
THE UNIRATIONALITY OF THE MODULI SPACE OF K3 SURFACES OF GENUS 22

GAVRIL FARKAS AND ALESSANDRO VERRA

ABSTRACT. Using the connection discovered by Hassett between the Noether-Lefschetz mod-
uli space C42 of special cubic fourfolds of discriminant 42 and the moduli spaceF22 of polarized
K3 surfaces of genus 22, we show that the universal K3 surface over F22 is unirational.

1. INTRODUCTION

The 19-dimensional moduli space Fg of polarized K3 surfaces of genus g (or of de-
gree 2g − 2), parametrizing pairs [S,H], where S is a K3 surface and H ∈ Pic(S) is a po-
larization class satisfying H2 = 2g − 2, is one of the most intriguing parameter spaces in
algebraic geometry. In stark contrast to the moduli space of curves or abelian varieties, its
Picard group is highly intricate, see [BLMM]. The moduli space Fg is a quotient of a lo-
cally symmetric domain. Via this realization as an orthogonal modular variety one can em-
ploy autormorphic methods in order to study its Kodaira dimension. In this way, Gritsenko,
Hulek and Sankaran [GHS] proved that Fg is a variety of general type for g > 62, as well
as for g = 47, 51, 53, 55, 58, 59, 61. On the other hand, using vector bundles on various ratio-
nal homogeneous varieties, in a celebrated series of papers Mukai [M1], [M2], [M3], [M4],
[M5] described the construction of general polarized K3 surfaces of genus g ≤ 12, as well
as g = 13, 16, 18, 20. In particular, the moduli space Fg is unirational for those values of g.
The case g = 14, not covered by Mukai’s work, has been settled using the birational isomor-
phism between F14 and the moduli space C26 of special cubic fourfolds of discriminant 26.
Nuer [Nu] first showed that F14 is uniruled. This has been then improved in [FV], where
we showed that the universal K3 surface F14,1 is rational, hence F14 is unirational. Recently
Ma [Ma] undertook a systematic study of the Kodaira dimension of the moduli space Fg,n of
n-pointed K3 surfaces of genus g, in the spirit of a similar analysis of the Kodaira dimension
ofMg,n carried out in [Log] and [F].

The aim of this paper is to study the geometry of F22 using the connection between K3
surfaces and special cubic fourfolds of discriminant 42. We establish the following result:

Theorem 1.1. The universal K3 surface F22,1 of genus 22 is unirational.

In particular, F22 is unirational as well. Note that 22 is the highest genus where it is
known that the moduli space Fg is not of general type. Our approach to F22 relies on the
relation between Noether-Lefschetz special cubic fourfolds and polarized K3 surfaces, which
we explain next.

We fix a smooth cubic fourfold X ⊆ P5. Recall the important fact that the Fano variety
of lines F (X) :=

{
` ∈ G(1, 5) : ` ⊆ X

}
is a hyperkähler variety of dimension 4, see [BD].

Its primitive cohomology H4
prim(X,Z), displaying the Hodge numbers (0, 1, 20, 1, 0), looks

like the Tate twist of the middle cohomology of a K3 surface, except it has signature (20, 2)
rather than (19, 3). When X is very general, the lattice A(X) := H2,2(X) ∩H4(X,Z) consists
only of classes of complete intersection surfaces, that is, A(X) = 〈h2〉, where h ∈ Pic(X) is the
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hyperplane class, see [V]. Let C be the 20-dimensional coarse moduli space of smooth cubic
fourfolds X ⊆ P5 and denote by Cd the locus of special cubic fourfolds X characterized by the
existence of an embedding of a saturated rank 2 lattice

L := 〈h2, T 〉 ↪→ A(X),

of discriminant disc(L) = d, where T is a codimension 2 algebraic cycle of X not homologous
to a complete intersection. Hassett [H] showed that Cd ⊆ C is nonempty and an irreducible
divisor if and only if d > 6 and d ≡ 0, 2 (mod 6). A conjecture of Kuznetsov [Kuz] predicts
that all cubic fourfolds [X] ∈ C2(n2+n+1) are rational. This has been confirmed in the classical
case d = 14, see [Fa], [BR], and more recently when d = 26 by Russo and Staglianò [RS1]. Very
recently, the same authors announced a proof of the rationality of all cubics fourfolds from
C42, see [RS2].

For d = 42, Hassett’s work [H] implies the existence of a rational map of degree 2

ϕ : F22 → C42, ϕ([S,H]) = [X],

where the cubic fourfold X is characterized by the existence of an isomorphism

(1) S[2] ∼= F (X) ⊆ G(1, 5).

Lai’s paper [L] represents an important first step in understanding the relation between
F22 and C42. We summarize its results. Starting with a polarized K3 surface [S,H] ∈ F22, for
each point p ∈ S one considers the rational curve

∆p :=
{
ξ ∈ S[2] : supp(ξ) = {p}

}
.

Under the isomorphism S[2] ∼= F (X) described above, ∆p corresponds to a rational
curve of degree 9 inside F (X) ⊆ G(1, 5), that is, to a degree 9 scroll Rp ⊆ X . The double
point formula implies that, as long as it has isolated nodal singularities, Rp has 8 nodes and
no further singularities. This is precisely the content of [L, Theorem 0.3]. We denote by Hscr

the PGL(6)-quotient of the Hilbert scheme of 8-nodal scrolls R ⊆ P5 of degree 9. Lai shows
[L, Proposition 0.4] that Hscr has the expected codimension 8 inside the parameter space of all
scrolls of degree 9 in P5, in particular dim(Hscr) = 16.

One can then set up the incidence correspondence between scrolls and cubic fourfolds:

X :=
{

(X,R) : R ⊆ X, deg(R) = 9, [X] ∈ C42

}/
PGL(6)

π1

ss

π2

++C42 Hscr

For a general [R] ∈ Hscr one computes that h0
(
P5, IR/P5(2)

)
= 0 and h0

(
P5, IR/P5(3)

)
= 6,

It follows that X is birational to a P5-bundle over the variety Hscr. Since π1 is dominant, this
implies that C42 is uniruled.

This is the point where Lai’s paper [L] ends and our analysis starts. We first introduce
the universal K3 surface u : F22,1 → F22, then the map

ϕ̃ : F22,1 → X, ϕ̃([S, p]) := [X,Rp],

where Rp is the degree 9 scroll contaied in X corresponding to the rational curve ∆p ⊆ F (X)
under the isomorphism (1). We observe that although ϕ has degree 2, that is, for a general
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fourfold [X] ∈ C42 one has two polarized K3 surfaces realizing the isomorphism (1), this
ambiguity disappears once we lift to the universal K3 surface. We prove the following:

Theorem 1.2. The map ϕ̃ : F22,1 → X is a birational isomorphism.

