}^2} \to \mathbf{P}.$$

The restriction of ϵ_2 to the strict transform $\widetilde{E_i \times \mathbf{P}^2}$ of $E_i \times \mathbf{P}^2$ is a regular morphism, for $\epsilon_{|E_i \times \mathbf{P}^2|}$ is defined by the linear system $|\mathcal{I}_{E_i \times \{u_i\}/S \times \mathbf{P}^2}(1,1)|$. This implies that ϵ_2 itself is a regular morphism:

Proposition 2.3. The following commutative diagram solves the indeterminacy of ϵ :

$$S \times P^2$$
 $S \times P^2$
 $E \times P^2$
 $E \times P^2$
 $E \times P^2$
 $E \times P^2$

In the sequel, it will be useful to consider the exact commutative diagram

$$H^{0}(S, \mathcal{M}) \longrightarrow H^{0}(\mathcal{O}_{S}(L)) \otimes H^{0}(\mathcal{O}_{S}(L)) \longrightarrow \bigoplus_{i=1}^{4} H^{0}(\mathcal{O}_{E_{i}}(2L))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^{0}(\mathcal{I}_{\{w_{1}...w_{4}\}}(1, 1)) \longrightarrow H^{0}(\mathcal{O}_{\mathbf{P}^{2}}(1)) \otimes H^{0}(\mathcal{O}_{\mathbf{P}^{2}}(1)) \longrightarrow \bigoplus_{i=1}^{4} H^{0}(\mathcal{O}_{w_{i}}(2))$$

where the vertical arrows are isomorphisms induced by $\sigma: S \to \mathbf{P}^2$. Starting from the left arrow, one can construct the commutative diagram

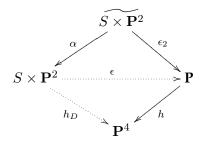
$$H^{0}(S, \mathcal{M}) \otimes \mathcal{O}_{S} \longrightarrow \mathcal{M}$$

$$\downarrow \qquad \qquad \downarrow j$$

$$H^{0}(\mathcal{I}_{\{w_{1}...w_{4}\}}(1, 1)) \otimes \mathcal{O}_{S} \longrightarrow H^{0}(S, L) \otimes \mathcal{O}_{S}(L)$$

Passing to evaluation maps, we obtain the morphism $h: \mathbf{P} \to \mathbf{P}^4$ and the rational map $h_D: S \times \mathbf{P}^2 \dashrightarrow \mathbf{P}^4$ defined by the space $(\sigma \times \mathrm{id}_{\mathbf{P}^2})^* H^0 \Big(\mathbf{P}^2 \times \mathbf{P}^2, \mathcal{I}_{\{w_1, \dots, w_4\}}(1, 1) \Big)$.

The discussion above is summarized in the following commutative diagram:



We derive a few consequences. Let $\pi_1: S \times \mathbf{P}^2 \to S$ and $\pi_2: S \times \mathbf{P}^2 \to \mathbf{P}^2$ be the two projections, then define the following effective divisors of $S \times \mathbf{P}^2$:

$$\widetilde{H} \in \left| (\pi_1 \circ \alpha)^* (\mathcal{O}_S(-K_S)) \right|, \ \widetilde{H}_1 \in \left| (\pi_1 \circ \alpha)^* (\mathcal{O}_S(L)) \right|, \ \widetilde{H}_2 \in \left| (\pi_2 \circ \alpha)^* (\mathcal{O}_{\mathbf{P}^2}(1)) \right|,$$
 as well as

$$\widetilde{N}_i := \alpha^{-1}(D_i)$$
 and $\widetilde{N} = \sum_{i=1}^4 \widetilde{N}_i$.

Applying push-forward under ϵ_2 , we obtain the following divisors on **P**:

$$H:=\epsilon_{2*}(\widetilde{H}), \ \ H_i:=\epsilon_{2*}(\widetilde{H}_i), \ \ N_i:=\epsilon_{2*}(\widetilde{N}_i), \ \ \text{and} \ \ \ N:=\sum_{i=1}^4 N_i.$$

Proposition 2.4. $|\mathcal{O}_{P}(1)| = |H_1 + H_2 - N|$.

Proof. Using for instance [Ma] Theorem 1.4, we have $\epsilon_2^*(\mathcal{O}_{\mathbf{P}}(1)) = \mathcal{O}_{\widetilde{S} \times \mathbf{P}^2}(\widetilde{H}_1 + \widetilde{H}_2 - \widetilde{N})$. By pushing forward, we obtain the desired result.

We have already remarked that $h: \mathbf{P} \to \mathbf{P}^4$ is a morphism of degree 2. The inverse image $E \subset \mathbf{P}$ under h of a general line in \mathbf{P}^4 is a smooth elliptic curve. The restriction h_E has 4 branch points and the branch locus of h is a quartic hypersurface $B \subset \mathbf{P}^4$.

Proposition 2.5. For each
$$d \ge 0$$
, one has $h^0(\mathbf{P}, \mathcal{O}_{\mathbf{P}}(d)) = {d+4 \choose 4} + {2d \choose 4}$.

Proof. We pass to the Stein factorization $h:=s\circ f$, where $f:\overline{\mathbf{P}}\to\mathbf{P}^4$ is a double cover and $s:\mathbf{P}\to\overline{\mathbf{P}}$ is birational. In particular, $h^0(\mathbf{P},\mathcal{O}_{\mathbf{P}}(d))=h^0(f^*\mathcal{O}_{\mathbf{P}^4}(d))$. The involution $\iota:\overline{\mathbf{P}}\to\overline{\mathbf{P}}$ induced by f acts on $H^0(f^*\mathcal{O}_{\mathbf{P}^4}(d))$ and the eigenspaces are $f^*H^0(\mathcal{O}_{\mathbf{P}^4}(d))$ and $b\cdot f^*H^0(\mathcal{O}_{\mathbf{P}^4}(2d-4))$ respectively, where $b\in H^0(f^*\mathcal{O}_{\mathbf{P}^4}(2))$ and $\mathrm{div}(b)=f^{-1}(B)$. \square

We can now relate the 15-dimensional linear system $|\mathcal{O}_{\mathbf{P}}(2)|$ of *smooth* conic bundles in \mathbf{P} to the linear system of 4-*nodal* conic bundles of type (2,2) in $\mathbf{P}^2 \times \mathbf{P}^2$. Let \tilde{I} be the moving part of the total transform $((\sigma \times \mathrm{id}_{\mathbf{P}^2}) \circ \alpha)^* |\mathcal{I}^2_{\{w_1,\ldots,w_4\}}(2,2)|$. Over \mathbf{P} , we consider the linear system $I' := (\epsilon_2)_* \tilde{I}$, and conclude that:

Proposition 2.6. One has the equality $I' = |\mathcal{O}_{\mathbf{P}}(2)|$ of linear systems on \mathbf{P} .

Proof. Consider a general threefold $Y \in \left| \mathcal{I}_{\{w_1,\dots,w_4\}}(1,1) \right|$. Its strict transform \widetilde{Y} under the morphism $(\sigma \times \mathrm{id}_{\mathbf{P}^2}) \circ \alpha$ is smooth and has class $\widetilde{H}_1 + \widetilde{H}_2 - \widetilde{N}$. Therefore we obtain $(\epsilon_2)_*(\widetilde{Y}) \in |H_1 + H_2 - N| = |\mathcal{O}_{\mathbf{P}}(1)|$, and then $I' = |\mathcal{O}_{\mathbf{P}}(2)|$.

To conclude this discussion, the identification

$$|\mathcal{O}_{\mathbf{P}}(2)| = |\mathcal{I}_{\{w_1, \dots w_2\}}^2(2, 2)| := \mathbf{P}^{15},$$

induced by the birational map ϵ , will be used throughout the rest of the paper.

Remark 2.7. One can describe $h: \mathbf{P} \to \mathbf{P}^4$ in geometric terms. Consider the rational map $h':=h_D\circ \left(\sigma\times \mathrm{id}_{\mathbf{P}^2}\right)^{-1}: \mathbf{P}^2\times \mathbf{P}^2 \dashrightarrow \mathbf{P}^4$, where h_D appears in a previous diagram. Then h' is defined by the linear system $\left|\mathcal{I}_{\{w_1,\ldots,w_4\}}(1,1)\right|$. If $\mathbf{P}^2\times \mathbf{P}^2\subset \mathbf{P}^8$ is the Segre embedding and $\Lambda\subset \mathbf{P}^8$ the linear span of w_1,\ldots,w_4 , then h' is the restriction to $\mathbf{P}^2\times \mathbf{P}^2$ of the linear projection having center Λ .

