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Abstract: We describe applications of Koszul cohomology to the Brill-
Noether theory of rank 2 vector bundles. Among other things, we show that
in every genus g > 10, there exist curves invalidating Mercat’s Conjecture for
rank 2 bundles. On the other hand, we prove that Mercat’s Conjecture holds
for general curves of bounded genus, and its failure locus is a Koszul divisor
in the moduli space of curves. We also formulate a conjecture concerning
the minimality of Betti diagrams of suitably general curves, and point out
its consequences to rank 2 Brill-Noether theory.
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1. Introduction

The classical Brill-Noether theory of linear series on a curve [C] ∈ Mg,

which describes the cycles W r
d (C) := {L ∈ Picd(C) : h0(C, L) ≥ r + 1},

is one of the celebrated successes in the theory of algebraic curves. There
have been numerous attempts to extend this theory to vector bundles of
higher rank, and the subject of this paper is the interplay between Koszul
cohomology of line bundles and Brill-Noether phenomena for vector bundles
of rank 2 on curves. Let Us

C(2, d) be the moduli space of stable vector
bundles on C of rank 2 and degree d. For each integer k ≥ 0, we consider
the determinantal Brill-Noether cycle

BNC(d, k) := {E ∈ Us
C(2, d) : h0(C, E) ≥ k}.

It is well-known that BNC(d, k) has the structure of a determinantal sub-
scheme of Us

C(2, d), and accordingly, each of its irreducible components is of
dimension at least equal to the Brill-Noether number

βg(d, k) := 4g − 3 − k
(

k − d + 2g − 2
)

.
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The expectation that for a general curve [C] ∈ Mg, the variety BNC(d, k)
is non-empty precisely when βg(d, k) ≥ 0, is false, and there are few uniform
statements concerning the geometry of BNC(d, k). A remarkable exception
to such erratic behaviour is the highly interesting case of rank 2 vector
bundles with canonical determinant, which is clarified in [T3].

To a bundle E ∈ SUC(2, L) with det(E) = L ∈ Pic(C) and h0(C, E) =
p + 3 ≥ 4, following a construction introduced in [V3] and developed in
[AN], one associates a non-trivial Koszul class [ζ(E)] ∈ Kp,1(C, L). In this
way, one establishes a dictionary between rank 2 Brill-Noether theory and
the Koszul geometry of C. For p = 1, this procedure specializes to a more
classical construction [BV], [M2], [GMN], that assigns to a vector bundle
E ∈ SUC(2, L) with h0(C, E) = 4, a quadric QE ∈ Sym2H0(C, L) of rank
at most 6, containing the image φL(C) of C under the map induced by |L|.

The starting point of our investigation was an attempt to translate, via
this dictionary, various syzygetic results for curves in the style of [AF], [F3],
into dimensionality problems for BNC(d, k). For k ≤ 3 and a general [C] ∈
Mg, the Brill-Noether locus BNC(d, k) is irreducible and of the expected
dimension βg(d, k), see [T1]. The first case not governed by classical Brill-
Noether theory is k = 4, and we note that

βg(d, 4) = 4d − 4g − 11.

It is natural to ask whether in this case too, the Brill-Noether number,
determines the non-emptiness of BNC(d, 4). Teixidor [T2] has provided
almost optimal answers to this question, and we summarize her results for
a general curve [C] ∈ Mg:

BNC(d, 4) 6= ∅, provided that d ≥

{

2a + 3, if g = 2a ⇔ βg(d, 4) ≥ 1;

2a + 5, if g = 2a + 1 ⇔ βg(d, 4) ≥ 5.

This leaves the case g = 2a + 1 and d = 2a + 4, as the only remaining
possibility when βg(d, 4) ≥ 0. We prove the following result:

Theorem 1.1. For a general curve [C] ∈ M2a+1, the locus BNC(2a + 4, 4)
is non-empty and has at least one component of dimension 2.

Note that since βg(d, 4) = 1, unlike in the case k ≤ 3, the Brill-Noether
number no longer predicts the dimension of BNC(d, 4). This is a phenome-
non which propagates beyond control as k grows, and appears for the first
time when k = 4. This result combined with [T2], settles the existence
problem for bundles of rank 2 with 4 sections:

Corollary 1.2. For a general curve [C] ∈ Mg, we have that BNC(d, 4) 6= ∅
whenever βg(d, 4) ≥ 0.

Using the already mentioned connection between coherent systems (E, V ),
where E ∈ UC(2, d) and V ∈ G(4, H0(C, E)) on one side, and the non-
vanishing of the cohomology group K1,1(C,det(E)) on the other, Theorem
1.1 is implied by the following:
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Theorem 1.3. For a general curve [C] ∈ M2a+1, the locus of linear series

Koszul(C) :=
{

L ∈ W 4
2a+4(C) : Sym2H0(C, L) → H0(C, L⊗2) not injective

}

has at least one component of dimension 2, whose general element corre-
sponds to a complete base point free linear series, which cannot be written
as L = A1 ⊗ A2, with A1, A2 ∈ W 1

a+2(C).

Assuming Theorem 1.3, the corresponding vector bundle

E ∈ BNC(2a + 4, 4)

is constructed as a twist of a Lazarsfeld bundle on C. Precisely, for L ∈
Koszul(C), we take E := MW ⊗ L, where W ∈ G(3, H0(C, L)) is a suitably
chosen subspace such that Ker ν2(L) ∩

(

W ⊗ H0(C, L)
)

6= 0. This method
of constructing E is the first instance of a general construction of vector
bundles starting from non-trivial Koszul cohomology classes of small rank
[vB], [AN]. We refer to Section 5 for details.

Next we turn to Mercat’s generalization of Clifford’s inequality. For a
semistable vector bundle E of rank 2 on C and slope µ(E), Mercat [Me]
made an interesting prediction concerning its number of sections in terms
of the Clifford index of the curve:

(1) If Cliff(C) + 2 ≤ µ(E) ≤ g − 1, then h0(C, E) ≤ 2 + µ(E) − Cliff(C).

(2)

If 1 ≤ µ(E) ≤ Cliff(C)+2, then h0(C, E) ≤ 2+
1

Cliff(C) + 1

(

deg(E)−2
)

.

The conjecture is inspired by the case when E can be written as an ex-
tension

0 → A → E → A′ → 0,

where both line bundles A, A′ contribute to Cliff(C), in which case, (1) is
an immediate consequence of Clifford’s inequality applied to both A and A′.
For extensions of Clifford type inequalities to higher rank vector bundles
and additional background, see [LN].