Since X is a P5-bundle over Hscr, the unirationality of F22,1 will be implied by that of the
moduli space Hscr. To summarize the situation, we have the following commutative diagram:

F22,1
ϕ̃ //

u

��

X

π1

��
F22

ϕ // C42

We now explain our parametrization of the moduli space of 8-nodal nonic scrolls. We
start with a general scroll [R] ∈ Hscr and denote its nodes by Sing(R) = {n1, . . . , n8}. To
construct R, we consider the Hirzebruch surface F1 := Blo(P2), where o ∈ P2, and denote by h
the class of a line and byE the exceptional divisor. The smooth degree 9 scrollR′ := S4,5 ⊆ P10

is the image of the linear system

φ|5h−4E| : F1 ↪→ P10.

We choose a general 4-plane Λ ∈ G(4, 10) which is 8-secant to the secant variety Sec(R′) ⊆ P10.
We may assume Λ ∩R′ = ∅. Consider the restriction to R′ of the projection πΛ with center Λ

π := πΛ|R′ : R′ → R ⊆ P5.

Its image R is an 8-nodal scroll of degree 9. If for i = 1, . . . , 8, we have that 〈xi, yi〉 ∩Λ 6= ∅ for
certain points xi, yi ∈ R′, then the singularities of R appear as ni := πΛ(xi) = πΛ(yi). Up to
the action of PGL(6) on the ambient projective space P5, each such scroll appears in this way.

We now fix an unordered set of four general rulings `1, `2, `3, `4 of R, thus they can be
assumed to be disjoint from Sing(R). Since containing a line imposes three conditions on the
linear system of quadrics in P5 and since dim |OP5(2)| = 20, it follows that there exists a unique
quadric Q ⊆ P5 containing the rulings `1, . . . , `4, as well as the nodes n1, . . . , n8. We write

(2) R ·Q = `1 + `2 + `3 + `4 + Γ.

It will turn out that the residual curve Γ ⊆ P5 is a degree 14 integral curve of arithmetic genus
12 with nodes at the points n1, . . . , n8. Let

C := π−1(Γ) ⊆ R′

be the normalization of Γ. Then from (2) we find that C ∈ |6h − 4E|. Therefore C is a
hyperelliptic curve of genus 4 which passes through the points xi, yi ∈ R′, for i = 1, . . . , 8.
The degree 2 pencil on C is cut out by the rulings ofR′, that is,OC(h−E) ∈W 1

2 (C). Denoting
by ι : C → C the hyperelliptic involution, we observe that

R =
⋃
x∈C

〈
π(x), π(ι(x))

〉
⊆ P5,

that is, the degree 9 scroll R can be recovered from the curve Γ ⊆ P5.

We denote by P the parameter space of pairs [R, `1 + · · · + `4], where R ⊆ P5 is an
8-nodal scroll of degree 9 and `1, . . . , `4 are rulings of R, viewed as an unordered set. In the
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definition of P we quotient out by the PGL(6)-action on P5. The forgetful map

P → Hscr

is birational to a P1-bundle corresponding to the choice of the four rulings, in particular
dim(P) = 17. Let Hyp4,8 be the moduli space of pairs [Γ, L], where Γ is an integral 8-nodal
curve of arithmetic genus 12, whose normalization ν : C → Γ is a hyperelliptic curve of genus
4 and L ∈ W 2

8 (Γ), that is, L is a line bundle of degree 8 on Γ with h0(Γ, L) ≥ 3. Note that
by Riemann-Roch, in this case ωΓ ⊗ L∨ ∈ W 5

14(Γ). We have the following result, reducing the
study of F22,1 to that of a certain moduli space of curves.

Theorem 1.3. There exists a birational isomorphism χ : P
∼=
99K Hyp4,8 given by

χ
(
[R, `1 + `2 + `3 + `4]

)
= [Γ, ωΓ(−1)].

Theorem 1.1 now follows once we establish the unirationality of Hyp4,8. We indicate
how to carry this out. Start with a general element [Γ, L] ∈ Hyp4,8, viewed as an 8-nodal
degree 14 curve Γ ⊆ P5 embedded by the line bundle ωΓ ⊗ L∨. We shall show that a suitably
general such curve Γ is projectively normal, thus the kernel of the multiplication map

Sym2H0(Γ,OΓ(1))→ H0(Γ,OΓ(2))

is 4-dimensional. We can write

Bs
∣∣IΓ/P5(2)

∣∣ = Γ +B.

The residual curve B ⊆ P5 is a conic such that Γ · B = 6. We denote by Π := 〈B〉 ⊆ P5 the
plane spanned by B. There exists a 3-dimensional subspace V ⊆ H0

(
P5, IΓ/P5(2)

)
consisting

of quadrics containing the plane Π. We write

(3) Bs |V | = Π + T,

where T ⊆ P5 is a degree 7 surface lying on three quadrics that intersect along the 2-plane Π.
It is not hard to see that T ∼= Bl9(P2) is the blow-up of P2 at 9 general points in P2. Moreover,
the map ϕ : Bl9(P2) ↪→ T ⊆ P5 implicitly defined by (3) is induced by the linear system

|4h− E1 − · · · − E9|,

where E1, . . . , E9 are the exceptional divisors. Via the isomorphism T ∼= Bl9(P2), one realizes
Γ as an octic plane curve with 17 nodes divided in two groups: namely the 9 points where P2

is blown-up and the remaining 8 nodes. This plane model is helpful to prove the next result:

Theorem 1.4. The moduli space Hyp4,8 is unirational.

To prove Theorem 1.4, we fix a cubic scroll Z ⊆ P4 obtained by embedding the Hirze-
bruch surface F1 := Blo(P2) by the linear system |2h− E|. We consider the parameter space

T =
{

(t1, . . . , t8, `, C) : ti ∈ Z for i = 1, . . . , 8, ` ∈ G(1, 4) is a line in P4,

C ∈
∣∣I{x1,y1,...,x8,y8}/Z(6h− 4E)

∣∣, where 〈`, ti〉 · Z = ti + xi + yi, for i = 1, . . . , 8.
}

Note that dim
∣∣I{x1,y1,...,x8,y8}/Z(6h − 4E)

∣∣ = 1, hence the map T → Z8 × G(1, 4) is
birationally a locally trivial P1-bundle over a rational variety. Therefore T is rational. The
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curve C is hyperelliptic of genus 4. Denoting by π` : P4 99K P2 the projection with center `,
observe that n′i := π`(xi) = π`(yi) for i = 1, . . . , 8. The dominant rational map

ϑ : T 99K Hyp4,8

needed to prove Theorem 1.4 is obtained by associating to the point
(
t1, . . . , t8, `, C

)
∈ T

essentially the projected curve Γ := π`(C). This is a nodal octic plane curve having 8 distin-
guished nodes at n′1, . . . , n

′
8, as well as 9 further nodes. The image under the map ϕ of the

proper transform of Γ′ in the blow-up of P2 at these 9 points gives rise to an element of Hyp4,8.
For further details on the definition of the map ϑ we refer to Theorem 3.5.

