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Abstract. We establish the Green-Lazarsfeld Secant Conjecture for general curves of
genus g in all the divisorial case, that is, when the line bundles that fail to be (p+1)-very
ample form a divisor in the Jacobian of the curve.

1. Introduction

For a smooth curve C of genus g and a line bundle L on C, following Green [G],
the Koszul cohomology group Kp,q(C,L) of p-syzygies of weight q is obtained from the
minimal free graded S := Sym H0(C,L)-resolution of the coordinate ring

ΓC(L) :=
⊕
q∈Z

H0
(
C,Lq

)
.

We write bp,q(C,L) := dim Kp,q(C,L) for the number of p-syzygies of weight q of the
embedded curve φL : C → Pr.

Green’s Conjecture [G] characterizing the vanishing of the Betti numbers of a canonical
curve C ⊆ Pg−1 in terms of the Clifford index Cliff(C) of the curve has probably been
the most influential statement in the theory of syzygies. Even though Green’s Conjecture
for arbitrary smooth curves remains open, several solutions have been found in the case
of generic curves, starting with Voisin’s landmark papers [V1], [V2] in the early 2000s,
and continuing more recently with the approach via Koszul modules in [AFPRW] (which
has the benefit of proving the statement in positive characteristic as well, establishing
a conjecture of Eisenbud and Schreyer [ES]), and finishing with Kemeny’s simpler proof
using K3 surfaces [K2]. Even more recently, alternative proofs of each of these new
approaches to the generic Green’s Conjecture have been put forward, see [RS], [Ra], [Pa].

The Secant Conjecture proposed by Green and Lazarsfeld [GL1] is a generalization of
Green’s Conjecture to the case of line bundles of not too low degree. It predicts that if
L ∈ Picd(C) is a line bundle on a curve C of genus g such that

(1) d ≥ 2g + p+ 1− 2h1(C,L)− Cliff(C),

then one has Kp,2(C,L) = 0 if and only if L is (p + 1)-very ample1. Disposing quickly of
the case H1(C,L) 6= 0, which is well-known to be equivalent to Green’s Conjecture for C,

1Recall that a line bundle L on C is (p + 1)-very ample if every effective divisor of degree p + 2 on C
imposes independent conditions on the linear system |L|.
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for non-special line bundles, the Secant Conjecture can be reformulated as the following
equivalence:

(2) Kp,2(C,L) 6= 0 ⇐⇒ L− ωC ∈ Cp+2 − C2g−d+p.

Here Cb −Ca ⊆ Picb−a(C) denotes the difference variety of line bundles OC(Db −Da),
where Db and Da are effective divisors of degrees b and a on C. The Secant Conjecture
has been established in all degrees for a general pair (C,L) in [FK1, Theorem 1.3]. In the
case deg(L) = 2g + p+ 1− c, there are complete results for an arbitrary smooth curve C
when c = 1, see [GL1, Theorem 2] and when c = 2, as long as C is not bielliptic, see [Ag].
There are furthermore complete results in the case d = 2g and when g is odd and C has
maximal gonality, see [FK1, Theorem 1.4].

In this paper we establish the Secant Conjecture for curves of genus g in the divisorial
case d = g+ 2p+ 3, that is, when the difference variety Cp+2−C2g−d+p on the right hand
side of the conjectured equivalence (2) describes a divisor in the corresponding Jacobian
variety.

Theorem 1.1. Let C be a smooth curve of genus g and fix
⌈
g−3

2

⌉
≤ p ≤ g − 3. Assume

dim W 1
p+2(C) = 2p− g + 2.

One has the following equivalence for a line bundle L ∈ Picg+2p+3(C):

Kp,2(C,L) = 0 ⇐⇒ L− ωC /∈ Cp+2 − Cg−p−3.

Note that Theorem 1.1 is of interest only when p ≤ g− 3, else d ≥ 2g+ p+ 1, in which
case the vanishing Kp,2(C,L) = 0 follows automatically from Green’s result [G, Theorem
4.a.1]. Theorem 1.1 establishes the Secant Conjecture in its strongest form for general
curves in the divisorial case.