One can also recover the tautological bundle \mathcal{M} as follows. Consider the family of planes $\left\{\mathbf{P}_x := h'_*(\{x\} \times \mathbf{P}^2)\right\}_{x \in \mathbf{P}^2}$. Its closure in the Grassmannian $\mathbf{G}(2,4)$ of planes of \mathbf{P}^4 is equal to the image of S under the classifying map of \mathcal{M} . We omit further details.

Proposition 2.8. The following relations hold in $CH^4(\widetilde{S \times P^2})$:

$$\widetilde{N}^4 = -4, \ \widetilde{N}^3 \cdot \widetilde{H} = 4, \ \widetilde{N}^3 \cdot \widetilde{H}_1 = \widetilde{N}^3 \cdot \widetilde{H}_2 = 0, \ \widetilde{N}^2 \cdot \widetilde{H}^2 = \widetilde{N}^2 \cdot \widetilde{H}_1^2 = \widetilde{N}^2 \cdot \widetilde{H}_2^2 = 0.$$

Proof. These are standard calculations on blow-ups. We fix $i \in \{1, \ldots, 4\}$ and note that $\widetilde{N}_i = \mathbf{P}\big(\mathcal{O}_{D_i}^{\oplus 2} \oplus \mathcal{O}_{D_i}(1)\big)$. We denote by $\xi_i := c_1(\mathcal{O}_{\widetilde{N}_i}(1)) \in CH^1(\widetilde{N}_i)$ the class of the tautological bundle on the exceptional divisor, by $\alpha_i := \alpha_{|\widetilde{N}_i} : \widetilde{N}_i \to D_i$ the restriction of α , and by $j_i : \widetilde{N}_i \hookrightarrow \widetilde{S \times \mathbf{P}^2}$ the inclusion map. Then for $k = 1, \ldots, 4$, the formula $\widetilde{N}_i^k = (-1)^{k-1}(j_i)_*(\xi_i^{k-1})$ holds in $CH^k(\widetilde{S \times \mathbf{P}^2})$. In particular,

$$\widetilde{N}_{i}^{4} = -(j_{i})_{*}(\xi_{i}^{3}) = -c_{1}(\mathcal{O}_{D_{i}}^{\oplus 2} \oplus \mathcal{O}_{D_{i}}(1)) = -1,$$

which implies that $\widetilde{N}^4 = \widetilde{N}_1^4 + \dots + \widetilde{N}_4^4 = -4$. Furthermore, based on dimension reasons, $\widetilde{N}_i^2 \cdot \alpha^*(\gamma) = -(j_i)_* \left(\xi_i \cdot \alpha_i^*(\gamma_{|D_i}) \right) = 0$, for each class $\gamma \in CH^2(S \times \mathbf{P}^2)$. Finally, for a class $\gamma \in CH^1(S \times \mathbf{P}^2)$, we have that $\widetilde{N}_i^3 \cdot \alpha^*(\gamma) = (j_i)_* \left(\xi_i^2 \cdot \alpha_i^*(\gamma_{|D_i}) \right) = (\alpha_i)_* (\xi_i^2) \cdot \gamma_{|D_i} = \gamma \cdot D_i$, where the last intersection product is computed on $S \times \mathbf{P}^2$. This determines all top intersection numbers involving \widetilde{N}^3 , which finishes the proof.

Remark 2.9. Since ϵ_2 contracts the divisors $\widetilde{E_i \times \mathbf{P}^2}$, clearly $H = 3H_1 - N$. An immediate consequence of Proposition 2.8 is that the degree of the morphism $h: \mathbf{P} \to \mathbf{P}^4$ equals $\deg(h) = (H_1 + H_2 - N)^4 = 6H_1^2 \cdot H_2^2 + N^4 = 2$.

2.1. **Pencils of conic bundles in the projective bundle P.** In this section we determine the numerical characters of a pencil of 4-nodal conic bundle of type (2,2). Let

$$P \subset |\mathcal{O}_{\mathbf{P}}(2)| = |\mathcal{O}_{\mathbf{P}}(2H_1 + 2H_2 - 2N)|$$

be a Lefschetz pencil in **P**. We may assume that its base locus $B \subset \mathbf{P}$ is a smooth surface. We are primarily interested in the number of singular conic bundles and those having a double line respectively. We first describe B.

Lemma 2.10. For the base surface $B \subset P$ of a pencil of conic bundles, the following hold:

- (i) $K_B = \mathcal{O}_B(H_1 + H_2 N) \in \text{Pic}(B)$. (ii) $K_B^2 = 8$ and $c_2(B) = 64$.

Proof. The surface B is a complete intersection in \mathbf{P} , hence by adjunction

$$K_B = K_{\mathbf{P}|B} \otimes \mathcal{O}_B(4H_1 + 4H_2 - 4N).$$

Furthermore, $K_{\widetilde{S \times \mathbf{P}^2}} = \alpha^* \left(\mathcal{O}_S(-H) \boxtimes \mathcal{O}_{\mathbf{P}^2}(-3) \right) \otimes \mathcal{O}_{\widetilde{S \times \mathbf{P}^2}}(2\widetilde{N})$, and by push-pull

$$K_{\mathbf{P}} = (\epsilon_2)_* (K_{\widetilde{S} \times \mathbf{P}^2}) = \mathcal{O}_{\mathbf{P}}(-H - 3H_2 + 2N) = \mathcal{O}_{\mathbf{P}}(-3H_1 - 3H_2 + 3N),$$

for $H = 3H_1 - N$. We find that $K_B = \mathcal{O}_B(H_1 + H_2 - N)$. From Lemma 2.8, we compute $K_B^2 = 4(H_1 + H_2 - N)^2 \cdot (H_1 + H_2 - N)^2 = 24H_1^2 \cdot H_2^2 + 4N^4 = 8.$

Finally, from the Euler formula applied for B, we obtain $12\chi(B,\mathcal{O}_B)=K_B^2+c_2(B)$. Since $\chi(B, \mathcal{O}_B) = 6$, this yields $c_2(B) = 64$.

For a variety Z we denote as usual by e(Z) its topological Euler characteristic.

Lemma 2.11. For a general conic bundle $Q \in |\mathcal{O}_P(2)|$, we have that e(Q) = 4, whereas for conic bundle Q_0 with a single ordinary quadratic singularity, $e(Q_0) = 5$.

Proof. We fix a conic bundle $\pi_1: Q \to S$ with smooth discriminant curve $C \in [-2K_S]$. We then write the relation $e(Q - \pi_1^*(C)) = 2e(S - C)$. Since $e(\pi_1^*(C)) = 3e(C)$, we find that $e(Q) = 2e(S) + e(C) = 2 \cdot 7 - 10 = 4$.

Similarly, if $\pi_1:Q_0\to {\bf P}^2$ is a conic bundle such that the discriminant curve $C_0 \subset S$ has a unique node, then $e(Q_0) = 2e(S) + e(C_0) = 14 - 9 = 5$.

In the next statement we use the notation from [FL] for divisors classes on $\overline{\mathcal{R}}_g$, see also the beginning of Section 3 for further details.

Theorem 2.12. In a Lefschetz pencil of conic bundles $P \subset |\mathcal{O}_P(2)|$ there are precisely 77 singular conic bundles and 32 conic bundles with a double line.

Proof. Retaining the notation from above, $B \subset \mathbf{P}$ is the base surface of the pencil. The number δ of nodal conic bundles in P is given by the formula:

$$\delta = e(\mathbf{P}) + e(B) - 2e(Q) = 3e(S) + 64 - 2 \cdot 4 = 77,$$

where the relation $e(\mathbf{P})=3e(S)$ follows because $\pi:\mathbf{P}\to S$ is a \mathbf{P}^2 -bundle.