It turns out that proving directly the various transversality assumptions implicit in this
sketched proof of Theorem 1.3 is not straightforward. Instead, in the rest of the paper we shall
reverse the argument presented in the Introduction. First we show that Hyp4,8 is unirational
(see Theorem 3.5), then using the explicit unirational parametrization found in this way, we
show that the map χ : P 99K Hyp4,8 is well defined, as well as birational.

2. THE MODULI SPACE F22 VIA SPECIAL CUBIC FOURFOLDS

We denote by Fg the irreducible 19-dimensional moduli space of smooth polarized K3
surfaces [S,H] of genus g, that is, with H ∈ Pic(S) being a nef class satisfying H2 = 2g − 2.
Let u : Fg,1 → Fg be the universal K3 surface of genus g in the sense of stacks. Each fibre
u−1([S,H]) is thus identified with S.

We fix a smooth cubic fourfoldX ⊆ P5 and denote by h its hyperplane class. The Hodge
structure on the primitive cohomology H4

prim(X,Z) is similar to the twist of the middle co-
homology of a K3 surface. Since the signatures (with respect to the intersection form) are
different, (20, 2) and (19, 3) respectively, one has to pass to sub-Hodge structures of codimen-
sion one, both having signature (19, 2), to have the possibility of realizing an isomorphism of
Hodge structures between the two sides. On the cubic fourfold side one requires the existence
of a class T ∈ H2,2(X), whereas on the K3 side one requires the existence of a polarization
H ∈ Pic(S) such that the following isomorphism of Hodge structures holds

(4) 〈h2, T 〉⊥ ∼= H2
prim(S,Z)(−1).

Denoting by d := disc(〈h2, T 〉) = H2, it is proved in [H, Theorem 5.1.3] that the isomorphism
(4) is realized for any d > 6 such that d ≡ 0, 2 (mod 6) that is not divisible to 4, 9 or any prime
p ≡ 2 (mod 3). When d = 2(n2 + n+ 1), the isomorphism (4) takes the geometric form (1)

S[2] ∼= F (X) ⊆ G(1, 5).

This opens the way to a study of the moduli spaces Fn2+n+2 where n ≥ 2, using the concrete
projective geometry of cubic fourfolds. The case n = 2 (that is, d = 14) is classical and
essentially due to Fano [F], we refer to [BD] and [BR] for a modern perspective and stronger
results. The case n = 3 (that is, d = 26) has been treated in our paper [FV] as well as in [RS1],
whereas this paper is devoted to the case n = 4 (that is, d = 42).

For d = 42, Hassett [H] constructed a degree 2 map

ϕ : F22 −→ C42, ϕ
(
[S,H]

)
= [X],

such that the isomorphism (1) holds. Note that ϕ is defined at the level of moduli spaces of
weight 2 Hodge structures and there is no direct geometric construction of the cubic fourfold
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one associates to a K3 surface of genus 22. Since deg(ϕ) = 2, it follows that for a general
[X] ∈ C42 there exist two distinct polarized K3 surfaces [S,H] and [S′, H ′] such that

S[2] ∼= S′[2] ∼= F (X).

Clarifying the relation between S and S′ is essential in order to prove Theorem 1.2.

2.1. Hilbert squares of K3 surfaces. Let (S,H) be a K3 surface with Pic(S) = Z · H and
H2 = 2g−2. We denote by S[2] the Hilbert scheme of length two zero-dimensional subschemes
on S. ThenH2(S[2],Z) is endowed with the Beauville-Bogomolov quadratic form q. Let ∆ ⊆ S[2]

be the divisor consisting of zero-dimensional subschemes supported only at a single point
and denote by δ := [∆]

2 ∈ H
2(S[2],Z) the reduced diagonal class. Then q(δ, δ) = −2. Moreover

∆ = P(TS) =
⋃
p∈S

∆p,

where ∆p is the rational curve consisting of those 0-dimensional subschemes ξ ∈ ∆ such that
supp(ξ) = {p}. We set δp := [∆p] ∈ H2(S[2],Z).

For any curve C ∈ |H|, we introduce the divisor

fC :=
{
ξ ∈ S[2] : supp(ξ) ∩ C 6= ∅

}
and set f := [fC ] ∈ H2

(
S[2],Z

)
. For a point p ∈ S, we also define the curve

Fp :=
{
ξ = p+ x ∈ S[2] : x ∈ C

}
and set fp := [Fp] ∈ H2(S[2],Z). The Beauville-Bogomolov form can be extended to a qua-
dratic form on H2(S[2],Z), by setting q(α, α) := q(wα, wα), with wα ∈ H2(S[2],Z) being the
class characterized by the property α · u = q(wα, u), for every u ∈ H2(S[2],Z). Here α · u
denotes the intersection product.

One has the following decompositions, orthogonal with respect to q, both for the Picard
group and for the group N1(S[2],Z) of 1-cycles modulo numerical equivalence:

Pic(S[2]) ∼= Z · f ⊕ Z · δ and N1(S[2],Z) ∼= Z · fp ⊕ Z · δp.
We record the following more or less immediate relations:

(5) f · fp = 2g − 2, δ · δp = −1, f · δp = 0 and δ · fp = 0.

The form q takes the following values on H2
(
S[2],Z

)
:

q(fp, fp) = 2g − 2, q(fp, δp) = 0, q(δp, δp) = −1

2
.

Thus q(afp − bδp) = a2(2g − 2)− b2

2 , for a, b ∈ Z.

It follows from [BM, Proposition 13.1] (see also [DM, Proposition 3.14] for this formula-
tion) that for a polarized K3 surface [S,H] ∈ F22 with Pic(S) = Z ·H , the nef cone Nef(S[2])

equals the movable cone Mov(S[2]) and it is generated by the rays f and 55f − 252δ respec-
tively. Using the terminology of [H], the Hilbert square S[2] is strongly ambiguous, that is, there
exists another K3 surface S′ such that there exists an isomorphism r : S[2]

∼=→ S′[2] which is not
induced by an automorphism S

∼=→ S′. This implies r∗(δ′) 6= δ and then necessarily, the map
r∗ : H2

(
S′[2],Z

)
→ H2

(
S[2],Z

)
interchanges the two rays of the respective nef cones, that is,

r∗(f ′) = 55f − 252δ, r∗(55f ′ − 252δ′) = f.
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Then also r∗(f) = 55f ′ − 252δ′ and r∗(δ) = 12f ′ − 55δ′, from which we obtain the following
relations at the level of the cone of curves in S[2] and S′[2] respectively:

(6) r∗(δ′p′) = 6fp − 55δp, r∗(6f ′p′ − 55δ′p′) = δp.

2.2. Scrolls contained in special cubic fourfolds. Suppose R ⊆ X ⊆ P5 is a rational scroll
with smooth normalization having only isolated singularities and which is contained in a
cubic fourfold X . The double point formula [Ful, Theorem 9.3] gives the number D(R) of sin-
gularities of R, counted appropriately:

(7) 2D(R) = R2 − 6h2 −K2
R − 3h ·KR + χtop(R).