Corollary 1.2. We fix an integer
⌈
g−3

2

⌉
≤ p ≤ g − 3. Then the Green-Lazarsfeld Secant

Conjecture holds for a general curve C and for arbitrary line bundle L ∈ Picg+2p+3(C).

An important ingredient in the proof of Theorem 1.1 is provided by the syzygetic
interpretation of the divisorial difference varieties given in [FMP]; for every smooth curve
C of genus g and p ≤ g− 3, one has the following identification of cycles on Pic2p+5−g(C)

(3) Cp+2 − Cg−p−3 =
{
ξ ∈ Pic2p+5−g(C) : H0

(
C,

p+2∧
MωC

⊗ ωC ⊗ ξ
)
6= 0
}
,

where MωC
:= Ker

{
H0(C, ωC)⊗OC → ωC

}
is the syzygy (or kernel) bundle on C. Note

that the slope of the vector bundle
∧p+2MωC

⊗ωC⊗ξ is equal to g−1, therefore the right
hand side of (3) is indeed expected to be a divisor on Pic2p+5−g(C). Using (3), coupled
with Green’s Duality Theorem [G, Theorem 2.c.6]

Kp,2

(
C,L

)∨ ∼= Kr(L)−p−1,0

(
C, ωC , L

)
,

where r(L) = deg(L)− g = 2p+ 3, Theorem 1.1 can be reformulated as a form of strange
duality for mixed Koszul cohomology groups. Using the notation of [G], we recall that for
line bundles L,L′ on a curve C the Koszul cohomology group Kp,q(C,L

′, L) is obtained
from the minimal resolution of the Sym H0(C,L)-module

⊕
q∈ZH

0
(
C,L′ ⊗ Lq

)
.
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Corollary 1.3. Let C be a smooth curve of genus g and fix
⌈
g−3

2

⌉
≤ p ≤ g − 3. As-

suming dim W 1
p+2(C) = 2p − g + 2, the following equivalence holds for a line bundle

L ∈ Picg+2p+3(C):

Kp+2,0

(
C, ωC , L

)
= 0 ⇐⇒ Kp+2,0

(
C,L, ωC

)
= 0.

I do not currently have a direct geometric explanantion of the equivalence provided in
Corollary 1.3, that is, one that does not go through the main identification of [FMP].

The proof of Theorem 1.1 relies in an essential way on the case d = 2g of the Secant
Conjecture handled in [FK1, Theorem 1.4]. When d = 2g and g = 2p+3, via a comparison
of two effective divisors of the universal Picard stack Pic2g

g parametrizing pairs [X,LX ],
whereX is a smooth curve of genus g and LX is a line bundle onX of degree deg(LX) = 2g,
for every curve [X] ∈Mg having maximal gonality p+3, one has the following equivalence:

(4) Kp,2(X,LX) 6= 0⇐⇒ LX − ωX ∈ Xp+2 −Xp.

We explain our strategy to proving Theorem 1.1 in odd genus, the case of even genus
being similar. Starting with a curve C of genus g = 2i + 1, where i ≤ p + 1 and with a
line bundle L ∈ Pic2i+2p+4(C) such that Kp,2(C,L) 6= 0, the challenge is to manufacture
a (p + 2)-secant p-plane of the embedded curve φL : C → P2p+2. To that end, we set
` := p + 1− i ≥ 0, attach to C general 2-secant rational curves R1, . . . , R2` and consider
the following semistable curve

X := C ∪R1 ∪ . . . ∪R2`.

Note that g(X) = 2p+ 3 = 2i+ 2`+ 1. The Brill-Noether assumption on C implies that
X has maximal gonality p+ 3. We consider a line bundle LX on X, whose restrictions to
its components of X are given by

LX|C = L and LX|Rj
∼= ORj

(1), for j = 1, . . . , 2`.

In particular deg(LX) = 4p + 6 = 2pa(X) and the assumption Kp,2(C,L) 6= 0 quickly
implies that Kp,2(X,LX) 6= 0 as well. Using a suitable extension of (4) that covers the
case of the nodal curve X (and which has appeared in different guises in [Ap] or [K1]),
coupled with the main result of [FMP] which enables one to express the difference variety
on the left hand side of (4) in a way that makes sense on singular curves as well, we obtain
that

H0
(
X,

p∧
MωX

⊗ ω2
X ⊗ L∨X

)
= 0.