The number of conic bundles in the pencil *P* having a double line equals the number of discriminant curves in the family induced by P in $\overline{\mathcal{R}}_6$, that lie in the ramification divisor Δ_0^{ram} of the projection map $\pi:\overline{\mathcal{R}}_6\to\overline{\mathcal{M}}_6$. We choose general conic bundles $Q_1, Q_2 \in P$, and let $A = (a_{ij}(x_1, x_2, x_3))_{i,j=1}^3$ and $B = (b_{ij}(x_1, x_2, x_3))_{i,j=1}^3$ be the symmetric matrices of quadratic forms giving rise to Prym curves $(\Gamma_1, \eta_1) := \mathfrak{d}(Q_1)$ and $(\Gamma_2, \eta_2) := \mathfrak{d}(Q_2) \in \mathcal{P}_6$ respectively. Note that both curves Γ_1 and Γ_2 are nodal precisely at the points u_1, \ldots, u_4 . Let us consider the surface

$$Y := \left\{ \left([x_1 : x_2 : x_3], [t_1 : t_2] \right) \in \mathbf{P}^2 \times \mathbf{P}^1 : \det \left((t_1 a_{ij} + t_2 b_{ij})(x_1, x_2, x_3) \right) = 0 \right\},\,$$

together with the projection $\gamma: Y \to \mathbf{P}^1$. If $h_1, h_2 \in CH^1(\mathbf{P}^2 \times \mathbf{P}^1)$ are the pull-backs of the hyperplane classes under the two projections, then $Y \equiv 6h_1 + 3h_2$. Therefore $\omega_Y = \mathcal{O}_Y(3h_1 + h_2)$ and $h^0(Y, \mathcal{O}_Y) = 20$. Observe that the surface Y is singular along the curves $L_j := \{u_j\} \times \mathbf{P}^1$ for $j = 1, \ldots, 4$, and let $\nu_Y: \mathcal{Y} \to Y$ be the normalization. From the exact sequence

$$0 \longrightarrow H^0(\mathcal{Y}, \omega_{\mathcal{Y}}) \longrightarrow H^0(Y, \omega_Y) \longrightarrow \bigoplus_{j=1}^4 H^0(L_j, \omega_{Y|L_j}) \longrightarrow 0,$$

taking also into account that $\omega_{Y|L_j} = \mathcal{O}_{L_j}(1)$, we compute that $h^0(\mathcal{Y}, \mathcal{O}_{\mathcal{Y}}) = 12$, and hence $\chi(\mathcal{Y}, \mathcal{O}_{\mathcal{Y}}) = 13$. The morphism $\tilde{\gamma} := \gamma \circ \nu_Y : \mathcal{Y} \to \mathbf{P}^1$ is a family of Prym curves of genus 6 and it induces a moduli map $m(\tilde{\gamma}) : \mathbf{P}^1 \to \overline{\mathcal{R}}_6$.

The points $u_1,\ldots,u_4\in \mathbf{P}^2$ being general, the curve $\mathfrak{e}:=m(\tilde{\gamma})(\mathbf{P}^1)\subset\overline{\mathcal{R}}_6$ is disjoint from the pull-back $\pi^*(\overline{\mathcal{GP}}_6)\subset\overline{\mathcal{R}}_6$ of the Gieseker-Petri divisor consisting of curves of genus 6 lying on a singular quintic del Pezzo surface, see [FGSMV] for details on the geometry of $\pi^{-1}(\overline{\mathcal{GP}}_6)$. Since $\pi^*([\overline{\mathcal{GP}}_6])_{|\widetilde{\mathcal{R}}_6}=94\lambda-12(\delta_0'+\delta_0''+2\delta_0^{\mathrm{ram}})\in CH^1(\widetilde{\mathcal{R}}_6)$, and $\mathfrak{e}\cdot\delta_0^{\mathrm{ram}}=77$ (this being the already computed number of nodal conic bundles in P), whereas $\mathfrak{e}\cdot\delta_0'=0$, we obtain the following relation

$$47\mathfrak{e} \cdot \lambda - 6\mathfrak{e} \cdot \delta_0' - 12\mathfrak{e} \cdot \delta_0^{\mathrm{ram}} = 0.$$

Finally, we observe that $\mathfrak{e} \cdot \lambda = \chi(\mathcal{Y}, \mathcal{O}_{\mathcal{Y}}) + g - 1 = 18$, which leads to $\mathfrak{e} \cdot \delta_0^{\text{ram}} = 32$. \square

3. A sweeping rational curve in the boundary of $\overline{\mathcal{A}}_6$

In this section we construct an explicit sweeping rational curve in C^5 , whose numerical properties we shall use in order to bound the slope of $\overline{\mathcal{A}}_6$. Before doing that, we quickly review basic facts concerning the moduli space $\overline{\mathcal{R}}_g$ of stable Prym curves of genus g, while referring to [FL] for details.

Geometric points of $\overline{\mathcal{R}}_g$ correspond to triples (X,η,β) , where X is a quasi-stable curve of arithmetic genus g,η is a line bundle on X of degree 0, such that $\eta_E=\mathcal{O}_E(1)$ for each smooth rational component $E\subset X$ with $|E\cap \overline{(X-E)}|=2$, and $\beta:\eta^{\otimes 2}\to \mathcal{O}_X$ is a sheaf homomorphism whose restriction to any non-exceptional component of X is an isomorphism. Denoting by $\pi:\overline{\mathcal{R}}_g\to\overline{\mathcal{M}}_g$ the forgetful map, one has the following formula [FL] Example 1.4

(5)
$$\pi^*(\delta_0) = \delta_0' + \delta_0'' + 2\delta_0^{\text{ram}} \in CH^1(\overline{\mathcal{R}}_g),$$

where $\delta_0':=[\Delta_0'], \, \delta_0'':=[\Delta_0'']$, and $\delta_0^{\mathrm{ram}}:=[\Delta_0^{\mathrm{ram}}]$ are boundary divisor classes on $\overline{\mathcal{R}}_g$ whose meaning we recall. Let us fix a general point $[C]\in\Delta_0$ corresponding to a smooth 2-pointed curve (N,x,y) of genus g-1 with normalization map $\nu:N\to C$, where $\nu(x)=\nu(y)$. A general point of Δ_0' (respectively of Δ_0'') corresponds to a stable Prym curve $[C,\eta]$, where $\eta\in\mathrm{Pic}^0(C)[2]$ and $\nu^*(\eta)\in\mathrm{Pic}^0(N)$ is non-trivial (respectively, $\nu^*(\eta)=\mathcal{O}_N$). A general point of Δ_0^{ram} is of the form (X,η) , where $X:=N\cup_{\{x,y\}}\mathbf{P}^1$

is a quasi-stable curve of arithmetic genus g, whereas $\eta \in \operatorname{Pic}^0(X)$ is a line bundle characterized by $\eta_{\mathbf{P}^1} = \mathcal{O}_{\mathbf{P}^1}(1)$ and $\eta_N^{\otimes 2} = \mathcal{O}_N(-x-y)$. Throughout this paper, we only work on the partial compactification $\widetilde{\mathcal{R}}_g := \pi^{-1}(\mathcal{M}_g \cup \Delta_0)$ of \mathcal{R}_g and ignore the boundary divisors of $\overline{\mathcal{R}}_g$ corresponding to curves of compact type. We denote by δ_0', δ_0'' and $\delta_0^{\operatorname{ram}}$ the restrictions of the corresponding boundary classes to $\widetilde{\mathcal{R}}_g$. Note that $CH^1(\widetilde{\mathcal{R}}_g) = \mathbf{Q}\langle \lambda, \delta_0', \delta_0'', \delta_0^{\operatorname{ram}} \rangle$.

Recall that we use the identification $\mathbf{P}^{15}:=\left|\mathcal{I}^2_{\{w_1,\dots,w_4\}}(2,2)\right|=\left|\mathcal{O}_{\mathbf{P}}(2)\right|$ for the linear system of (2,2) threefolds in $\mathbf{P}^2\times\mathbf{P}^2$ which are nodal at w_1,\dots,w_4 . Recall also that $\mathbf{P}\to S$ is the \mathbf{P}^2 -bundle constructed in section 2.