If moreover all singularities of R are nodal, then D(R) equals the number of nodes of R.
When [X] ∈ C42, assuming thatA(X) = 〈h2, [R]〉, where h2 · [R] = deg(R) = 9, necessar-

ily R2 = 41. Since χtop(R) = 4 and h ·KR = −11, from (7), we compute D(R) = 8. Therefore
if R has only isolated nodes, then it is necessarily 8-nodal.

Proposition 2.1. Suppose [S,H] ∈ F22 is an element such that Pic(S) = Z·H and let Z ⊆ S[2] be an
effective 1-cycle of degree 9 with respect to the Plücker embedding. Then [Z] = fp or [Z] = 6fp−55δp.
In the first case Z = ∆p for some point p ∈ S, in the second case r(Z) = ∆p′ for a point p′ ∈ S, where
r : S[2]

∼=→ S′[2].

Proof. Assume that Z is an effective 1-cycle on S[2] and write [Z] = afp − bδp ∈ N1

(
S[2],Z

)
.

Let γS denote the class of the Plücker line bundle OS[2](1) with respect to the isomorphism
S[2] ∼= F (X). Since q(γS , γS) = 6, one obtains

γS = 2f − 9δ ∈ H2
(
S[2],Z

)
.

Therefore 9 = Z · γS = (afp − bfp)(2f − 9δ) = 84a − 9b, hence we can write a = 3a1, with
a1 ∈ Z, in which case b = 28a1− 1. Using [BM, Proposition 12.6], if Z is effective we also have
the inequality q(Z,Z) ≥ −5

2 , implying 7a2
1 − 14a1 − 1 ≤ 0.

The integer solutions of this inequality are a1 = 0, when [Z] = δp, a1 = 2, in which case
[Z] = 6fp − 55δp, and finally a1 = 1. Note that in the first two cases q(Z,Z) = −1

2 . On the
other hand, a1 = 1, implies [Z] = 3fp − 27δp, yielding q(Z,Z) = 27

2 . But this is incompatible
with the double point formula. Indeed, if R ⊆ X is the scroll associated to the curve Z under
the isomorphism S[2] ∼= F (X), then following [HT2, § 7.1], we have

R2 =
(Z · γS)2

2
− q(Z,Z),

which is impossible because R2 = 41.
In case [Z] = 6fp − 55δp, denoting by [S′, H ′] ∈ F22 the polarized K3 surface such that

r : S[2]
∼=→ S′[2] ∼= F (X), it follows from (6) that [r∗(Z)] = δ′p′ . By possibly replacing S with S′,

we may assume [Z] = δp. We claim this implies Z is one of the smooth rational curves ∆p, for
a point p ∈ S.

Indeed, from [Z] · δ = −1, it follows that Z ⊆ ∆. Moreover, Z lies in one of the fibres
of the P1-bundle π : ∆ = P(TS) → S, which implies that Z = ∆p, for some p ∈ S. Otherwise
π(Z) ≡ mH , for some m > 0. We then write

mH2 = Z · π−1(H) = Z · f = δp · f = 0,
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which is a contradiction. �

We are now in a position to prove Theorem 1.2. Recall the definition given in the Intro-
duction of the parameter space X of pairs (X,R), where [X] ∈ C42 and R ⊆ X is a degree 9
scroll. As explained, as long asR has isolated nodal singularities, R has precisely 8 nodes. We
define the map ϕ̃ : F22,1 → X given by ϕ̃([S,H, p]) := [X,Rp], where the cubic scroll X is de-
termined by the isomorphism F (X) ∼= S[2] and the scroll Rp ⊆ X corresponds to ∆p, viewed
as a rational curve inside F (X). Recall that it is proved in [L] that the projection π1 : X→ C42

is dominant. This implies that ϕ̃ is well-defined.

Proof of Theorem 1.2. We show that ϕ̃ : F22,1 → X is a birational isomorphism by constructing
its inverse. Start with an element [X,R] ∈ X and we denote by

{
[S,H], [S′, H ′]

}
= ϕ−1([X])

the two polarized K3 surfaces realizing the isomorphism (1). Applying Proposition 2.1, for
precisely one element of ϕ−1([X]), say [S,H] we have that the curve Z = ZR ⊆ F (X) ∼= S[2]

of rulings of R has class [Z] = δp, for a point p ∈ S. Then clearly ϕ̃−1([X,R]) = [S,H, p]. �

3. MODULI OF NODAL HYPERELLIPTIC CURVES

On our way towards establishing Theorems 1.3 and 1.4 and ultimately proving Theo-
rem 1.1, we shall reverse the construction described in the Introduction associating to a suit-
ably general scroll [R] ∈ Hscr an 8-nodal curve with hyperelliptic normalization. In order to
establish the various transversality claims mentioned in the Introduction, we find it easier to
start with a suitable nodal hyperelliptic curve and bring in the picture the degree 9 scroll only
later. We begin therefore by introducing and studying various moduli spaces of curves that
will turn out to be relevant when dealing with C42.

Recall that for an irreducible nodal curve Y , we denote by W r
d (Y ) the Brill-Noether

locus consisting of line bundles L ∈ Picd(Y ) satisfying h0(Y,L) ≥ r + 1.

Definition 3.1. We denote by Hyp4,8 the moduli space of pairs [Γ, L], where Γ is an irreducible
8-nodal curve of arithmetic genus 12, such that its normalization C → Γ is hyperelliptic and
L ∈W 2

8 (Γ).

In this Section we provide an explicit parametrization of Hyp4,8 and conclude that this
space is unirational. We begin with some preparation. We consider the Hirzebruch surface
F1 := Blo(P2) viewed as a cubic scroll via the embedding

(8) φ|2h−E| : F1 ↪→ Z ⊆ P4.

Here h denotes the pull-back of the line class under the contraction morphism F1 → P2,
whereas E is the exceptional divisor over the point o ∈ P2.

We denote by H4 the moduli space of smooth hyperelliptic curves of genus 4 and by
Pic8

H4
→ H4 the universal Picard variety of pairs [C,L], where [C] ∈ H4 and L ∈ Pic8(C).

Our next result provides an explicit birational realization of this universal Picard variety.

Proposition 3.2. There is a birational isomorphism Pic8
H4

∼=
99K

∣∣6h− 4E
∣∣/Aut(F1).

Proof. A smooth curve C ∈ |6h−4E| is hyperelliptic of genus 4. To it we can associate the pair
[C,L], where L := OC(2h−E) is a line bundle of degree 8. In other words, L = OC(1), where
C ⊆ Z ⊆ P4 is viewed as an octic curve. This construction is obviously Aut(F1)-invariant,
hence it gives rise to a map

∣∣6h− 4E
∣∣/Aut(F1) 99K Pic8

H4
.
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Conversely, we start with a general line bundle L ∈ Pic8(C) on a hyperelliptic curve C
of genus 4. We denote by A ∈ W 1

2 (C) the hyperelliptic pencil. We may assume L does not
lie in the translate ωC ⊗ A + C − C ⊆ Pic8(C) of the difference variety C − C ⊆ Pic0(C). Set
OC(h) := L⊗ A∨ ∈ Pic6(C). Then h0(C,OC(h)) = 3 and our assumption on L guarantees an
induced regular map φ|h| : C → P2, whose image is a sextic curve C ′ ⊆ P2. Set

N := OC(h)⊗A∨ = L⊗A−2.