We provide a counterexample to Mercat’s Conjecture when h0(C, E) = 4,
which was the simplest case when the answer was unknown:

Theorem 1.4. For each integer a ≥ 5, there exist curves [C] ∈ M2a+1

having maximal Clifford index Cliff(C) = a, such that BNC(2a + 3, 4) 6= ∅.
In particular Mercat’s Conjecture (2) fails for C.

The counterexamples to Mercat’s Conjecture (also for g = 2a, where
a ≥ 6, see Theorem 3.7), are sections of K3 surfaces lying in certain Noether-
Lefschetz loci. For the curves appearing in Theorem 1.4, we observe that
βg(2, d, 4) = −3. The possibility that Mercat’s Conjecture might fail for
some curves of genus 11 was already entertained in [GMN] Remark 3.5 and
[LMN] Question 5.5. In fact, it was that particular suggestion in loc. cit.
that drew our attention to this problem.
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The proof of Theorem 1.4 uses again the observation that for a curve C
of genus 2a + 1 and gonality a + 2, if L ∈ W 4

2a+3(C) is a linear series such

that the multiplication map ν2(L) : Sym2H0(C, L) → H0(C, L⊗2) is not
injective, then BNC(2a + 3, 4) ∩ SUs

C(2, L) 6= ∅. More precisely, the locus
of curves [C] ∈ M2a+1 with BNC(2a+ 3, 4) 6= ∅ is set-theoretically equal to
the Koszul locus

Syz4g,2a+3 := {[C] ∈ M2a+1 : ∃L ∈ W 4
2a+3(C) such that K1,1(C, L) 6= ∅}.

This is a virtual divisor in M2a+1, which is not contained in the Hurwitz
divisor [HM]

M1
2a+1,a+1 := {[C] ∈ M2a+1 : W 1

a+1(C) 6= ∅}

of curves with a g1
a+1. Curves [C] ∈ Syz4g,2a+3 −M1

g,a+1 provide counterex-

amples to (2).

Even though there curves of maximal Clifford index not verifying (2), the
question whether Mercat’s inequalities (1) and (2) are true for a general
curve [C] ∈ Mg remains a very stimulating one, and which can be naturally
connected to the Maximal Rank Conjecture (MRC) in the form that appears
in [AF].

The original version of the MRC is due to Harris [H] p. 79, and it
amounts to the following: Let C ⊂ Pr be a smooth curve of genus g and
deg(C) = d, corresponding to a general point of the unique component of
the Hilbert scheme Hilbd,g,r mapping dominantly onto Mg (that is, in the
range ρ(g, r, d) ≥ 0). Then the restriction maps

νm(C) : H0(Pr,OP
r(m)) → H0(C,OC(m))

have maximal rank. In particular the Hilbert function of C is minimal. One
can generalize Harris’ Conjecture in two directions: Either (a) by requiring
that [C] ∈ Mg be general in moduli rather than in the Hilbert scheme, then
conjecturing that the restriction maps to C be of maximal rank with respect
to all linear series of type gr

d, or (b) by asking for the minimality not only of
the Hilbert function but of the entire graded Betti diagram of C (see Section
5 for how such a prediction can be correctly formulated). The generalization
of Harris’ Conjecture in direction (a) was discussed in [AF] and we briefly
review it in Section 2. In particular, it predicts the following:

Maximal Rank Conjecture (MRC)r
g,d: We fix integers g, r, d ≥ 1 such that

0 ≤ ρ(g, r, d) < 2d + 2 − g −

(

r + 2

2

)

.

For a general curve [C] ∈ Mg, the map ν2(l) : Sym2(V ) → H0(C, L⊗2) is
injective for every linear series l = (L, V ) ∈ Gr

d(C).

Returning to Theorem 1.4, (MRC)4g,2a+3 predicts that the syzygy locus

Syz4g,2a+3 is a proper subvariety of Mg, and then it must be a divisor.
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Conjecture 1.5. Fix a ≥ 5 and a general curve [C] ∈ M2a+1. Then

K1,1(C, L) = 0 for every L ∈ W 4
2a+3(C),

and the failure locus Syz4g,2a+3 is a divisor in M2a+1. Consequently, Mercat’s

Conjecture (2) holds for all curves in the complement of Syz4g,2a+3.

Using Mukai’s work [M1], we can confirm this expectation in one inter-
esting case, namely that of curves of genus 11, and answer Question 5.5 in
[LMN]:

Proposition 1.6. The following geometric locus

Syz411,13 := {[C] ∈ M11 : ∃L ∈ W 4
13(C) with K1,1(C, L) 6= 0}

is an effective divisor in M11. In particular, BNC(13, 4) = ∅ for a general
curve [C] ∈ M11.

The above mentioned relation to syzygies, enables us to prove conjecture
(1) for bounded genus:

Theorem 1.7. Mercat’s Conjecture (1) holds for a general curve of genus
g ≤ 16.

The most beautiful case in the proof of Theorem 1.7 is when [C] ∈ M15

and h0(C, E) = 5. In order to show that BNC(19, 5) = ∅, one must argue
that if

φL : C
|L|
−→ P6

is one of the embeddings of C by a linear series L ∈ W 6
19(C) residual to a

pencil of minimal degree, then φL(C) cannot lie on 5 independent quadric
hypersurfaces in P6. Note that 4 = dim Sym2H0(C, L) − h0(C, L⊗2) inde-
pendent quadrics containing φL(C) come automatically, and we show that
the existence of a fifth quadric is a non-trivial condition in the moduli space
M15.

To recapitulate, the original prediction (2) is not true when formulated in
terms of the original Clifford index, but both (1) and (2) are still expected
to hold for general curves in moduli! It is customary to view the Koszul
geometry of a curve as second order Brill-Noether theory, in the sense that
once all types of linear series gr

d on a curve have been prescribed, syzygies
provide a finer analysis, distinguishing among curves with the same Brill-
Noether behaviour. Our analysis lends some credence to the principle that
this second order BN analysis is connected in a precise forms (formulated in
Section 5) to the rank two BN theory of the curve and the various predictions
on the two sides of this correspondence are remarkably compatible!

As a word of caution however, proving (MRC)r
g,d when ρ(g, r, d) ≥ 1

(let alone Conjecture 5.4), seems considerably more difficult that proving
the original Harris Conjecture. When ρ(g, r, d) = 0 the two statements are
equivalent, see [F3] Theorem 1.5.
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We discuss the structure of the paper. In Section 2 we review the Maximal
Rank Conjecture and some of its consequences. Section 3 contains the most
important results of the paper. Using K3 surfaces, we disprove Mercat’s
Conjecture (2) (Theorems 3.6 and 3.7) and set-up a link between rank 2
vector bundles and MRC. We also prove Mercat’s Conjecture (1) for general
curves of bounded genus. In Section 4 we complete the proof of Theorem 1.1
concerning non-emptiness of Brill-Noether loci, while Section 5 is devoted
entirely to Koszul cohomology and its applications to rank two Brill-Noether
theory. We end the introduction by thanking Herbert Lange and Peter
Newstead for pertinent comments made on an earlier version of this paper.