We start constructing a sweeping curve $i: \mathbf{P}^1 \to \widetilde{\mathcal{C}}^5$, by fixing general elements $(o_1, \ell_1), \ldots, (o_4, \ell_4) \in \mathbf{P}^2 \times (\mathbf{P}^2)^\vee$ and a general point $o \in \mathbf{P}^2$. We introduce the net

$$T := \Big\{ Q \in \mathbf{P}^{15} : (o, o) \in Q \text{ and } \{o_j\} \times \ell_i \subset Q \text{ for } j = 1, \dots, 4 \Big\},$$

consisting of conic bundles containing the lines $\{o_1\} \times \ell_1, \dots, \{o_4\} \times \ell_4$ and passing through the point $(o, o) \in \mathbf{P}^2 \times \mathbf{P}^2$. Because of the genericity of our choices, the restriction

$$\operatorname{res}_{|\{o\}\times\mathbf{P}^2}:T\to \left|\mathcal{O}_{\{o\}\times\mathbf{P}^2}(2)\right|$$

is an injective map and we can view T as a general net of conics in \mathbf{P}^2 passing through the fixed point $o \in \mathbf{P}^2$. The discriminant curve of the net is a nodal cubic curve $\Delta_T \subset T$; its singularity corresponds to the only conic of type $\ell_0 + m_0 \in T$, consisting of a pair of lines ℓ_0 and m_0 passing through o.

To ease notation, we identify $\{o\} \times \mathbf{P}^2$ with \mathbf{P}^2 in everything that follows. Denoting by $\mathbf{P}^1 := \mathbf{P}(T_o(\mathbf{P}^2))$ the pencil of lines through o, it is clear that the map

$$\tau: \mathbf{P}^1 \to \Delta_T, \quad \tau(\ell) := Q_\ell \in T, \text{ such that } Q_\ell \supset \{o\} \times \ell,$$

is the normalization map of Δ_T . In particular, we have $\tau(\ell_0) = \tau(m_0) = \ell_0 + m_0$, where, abusing notation, we identify Q_ℓ with its singular conic $\{o\} \times (\ell+m) = Q_\ell \cdot (\{o\} \times \mathbf{P}^2)$. For $\ell \in \mathbf{P}^1$, the double cover $f_\ell : \widetilde{\Gamma}_\ell \to \Gamma_\ell$ over the discriminant curve Γ_ℓ of Q_ℓ is an element of \mathcal{P}_6 (see Definition 1.1). Clearly $\widetilde{\Gamma}_\ell$ carries the marked points $\ell_1, \ell_2, \ell_3, \ell_4$ and ℓ . This procedure induces a moduli map into the universal symmetric product

$$i: \mathbf{P}^1 \to \widetilde{\mathcal{C}}^5, \quad i(\ell) := \left[\rho(\widetilde{\Gamma}_{\ell}/\Gamma_{\ell}), \ \ell_1, \ \ell_2, \ \ell_3, \ \ell_4, \ \ell \right].$$

We explicitly construct the family of discriminant curves Γ_{ℓ} of the conic bundles Q_{ℓ} , where $\tau(\ell) \in \Delta_T$. Setting coordinates $x := [x_1 : x_2 : x_3], y := [y_1 : y_2 : y_3]$ in \mathbf{P}^2 , let

$$Z := \left\{ (x, y, t) \in \mathbf{P}^2 \times \mathbf{P}^2 \times \Delta_T : y \in \operatorname{Sing}(\pi_1^{-1}(x) \cap Q_t) \right\} \subset \mathbf{P}^2 \times \mathbf{P}^2 \times T.$$

Concretely, if Q_1, Q_2, Q_3 is a basis of T, then the surface Z is given by the equations

$$\frac{\partial}{\partial y_i} \Big(t_1 Q_1(x, y) + t_2 Q_2(x, y) + t_3 Q_3(x, y) \Big) = 0, \text{ for } i = 1, 2, 3,$$

where $[t_1:t_2:t_3] \in T$. It follows immediately that Z is a complete intersection of three divisors of multidegree (2,1,1), defined by the partial derivatives, and the divisor $\mathbf{P}^2 \times \mathbf{P}^2 \times \Delta_T$ of multidegree (0,0,3).

Lemma 3.1. The first projection $\gamma_1: Z \to \mathbf{P}^2$ is a map of degree 9.

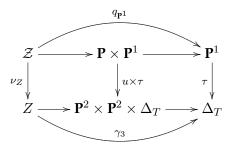
Proof. Denoting by $h_1, h_2, h_3 \in \text{Pic}(\mathbf{P}^2 \times \mathbf{P}^2 \times T)$ the pull-backs of the hyperplane bundles from the three factors, we find that $\deg(\gamma_1) = (2h_1 + h_2 + h_3)^3 \cdot (3h_3) \cdot h_1^2 = 9$.

The third projection $\gamma_3:Z\to\Delta_T$ is a birational model of the family $\{C_\ell\}_{\ell\in\mathbf{P}^1}$ of underlying genus 6 curves, induced by the map $i:\mathbf{P}^1\to\widetilde{\mathcal{C}}^5$. However, the surface Z is not normal. It has singularities along the curves $\{w_j\}\times\Delta_T$ for $j=1,\ldots,4$, as well as along the fibre $\gamma_3^{-1}(\ell_0+m_0)$ over the point $\tau(\ell_0)=\tau(m_0)=\ell_0+m_0\in T$. To construct a smooth model of Z, we pass instead to its natural birational model in the 5-fold $\mathbf{P}\times\mathbf{P}^1$.

Abusing notation, we still denote by $Q_\ell \subset \mathbf{P}$ the strict transform of the conic bundle Q_ℓ in $\mathbf{P}^2 \times \mathbf{P}^2$; its discriminant curve C_ℓ is viewed an an element of $|-K_S|$. We denote by $\pi_\ell: Q_\ell \to S$ the restriction of $\pi: \mathbf{P} \to S$, then consider the surface

$$\mathcal{Z} := \left\{ (z, \ell) \in \mathbf{P} \times \mathbf{P}^1 : z \in \operatorname{Sing} \pi_{\ell}^{-1}(C_{\ell}) \right\}.$$

Clearly \mathcal{Z} is endowed with the projection $q_{\mathbf{P}^1}: \mathcal{Z} \to \mathbf{P}^1$. We have the following commutative diagram, where $u := (\sigma \times \mathrm{id}_{\mathbf{P}^2}) \circ \epsilon^{-1}: \mathbf{P} \to \mathbf{P}^2 \times \mathbf{P}^2$ and the horizontal arrows are the natural inclusions or projections and $\nu_Z: \mathcal{Z} \to Z$ is the normalization map:



Since $u \times \tau$ is birational, it follows that $\deg(\mathbb{Z}/S) = \deg(\mathbb{Z}/\mathbf{P}^2) = 9$. The fibration $q_{\mathbf{P}^1}: \mathbb{Z} \to \mathbf{P}^1$ admits sections

$$\tau_i: \mathbf{P}^1 \to \mathcal{Z} \text{ for } j = 1, \dots, 5,$$

which we now define. For $1 \leq j \leq 4$ and each $\ell \in \mathbf{P}^1$, the fibre $Q_\ell \cdot \left(\{o_j\} \times \mathbf{P}^2\right)$ contains the line ℓ_j . Hence ℓ_j defines a point in the covering curve of $f_\ell : \widetilde{C}_\ell \to C_\ell$. By definition $\tau_j(\ell)$ is this point. Tautologically, $\tau_5(\ell)$ is the point corresponding to the line ℓ .

Finally, we consider the universal family $\mathcal{Q} \subset \mathbf{P} \times T$ defined by T. The pull-back of the projection $\mathcal{Q} \to T$ by the morphism $\mathrm{id}_{\mathbf{P}} \times \tau$ induces a flat family of conic bundles $\mathcal{Q}' \subset \mathbf{P} \times \mathbf{P}^1$ and a projection $q' : \mathcal{Q}' \to \mathbf{P}^1$. Clearly, $\mathcal{Z} \subset \mathcal{Q}'$ and $q_{\mathbf{P}^1} = q'_{|\mathcal{Z}}$.

Definition 3.2. A conic bundle $Q \in |\mathcal{O}_{\mathbf{P}}(2)|$ is said to be *ordinary* if both Q and its discriminant cover curve C are nodal. A subvariety in $|\mathcal{O}_{\mathbf{P}}(2)|$ is said to be a *Lefschetz family*, if each of its members is an ordinary conic bundles.