Varying the points of intersection of the rational curves Rj with C, we obtain via a
homological argument that for an integer 0 ≤ j ≤ 2`+ 1 the following inclusion

(5) L− ωC − C2(2`−j+1) ⊆ Ci+j−` − Ci+`−j

holds, where the left hand side is regarded as a divisor in the Jacobian Pic2j−2`(C).
An argument using secant varieties on curves leads us then to conclude that necessarily
L−ωC ∈ Ci+`+1−Ci−`−1, which precisely corresponds to the inclusion (5) in the extremal
case j = 2`+ 1. This is equivalent to φL : C → P2p+2 having a (p+ 2)-secant p-plane.

Acknowledgment: I profitted from discussions with M. Aprodu, M. Kemeny and C.
Voisin on this circle of ideas. The author was supported by the Berlin Mathematics
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Research Center MATH+ and by the ERC Advanced Grant SYZYGY. This project has
received funding from the European Research Council (ERC) under the European Union
Horizon 2020 research and innovation program (grant agreement No. 834172). I thank
the referee for a very careful reading of this paper.

2. Syzygies of curves

In this section we discuss a number of basic facts on syzygies of curves that will be
used throughout the paper. If X is a projective variety and L ∈ Pic(X) is a globally
generated line bundle on X, the Koszul cohomology group Kp,q(X,L) is by definition the
cohomology of the complex

p+1∧
H0(X,L)⊗H0

(
X,Lq−1

) dp+1,q−1−→
p∧
H0(X,L)⊗H0

(
X,Lq

)
dp,q−→

p−1∧
H0(X,L)⊗H0(X,Lq+1

)
,

where dp,q is the Koszul differential. With the help of the syzygy bundle

ML := Ker
{
H0(X,L)⊗OX → L

}
,

one has the following interpretation of the Koszul cohomology group:

(6) Kp,q(X,L) ∼= Coker
{p+1∧

H0(X,L)⊗H0(X,Lq−1) −→ H0
(
X,

p∧
ML ⊗ Lq

)}
.

We also use the notation QL := M∨
L for the dual of the syzygy bundle. If L is a

non-special line bundle, using (6) we have the following equivalence

Kp,2(X,L) = 0⇐⇒ H1
(
X,

p+1∧
ML ⊗ L

)
= 0.

We will use the setting when L is a globally generated line bundle on a smooth curve C
and X := C∪R1∪. . .∪Ra is a nodal curve obtained from C by attaching 2-secant mutually
disjoint rational curves Rj meeting C at general points xj, yj. Since the restriction map
Pic(X)→ Pic(C) is surjective, we can choose a line bundle LX ∈ Pic(X) such that

LX|C ∼= L and LX|Rj
∼= ORj

(1), for j = 1, . . . , a.

Proposition 2.1. One has a natural surjection Kp,2(X,LX) � Kp,2(C,L).

Proof. Set r := h0(C,L)− 1. From the Mayer-Vietoris sequence on X

0 −→ H0(X,LX) −→ H0(C,L)⊕
( a⊕

j=1

H0
(
Rj,ORj

(1)
))
−→

a⊕
j=1

C2
xj ,yj

,

we obtain that H0(X,LX) ∼= H0(C,L). In the same way, one has natural injections
H0(C, ωC) ↪→ H0(X,ωX) respectively H0

(
C, ωC ⊗ L

)
↪→ H0

(
X,ωX ⊗ LX

)
. Next we

apply the duality theorem

Kp,2(X,LX) ∼= Kr−p−1,0(X,ωX , LX)∨,
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together with the following commutative diagram,∧r−p−1H0(C,L)⊗H0(C, ωC)

j
��

dCr−p−1,0 //
∧r−p−2H0(C,L)⊗H0(C, ωC ⊗ L)

j̄
��∧r−1−pH0(X,LX)⊗H0(X,ωX)

dXr−1−p,0 //
∧r−p−2H0(X,LX)⊗H0(X,ωX ⊗ LX) .