2. The Maximal Rank Conjecture

In [AF] a strong version of the Maximal Rank Conjecture (MRC) for
general curves has been formulated and its various applications to the bira-
tional geometry of Mg have been presented. Since MRC will turn out to be
also connected to rank two Brill-Noether theory, we begin by recalling, in a
somewhat restricted form, the set-up from [AF] Section 5.

We fix positive integers g, r, d such that ρ(g, r, d) ≥ 0, as well as a gen-
eral curve [C] ∈ Mg. We may assume that Gr

d(C) is smooth of dimension
ρ(g, r, d). For a linear series l = (L, V ) ∈ Gr

d(C) we denote by

ν2(l) : Sym2(V ) → H0(C, L⊗2)

the multiplication map at the level of global sections. After choosing a
Poincaré bundle on C × Picd(C), following [ACGH] Chapter VII, one can

construct vector bundles E2 and F2 over Gr
d(C) with rank(E2) =

(

r+2
2

)

and

rank(F2) = h0(C, L⊗2) = 2d + 1 − g, together with a bundle morphism
ν2 : E2 → F2, such that for l ∈ Gr

d(C) we have that

E2(l) = Sym2(V ) and F2(l) = H0(C, L⊗2),

and ν2(l) is the multiplication map considered above. Since [C] ∈ Mg

satisfies Petri’s theorem, H1(C, L⊗2) = 0, therefore by Grauert’s theorem,
F2 is locally free over Gr

d(C).

Conjecture 2.1. We fix integers g, r, d ≥ 1 as above. For a general [C] ∈
Mg, the locus

Quadr
g,d(C) := {l ∈ Gr

d(C) : ν2(l) is not of maximal rank}

has the expected dimension as a determinantal variety, that is,

dim Quadr
g,d(C) = ρ(g, r, d) − 1 −

∣

∣2d + 1 − g −

(

r + 2

2

)

∣

∣,

where by convention, negative dimension means that Quadr
g,d(C) is empty.

The most significant case of Conjecture 2.1 is when we expect that
Quadr

g,d(C) = ∅, and we restate (MRC)r
g,d from the Introduction.
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Conjecture 2.2. We fix integers g, r, d ≥ 1 such that

0 ≤ ρ(g, r, d) < 2d + 2 − g −

(

r + 2

2

)

.

For a general curve [C] ∈ Mg, the map ν2(l) is injective for every l ∈ Gr
d(C).

As discussed in [AF], various important cases of Conjecture 2.2 are known,
see [FP], [F3], [V1]. We feel that Conjecture 2.2 should be true, while
the evidence for the stronger statement 2.1 is perhaps less compelling and
should be regarded more as an open question. It is reassuring to note that
Conjecture 2.2 is compatible with classical Brill-Noether theory.

Proposition 2.3. (MRC)3g,d holds. If d ≤ g + 1 and [C] ∈ Mg is a

Petri general curve, then ν2(l) is injective for every l ∈ G3
d(C). Thus

Quad3
g,d(C) = ∅.

Proof. We fix l := (L, V ) ∈ G3
d(C) and use the elementary fact that if

Ker ν2(l) 6= 0, then there exist pencils A1, A2 on C such that L = A1 ⊗ A2.
By Brill-Noether theory, deg(Ai) ≥ [(g + 3)/2] for i = 1, 2, hence deg(L) ≥
g + 2, which is a contradiction. ¤

3. Mercat’s conjecture

We follow standard notation and denote by Us
C(n, d) (respectively

UC(n, d)) the moduli space of stable (respectively semistable) vector bun-
dles of rank n and degree d on C. If L ∈ Picd(C) is a line bundle,
we set SUC(n, L) := {E ∈ UC(n, d) : det(E) = L} and SUs

C(n, L) :=
SUC(n, L) ∩ Us

C(n, d).
Recently, Lange and Newstead [LN] proposed a definition of the Clifford

index of a higher rank vector bundle. For E ∈ UC(n, d), the Clifford index
of E is the quantity

γ(E) := 2 + µ(E) −
2

n
h0(C, E) ≥ 0.

By Serre duality, γ(KC ⊗E∨) = γ(E). The higher Clifford indices of C are
defined as

Cliffn(C) := min
{

γ(E) : E ∈ UC(n, d), µ(E) ≤ g − 1, h0(C, E) ≥ 2n
}

.

Note that Cliff1(C) = Cliff(C) is the classical Clifford index of C. Several
foundational properties of the invariants Cliffn(C) are studied in [LN]. For
instance the following inequality follows from the definition and is implicitly
used in loc. cit.

Lemma 3.1. Cliff2(C) ≤ Cliff(C).

Proof. We choose a line bundle A on C computing the Clifford index of C,
that is, satisfying deg(A) − 2h0(C, A) + 2 = Cliff(C), where h0(C, A) ≥ 2.
We set E := A ⊕ A and note that γ(E) = γ(A) = Cliff(C). ¤
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An attempt to determine Cliff2(C) for a general curve [C] ∈ Mg, can be
linked to an older conjecture of Mercat [Me]. As already mentioned in the
introduction, for a semistable vector bundle E ∈ UC(2, d) with Cliff(C)+2 ≤
µ(E) ≤ 2g − 4 − Cliff(C), it was predicted that

h0(C, E) ≤ 2 + µ(E) − Cliff(C).

As pointed out in [LN], a consequence of (1) and (2) is the equality

Cliff2(C) = Cliff(C).

A positive answer to Mercat’s question, would show that, from the point
of view of Clifford theory, special rank 2 vector bundles are determined
by special classical linear series. Inequalities (1), (2) hold trivially when
h0(C, E) ≤ 3, thus one may assume that h0(C, E) ≥ 4. The following
observation is essentially contained in [Me]. We choose to make it explicit
in order to make the bounds in (1) and (2) transparent to ourselves:

Lemma 3.2. Let E ∈ UC(2, d) with µ(E) ≤ g − 1. If E contains a sub-
pencil, then (1) holds.