Postponing the proof, we assume that the fibration $q': \mathcal{Q} \to \mathbf{P}^1$ constructed above is a Lefschetz family of conic bundles, and we determine the properties of the Prym moduli map $m: \mathbf{P}^1 \to \overline{\mathcal{R}}_6$, where $m(\ell) := [f_\ell: \widetilde{C}_\ell \to C_\ell] = \rho(\widetilde{\Gamma}_\ell/\Gamma_\ell)$.

Proposition 3.3. The numerical features of $m: \mathbf{P}^1 \to \overline{\mathcal{R}}_6$ are as follows:

$$m(\mathbf{P}^1) \cdot \lambda = 9 \cdot 6, \ m(\mathbf{P}^1) \cdot \delta_0' = 3 \cdot 77, \ m(\mathbf{P}^1) \cdot \delta_0^{\text{ram}} = 3 \cdot 32, \ m(\mathbf{P}^1) \cdot \delta_0'' = 0.$$

Proof. We consider the composite map $\rho \circ \mathfrak{d}_{|T} : T \dashrightarrow \overline{\mathcal{R}}_6$, assigning to a conic bundle from the net $T \subset \mathbf{P}^{15}$ the double covering of its (normalized) discriminant curve. This map is well-defined outside the codimension two locus in T corresponding to conic bundles with non-nodal discriminant. Furthermore, $m = \rho \circ \mathfrak{d} \circ \tau : \mathbf{P}^1 \to \overline{\mathcal{R}}_6$, where we recall that $\tau(\mathbf{P}^1) = \Delta_T \subset T$ is a nodal cubic curve. It follows that the intersection number of $m(\mathbf{P}^1) \subset \overline{\mathcal{R}}_6$ with any divisor class on $\overline{\mathcal{R}}_6$ is three times the intersection number of the corresponding class in $CH^1(\overline{\mathcal{R}}_6)$ with the curve of discriminants induced by a *pencil* of conic bundles in $|\mathcal{O}_{\mathbf{P}}(2)|$. The latter numbers have been determined in Theorem 2.12.

The composition of the map $i: \mathbf{P}^1 \to \widetilde{\mathcal{C}}^5$ with the projection $\widetilde{\mathcal{C}}^5 \to \overline{\mathcal{R}}_6$ is the map $m: \mathbf{P}^1 \to \overline{\mathcal{R}}_6$ discussed in Proposition 3.3. We discuss the numerical properties of i:

Proposition 3.4. The moduli map $i: \mathbf{P}^1 \to \widetilde{\mathcal{C}}^5$ induced by the pointed family of Prym curves

$$\left(q_{{m P}^1}:{m Z} o{m P}^1, au_1,\ldots, au_5:{m P}^1 o{m Z}
ight)$$

sweeps the five-fold product \widetilde{C}^5 . Furthermore $i(\mathbf{P}^1) \cdot \psi_{x_j} = 9$, for $j = 1, \dots, 5$.

Proof. For $1 \leq j \leq 4$, the image of the section $\tilde{\tau}_j := \nu_Z \circ \tau_j : \mathbf{P}^1 \to Z$ is the curve

$$L_j := \big\{ (o_j, \ y_j(\ell), \ \nu(\ell)) \in \mathbf{P}^2 \times \mathbf{P}^2 \times T : \ell \in \mathbf{P}^1 \big\},$$

where $y_j(\ell) = \ell_j \cap m_j(\ell)$, with $m_j(\ell)$ being the line in \mathbf{P}^2 defined by the equality of cycles $Q_\ell \cdot \left(\{o_j\} \times \mathbf{P}^2\right) = \{o_j\} \times (\ell_j + m_j(\ell))$. Here, recall that $\ell \in \mathbf{P}^1 = \mathbf{P}(T_o(\mathbf{P}^2))$ is a point corresponding to a line in \mathbf{P}^2 passing through o. In particular, noting that by the adjunction formula $\omega_Z = \mathcal{O}_Z(3h_1 + 3h_3)$, we compute that $L_j \cdot h_1 = 0$ and $L_j \cdot h_3 = 3$, hence $L_j \cdot \omega_Z = L_j \cdot (3h_1 + 3h_3) = 9$.

By definition $i(\mathbf{P}^1) \cdot \psi_{x_j} = \tau_j^*(c_1(\omega_{q_{\mathbf{P}^1}}))$. To evaluate the dualizing class, we note that $\omega_{q_{\mathbf{P}^1}} = \omega_{\mathcal{Z}} \otimes q_{\mathbf{P}^1}^*(T_{\mathbf{P}^1})$, therefore $\deg \tau_j^*(c_1(\omega_{q_{\mathbf{P}^1}})) = \deg \tau_j^*(\omega_{\mathcal{Z}}) + 2$. Furthermore,

$$\nu_Z^*(\omega_Z) = \omega_Z \otimes \mathcal{O}_Z(q_{\mathbf{p}^1}^{-1}(\ell_0) + q_{\mathbf{p}^1}^{-1}(m_0) + D),$$

where $D \subset \mathcal{Z}$ is a curve disjoint from $\nu_Z^{-1}(L_j)$. We compute that

$$\deg \tau_j^*(\omega_{\mathcal{Z}}) = \deg \tilde{\tau}_j^*(\omega_Z) - \deg \tau_j^* q_{\mathbf{P}^1}^*(\ell_0) - \deg \tau_j^* q_{\mathbf{P}^1}^*(m_0) = \omega_Z \cdot L_j - 2,$$

and finally, $i(\mathbf{P}_1) \cdot \psi_{x_j} = \omega_Z \cdot L_j = 9$. The calculation of $i(\mathbf{P}^1) \cdot \psi_{x_5}$ is largely similar and we skip it.

Proof of the claim. We show that $q': \mathcal{Q} \to \mathbf{P}^1$ is a Lefschetz family, that is, it consists entirely of ordinary conic bundles. For $1 \leq j \leq 4$, let $\ell'_j \subset \mathbf{P}$ be the inverse image of the line $\{o_j\} \times \ell_j$ under the map $u: \mathbf{P} \dashrightarrow \mathbf{P}^2 \times \mathbf{P}^2$ and set $W:= \left|\mathcal{I}_{\{\ell'_1,\dots,\ell'_4\}}(2)\right| \subset |\mathcal{O}_{\mathbf{P}}(2)|$. The net $T:=T_o$ of conic bundles passing through the point $(o,o) \in \mathbf{P}^2 \times \mathbf{P}^2$ is a plane in W. Let Δ_{no} denote the locus of non-ordinary conic bundles $Q \in W$. We aim to show that $\Delta_{\mathrm{no}} \cap \Delta_{T_o} = \emptyset$, for a general point $o \in \mathbf{P}^2$.

We consider the incidence correspondence

$$\Sigma := \left\{ \left(Q, (o, \ell) \right) \in \Delta_{\text{no}} \times \mathbf{G} : \{ o \} \times \ell \subset u(Q), \ o \in \ell \right\}$$

together with the projection map $p_1: \Sigma \to \Delta_{\text{no}}$. Over a conic bundle $Q \in \Delta_{\text{no}}$ for which the image $u(Q) \subset \mathbf{P}^2 \times \mathbf{P}^2$ is transversal to a general fibre $\{o\} \times \mathbf{P}^2$, the fibre $p_1^{-1}(Q)$ is

finite. To account for the conic bundles not enjoying this property, we define $\Delta_{\rm hr}$ to be the union of the irreducible components of $\Delta_{\rm no}$ consisting of conic bundles $Q \in W$ such that the branch locus of $Q \to S$ is equal to S.

To conclude that $\Delta_{\text{no}} \cap \Delta_{T_o} = \emptyset$ for a general $o \in \mathbf{P}^2$, it suffices to show that (1) Δ_{no} has codimension at least 2 in W, and (2) Δ_{hr} has codimension at least 3 in W. The next two lemmas are devoted to the proof of these assertions.

Lemma 3.5. Δ_{no} has codimension at least 2 in W.