where dCr−p−1,0 and dXr−p−1,0 are the Koszul differentials for C and X respectively. Ob-

serve that both j and j̄ are injective, which implies that ker
(
dCr−1−p,0

)
↪→ ker

(
dXr−1−p,0) is

injective, which after dualizing, finishes the proof. �

2.1. The divisorial difference varieties in Jacobians. For a smooth curve C and
integers a, b ≥ 0, we denote by Cb−Ca ⊆ Picb−a(C) the difference variety consisting of all
line bundles of the form OC(Db −Da), where Db and Da are effective divisors of degree
b respectively a on C. In the case the difference varieties are divisors in the respective
Jacobians, that is, when b = g − a− 1, the main result of [FMP] provides an alternative
description of the divisorial difference variety in terms of the (non-abelian) theta divisor
of the vector bundle

∧aQωC
, precisely

(7) Cg−a−1 − Ca = Θ∧a QωC
=
{
ξ ∈ Picg−2a−1(C) : h0

(
C,

a∧
QωC
⊗ ξ
)
≥ 1
}
.

We shall also make use of the varieties of secant divisors for a linear system on a curve.
Given a line bundle L on C with h0(C,L) = r + 1, for integers e > 0 and 0 ≤ f < e, we
introduce the variety of e-secant (e− f − 1)-divisors with respect to the complete linear
system |L|

(8) V e−f
e (L) :=

{
D ∈ Ce : dim |L(−D)| ≥ r − e+ f

}
.

The expected dimension of V e−f
e (L) as a determinantal subvariety of Ce is equal to

exp.dim V e−f
e (L) = e− f(r + 1− e+ f).

For various results on the structure of the secant loci V e−f
e (L) we refer to [ACGH, § 8],

[AS] and [Fa].

The Green-Lazarsfeld Secant Conjecture (2) offers a characterization of those line bun-
dles L ∈ Picd(C) satisfying the condition Kp,2(C,L) 6= 0 in terms of secant varieties of
linear systems, predicting the following equivalence

Kp,2(C,L) 6= 0 ⇐⇒ V p+1
p+2 (L) 6= ∅,

as long as H1(C,L) = 0 and d ≥ 2g + p + 1 − Cliff(C). Note that via a projection
argument it is immediate to see that if V p+1

p+2 (L) 6= 0, then Kp,2(C,L) 6= 0, therefore the
Secant Conjecture concerns the reverse implication. The divisorial case of the Secant
Conjecture treated in this paper corresponds to the situation

exp.dim V p+1
p+2 (L) = −1⇐⇒ d = g + 2p+ 3.

A solution to the Secant Conjecture that holds for every curve of maximal gonality is
provided in [FK1] in the particular divisorial case d = 2g, when the genus g = 2p + 3 is
odd, see the equivalence (4). The aim of this paper is to establish the Secant Conjecture
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for all divisorial cases and for curves of arbitrary gonality, at the price of allowing the
base curve C to satisfy certain (mild) generality assumptions of Brill-Noether nature.

We fix an odd genus g = 2p + 3 and recall that π : Pic
2g

g → Mg denotes Caporaso’s

[Ca] compactification of the universal Jacobian Pic2g
g →Mg of degree 2g over the moduli

space of curves of genus g. A point of Pic
2g

g corresponds to a pair [X,LX ], where X is a
quasi-stable curve of genus g and LX is a balanced line bundle of total degree 2g on X,
see [Ca, § 3].

Proposition 2.2. Let X be a quasi-stable curve of genus g = 2p+3 having no disconnect-
ing nodes and let LX be a globally generated balanced bundle of degree 2g on X. Assume
X has gonality p+ 3. Then the following equivalence holds:

Kp,2(X,LX) = 0 ⇐⇒ H0
(
X,

p∧
QωX

⊗ LX ⊗ ω∨X
)

= 0.

Proof. We denote by S̃yz the effective divisor on Pic
2g

g consisting of pairs [X,LX ] with

Kp,2(X,LX) 6= 0. The determinantal structure giving rise to S̃yz can be read off from

[FK1, § 6]. We write Syz := S̃yz ∩Pic2g
g . Similarly, we consider the secant divisor

S̃ec :=
{

[X,LX ] ∈ Pic
2g

g : H0
( p∧

QωX
⊗ LX ⊗ ω∨X

)
6= 0
}
,

and set Sec := S̃ec ∩ Pic2g
g . Using [FK1, Theorem 1.4] and the identification (3) of

divisorial varieties, we conclude that we have the following set-theoretic equality of divisors

on Pic
2g

g

Syz = π−1
(
M1

g,p+2

)
∪Sec,

whereM1

g,p+2 is the Hurwitz divisor consisting of stable curves of gonality at most p+ 2.