Proof. Suppose that the vector bundle E fits into an exact sequence

0 → A → E → A′ → 0,

with A a subbundle with h0(C, A) = 2. Then h1(C, A) = 2−deg(A)+g−1 ≥
2, if and only if g − 1 ≥ deg(A), but this last inequality is satisfied by the
semistability of E. Since 4 ≤ h0(E) ≤ h0(A) + h0(A′), we get h0(A′) ≥ 2.
If h1(C, A′) ≥ 2, then both A and A′ contribute to the Clifford index. It
follows that

h0(C, E) ≤ h0(C, A) + h0(C, A′) ≤

deg(A) − Cliff(C) + 2

2
+

deg(A′) − Cliff(C) + 2

2

= µ(E) + 2 − Cliff(C),

that is, inequality (1) holds in that case.
Suppose h1(C, A′) ≤ 1. Applying the definition of Clifford index to the
bundle A, we obtain deg(A) ≥ Cliff(C) + 2, hence h1(C, A) = 2− deg(A) +
g − 1 ≤ g − Cliff(C) − 1. On the other hand, by means of the long exact
sequence in cohomology, we have

h0(C, E) = h1(C, E) + d − 2(g − 1)

≤ h1(C, A) + h1(C, A′) + d − 2(g − 1)

≤ d − Cliff(C) − g + 2

≤
d

2
− Cliff(C) + 2

where the last inequality follows by the hypothesis on d. ¤
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From now on we shall assume that E ∈ UC(2, d) is globally generated
and carries no sub-pencil. We set L := det(E) ∈ Picd(C) and consider the
determinant map

λ :
2

∧

H0(C, E) → H0(C, L)

The evaluation map H0(C, E) ⊗OC → E induces the morphism

φE : x 7→ E(x) ∈ G
(

2, H0(C, E)∨
)

.

Following [BV], [M2] we have a commutative diagram

(3) C

φL

²²

φE
// G

(

2, H0(C, E)∨
)

Ä _

²²

P(H0(C, L)∨)
P(λ∨)

// P(
∧2 H0(C, E)∨)

where the vertical arrow on the right is the Plücker embedding and P(λ∨)
is the map induced at the level of projective spaces by the map dual to λ.
In order to estimate de number of sections of L we will use the following
lemma, which is a direct consequence of [PR] Lemma 3.9. We formulate it
in a way that is compatible with (3).

Lemma 3.3. Let E be a globally generated rank 2 vector bundle on C with-
out sub-pencils. Then

dim
(

Im λ
)

≥ 2h0(C, E) − 3.

In particular, h0(C, L) ≥ 2h0(C, E)−3 and dim (Im P(λ∨)) ≥ 2h0(C, E)−
4.

Proof. We identify G(2, H0(C, E)) ⊂ P
(
∧2 H0(C, E)

)

with the set of de-

composable tensors s ∧ t, where s, t ∈ H0(C, E). The assumption that E
carries no sub-pencils implies that P(Ker λ)∩G(2, H0(C, E)) = ∅, and the
claimed inequality follows. ¤

Inside the dual projective space P
(
∧2 H0(C, E)

)

, we identify P
(

Ker λ
)

with the space of hyperplanes in P
(
∧2 H0(C, E)∨

)

containing the span
〈φL(C)〉. We set

G := G
(

2, H0(C, E)∨
)

, P := P
(

2
∧

H0(C, E)∨
)

and Λ := Im P(λ∨) ⊂ P.

We assume that h0(C, E) = 4. Lemma 3.3 implies that

dim(Im P(λ∨)) ≥ 4

and

QE := P
(

λ∨
)−1(

G(2, H0(C, E)∨)
)

∈ Sym2H0(C, L)
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is a quadric of rank at most 6 containing φL(C). In particular, the multi-
plication map

ν2(L) : Sym2H0(C, L) → H0(C, L⊗2)

is not injective. Equivalently K1,1(C, L) = Ker ν2(C, L) 6= 0.
More generally, diagram (3) induces a pull-back morphism at the level of
quadrics

resC : H0
(

P, IG/P(2)
)

→ Ker ν2(C, L).

To link the geometry of E to a syzygy type statement, we estimate the rank
of resC .

Proposition 3.4. Assume E is a globally generated rank 2 vector bundle
on C, without sub-pencils and with h0(C, E) ≤ 5. Then the map resC is
injective.

Proof. We begin with a Plücker quadric Q ∈ H0(P, IG/P(2)), that is, a

rank 6 quadric corresponding to a 4-dimensional quotient of H0(C, E)∨.

The dual Q∨ ⊂ P
(
∧2 H0(C, E)

)

is 4-dimensional and contained in the dual

Grassmannian G
(

2, H0(C, E)
)

. Since E contains no sub-pencils, it follows
that P(Ker λ) ∩ Q∨ = ∅, that is, no hyperplane H

Λ ⊂ H ⊂ P

is tangent to Q. But this clearly implies that resC(Q) 6= 0, for otherwise
it would imply that Λ ⊂ Sing(Q). This is impossible based on dimension
reasons. Since every quadric containing G(2, 5) ⊂ P9 is a Plücker quadric
this finishes the proof.

¤

We discuss how Proposition 3.4 can be applied to study Mercat’s Conjec-
ture. When h0(C, E) = 4, inequality (1) is vacuous for curves of maximal
Clifford index, while (2) breaks into two vanishing statements depending on
the parity of g:

Question 3.5. For [C] ∈ M2a+1 with Cliff(C) = a, is it true that BNC(2a+
3, 4) = ∅? For a curve [C] ∈ M2a with Cliff(C) = a − 1, is it true that
BNC(2a + 1, 4) = ∅?

The answer to both these questions is negative. Using the surjectivity of
the period map for K3 surfaces in the style of [F1], [K], we construct curves
of maximal gonality and prescribed degree and genus, lying on K3 surfaces
in P4.

Theorem 3.6. For each integer a ≥ 5, there exist smooth curves C ⊂ P
4

with deg(C) = 2a+3, g(C) = 2a+1 and maximal Clifford index Cliff(C) =
a, such that C lies on a smooth complete intersection K3 surface. As a
consequence, BNC(2a + 3, 4) 6= ∅ and Mercat’s Conjecture fails for C.
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Proof. We use [K] Theorem 6.1 to construct a curve C ⊂ S ⊂ P4, lying on a
smooth complete intersection surface of type (2, 3) such that Pic(S) = Z·H⊕
Z ·C, where H2 = 6, H ·C = 2a+3 and C2 = 4a. Since h1(C,OC(1)) ≥ 2, it
follows that OC(1) contributes to Cliff(C), hence Cliff(C) ≤ Cliff(OC(1)) =
2a − 5. We aim to show that Cliff(C) = a, that is, C has maximal possible
Clifford index.