Proof. We have established that $h: \mathbf{P} \to \mathbf{P}^4$ is a morphism of degree two. We claim that the 4 lines $l_i := h(\ell_i') \subset \mathbf{P}^4$ are general, in the sense that $V := \left| \mathcal{I}_{\{l_1,\dots,l_4\}}(2) \right|$ is a net of quadrics. Granting this and denoting by $L_{ij} \in H^0(\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(1))$ the linear form vanishing along $l_i \cup l_j$, the space V is generated by the quadrics $L_{12} \cdot L_{34}, L_{13} \cdot L_{24}$ and $L_{14} \cdot L_{23}$ respectively. The base locus bs |V| of the net is a degenerate canonical curve of genus 5, which is a union of 8 lines, namely l_1,\dots,l_4 and l_1,\dots,l_4 , where if $\{1,2,3,4\}=\{i,j,k,l\}$, then the line $l_l \subset \mathbf{P}^4$ is the common transversal to the lines l_i,l_j and l_k . Then by direct calculation, the pull-back P of a general pencil in V is a Lefschetz family of conic budles in $|\mathcal{O}_{\mathbf{P}}(2)|$. Since $P \cap \Delta_{\mathrm{no}} = \emptyset$, it follows that $\mathrm{codim}(\Delta_{\mathrm{no}}, W) \geq 2$. It remains to show that the lines l_1,\dots,l_4 are general. To that end, we observe that the construction can be reversed. Four general lines $m_1,\dots,m_4 \in \mathbf{G}(1,4) \subset \mathbf{P}^9$ define a codimension 4 linear section S' of $\mathbf{G}(1,4)$ which is isomorphic to S. The projectivized universal bundle $\mathbf{P}' \to S'$ is a copy of \mathbf{P} and the projection $h': \mathbf{P}' \to \mathbf{P}^4$ is the tautological map. This completes the proof.

The second lemma follows from a direct analysis in $\mathbf{P}^2 \times \mathbf{P}^2$.

Lemma 3.6. Δ_{hr} has codimension at least 3 in W.

Proof. If Q is a general element of an irreducible component of $\Delta_{\operatorname{hr}}$, then the discriminant locus of the projection $p:Q\to S$ equals S, and necessarily Q=D+D', where p(D)=p(D')=S. By a dimension count, it follows that W contains only *finitely many* elements $Q\in\Delta_{\operatorname{hr}}$, such that $D,D'\in |\mathcal{O}_{\mathbf{P}}(1)|$, and assume that we are not in this case.

elements $Q \in \Delta_{\mathrm{hr}}$, such that $D, D' \in |\mathcal{O}_{\mathbf{P}}(1)|$, and assume that we are not in this case. Recall that $h': \mathbf{P}^2 \times \mathbf{P}^2 \dashrightarrow \mathbf{P}^4$ is the map defined by $|\mathcal{I}_{\{w_1, \dots, w_4\}}(1, 1)|$. The case when both $u(D), u(D') \in |\mathcal{I}_{\{w_1, \dots, w_4\}}(1, 1)|$ having been excluded, we may assume that one of the components of u(Q), say $u(D) \subset \mathbf{P}^2 \times \mathbf{P}^2$, has type (0, 1). In particular, $u(D) = \mathbf{P}^2 \times n$, where $n \subset \mathbf{P}^2$ is a line. Observe that u(D) has degree three in the Segre embedding $\mathbf{P}^2 \times \mathbf{P}^2 \subset \mathbf{P}^8$ and the base scheme of $|\mathcal{I}_{\{w_1, \dots, w_4\}}(1, 1)|$ consists of the simple points w_1, \dots, w_4 . Since h'(D) lies on a quadric, it follows $u(D) \cap \{w_1, \dots, w_4\} \neq \emptyset$, therefore we have $u_i \in n$ for some i, say i = 4. Since the lines $\{o_i\} \times \ell_i$ are general, they do not lie on u(D), for $\ell_i \neq n$. Hence $u(D') \subset \mathbf{P}^2 \times \mathbf{P}^2$ is a (2,1) hypersurface which contains $\{o_1\} \times \ell_1, \dots \{o_4\} \times \ell_4$, is singular at w_1, w_2, w_3 and such that $w_4 \in u(D')$. This contradicts the generality of the lines $\{o_i\} \times \ell_i$.

4. The slope of $\overline{\mathcal{A}}_6$

For $g \geq 2$, let $\overline{\mathcal{A}}_g$ be the first Voronoi compactification of \mathcal{A}_g — this is the toroidal compactification of \mathcal{A}_g constructed using the perfect fan decomposition, see [SB]. The rational Picard group of $\overline{\mathcal{A}}_g$ has rank 2 and it is generated by the first Chern class λ_1 of the Hodge bundle and the class of the *irreducible* boundary divisor $D = D_g := \overline{\mathcal{A}}_g - \mathcal{A}_g$. Following Mumford [Mu], we consider the moduli space $\widetilde{\mathcal{A}}_g$ of principally polarized

abelian varieties of dimension g together with their rank 1 degenerations. Precisely, if $\xi: \overline{\mathcal{A}}_g \to \mathcal{A}_g^s = \mathcal{A}_g \sqcup \mathcal{A}_{g-1} \sqcup \ldots \sqcup \mathcal{A}_1 \sqcup \mathcal{A}_0$ is the projection from the toroidal to the Satake compactification of \mathcal{A}_g , then

$$\widetilde{\mathcal{A}}_g := \overline{\mathcal{A}}_g - \xi^{-1} \Big(\bigcup_{j=2}^g \mathcal{A}_{g-j} \Big) := \mathcal{A}_g \sqcup \widetilde{D}_g,$$

where \widetilde{D}_g is an open dense subvariety of D_g isomorphic to the universal Kummer variety $\operatorname{Kum}(\mathcal{X}_{g-1}) := \mathcal{X}_{g-1}/\pm$. Furthermore, if $\phi: \widetilde{\mathcal{X}}_{g-1} \to \widetilde{\mathcal{A}}_{g-1}$ is the extended universal abelian variety, there exists a degree two morphism $j: \widetilde{\mathcal{X}}_{g-1} \to \overline{\mathcal{A}}_g$, extending the Kummer map $\widetilde{\mathcal{X}}_{g-1} \stackrel{2:1}{\to} \widetilde{D}_g$. The geometry of the boundary divisor $\partial \widetilde{\mathcal{X}}_{g-1} = \phi^{-1}(\operatorname{Kum}(\mathcal{X}_{g-2}))$ is discussed in [vdG] and [EGH]. In particular, $\operatorname{codim}(D_g - j(\partial \widetilde{\mathcal{X}}_{g-1}), D_g) = 2$. As usual, let \mathbb{E}_g be the Hodge bundle on $\overline{\mathcal{A}}_g$.

Denoting by $\varphi: \widetilde{\mathcal{Y}}_g \to \widetilde{\mathcal{R}}_g$ the universal Prym variety restricted to the partial compactification $\widetilde{\mathcal{R}}_g$ of $\overline{\mathcal{R}}_g$ introduced in Section 3, we have the following commutative diagram summarizing the situation, where the lower horizontal arrow is the Prym map:

Furthermore, let us denote by $\theta \in CH^1(\widetilde{\mathcal{X}}_{g-1})$ the class of the universal theta divisor trivialized along the zero section and by $\theta_{\mathrm{pr}} := \chi^*(\theta) \in CH^1(\widetilde{\mathcal{Y}}_g)$ the Prym theta divisor. The following formulas have been pointed out to us by Sam Grushevsky:

Proposition 4.1. The following relations at the level of divisor classes hold:

- (i) $j^*([D]) = -2\theta + \phi^*([D_{g-1}]) \in CH^1(\widetilde{\mathcal{X}}_{g-1}).$
- (ii) $(j \circ \chi)^*(\lambda_1) = \varphi^*(\lambda \frac{1}{4}\delta_0^{\text{ram}}) \in CH^1(\widetilde{\mathcal{Y}}_g).$
- (iii) $(j \circ \chi)^*([D]) = -2\theta_{\mathrm{pr}} + \varphi^*(\delta_0') \in CH^1(\widetilde{\mathcal{Y}}_g).$

Proof. At the level of the restriction $j:\mathcal{X}_{g-1} \to \overline{\mathcal{A}}_g$, the formula

$$j^*(D) \equiv -2\theta \in CH^1(\mathcal{X}_{q-1})$$

is proven in [Mu] Proposition 1.8. To extend this calculation to $\widetilde{\mathcal{X}}_{g-1}$, it suffices to observe that the boundary divisor $\partial \widetilde{\mathcal{X}}_{g-1} = \phi^*(\widetilde{D}_{g-1})$ is mapped under j to the locus in $\overline{\mathcal{A}}_g$ parametrizing $\operatorname{rank} 2$ degenerations and it will appear with multiplicity one in $j^*(D)$.