For a general L ∈ Pic8(C) we have h0(C,N) = 1 and we write N = OC(x1 + x2 + x3 + x4),
for points xi ∈ C. By choosing L generally in Pic8(C) we can arrange that the points xi are
distinct. Then

h0
(
C,OC(h)(−x1 − x2 − x3 − x4)

)
= h0(C,A) = 2,

which is to say that the image C ′ := φ|h|(C) has a 4-fold point at o := φ|h|(xi) for i = 1, . . . , 4.
Comparing the genera of C and C ′ we see that C ′ has no further singularities. This implies
we can embed C in the blown-up surface Blo(P2) such that, if we keep the notation above,
then C ∈ |6h− 4E|. Since A = OC(h−E), we also obtain L = OC(h)⊗A = OC(2h−E), thus
finishing the proof. �

In our study of the moduli space C42 via nodal scrolls, a special role is played by a
certain degree 7 rational surface in P5. In what follows, we summarize its properties. If
o1, . . . , on ∈ P2 are distinct points, we denote by Bln(P2) := Blo1,...,on(P2) their blow-up, by Ei
the exceptional divisor over oi, and by h the pull-back of the line class under the contraction
morphism Bln(P2)→ P2.

Proposition 3.3. Let o1, . . . , o9 ∈ P2 be points lying on a unique smooth cubic curve. Then the
linear system |4h− E1 − · · · − E9| is very ample on Bl9(P2) and the image T of the embedding

φ|4h−E1−···−E9| : Bl9(P2) ↪→ P5

is projectively normal. In particular h0
(
P5, IT/P5(2)

)
= 3. Furthermore, Bs

∣∣IT/P5(2)
∣∣ = T ∪ Π,

where Π is a 2-plane meeting T along a smooth elliptic curve.

Proof. The fact that the linear system |4h−E1−· · ·−E9| is very ample on the blow-up Bl9(P2)
follows from [Co, Theorem 2.2]. LetC ∈ |OT (1)| be a general hyperplane section on T . ThenC
is a smooth non-hyperelliptic curve of genus 3. Since deg(OC(1)) = 7, using for instance [Mu],
it follows that the curve φ|OC(1)| : C ↪→ P4 is projectively normal. Since h0(C,OC(2)) = 12,
we find h0

(
P4, IC/P4(2)

)
= 3. Denoting by L ∈ H0(T,OT (1)) the equation of the hyperplane

〈C〉 ⊆ P
(
H0(OT (1))∨

) ∼= P5 spanned by C, we have a short exact sequence

0 −→ H0(T,OT (1))
·L−→ H0(T,OT (2)) −→ H0(C,OC(2)) −→ 0,

from which we compute h0(T,OT (2)) = 6 + 12 = 18. We also have the commutative diagram

0 // H ·H0(T,OT (1)) //

∼=
��

Sym2H0(T,OT (1)) //

µT
��

Sym2H0(C,OC(1)) //

µC
��

0

0 // H0(T,OT (1))
·L // H0(T,OT (2)) // H0(C,OC(2)) // 0

,

where µT and µC denote the multiplication maps. It follows that Coker(µT ) ∼= Coker(µC),
that is, T is projectively normal. In particular T ⊆ P5 lies on precisely three quadrics.
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The smooth elliptic curve J ∈ |3h−E1 − · · · −E9| can be viewed as a cubic curve in P5

spanning the plane Π. Any quadric containing T also contains J , thus Π ⊆ Bs
∣∣IT/P5(2)

∣∣. The
multiplication map H0(T,OT (h))⊗H0(T,OT (J))→ H0(T,OT (1)) being obviously injective,
we find that T ∩Π = J . We finally claim that

(9) Bs
∣∣IT/P5(2)

∣∣ = T ∪Π.

Indeed, one inclusion having been already established, suppose by contradiction there is a
point r ∈ Bs

∣∣IT/P5(2)
∣∣ \ (T ∪ Π). We pick a general hyperplane hyperplane P4 ∼= H ⊆ P5

passing through r . Then T ∩ H =: C is a smooth non-hyperelliptic curve of genus 3, where
OC(1) ∈ Pic7(C), whereasH∩Π =: ` is a line. The componentsC and `meet along the divisor
r1 + r2 + r3 consisting of the points lying on the intersection J ·H ⊆ Π ∩H . Furthermore,

H0
(
C,OC(r1 + r2 + r3)

) ∼= H0(C,OC(J)) ∼= H0(T,OT (J))

is a 1-dimensional space, for the cubic J does not move in its linear system. It follows that the
stable genus 5 curve C ∪ ` is not trigonal. Therefore, its canonical embedding C ∪ ` ↪→ P4 is
ideal-theoretically cut out by quadrics, in particular r ∈ Bs

∣∣IC∪`/P4(2)
∣∣ = C ∪ `. In particular

r ∈ T , which shows that T is scheme-theoretically cut out by quadrics. �

We describe a geometric construction that will yield a parametrization of Hyp4,8. Recall
that Z ⊆ P4 denotes the cubic scroll defined by (8). We fix general points (t1, . . . , t8) ∈ Z8 and
a general line ` ⊆ P4 disjoint from Z. For i = 1, . . . , 8, we obtain further points xi, yi ∈ Z via
the relation

(10) 〈`, ti〉 · Z = ti + xi + yi,

with the intersection being taken inside P4.

We consider the projection π` : P4 99K P2 of center `, whose restriction π` : Z → P2 is a
regular morphism of degree 3. Since 〈`, xi〉 = 〈`, yi〉 = 〈`, ti〉, it follows that

π`(xi) = π`(yi) = π`(ti) ∈ P2.

Furthermore, let us choose a general curve C ∈
∣∣I{x1,y1,...,x8,y8}/Z(6h− 4E)

∣∣. Note that

dim
∣∣I{x1,y1,...,x8,y8}/Z(6h− 4E)

∣∣ =

(
8

2

)
−
(

5

2

)
− 1− 16 = 1.

Definition 3.4. Let T be the space of triples (t1, . . . , t8, `, C) ∈ Z8×G(1, 4)×|6h−4E|, where
C ∈

∣∣I{x1,y1,...,x8,y8}/Z(6h− 4E)
∣∣ is a nodal curve, with the points xi, yi ∈ Z described by (10).