The closure in both sides of this equality is taken inside Pic
2g

g . To conclude, since ∆irr is

the only boundary divisor of Mg possibly containing the point [X] ∈ Mg, it suffices to

show that S̃yz does not contain the boundary divisor π−1
(
∆irr

)
, where ∆irr denotes the

closure in Mg of the locus of irreducible curves. Since π−1
(
∆irr

)
is irreducible (see [MV,

Theorem 3.2]), it suffices to provide one example of a one-nodal curve Y of genus 2p+ 3
and a line bundle LY ∈ Pic4p+6(Y ) such that Kp,2(Y, LY ) = 0. This follows from [FK1,
Theorem 1.8], where such a vanishing is provided for all curves lying in an ample linear
system on a K3 surface. Since such a linear system contains one-nodal irreducible curves,
the conclusion follows. �

3. The Secant Conjecture and divisorial difference varieties

In this section we prove Theorem 1.1. We start with a smooth curve C of genus g and
a non-special line bundle L ∈ Picg+2p+3(C), where

⌈
g−3

2

⌉
≤ p ≤ g − 3. If c := Cliff(C),

since W 1
c+2(C) +Cp−c ⊆ W 1

p+2(C), the assumptions on C ensure that the inequality (1) is
satisfied.

The proof of Theorem 1.1 will depend on the parity of g and we treat first that the
case of odd genus, when we write

(9) g = 2i+ 1, with i ≤ p+ 1.
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We set ` := p + 1 − i ≥ 0. We pick 2` pairs of general points (xj, yj) on C and we
introduce the curve

(10) X := C ∪{x1,y1} R1 ∪ . . . ∪{x2`,y2`} R2`,

where each Rj is a smooth rational curve meeting transversally C at the points xj and
yj, for j = 1, . . . , 2`. The curves Rj′ and Rj are disjoint for j 6= j′. Note that X is a
quasi-stable curve of genus g(X) = 2i + 2` + 1 = 2p + 3. We further introduce a line
bundle LX ∈ Pic4p+6(X) such that

LX|C ∼= L and L|Rj
∼= ORj

(1), for j = 1, . . . , 2`.

Note that indeed deg(LX) = deg(L)+2` = 2i+2p+4+2` = 4p+6. Observe furthermore,
that LX is a balanced line bundle on X in the sense of Caporaso [Ca], in particular the

pair [X,LX ] can be regarded as a point in the compactification Pic
4p+6

2p+3 →M2p+3 of the

universal Jacobian Pic4p+6
2p+3 constructed in [Ca]. From the generality assumptions on C

and on the points (xj, yj), we obtain that the stabilization of [X] ∈ M2p+3 (obtained by
contracting the rational curves Rj) is a stable curve of maximal gonality, that is, it does

not lie in the Hurwitz divisor M1

2p+3,p+2 of (stable) curves of gonality at most p + 2 (see
also [Ap], [FK2] for variations of this argument).

Proof of Theorem 1.1. We keep the same notation as above and assume Kp,2(C,L) 6= 0
and we aim to show that L− ωC ∈ Ci+`+1−Ci−`−1. Applying Proposition 2.1, we obtain
that Kp,2(X,LX) 6= 0. The assumption dim W 1

p+2(C) = 2p − g + 2 implies that when

choosing the points xj, yj ∈ C generally, then [X] /∈ M1

2p+3,p+2, that is, X is not a limit
of smooth curves of genus 2p + 3 and gonality p + 2. We are therefore in a position to
apply Proposition 2.2, to obtain that

H0
( p∧

QωX
⊗ LX ⊗ ω∨X

)
6= 0.