Assume by contradiction that Cliff(C) < a, which means that Cliff(C) is
computed by a line bundle which comes from S. Note by direct calculation
that S carries no (−2) curves, in particular C has Clifford dimension 1. We
reason along the lines of [F1] Theorem 3. Using [GL2] we infer that there
exists a curve D ⊂ S, satisfying

h0(S,OS(D)) = h0(C,OC(D)) ≥ 2,

h0(S,OS(C − D)) = h0(C, KC(−D)) ≥ 2,(4)

C · D ≤ g − 1,

such that Cliff(C) = Cliff(D ⊗OC) = D ·C −D2 − 2. In particular, such a
divisor D ≡ mH + nC, with m, n ∈ Z must verify the inequalities:

(i) D · H = 6m + dn > 2
(ii) md + (2n − 1)(g − 1) ≤ 0
(iii) 3m2 + mnd + n2(g − 1) ≥ 0

We claim that there exist no divisors D ⊂ S with D2 > 0, satisfying (i)-(iii).
Case n < 0. From (iii), we have that either m < −n or m > −2a

3 n. In
the first case, by using inequality (i) we get

2 < −6n + dn = n(2a − 3),

which is a contradiction since n < 0 and a ≥ 5. Suppose m > −2an/3 > 0.
Inequality (ii) implies that n(2− d/3) < 1, that is, (−n)(2a− 3) < 3. Hence
2a − 3 < 3, which contradicts the hypothesis a ≥ 5.

Case n > 0. Again, from condition (iii), we have either m < −2a
3 n

or m > −n. In the first case, using (i) we obtain 2 < n(d − 4a), which is
impossible since d = 2a+3 < 4a. Suppose now that −n < m < 0. From (ii)
we have that 2a(2n − 1) ≤ −md < nd, which implies n < 2a

4a−d = 2a
2a−3 < 2.

Then n = 1 > −m > 0, therefore the case n > 0 does not occur.
Case n = 0. From (ii), m ≤ g−1

d = 2a
2a+3 < 1, but this yields a

contradiction since, m > 0. This completes the proof of the claim.

We are left with checking that Cliff(OC(D)) ≥ a, for all primitive effective
classes D ∈ Pic(S) such that D2 = 0. By direct calculation, either D ≡
C − D, in which case Cliff(OC(D)) = D · C − D2 − 2 = 2a − 5 ≥ a, or else,
D ≡ 2aH − 3C, hence D · C > g − 1, and D cannot compute Cliff(C). ¤

For genus g = 2a, we have an analogous result in a similar range. We
skip details:

Theorem 3.7. For a ≥ 6, there exist smooth curves C ⊂ P
4 with deg(C) =

2a+1, g(C) = 2a and maximal Clifford index Cliff(C) = a− 1, such that C
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is contained in a smooth (2, 3) complete intersection K3 surface. It follows
that BNC(2a + 1, 4) 6= ∅.

It is important to realize that although (2) (and very probably prediction
(1) as well), fail for certain Brill-Noether general curves, we still expect both
Mercat conjectures to be valid for the generic curve. Theorem 3.6 should be
interpreted as stating that the failure locus of (2) is not a Brill-Noether locus
in the classical sense, but rather a Koszul subvariety on Mg in the style of
[F3], [F5]. Precisely, the locus in M2a+1 −M1

2a+1,a+1 where inequality (2)
does not hold, can be described as

Syz4g,2a+3 := {[C] ∈ M2a+1 : ∃L ∈ W 4
2a+3(C) such that K1,1(C, L) 6= 0}.

This is a virtual Koszul divisor. Using the terminology of Section 2, a
point [C] lies in Syz4g,2a+3 if and only if Quad4

g,2a+3(C) 6= ∅. Noting that

ρ(g, 4, 2a+3) = 2a−9, whereas h0(C, L⊗2) = 2a+6, one computes that the
virtual dimension of Quad4

g,2a+3(C) as a determinantal variety, is equal to

−1. Since it is not difficult to provide examples of embedded curves C ⊂ P4

of genus g(C) = 2a + 1 and deg(C) = 2a + 3, which lie on a single quadric
such that OC(1) ∈ Quad4

g,2a+3(C) is an isolated point, one infers that only
two scenarios are possible:

(i) Syz4g,2a+3 is a divisor inside Mg, that is, K1,1(C, L) = 0 for a general

curve [C] ∈ Mg and for every L ∈ W 4
2a+3(C), or

(ii) Syz4g,2a+3 = Mg.

Conjecture (MRC)42a+1,2a+3 predicts that the second possibility does not

appear. In any event, the case of P4 ought to be one of the more man-
ageable situations for testing MRC in arbitrary genus. We can confirm this
expectation for a = 5.

Proof of Theorem 1.6. Assume by contradiction that for a general curve

[C] ∈ M11 there exists a linear series L ∈ W 4
13(C) such that C

|L|
→֒ P4

lies on a quadric Q ⊂ P4. We claim that Q must be smooth, because
otherwise, rank(Q) ≤ 4, and then L is expressible as the sum of two pencils.
This contradicts the fact that gon(C) = 7. After counting dimensions, we
observe that there exists X ∈ |IC/P4(3)|, which does not contain Q, and

such that S := Q ∩ X ⊂ P4 is a smooth K3 surface. By direct calculation,
we check that h0(S,OS(H − C)) ≥ 2 and (H − C)2 = 0, that is, S is an
elliptic K3 surface. This contradicts the main result of [M1], where it has
been shown that a general curve of genus 11 lies on a single K3 surface of
degree 20, which moreover is general in its moduli space, in particular it has
Picard number one. ¤

We next turn to the case of globally generated vector bundles E with
h0(C, E) = 5 having no sub-pencils. We set as usual L := det(E) and then
h0(C, L) ≥ 7.
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Remark 3.8. For a general curve [C] ∈ M2a+1, Mercat’s Conjecture holds
for vector bundles with 5 sections, if and only if BNC(2a + 5, 5) = ∅. Simi-
larly, for even genus, Mercat’s Conjecture for h0(C, E) = 5 holds in the case
of a general curve [C] ∈ M2a, if and only if BNC(2a + 3, 5) = ∅.

Via diagram (3), we use the existence of the Plücker quadrics in the ideal
of the curve φL(C) embedded by the determinant line bundle, to confirm
(1) in bounded genus:

Proof of Theorem 1.7: We fix a general curve [C] ∈ Mg and a globally
generated rank 2 vector bundle E on C with Cliff(C) + 2 ≤ µ(E) ≤ g − 1
and L := det(E) ∈ Picd(C). Let us assume that inequality (1) does not
hold, that is,

(5) d < 2
(

h0(C, E) − 2 + Cliff(C)
)

.