Clearly, T is a locally trivial P1-bundle over Z8 × G(1, 4). In particular, T is a rational
variety of dimension 23. Note that the 6-dimensional automorphism group Aut(F1) acts on T ,
where the action on G(1, 4) is via the identification Aut(F1) ∼= Aut(Z) ⊆ PGL(5). Therefore
the quotient T /Aut(F1) has dimension 17 (and is of course unirational).

Theorem 3.5. One has a dominant rational morphism ϑ : T 99K Hyp4,8. In particular, Hyp4,8 is
unirational

Proof. We start with a suitably general point (t1, . . . , t8, `, C) ∈ T . In particular C ⊆ Z ⊆ P4 is
a smooth hyperelliptic curve of genus 4 and the projection π` : Z → P2 is regular.

We claim that (i) the image Γ′ of the projection π := π`|C : C → Γ′ ⊆ P2 is a nodal
octic curve. In particular, π is the normalization map and Γ′ has precisely 17 =

(
7
2

)
− 4 nodes.
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Assuming this for the moment, we set n′i := π`(ti) = π`(xi) = π`(yi), where xi, yi ∈ C are
defined via (10). We denote by

{
o1, . . . , o9} := Sing(Γ′) \ {n′1, . . . , n′8} the set of remaining

nodes of Γ′. If Ei is the exceptional divisor at oi on the blow-up Bl9(P2), we claim (ii) that we
have an embedding

ϕ := φ|4h−E1−···−E9| : Bl9(P2) ↪→ P5.

Applying Proposition 3.3, in order to establish claim (ii), it suffices to show that through the
points o1, . . . , o9 ∈ P2 there passes a unique smooth cubic curve.

Assuming both claims (i) and (ii), we proceed with our proof. The map ϕ is an embed-
ding and from Proposition 3.3 its image T ⊆ P5 is a projectively normal surface. We consider
the image Γ ⊆ P5 of the strict transform of Γ′ in Bl9(P2) under the map ϕ. Then Γ has nodes
at the points ni := ϕ(n′i) ∈ P5 for i = 1, . . . , 8 and is of degree

deg(OΓ(1)) = (8h− 2E1 − · · · − 2E9)(4h− E1 − · · · − E9) = 14.

Comparing degrees, we conclude that Γ ⊆ P5 is a quadratic section of T . Furthermore, we
have a sequence of maps C → Γ → Γ′, showing that the smooth hyperelliptic curve C is the
normalization of Γ. Summarizing all this, the assignment

ϑ
(
(t1, . . . , t8, `, C)

)
:= [Γ, ωΓ(−1)] ∈ Hyp4,8,

where ωΓ(−1) = OΓ(4h− E1 − · · · − E9) is well-defined.

We now show that each irreducible 8-nodal curve [Γ, L] ∈ Hyp4,8 which is general in any
component of Hyp4,8 appears this way. We fix such a pair and we may assume that L ∈W 2

8 (Γ)
is base point free. Let ν : C → Γ be the normalization map and denote by Γ′ the image of
the map φ|L| : Γ → P2. Setting {n1, . . . , n8} = Sing(Γ), we denote by {xi, yi} := ν−1(ni)
the inverse images of the nodes of Γ for i = 1, . . . , 8. Then [C, ν∗(L)] is a general point of
the universal Picard variety Pic8

H4
. Via Proposition 3.2 we may assume C is embedded in

the cubic scroll Z ∼= Blo(P2) ⊆ P4 as a curve in the linear system |6h − 4E| and furthermore
ν∗(L) = OC(1) = OC(2h−E), where, as usual, E denotes the exceptional divisor at the point
o. Set π := φ|L| ◦ ν : C → P2.

Using the canonical isomorphism H0(Z,OZ(1)) ∼= H0(C,OC(1)), we set

` := P
(
H0(Z,OZ(1)

)
/π∗H0(P2,OP2(1))∨

)
∈ G(1, 4)

and consider the projection π` : P4 99K P2 with center `. Clearly, π` is an extension of the
regular map π : C → P2. Note that n′i := π`(xi) = π`(yi). We set ti := π−1

` (n′i) \ {xi, yi} ∈ Z.
Then clearly ϑ

(
(t1, . . . , t8, `, C)

)
= [C,L], thus showing that ϑ is dominant.

Proof of the claims (i) and (ii). By degeneration we exhibit a point p := (t1, . . . , t8, `, C) ∈ T ,
where C is a reducible nodal curve, such that ϑ(p) is well-defined and both (i) and (ii) hold.

For a line ` in P4, if again π` : P4 99K P2 is the projection with center `, the rational map

ξ : |4h− 2E| ×G(1, 4) 99K
(
P2
)[8]

, ξ(B, `) := Sing(π`(B)),

is dominant. Therefore we can start with 8 general points o1, . . . , o8 ∈ P2 and choose a smooth
genus 2 curve B ∈ |4h− 2E| on Z and a line ` ⊆ P4, such that the image B′ := π`(B) ⊆ P2 is
a sextic plane curve with nodes at o1, . . . , o8 and no further singularities.

The linear system
∣∣I{o1,...,o8}/P2(3)

∣∣ is a general pencil of plane cubics. Its general member
is smooth, its 12 singular members are irreducible one-nodal rational curves with singularities
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disjoint from the set {o1, . . . , o8}. The plane cubics through o1, . . . , o8 cut out the canonical
linear system on B, that is,

π∗`

(∣∣I{o1,...,o8}/P2(3)
∣∣) = |ωB|.

This implies that the ninth remaining base point of the pencil
∣∣I{o1,...,o8}/P2(3)

∣∣ does not lie on
B′, for else B has a pencil of degree one, hence B would be rational.

We now choose two general rulings `1 and `2 ofZ, that is, `i ≡ h−E, and setF ′i := π`(`i).
Both F ′1 and F ′2 are lines in P2 meeting in a point o9. Furthermore, `i ·B = 2 and set

(11) C := B + `1 + `2 ∈ |6h− 4E|,

viewed as a nodal hyperelliptic curve of genus 4. Note that both `1 and `2 meet B in a pair of
hyperelliptic conjugate points. The image curve

Γ′ := π`(C) = B′ + F ′1 + F ′2 ⊆ P2

is a reducible nodal octic, where for i = 1, 2, the intersectionB′ ·F ′i consists of 6 nodes, namely
the 2 points in π`(B · `i), as well as 4 further nodes on each F ′1 and F ′2 respectively.

Since o9 can be chosen freely in P2, through the points o1, . . . , o9 there passes a unique
smooth cubic. Therefore, the map ϕ := φ|4h−E1−···−E9| : Blo1,...,o9(P2) ↪→ T ⊆ P5 is an em-
bedding. The image Fi ⊆ P5 of the strict transform in Blo1,...,o9(P2) of F ′i is a twisted cubic,
whereas the image under ϕ of the proper transform of B′ can be identified with the original
smooth genus 2 curve B embedded by the linear system

∣∣ωB ⊗ π∗`|BOP2(1)
∣∣. The intersection

Fi · B on T is transverse and consists of the 6 points in ϕ(F ′i · B′), for i = 1, 2. Finally, F1 and
F2 are disjoint. We consider the nodal curve

(12) Γ := B + F1 + F2 ⊆ P5.