By Riemann-Roch on X, this condition is equivalent to

H1
( p∧

QωX
⊗ LX ⊗ ω∨X

)
6= 0,

and by Serre duality, this last condition translates into the non-vanishing statement

(11) H0
(
X,

p∧
MωX

⊗ ω2
X ⊗ L∨X

)
6= 0.

We denote by D2` := x1 + y1 + · · · + x2` + y2` ∈ C4` the divisor of marked points on
C. In order to make the condition (11) explicit, we note that since ωX|Rj

∼= ORj
, one

has MωX |Rj
∼= O⊕(2p+2)

Rj
and

(
ω2
X ⊗ L∨X

)
|Rj

∼= ORj
(−1). We write down the following

Mayer-Vietoris sequence on X:

0 −→ H0
(
X,

p∧
MωX

⊗ ω2
X ⊗ L∨X

)
−→ H0

(
C,

p∧
MωX |C ⊗ ω2

C ⊗ L∨(2D2`)
)
⊕

⊕
2⊕̀
j=1

H0
(
Rj,
( p∧
O⊕(2p+2)

Rj

)
(−1)

)
−→ H0

( p∧
MωX

⊗ ω2
X ⊗ L∨X ⊗OD2`

)
−→ · · · .



8 G. FARKAS

Since H0
(
Rj,
∧pMωX |Rj

⊗ω2
X|Rj
⊗L∨Rj

)
= 0 for each j = 1, . . . , 2`, we obtain an inclusion

H0
(
X,

p∧
MωX

⊗ ω2
X ⊗ L∨X

)
↪→ H0

(
C,

p∧
MωX |C ⊗ ω2

C ⊗ L∨(D2`)
)
,

therefore our hypothesis (11) implies that the following equivalent statements also hold

(12) H0
(
C,

p∧
MωX |C⊗ω2

C⊗L∨(D2`)
)
6= 0⇐⇒ H1

(
C,

p∧
QωX |C⊗L⊗ω∨C(−D2`)

)
6= 0,

where the equivalence in (12) is a consequence of Serre duality.

In order to describe MωX |C , we write down the following morphism of short exact
sequences

0 // MωC

��

// H0(C, ωC)⊗OC

��

// ωC

��

// 0

0 // MωX |C
// H0(X,ωX)⊗OC

// ωC(D2`) // 0

to obtain the following exact sequence of vector bundles on C

0 −→MωC
−→MωX |C −→

2⊕̀
j=1

OC

(
−xj − yj

)
−→ 0,

which, after dualizing, can be rewritten as the exact sequence

(13) 0 −→
2⊕̀
j=1

OC

(
xj + yj

)
−→ QωX |C −→ QωC

−→ 0.

We compute the p-th exterior power of the sequence (13). The assumption p ≤ g − 3
translates into ` ≤ i− 1. There exists a filtration

p∧
QωX |C = F0 ⊃ F1 ⊃ · · · ⊃ F2` ⊃ F2`+1 = 0

of vector bundles on C, such that the successive quotients are given by

Fk−1/Fk ∼=
k−1∧( 2⊕̀

j=1

OC(xj + yj)
)
⊗

p+1−k∧
QωC

.

For each k = 1, . . . , 2` we tensor with the line bundle L⊗ ω∨C(D2`) the exact sequence

0 −→ Fk −→ Fk−1 −→
p+1−k∧

QωC
⊗

k−1∧( 2⊕̀
j=1

OC

(
xj + yj

))
−→ 0,

and taking cohomology, we obtain that the condition (12) implies that there exists an
integer j ≤ 2`+ 1 such that

(14) H1
(
C,

i+`−j∧
QωC
⊗ L⊗ ω∨C(−D2`−j+1)

)
6= 0,

where D2`−j+1 is an effective divisor of degree 2(2`−j+1) on C supported on some of the
points x1, y1, . . . , x2`, y2`. Since the marked points on C are chosen generally, the divisor
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D2`−j+1 ∈ C2(2`−j+1) is general as well, therefore we obtain that (12) implies the following
inclusion

(15) L− ωC − C2(2`−j+1) ⊆ Ci+j−` − Ci+`−j

for some 0 ≤ j ≤ 2`+1. Note that the desired conclusion, that is, L−ωC ∈ Ci+`+1−Ci−`−1

corresponds precisely to the statement (15) in the extremal case j = 2`+1. We now show
that the inclusion (15) for some j ≤ 2`+ 1, implies the statement (15) for j = 2`+ 1.