Then, as pointed out, E admits no sub-pencils and h0(C, L) ≥ 2h0(C, E)−3.
Since C satisfies the Brill-Noether theorem, one writes ρ

(

g, 2h0(C, E) −

4, d
)

≥ 0. Coupled with assumption (5), this forces h0(C, E) ≤ 5, and

then, h0(C, E) = 5, g = 15 and d ≤ 19. There is no harm in assuming
d = 19, because if BNC(19, 5) = ∅, the same statement holds for lower
degree by carrying out generic elementary transformations.

Therefore E ∈ BNC(19, 5) and from Proposition 3.4, one finds that

dim Ker ν2(L) ≥ 5 = dim H0
(

P9, IG(2,5)/P9(2)
)

.

Using again that C is Brill-Noether general, we observe that h0(C, L) = 7,
h0(C, L⊗2) = χ(C, L⊗2) = 24 and A := KC ⊗ L∨ ∈ W 1

9 (C) is a pencil of
minimal degree. We infer that ν2(L) is not surjective, and there exists a
vector bundle F ∈ SUs

C(2, KC) in an extension

0 → A → F → L → 0,

such that h0(C, F ) = h0(C, A) + h0(C, L) = 2 + 7 = 9. The proof that F is
stable is standard, cf. [L] Prop. V.4. Applying [T3], one can assume that
the Mukai-Petri map

Sym2H0(C, F ) → H0(C,Sym2F )

is injective, which is absurd since 3g − 3 < h0(C, F )
(

h0(C, F ) + 1
)

/2. ¤

In the same spirit, we can link inequality (1) to a MRC statement.

Proposition 3.9. Let [C] ∈ Mg be general. Mercat’s Conjecture (1) for
vector bundles E with h0(C, E) = 5 is a consequence of the Maximal Rank
Conjecture.

Proof. We sketch only the odd genus case, and write g = 2a + 1. From
Remark 3.8 we know that it is enough to show that BNC(2a + 5, 5) = ∅. If
E ∈ UC(2, 2a+5) satisfies h0(C, E) = 5, then we know from Proposition 3.4
that the image φL(C) induced by the determinant line bundle, lies on at least
5 quadrics coming from the equations of the Grassmannian G(2, 5) ⊂ P9.
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We set r := h0(C, L)−1 ≥ 6. Over the variety Gr
2a+5(C) of linear series gr

2a+5

there exists a morphism of vector bundles ν2 : E2 → F2 which globalizes the
multiplication maps ν2(l), for l = (L, V ) ∈ Gr

2a+5(C). The Maximal Rank
Conjecture predicts that the determinantal locus

X5(ν2) := {l ∈ Gr
2a+5(C) : dim Ker ν2(l) ≥ 5},

has expected dimension, that is, X5(ν2) = ∅, hence no vector bundle E with
h0(C, E) = 5 can exist. ¤

To close, we record the form conjecture (1) takes for bundles with
6 sections. Computing the appropriate degrees, one must show that
BNC(2a+7, 6) = ∅ for a general curve [C] ∈ M2a+1 and BNC(2a+5, 6) = ∅
for a general curve [C] ∈ M2a.

4. Existence of stable vector bundles of rank 2 with 4 sections

We begin by describing all possible bundles E ∈ UC(2, 2a + 4) on a Petri
general curve [C] ∈ M2a+1 having h0(C, E) = 4. There are two cases to
distinguish. Assume first that E is stable and globally generated. Then E
carries no sub-pencil and L := det(E) ∈ W 4

2a+4(C), cf. Lemma 3.3 (see also
[GMN]). Using diagram (3), as before we obtain a quadric of rank at most
6

(6) QE ∈ P Ker
{

ν2(L) : Sym2H0(C, L) → H0(C, L⊗2)
}

containing the image of φL(C) of the curve under the linear series |L|.

Assume now that E carries a sub-pencil. Since gon(C) = a + 2, then
necessarily, E sits in an extension

(7) 0 → A → E → A′ → 0,

where A, A′ ∈ W 1
a+2(C), and h0(C, E) = h0(C, A)+h0(C, A′). In particular,

E is strictly semistable, h0(C, E) = 4 and the multiplication map

µ0(A
′, KC ⊗ A∨) : H0(C, A′) ⊗ H0(C, KC ⊗ A∨) → H0(C, KC ⊗ A′ ⊗ A∨),

obtained by dualizing the boundary morphism

Ext1(A′, A) → Hom
(

H0(C, A′), H1(C, A)
)

is not surjective (One notes that if A 6= A′, then by Riemann-Roch
h0(C, KC ⊗A∨) = a and h0(C, KC ⊗A′⊗A∨) = 2a, that is, µ0(A

′, KC ⊗A∨)
is a morphism between vector spaces of the same rank 2a).

For a general curve [C] ∈ M2a+1, the Brill-Noether curve W 1
a+2(C) is

smooth, connected and of genus

g′ := 1 +
a

a + 1

(

2a + 2

a

)

.

The associated map φ : M2a+1 99K Mg′ given by φ([C]) := [W 1
a+2(C)],

has been studied in some detail in [F4]. Intriguing questions, like that of
describing geometrically the image of φ in Mg′ , or of studying the (possibly
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empty) non-injectivity locus of φ, remain however. In particular, it would be
interesting to understand the geometric properties (e.g. Brill-Noether the-
ory, automorphisms if any) of the curve W 1

a+2(C). The previous condition,

shows that W 1
a+2(C) comes equipped with an interesting correspondence:

Theorem 4.1. Fix a ≥ 2 and a general curve [C] ∈ M2a+1. The locus of
pairs of pencils

SC := {(A, A′) ∈ W 1
a+2(C) × W 1

a+2(C) : µ0(A
′, KC ⊗ A∨) is not injective}

is a non-empty, symmetric correspondence on W 1
a+2(C), disjoint from the

diagonal.

From the Base Point Free Pencil Trick it follows that (A, A′) ∈ SC if
and only if H0(C, KC − A − A′) 6= 0, which proves that SC is symmetric.
Furthermore, since the multiplication maps µ0(A, KC ⊗A∨) are injective for
all A ∈ W 1

a+2(C), it follows that SC ∩∆W 1
a+2

(C) = ∅. The non-trivial part of

Theorem 4.1 is to show that SC 6= ∅, and we shall prove this by degeneration.
In order to carry this out, we need some preparation and recall a few basic
facts about degenerations of multiplication maps on curves.