Set {t1, . . . , t8} := π−1
`

((
F ′1+F ′2

)
·B′\π`

(
(F1+F2)·B

))
\(B+`1+`2) ⊆ Z. After choosing

an ordering on this set of 8 points, clearly p := (t1, . . . , t8, `, C) ∈ T and ϑ(p) = [Γ, ωΓ(−1)],
with OΓ(1) being defined via the embedding (12). The 8 assigned nodes of Γ as an element of
Hyp4,8 are the points in (F1 + F2) · B that are not the images of (`1 + `2) · B. This completes
the proof of both claims (i) and (ii). �

Corollary 3.6. For a general point [Γ, L] ∈ Hyp4,8, the curve φωΓ⊗L∨ : Γ ↪→ P5 is a projectively
normal 8-nodal curve of degree 14.

Proof. Keeping the notation from the proof of Theorem 3.5, we consider the reducible nodal
curve Γ = F1 +F2 +B defined by (12) and which appears as a quadratic section of the surface
T ⊆ P5. We have the following commutative diagram:

Sym2H0(T,OT (1))
∼= //

µT
��

Sym2H0(Γ,OΓ(1))

µΓ

��
H0(T,OT (2)) // H0(Γ,OΓ(2))

The bottom map in this diagram is surjective. By Proposition 3.3 the surface T is projectively
normal, thus it follows that the same holds for Γ. �
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4. FROM SCROLLS OF DEGREE 9 TO NODAL HYPERELLIPTIC CURVES

Let H9 denote the Hilbert scheme of degree 9 scrolls R ⊆ P5. The general point of H9

corresponds to a smooth degree 9 scroll R ⊆ P5. Following e.g. [L, Lemma 1.5], one knows
that H9 is smooth of dimension h0(R,NR/P5) = 59. We denote by H8

9 the closure in H9 of the
locus of scrolls having precisely 8 (non-normal) nodes and no further singularities. Using [L,
Proposition 0.4] it follows thatH8

9 is nonempty and has pure codimension 8 insideH9, that is,
dim(H8

9) = 51. We introduce the parameter space of unparametrized degree 9 nodal scrolls

Hscr := H8
9/PGL(6).

Theorem 1.2, coupled with results from [L], imply that Hscr is an irreducible variety of dimen-
sion 16 = dim(H8

9)− dim PGL(6).

Each nodal scroll [R] ∈ Hscr is a projection π : P10 99K P5 of a smooth degree 9 scroll

F1 := Blo(P2) ↪→ R′ ⊆ P10,

embedded by the linear system φ|5h−4E| : F1 ↪→ P10. Here h is the pull-back of the line
class under the morphism F1 → P2 and E denotes the exceptional divisor corresponding
to the point o ∈ P2. The rulings of R′ are the fibres of the morphism φ|h−E| : R′ → P1 and
correspond to lines in P10. The center of the projection π is a 4-plane Λ ⊆ P10 which is 8-secant
to the secant variety Sec(R′) and the restriction π : R′ → R of the projection map π may be
regarded as the normalization of R. We denote by {n1, . . . , n8} ⊆ P5 the set of (non-normal)
nodes of R and by {xi, yi} = π−1(ni) ⊆ R′, for i = 1, . . . , 8. The projections of the rulings of
R′ ⊆ P10 passing through xi and yi correspond to lines on R ⊆ P5 meeting in the node ni.

Definition 4.1. We denote by P the moduli space of pairs [R, `1 +`2 +`3 +`4], where [R] ∈ Hscr

and `1, . . . , `4 ∈ G(1, 5) are rulings of R ⊆ P5, regarded as an unordered set.

Over a nonempty open subset, the projection map P → Hscr sending [R, `1 + · · · + `4]

to [R] is a P1 ∼= M0,4/S4-bundle. To a general element [R, `1 + `2 + `3 + `4] ∈ P (in which
case we may assume that the rulings `i are disjoint from Sing(R)), we can associate a unique
quadric Q ⊆ P5 containing Sing(R) and the rulings `1, . . . , `4. The quadric Q determines a
residual curve Γ ⊆ P5 given by the relation (2), that is,

R ·Q = `1 + `2 + `3 + `4 + Γ.

Next we show that the assignment [R] 7→ [Γ] described by (2) induces a well defined
map χ : P 99K Hyp4,8. For our next result, recall that we have studied in Theorem 3.5 the
dominant morphism ϑ : T 99K Hyp4,8.

Proposition 4.2. For a general element [R, `1 + `2 + `3 + `4] ∈ Hscr, the curve Γ ⊆ P5 has nodes at
n1, . . . , n8 and no further singularities. Its normalization C := π−1(Γ) ⊆ R′ is a smooth hyperelliptic
curve of genus 4.

Proof. Recall that π : R′ → R is the normalization map and set `′i := π−1(`i). Since `′i is a ruling
of R′ we have that `i ≡ h − E, where we have identified F1 and R′. From (2) we then obtain
C ≡ 6h − 4E. Furthermore, C · (h − E) = 2, that is, OC(h − E) ∈ W 1

2 (C) is the hyperelliptic
linear system onC. For a general choice of the rulings, we have `i∩{n1, . . . , n8} = ∅, therefore
from (2) it follows that ni ∈ Γ and hence xi, yi ∈ C.

We now show that χ is well defined and in fact Im(χ) ∩ Im(ϑ) 6= ∅. To that end we
use a further degeneration inside the linear system |6h − 4E| on the cubic scroll Z ⊆ P4. We
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start with two general curves Γ1,Γ2 ∈ |3h − 2E| on Z. Both Γ1 and Γ2 are smooth rational
curves meeting in 5 = (3h − 2E)2 points we call v1, . . . , v5 ∈ Z. The union Γ1 ∪ Γ2 is a
stable hyperelliptic curve of genus 4 and the hyperelliptic involution interchanges Γ1 and Γ2.
Precisely, if u := φ|h−E| : Z → P1 is the fibration given by the rulings of Z, then ι : Γ1 → Γ2

is the isomorphism given by ι(u−1(t) · Γ1) = u−1(t) · Γ2, for every t ∈ P1, with the map
(ι, ι−1) : Γ1 ∪ Γ2 → Γ2 ∪ Γ1 being the hyperelliptic involution.