We set η := L ⊗ ω∨C ∈ Pic2`+2(C). The condition (15) can be translated into stating
that the variety of secant divisors

V i+`−j−1
i+`−j

(
ωC ⊗ η∨

)
:=
{
B ∈ Ci+`−j : h0(C, η(B)) ≥ 1

}
has dimension at least 2(2` − j + 1), which exceeds by 1 the expected dimension of the

degeneracy locus V i+`−j−1
i+`−j (ωC ⊗ η). We may assume h0(C, η) = 0, else, since

C2`+2 ⊆ Ci+`+1 − Ci−`−1,

the conclusion η ∈ Ci+`+1 −Ci−`−1 is immediate. Therefore h0(C, η) = 0, or equivalently,
ωC ⊗ η∨ is a non-special line bundle and h0(C, ωC ⊗ η∨) = 2i− 2`− 2.

Recalling the definition (8) of the varieties of secant divisors, we apply [ACGH, page
356] to the non-special linear system |ωC ⊗ η∨| to conclude that V i+`−a−1

i+`−a (ωC ⊗ η∨) 6= ∅,
as long as the following inequality is satisfied

exp.dim V i+`−a−1
i+`−a

(
ωC ⊗ η∨

)
= 4`− 2a+ 1 ≥ 0⇐⇒ a ≤ 2`.

In particular, setting a = 2`, we find V i−`−1
i−`

(
ωC ⊗ η∨

)
6= ∅ and applying the result

of Aprodu and Sernesi [AS, Theorem 4.1] on secant varieties of excessive dimension, we
obtain that (15) implies the estimate

dim V i−`−1
i−`

(
ωC ⊗ η∨

)
≥ dim V i+`−j−1

i+`−j
(
ωC ⊗ η∨

)
− 2(2`− j) = 2.

Thus V i−`−1
i−`

(
ωC ⊗ η∨

)
=
{
D ∈ Ci−` : H0(C, η(D)) ≥ 1

}
is at least 2-dimensional.

Having fixed a base point p0 ∈ C, this implies that the locus

Y :=
{
E ∈ Ci−`−1 : H0

(
C, η(E + p0)

)
6= 0
}

has dimension at least 1. We consider the Abel-Jacobi map θ : Y → Pici+`+2(C) given
by θ(E) := η(E + p0). If θ is generically finite, it follows that dim θ(Y ) ≥ 1. Since the
locus p0 +Ci+`+1 is an ample divisor in Ci+`+2, it follows that θ(Y ) intersects p0 +Ci+`+1,
therefore there exists E ∈ Ci−`−1 and E ′ ∈ Ci+`+1 such that η(E + p0) = OC(p0 + E ′),
amounting to

(16) L− ωC ∈ Ci+`+1 − Ci−`−1,

as desired. If on the other hand, θ is not generically finite, then h0
(
C, η(E + p0)

)
≥ 2,

for every E ∈ Y , in which case once again, one finds an effective divisor E ′ ∈ Ci+`+1 such
that η(E+p0) = OC(p0 +E ′), which once more implies the conclusion (16), which finishes
the proof of Theorem 1.1 in the odd genus case. �
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Proof of Theorem 1.1 in the case of even genus. The proof follows with minor modification
along the lines of the odd genus case. We fix a smooth curve C of genus g = 2i satisfying
the condition

dim W 1
p+2(C) = g − 2p+ 2

and a line bundle L ∈ Pic2i+2p+3(C) such that Kp,2(C,L) 6= 0. Setting ` := p+ 1− i ≥ 0
once more, the aim is to show that

L− ωC ∈ Ci+`+1 − Ci−`−2.

Note that in this case the assumption d ≤ 2g + p translates into ` ≤ i− 2.

This time we attach 2`+ 1 rational curves R1, . . . , R2`+1 to C, such that each Rj meets
C at two general points xj, yj ∈ C. The resulting curve X is a quasi-stable curve of genus
g(X) = 2p + 3 and gonality p + 3. We choose a line bundle LX ∈ Pic4p+6(X) whose
restriction to C is the line bundle L, whereas LX|Rj

∼= ORj
(1), for j = 1, . . . , 2` + 1.