We fix a pointed curve [C, p] ∈ Mg,1. If l = (L, V ) ∈ Gr
d(C) is a linear

series, then the vanishing sequence {al
i(p)}i=0,...,r of l at p is obtained by

ordering the positive integers {ordp(σ)}σ∈V . If L and M are line bundles on
C, we denote by

µ0(L, M) : H0(C, L) ⊗ H0(C, M) → H0(C, L ⊗ M)

the usual multiplication map. For any element ρ ∈ H0(C, L) ⊗ H0(C, M),
we write that ordp(ρ) ≥ k, if ρ lies in the span of elements of the form σ⊗ τ ,
where σ ∈ H0(C, L) and τ ∈ H0(C, M) are such that ordp(σ)+ordp(τ) ≥ k.
Suppose {σi} ⊂ H0(L) and {τj} ⊂ H0(M) are bases of global sections with
the property that ordp(σi) = aL

i (p) and ordp(τj) = aM
j (p) for all i and j.

Then if ρ ∈ Ker µ0(L, M), there exist two pairs of integers (i1, j1) 6= (i2, j2)
such that

ordp(ρ) = ordp(σi1) + ordp(τj1) = ordp(σi2) + ordp(τj2).

Let [C0 := D0 ∪p0
E0] ∈ ∆1 ⊂ M2a+1 be a stable curve, where [D0, p0] ∈

M2a,1 and [E0, p0] ∈ M1,1 are general pointed curves. Let M denote the

versal deformation space of C0, thus M → M2a+1 can be regarded as an
étale neighbourhood of [C0] ∈ M2a+1. We then consider the proper Deligne-
Mumford stack σ : G1

a+2 → M of limit linear series G1
a+2, as well as the

induced projection σ′ : G1
a+2 ×M G1

a+2 → M.

The key technical tool in the proof of Theorem 4.1 is the construction of
a stack

ν : S → G1
a+2 ×M G1

a+2
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such that, loosely speaking, the fibres of µ := σ′ ◦ν are the (degenerations of
the) correspondences SC , when [C] ∈ M. The construction of S goes along
the lines of [F2] Theorem 4.3, for which reason we shall be rather succint.

Definition 4.2. The stack µ : S → M has the following structure:

• For [C] ∈ M corresponding to a smooth curve, the points in the
fibre µ−1[C] are triples (A, A′, ρ), where A, A′ ∈ W 1

a+2(C) and ρ ∈
P Ker µ0(A

′, KC ⊗ A∨).

• For [C] ∈ M corresponding to a singular curve C := D ∪p E, where
[D, p] ∈ M2a,1 and [E, p] ∈ M1,1, the fibre µ−1[C] classifies elements

(

l, m, ρ1, ρ2

)

,

where m =
{

(L′
D, V ′

D), (L′
E , V ′

E)
}

∈ σ−1[C] is a limit g1
a+2 on C, whereas

l =
{(

KD(2p) ⊗ L∨
D, WD

)

,
(

OE(4a · p) ⊗ L∨
E , WE

)}

is a limit ga−1
3a−2 on C, which is complementary to a limit g1

a+2 on C having

as aspects the line bundles LD ∈ Pica+2(C) and LE ∈ Pica+2(E).

Furthermore, we have elements

ρ1 ∈ PKer{V ′
D ⊗ WD → H0

(

D, KD(2p) ⊗ L′
D ⊗ L∨

D

)

},

ρ2 ∈ PKer{V ′
E ⊗ WE → H0

(

E,OE(4a · p) ⊗ L′
E ⊗ L∨

E

)

}

satisfying the compatibility relation ordp(ρ1) + ordp(ρ2) ≥ 4a.

The morphism S
µ
→ M factors through σ′ : G1

a+2 ×M G1
a+2 → M by

forgetting the elements ρ1 and ρ2. Moreover, S has a determinantal struc-
ture over M and each fibre µ−1([C]) has dimension at least 1. We are in a
position to prove Theorem 4.1:

Proof of Theorem 4.1. Keeping the notation above, it suffices to show that
for C := D ∪p E, the fibre µ−1([C]) has at least one irreducible component
of dimension 1. This implies that µ(S) maps dominantly onto M. Since
for a smooth curve [C ′] ∈ M, the fibre µ−1([C ′]) is isomorphic to SC′ , the
conclusion follows.

We choose [D, p] ∈ M2a,1 sufficiently general such that (i) D satisfies
Petri’s Theorem, in particular, W 1

a+1(D) is finite and reduced, (ii) h0(D, A⊗
A′) = 4 for all pencils A 6= A′ on C of degree a + 1 (cf. [V1] 3.1), and (iii)
p /∈ supp(A), for any A ∈ W 1

a+1(D). We construct piece by piece an element

(l, m, ρ1, ρ2) ∈ µ−1[C] as follows: We set

m :=
{(

A′(p), |V ′
D| = p + |A′|

)

,
(

A′
E(a · p), |V ′

E | = a · p + |A′
E |

)}

,

where A′ ∈ W 1
a+1(D) and A′

E ∈ Pic2(E) are chosen arbitrarily. Then we
take the element

l :=
{

(

LD := KD(p) ⊗ A∨, |LD|
)

,

(

OE(3a · p) ⊗ A∨
E , (2a − 2) · p + |OE((a + 2) · p) ⊗ A∨

E)|
)

}

,
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where A ∈ W 1
a+1(C)−{A′}, and AE ∈ Pic2(E) is again arbitrary. Thus l is a

refined limit ga−1
3a−2 on C having vanishing sequence with respect to C equal to

alD(p) = (1, 2, . . . , a). By varying A, A′ ∈ W 1
a+1(D) and AE , A′

E ∈ Pic2(E),

we fill-up an entire component of the fibre (σ′)−1[C].
We now describe all possibilities of choosing ρ1, ρ2 compatible with l and

m. First, the element

ρ1 ∈ PKer
{

H0(D, A′(p))⊗H0
(

D, KD(p)⊗A∨
)

→ H0
(

D, KD(2p)⊗A′⊗A∨
)

}

is uniquely determined corresponding to the non-zero section from
H0(D, KD − A − A′). Clearly ordp(ρ1) = 3, hence by compatibility
ordp(ρ2) ≥ 4a − 3. After subtracting the base point p ∈ E, we find that
ρ2 must correspond to the unique non-zero element in the kernel of the
multiplication map

µ0(A
′
E ,OE(4p)⊗AE) : H0(A′

E)⊗H0(OE(4p)⊗A∨
E) → H0

(

OE(4p)⊗A′
E⊗A∨

E

)

.