To establish relation (ii), we observe that $j^*(\lambda_1) = \phi^*(\lambda_1)$, where we use the same symbol to denote the Hodge class on \mathcal{A}_g and that on \mathcal{A}_{g-1} . Indeed, there exists an exact sequence of vector bundles on $\widetilde{\mathcal{X}}_g$, see also [vdG] p.74:

$$0 \longrightarrow \phi^*(\mathbb{E}_{g-1}) \longrightarrow j^*(\mathbb{E}_g) \longrightarrow \mathcal{O}_{\widetilde{\chi}_{g-1}} \longrightarrow 0.$$

It follows that $\chi^*j^*(\lambda_1)=\varphi^*P^*(\lambda_1)=\varphi^*(\lambda-\frac{1}{4}\delta_0^{\mathrm{ram}})$, where $P^*(\lambda_1)=\lambda-\frac{1}{4}\delta_0^{\mathrm{ram}}$, see [FL], [GSM]. Finally, (iii) is a consequence of (i) and of the relation $P^*([\widetilde{D}_{g-1}])=\delta_0'$, see [GSM].

Assume now that g is an even integer and let $\tilde{\pi}:\widetilde{\mathcal{C}}\to\overline{\mathcal{R}}_g$ be the universal curve of genus 2g-1, that is, $\widetilde{\mathcal{C}}=\overline{\mathcal{M}}_{2g-1,1}\times_{\overline{\mathcal{M}}_{2g-1}}\overline{\mathcal{R}}_g$, and $\pi:\overline{\mathcal{C}}\to\overline{\mathcal{R}}_g$ the universal curve of genus g, that is, $\overline{\mathcal{C}}=\overline{\mathcal{M}}_{g,1}\times_{\overline{\mathcal{M}}_g}\overline{\mathcal{R}}_g$. There is a degree two map $f:\widetilde{\mathcal{C}}\to\overline{\mathcal{C}}$ unramified in codimension one and an involution $\iota:\widetilde{\mathcal{C}}\to\widetilde{\mathcal{C}}$, such that $f\circ\iota=f$. Note that $\omega_{\tilde{\pi}}=f^*(\omega_{\pi})$.

We consider the global Abel-Prym map $\mathfrak{ap}: \widetilde{\mathcal{C}}^{g-1} \longrightarrow \widetilde{\mathcal{Y}}_q$, defined by

$$\mathfrak{ap}\Big(\widetilde{C}/C,\,x_1,\ldots,x_{g-1}\Big):=\Big(\widetilde{C}/C,\,\mathcal{O}_{\widetilde{C}}\big(x_1-\iota(x_1)+\cdots+x_{g-2}-\iota(x_{g-2})+2x_{g-1}-2\iota(x_{g-1})\big)\Big).$$

Remark 4.2. We recall that if $\widetilde{C} \to C$ is an étale double cover and $\iota: \widetilde{C} \to \widetilde{C}$ the induced involution, then the Prym variety $P(\widetilde{C}/C) \subset \operatorname{Pic}^0(\widetilde{C})$ can be realized as the locus of line bundles $\mathcal{O}_{\widetilde{C}}(E-\iota(E))$, where E is a divisor on \widetilde{C} having *even* degree, see [B3]. Furthermore, for a general point $[\widetilde{C} \to C] \in \overline{\mathcal{R}}_g$, where $g \geq 3$, and for an integer $1 \leq n \leq g-1$, the difference map $\widetilde{C}_n \to \operatorname{Pic}^0(\widetilde{C})$ given by $E \mapsto \mathcal{O}_{\widetilde{C}}(E-\iota(E))$ is generically finite. In particular, for even g, the locus

$$Z_{g-2}(\widetilde{C}/C) := \left\{ \mathcal{O}_{\widetilde{C}}(E - \iota(E)) : E \in \widetilde{C}_{g-2} \right\}$$

is a divisor inside $P(\widetilde{C}/C)$. We refer to $Z_{g-2}(\widetilde{C}/C)$ as the top difference Prym variety.

One computes the pull-back of the universal theta divisor under the Abel-Prym map. Recall that $\psi_{x_1}, \dots, \psi_{x_{g-1}} \in CH^1(\widetilde{\mathcal{C}}^{g-1})$ are the cotangent classes corresponding to the marked points on the curves of genus 2g-1.

Proposition 4.3. For even g, if $\mu = \varphi \circ \mathfrak{ap} : \widetilde{\mathcal{C}}^{g-1} \to \widetilde{\mathcal{R}}_g$ denotes the projection map, one has

$$\mathfrak{ap}^*(\theta_{\mathrm{pr}}) = \frac{1}{2} \sum_{j=1}^{g-2} \psi_{x_j} + 2\psi_{x_{g-1}} + 0 \cdot \left(\lambda + \mu^* (\delta_0' + \delta_0'' + \delta_0^{\mathrm{ram}})\right) - \dots \in CH^1(\widetilde{\mathcal{C}}^{g-1}).$$

Proof. We factor the map $\mathfrak{ap}:\widetilde{\mathcal{C}}^{g-1} \dashrightarrow \widetilde{\mathcal{Y}}_g$ as $\mathfrak{ap} = \mathfrak{aj} \circ \Delta$, where $\Delta:\widetilde{\mathcal{C}}^{g-1} \to \widetilde{\mathcal{C}}^{2g-2}$ is defined by $(x_1,\ldots,x_{g-1})\mapsto (x_1,\ldots,x_{g-1},\iota(x_1),\ldots,\iota(x_{g-1}))$ and $\mathfrak{aj}:\widetilde{\mathcal{C}}^{2g-2} \dashrightarrow \overline{\mathfrak{Pic}}_{2g-1}^0$ is the difference Abel-Jacobi map between the first and the last g-1 marked points on each curve into the universal Jacobian of degree zero over $\overline{\mathcal{M}}_{2g-1}$ respectively . There is a generically injective rational map $\widetilde{\mathcal{Y}}_g \dashrightarrow \overline{\mathfrak{Pic}}_{2g-1}^0$, which globalizes the usual inclusion $P(\widetilde{C}/C) \subset \operatorname{Pic}^0(\widetilde{C})$ valid for each Prym curve $[\widetilde{C} \to C] \in \mathcal{R}_g$. Using [GZ] Theorem 6, one computes the pull-back $\mathfrak{aj}^*(\theta_{2g-1}) \in CH^1(\widetilde{\mathcal{C}}^{2g-2})$ of the universal theta divisor θ_{2g-1} on $\overline{\mathfrak{Pic}}_{2g-1}^0$ trivialized along the zero section. Remarkably, the coefficient of λ , as well as that of the δ_0', δ_0'' and $\delta_0^{\operatorname{ram}}$ classes in this expression, are all zero. This is then pulled-back to $\widetilde{\mathcal{C}}^{g-1}$ keeping in mind that the pull-back of θ_{2g-1} to $\widetilde{\mathcal{Y}}_g$ is equal to $2\theta_{\operatorname{pr}}$. Using the formulas $\Delta^*(\psi_{x_j}) = \Delta^*(\psi_{y_j}) = \psi_{x_j}$, and $\Delta^*(\delta_{0:x_iy_j}) = \delta_{0:x_ix_j}$, as well as $\Delta^*(\delta_{0:y_iy_j}) = \delta_{0:x_ix_j}$, we conclude.

Remark 4.4. The other boundary coefficients of $\mathfrak{ap}^*(\theta_{\mathrm{pr}}) \in CH^1(\widetilde{\mathcal{C}}^{g-1})$ can be determined explicitly, but play no role in our future considerations.