We pick a general line ` ∈ G(1, 4) and consider the degree 3 map π` : Z → P2 obtained
by restricting the projection map. Set Γ′i := π`(Γi) ⊆ P2, for i = 1, 2. Both Γ′1 and Γ′2 are 3-nodal
plane quartics meeting transversally at 16 points, namely n′i+8 := π`(vi) for i = 1, . . . , 5 and 11
further nodes which we partition into two groups we denote by {o1, o2, o3} and {n′1, . . . , n′8}
respectively. Setting Sing(Γ′1) ∪ Sing(Γ′2) =: {o1, . . . , o6}, it is easy to check that Γ1 and Γ2

can chosen in such a way that through o1, . . . , o9 there passes a unique smooth cubic curve.
Applying Proposition 3.3, we obtain that the map

ϕ := φ|4h−E1−···−E9| : Bl9(P2) ↪→ P5

is an embedding having as image a projectively normal surface T ⊆ P5 of degree 7. The image
under ϕ of the strict transform of Γ′1 ∪ Γ′2 in Bl9(P2) is the stable curve

(13) Γ = Γ1 + Γ2 ⊆ T ⊆ P5,

where Γ1 and Γ2 are smooth rational curves of degree 7 meeting at the points ni := ϕ(n′i), for
i = 1, . . . , 13. The 8-nodal scroll associated via (2) to the curve Γ described by (13) is then

R :=
⋃
x∈Γ1

〈
x, ι(x)

〉
⊆ P5.

This is a scroll of degree 9 which has nodes at n1, . . . , n8 (and not at n9, . . . , n13, which are
fixed by the hyperelliptic involution on Γ1 ∪ Γ2). One checks either directly or with Macaulay
that R has no further singularities. This shows that [Γ, ωΓ(−1)] ∈ Im(ϑ) ∩ Im(χ). �

Remark 4.3. The construction described in Proposition 4.2 provides an alternative proof to
the result in [L] stating that the Hilbert schemeH8

9 of 8-nodal scrolls of degree 9 is nonempty.

Therefore we have a well-defined rational map

χ : P 99K Hyp4,8, χ
(
[R, `1 + `2 + `3 + `4]

)
:= [Γ, ωΓ(−1)].

As discussed in the previous section, since OΓ(2) is non-special, applying Riemann-Roch we
find h0(Γ,OΓ(2)) = 2deg(Γ) + 1 − pa(Γ) = 17. Since the image of χ intersects the image of
the dominant map ϑ : T 99K Hyp4,8, applying Corollary 3.6 we may also assume that Γ ⊆ P5

is projectively normal, hence h0
(
P5, IΓ/P5(2)

)
= 4. Furthermore, the last part of Proposition

3.3 yields that base locus Bs
∣∣IΓ/P5(2)

∣∣ is a nodal curve Y of degree 16 containing Γ as a
component, that is,

(14) Y = Γ +B,

with ωY = OY (2). Furthermore, the curves B and Γ meet transversally. Using [Ful, Example
9.1.12], we have the formulas

pa(Γ)− pa(B) =
1

2
· (8− 6)

(
deg(Γ)− deg(B)

)
= 12, Γ ·B = 2deg(Γ) + 2− 2pa(Γ) = 6,
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hence B is a smooth conic 6-secant to Γ. We introduce the 2-plane spanned by B

Π := 〈B〉 ⊆ P5.

Viewing B · Γ as a degree 6 divisor on Γ disjoint from the nodes n1, . . . , n8, we have

(15) ωΓ(B · Γ) ∼= OΓ(2).

Proposition 4.4. There exists a 3-dimensional linear system V ⊆ H0
(
P5, IΓ/P5(2)

)
containing Π.

Proof. We pick a general point r ∈ Π \ B. Then for a quadric Z ∈ H0
(
P5, IΓ/P5(2)

)
one has

that Π ⊆ Z if and only if r ∈ Z. Indeed, if r ∈ Z, then the restriction of Z to Π already
contains B ∪ {r}, therefore Π ⊆ Z. Since containing the fixed point r imposes one condition
on |IΓ/P5(2)|, the conclusion follows. �

We now introduce the surface T ⊆ P5, defined as the residual surface to Π in the com-
plete intersection (3), that is,

Bs |V | = Π + T.

Thus T is a degree 7 surface in P5 lying on three quadrics whose intersection contains
a 2-plane. Such surfaces are classified in [Io] and there are five possible families. But the
geometric situation at hand helps us show that T is the surface described in Proposition 3.3.
Since Γ is nondegenerate in P5, in particular Γ * Π, hence Γ ⊆ T . It follows that Γ is the
intersection of T with one of the quadrics from H0

(
P5, IΓ/P5(2)

)
\ V . Since the intersection

Γ ∩ B is transverse, one has ni /∈ B, and hence ni ∈ P5 \ Π. We set n′i := p(ni) ∈ P2 for
i = 1, . . . , 8, where

(16) p = pΠ : P5 99K P2

is the projection with center the 2-plane Π.

Proposition 4.5. The image curve Γ′ := p(Γ) ⊆ P2 is a nodal plane curve of genus 8 with nodes at
n′1, . . . , n

′
8, as well as at further 9 unspecified points.

Proof. Set Γ · B = r1 + · · · + r6 viewed as a divisor of degree 6 on Γ. Since for any quadric
q ∈ H0

(
P5, IΓ/P5(2)

)
\ V one has q ·Π = Q, it follows that Γ ∩Π = {r1, . . . , r6}.

The restriction p|Γ : Γ 99K P2 of the projection map p defined by (16) has thus the divisor
r1+· · ·+r6 as its base locus. Removing this base locus we obtain a regular map p : Γ→ Γ′ ⊆ P2

given by the linear system∣∣OΓ(1)(−r1 − · · · − r6))
∣∣ ∼= |ωΓ(−1)| ∈W 2

8 (Γ).

Thus Γ′ is a plane octic curve. Since its normalization is the genus 4 curve C, it has 17 nodes,
which fall into two groups, namely the 8 nodes {n′1, . . . , n′8} and the rest, which we denote
by {o1, . . . , o9}. We remark that Γ ⊆ P5 can be recovered from such an octic curve Γ′. Indeed,
keeping the notation above, we blow-up P2 at the nine points o1, . . . , o9 ∈ P2, then consider
the regular map ϕ := φ|4h−E1−···−E9| : Bl9(P2) → P5. Using Proposition 3.3, we may assume
ϕ is indeed an embedding. The image of the strict transform of Γ′ under ϕ is precisely the
8-nodal curve Γ. �

Remark 4.6. The conic B defined in (14) is the intersection of the quadric q with the 2-plane
Π, whereas the cycle Γ · B of length 6 is precisely the intersection cycle Γ · J on the smooth
surface T , where J ∈ |3h− E1 − · · · − E9|.
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We can now finish the proof of Theorem 1.2 and 1.3.

Proof of Theorem 1.2. It suffices to observe that the map χ is generically injective. Indeed, for
the 8-nodal curve Γ ⊆ P5 given by (2) and having a hyperelliptic normalization π : C → Γ of
genus 4, we recover the scroll as the union of the lines

〈
π(x), π(ι(x)

〉
⊆ P5 as x ∈ C varies.

Here ι denotes the hyperelliptic involution of C. But then the quadric Q ⊆ P5 such that
Γ ⊆ R ·Q is also determined, which also leads to the unordered collection `1 + `2 + `3 + `4 of
rulings of R such that the relation (2) holds. �
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