Following mot à mot the reasoning in the odd genus case, denoting by

D2`+1 := (x1 + y1) + · · ·+ (x2`+1 + y2`+1) ∈ C4`+2

the divisor of marked points, knowing that Kp,2(X,LX) 6= 0, we obtain that

H0
(
X,

p∧
MωX |C ⊗ ω2

C ⊗ L∨(D2`+1)
)
6= 0.

Setting η := L⊗ ω∨C ∈ Pic2`+3(C), the same filtration argument as in the odd genus case,
implies there exists j ≤ 2`+ 2 such that

dim V i+`−j−1
i+`−j

(
ωC ⊗ η∨

)
≥ 4`− 2j + 4

(
= exp.dim V i+`−j−1

i+`−j
(
ωC ⊗ η∨

)
+ 1
)
.

The conclusion η ∈ Ci+`+1 − Ci−`−2 follows applying once more [AS]. �

3.1. Brill-Noether theory and the Secant Conjecture. Using standard results in
Brill-Noether theory, for large values of p the condition

(17) dim W 1
p+2(C) = 2p− g + 2

appearing as in the statement of Theorem 1.1 is always satisfied and our results are in
these cases complete. In the extremal case p = g − 3, from Martens’ Theorem [ACGH,
5.1], we obtain that dim W 1

g−1(C) = g − 4 unless C is hyperelliptic. In this case, we
recover [GL2, Theorem 3.3]. In the next case p = g − 4, applying Mumford’s Theorem
[ACGH, 5.2], we obtain that if C is a non bielliptic curve with Cliff(C) ≥ 2, then the
estimate (17) is satisfied and Theorem 1.1 reduces to Agostini’s result [Ag] in the case of
line bundles of degree 3g−5. The next cases are already new results and we record them:

Theorem 3.1. 1) Let C be a smooth curve of genus g with Cliff(C) ≥ 3. Then one has
the following equivalence for a line bundle L ∈ Pic3g−7(C):

Kg−5,2(C,L) = 0 ⇐⇒ L− ωC /∈ Cg−3 − C2.

2) Let C be a smooth curve of genus g ≥ 12 such that Cliff(C) ≥ 4. Assume that
C is not a triple cover of an elliptic curve. Then one has the following equivalence for
L ∈ Pic3g−9(C):

Kg−6,2(C,L) = 0 ⇐⇒ L− ωC /∈ Cg−4 − C3.
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Proof. We apply Theorem 1.1 observing that the assumption (17) is satisfied by applying
Keem’s results [Ke, Theorem 2.1] when p = g − 5, respectively [Ke, Corollary 3.3] when
p = g − 6. �

For smaller values of p, our understanding of which curve verify (17) is less complete.
In the extremal case p = g−3

2
, the condition (17) reduces to saying that C has maximal

gonality. In general, it turns out that the sufficient condition from Theorem 1.1 is related
to the study of the curves having infinitely many pencils of minimal degree. The following
result makes this connection precise:

Proposition 3.2. Let a ≥ 0 and C be a smooth curve of genus g ≥ (a+ 1)(2a+ 1) such
that Cliff(C) ≥ a + 1 and dim W 1

a+3(C) < 1. Then the following equivalence holds for a
line bundle L ∈ Pic3g−2a−3(C):

Kg−3−a,2(C,L) = 0 ⇐⇒ L− ωC /∈ Cg−1−a − Ca.

Proof. It suffices to observe that under these hypotheses, applying [Co, Theorem 15] if
W 1

a+3(C) is at most zero-dimensional, then necessarily dim W 1
g−1−a(C) = g − 2a− 4 and

then the hypothesis (17) is satisfied. �

Remark. The first case where Proposition 3.2 may not always apply is for p = g−7, where
we are not aware of a classification of the smooth 7-gonal curves C with Cliff(C) = 5 and
such that dim W 1

7 (C) = 1. One class of curves where the condition (17) generally fails
is that of covers of elliptic curves. For such curves however, Kemeny [K3] introduced
recently novel techniques to understand their syzygies.
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