Remark 4.5. Restricting ourselves to even g, we consider the restricted (non-dominant) Abel-Prym map $\mathfrak{ap}_{g-2}: \widetilde{\mathcal{C}}^{g-2} \dashrightarrow \widetilde{\mathcal{Y}}_g$ given by

$$\mathfrak{ap}_{g-2}(\widetilde{C}/C, x_1, \dots, x_{g-2}) := (\widetilde{C}/C, \mathcal{O}_{\widetilde{C}}((x_1 - \iota(x_1) + \dots + x_{g-2} - \iota(x_{g-2}))),$$

and obtain the formula: $\mathfrak{ap}_{g-2}^*(\theta_{\mathrm{pr}}) = \frac{1}{2} \sum_{j=1}^{g-2} \psi_{x_j} + 0 \cdot \left(\lambda + \mu^*(\delta_0' + \delta_0'' + \delta_0^{\mathrm{ram}})\right) - \cdots$

The image of \mathfrak{ap}_{g-2} is a divisor \mathcal{Z}_{g-2} on $\widetilde{\mathcal{Y}}_g$ characterized by the property

$$(\mathcal{Z}_{g-2})_{|P(\widetilde{C}/C)} = Z_{g-2}(\widetilde{C}/C),$$

for each $[\widetilde{C} \to C] \in \mathcal{R}_g$. In other words, \mathcal{Z}_{g-2} is the divisor cutting out on each Prym variety the top difference variety. A similar difference variety inside the universal Jacobian over $\overline{\mathcal{M}}_g$ has been studied in [FV]. Specializing to the case g=6, the locus

$$\mathcal{U}_4 := \overline{(j \circ \chi)(\mathcal{Z}_4)} \subset \overline{\mathcal{A}}_6$$

is a codimension two cycle on \overline{A}_6 , which will appear as an obstruction for an effective divisor on \overline{A}_6 to have small slope.

We use these considerations to bound from below the slope of $\overline{\mathcal{A}}_6$.

Proof of Theorem 0.4. We have seen that the boundary divisor D_6 of $\overline{\mathcal{A}}_6$ is filled-up by rational curves $h: \mathbf{P}^1 \to D_6$ constructed in Theorem 3.4 by pushing-forward the sweeping rational curve $i: \mathbf{P}^1 \to \widetilde{\mathcal{C}}^5$ of discriminants of a pencil of conic bundles. In particular, $\gamma:=h_*(\mathbf{P}^1)\in NE_1(\overline{\mathcal{A}}_6)$ is an effective class that intersects every non-boundary effective divisor on $\overline{\mathcal{A}}_6$ non-negatively. We compute using Propositions 4.1 and 4.3:

$$\gamma \cdot \lambda_1 = i_*(\mathbf{P}^1) \cdot \mu^* \left(\lambda - \frac{1}{4} \delta_0^{\text{ram}}\right) = 6 \cdot 9 - \frac{3 \cdot 32}{4} = 30, \text{ and}$$

$$\gamma \cdot [D_6] = -i_*(\mathbf{P}^1) \cdot \left(\sum_{j=1}^4 \psi_{x_j} + 4\psi_{x_5}\right) + i_*(\mathbf{P}^1) \cdot \mu^*(\delta_0') = -8 \cdot 9 + 3 \cdot 77 = 159.$$

We obtain the bound $s(\overline{\mathcal{A}}_6) \geq \frac{\gamma \cdot [D_6]}{\gamma \cdot \lambda_1} = \frac{53}{10}$.

For effective divisors on $\overline{\mathcal{A}}_6$ transversal to \mathcal{U}_4 , we obtain a better slope bound:

Theorem 4.6. If E is an effective divisor on $\overline{\mathcal{A}}_6$ not containing the universal codimension two Prym difference variety $\mathcal{U}_4 \subset \overline{\mathcal{A}}_6$, then $s(E) \geq \frac{13}{2}$.

Proof. We consider the family $(q_{\mathbf{P}^1}: \mathcal{Z} \to \mathbf{P}^1, \ \tau_1, \dots, \tau_4: \mathbf{P}^1 \to \mathcal{Z})$ obtained from the construction explained in Theorem 3.4, where we retain only the first four sections. We obtain an induced moduli map $i_4: \mathbf{P}^1 \to \widetilde{\mathcal{C}}^4$. Pushing i_4 forward via the Abel-Prym map, we obtain a curve $h_4: \mathbf{P}^1 \to \mathcal{U}_4 \subset \overline{\mathcal{A}}_6$, which fills-up the locus \mathcal{U}_4 . Thus $\gamma_4:=(h_4)_*(\mathbf{P}^1)\in NE_1(\overline{\mathcal{A}}_6)$ is an effective class which intersects non-negatively any effective divisor on $\overline{\mathcal{A}}_6$ not containing \mathcal{U}_4 . We compute using Theorems 3.3 and 3.4:

$$\gamma_4 \cdot \lambda_1 = \gamma \cdot \lambda_1 = 30$$
 and $\gamma_4 \cdot [D_6] = -4 \cdot 9 + 3 \cdot 77 = 195$.

REFERENCES

- [B1] A. Beauville, *Variétés de Prym et jacobiennes intermédiaires*, Annales Scientifique École Normale Supérieure **10** (1977), 309-391.
- [B2] A. Beauville, Determinantal hypersurfaces, Michigan Math. Journal 48 (2000), 39-64.
- [B3] A. Beauville, Sous-variétés spéciales de variétés de Prym, Compositio Math. 45 (1982), 357-383.
- [DIM] O. Debarre, A. Iliev and L. Manivel, On nodal prime Fano threefolds of degree 10, Science China Math. 54 (2011), 1591-1609.
- [Dol] I. Dolgachev, Classical algebraic geometry: a modern view, Cambridge University Press 2012.
- [Don] R. Donagi, *The unirationality of* A_5 , Annals of Mathematics **119** (1984), 269-307.
- [DS] R. Donagi and R. Smith, The structure of the Prym map, Acta Mathematica 146 (1981), 25-102.
- [EGH] C. Erdenberger, S. Grushevsky and K. Hulek, Some intersection numbers of divisors on toroidal compactifications of A_g , Journal of Algebraic Geometry **19** (2010), 99-132.
- [FGSMV] G. Farkas, S. Grushevsky, R. Salvati Manni and A. Verra, *Singularities of theta divisors and the geometry of* \overline{A}_5 , arXiv:1112.6285, to appear in the Journal of the European Mathematical Society.
- [FL] G. Farkas and K. Ludwig, *The Kodaira dimension of the moduli space of Prym varieties*, Journal of the European Mathematical Society **12** (2010), 755-795.
- [FV] G. Farkas and A. Verra, *The universal difference variety over* $\overline{\mathcal{M}}_g$, Rendiconti del Circolo Matematico di Palermo **62** (2013), 97-110.
- [vdG] G. van der Geer, Cycles on the moduli space of abelian varieties, in: Moduli of Curves and Abelian Varieties, Aspects of Mathematics Vol. 33, Vieweg 1999, 65-90.
- [GSM] S. Grushevsky and R. Salvati Manni (with an appendix by K. Hulek), *The Prym map on divisors and the slope of* A_5 , arXiv:1107.3094, International Mathematical Research Notices (2013).
- [GZ] S. Grushevsky and D. Zakharov, *The double ramification cycle and the theta divisor*, arXiv:1206.7001, to appear in the Proceedings of the American Mathematical Society.
- [Ma] M. Maruyama, Elementary transformations in the theory of algebraic vector bundles, in: Algebraic Geometry (La Rábida 1981), Springer Lecture Notes in Mathematics **961** (1982), 241-266.
- [MM] S. Mori and S. Mukai, *The uniruledness of the moduli space of curves of genus* 11, Springer Lecture Notes in Mathematics **1016** (1983), 334-353.
- [Mu] D. Mumford, *On the Kodaira dimension of the Siegel modular variety*, in: Algebraic Geometry-Open problems (Ravello 1982), Springer Lecture Notes in Mathematics **997** (1983), 348-375.
- [SM] R. Salvati Manni, *Modular forms of the fourth degree*, in: Springer Lecture Notes in Mathematics **1515** (1992), 106-111.
- [SB] N. Shepherd-Barron, *Perfect forms and the moduli space of abelian varieties*, Inventiones Math., **163** (2006), 25-45.
- [T] Y. Tai, On the Kodaira dimension of the moduli space of abelian varieties, Inventiones Math. 68 (1982), 425-439
- [Ve1] A. Verra, A short proof of the unirationality of A_5 , Indagationes Math. 46 (1984), 339-355.
- [Ve2] A. Verra, *The Prym map has degree two on plane sextics*, Proceedings of the Fano Conference, Univ. Torino 2004, 735-759.

Humboldt-Universität zu Berlin, Institut Für Mathematik, Unter den Linden 6 10099 Berlin, Germany

E-mail address: farkas@math.hu-berlin.de

Universitá Roma Tre, Dipartimento di Matematica, Largo San Leonardo Murialdo 1-00146 Roma, Italy

E-mail address: verra@mat.unirom3.it