This implies that AE ⊗ A′
E = OE(4p), hence AE ∈ Pic2(E) can be freely

chosen, and then A′
E and ρ2 are uniquely determined. All in all, µ−1([C])

has a 1-dimensional component, which completes the proof. ¤

Theorem 4.3. For a ≥ 4 and a general curve [C] ∈ M2a+1, the determi-
nantal variety

Koszul(C) := {L ∈ W 4
2a+4(C) : ν2(L) is not injective}

is non-empty and has a component of dimension 2, corresponding to com-
plete linear series L ∈ W 4

2a+4(C) which cannot be written as sums L =

A1 + A2, where A1, A2 ∈ W 1
a+2(C).

Proof. Over the smooth (2a − 4)-dimensional variety G4
2a+4(C) of linear

series g4
2a+4 on C, we construct vector bundles A and B having fibres

A(L, V ) := Sym2(V ) and B(L, V ) := H0(C, L⊗2)

over each point (L, V ) ∈ G4
2a+4(C), where L ∈ W 4

2a+4(C) and V ⊂ H0(C, L)
is the corresponding 5-dimensional space of sections. Clearly rank(A) = 15
and rank(B) = 2a + 8. There exists a morphism of vector bundles

ν2 : A → B

such that

ν2(L, V ) : Sym2(V ) → H0(C, L⊗2)

is the multiplication map of sections. Every irreducible component of the de-
generacy locus Quad(ν2) := {(L, V ) ∈ G4

2a+4(C) : ν2(L, V ) is not injective}
has dimension at least 2 = dim G4

2a+4(C) − (2a + 8 − 14).

To show that Quad(ν2) 6= ∅, we use that the correspondence SC is non-
empty, and choose a pair (A, A′) ∈ SC , such that h0(C, A ⊗ A′) = 5. The
pencils A and A′ are complete and base point free, and we pick {σ0, σ1} ⊂
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H0(C, A) (respectively {σ′
0, σ

′
1} ⊂ H0(C, A′)) bases for the respective spaces

of sections. Then the element

(σ0 · σ
′
1) · (σ1 · σ

′
0) − (σ0 · σ

′
0) · (σ1 · σ

′
1) ∈ Sym2H0(C, A ⊗ A′)

lies obviously in Ker ν2(A ⊗ A′), that is, A ⊗ A′ ∈ X(ν2). Let Z ⊂ X(ν2)
be an irreducible component such that A ⊗ A′ ∈ Z. Since dim(Z) ≥ 2 and
SC $ W 1

a+2(C) × W 1
a+2(C), necessarily, the general point of Z corresponds

to a complete linear series L ∈ W 4
2a+4(C), which cannot be expressed as a

sum of two pencils. ¤

To each L ∈ Koszul(C) as above, with an element 0 6= qL ∈ Ker ν2(L),
we assign a vector bundle E ∈ SUC(2, L) as follows, see also [GMN], [vB].
Since rank(qL) ≤ 5, there exists a subspace W ∈ G(3, H0(C, L)) such that

qL ∈ Sym2H0(C, L) ∩
(

W ⊗ H0(C, L)
)

.

We define E to be the kernel of the following evaluation map:

0 → E → W ⊗ L → L⊗2 → 0.

Clearly, det(E) = L and H0(C, E) ⊃ ∧2W ⊕ C · qL, thus h0(C, E) ≥ 4.
Moreover E is globally generated.

The proof that E is stable follows closely [GMN] Theorem 3.2: An arbi-
trary quotient line bundle A′ of E has h0(C, A′) ≥ 2. Either deg(A′) > a+2,
which implies that E is stable, or else, deg(A′) = a+2 and h0(C, A′) = 2. In
the latter case, E sits in an extension of type (7), in particular L is express-
ible as a sum of two elements from W 1

a+2(C), a contradiction. Therefore
E ∈ BNC(2a + 4, 4).

5. Applications of Koszul cohomology to rank 2 vector

bundles

There is an interesting connection between vector bundles E ∈
UC(2, d) and syzygies of low rank in the Koszul cohomology group
Kh0(E)−3,1

(

C,det(E)
)

. The first instance of this equivalence, when

h0(C, E) = 4, is classical and has been used in [BV], [M2], [GMN], as well
as in this paper. We review a general construction which can be traced back
to Voisin [V3], and has been explicitly worked out in [AN].

For a curve C and a globally generated line bundle L on C, the Koszul
cohomology group Kp,1(C, L) can be defined as the cohomology of the com-
plex:

p+1
∧

H0(C, L)
dp+1,0
−→

p
∧

H0(C, L)⊗H0(C, L)
dp,1
−→

p−1
∧

H0(C, L)⊗H0(C, L⊗2).

If ML is the Lazarsfeld bundle defined as the kernel of the evaluation map

0 → ML → H0(C, L) ⊗OC
ev
→ L → 0,
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a simple argument using the exact sequences

0 −→
a

∧

ML ⊗ L⊗b →
a

∧

H0(C, L) ⊗ L⊗b −→
a−1
∧

ML ⊗ L⊗(b+1) −→ 0

for various a and b, leads to an identification [PR] p.506,

(8) Kp,1(C, L) =
H0

(

C,
∧p ML ⊗ L

)

∧p+1 H0
(

C, L
) .

Definition 5.1. We say that a Koszul class [ζ] ∈ Kp,1(C, L) has rank ≤ n,
if there exists a subspace W ⊂ H0(C, L) with dim(W ) = n and a represen-
tative ζ ∈ ∧pW ⊗ H0(C, L).

Let E be a rank 2 bundle on C with h0(C, E) = p + 3 ≥ 4 and set
L := det(E). We assume that the determinant map

λ : ∧2H0(C, E) → H0(C, L)

does not vanish on decomposable tensors, or equivalently, E carries no sub-
pencils. Choosing a basis (e1, . . . , ep+3) of H0(C, E), we introduce the sub-
space

W :=
〈

s2 := λ(e1 ∧ e2), . . . , sp+3 := λ(e1 ∧ ep+3)
〉

⊂ H0(C, L).

By assumption, dim(W ) = p + 2. Following [AN] (2.1) and [V3] formula
(2.22), we define the syzygy

ζ(E) :=
∑

i<j

(−1)i+j s2∧. . .∧ŝi∧. . .∧ŝj∧. . .∧sp+3⊗λ(ei∧ej) ∈ ∧pW⊗H0(C, L).

It is shown in [V3] Lemma 5, that dp,1(ζ(E)) = 0, hence [ζ(E)] ∈ Kp,1(C, L)
gives rise to a non-trivial Koszul class of rank p + 2.

Remark 5.2. When h0(C, E) = 4, thus p = 1, using that K1,1(C, L) =

Ker ν2(L), as well as the quadric equation of G(2, 4) ⊂ P5, we observe that
[ζ(E)] = QE , that is, the classical construction (6) can be recovered in this
Koszul-theoretic setting.

Remark 5.3. The construction of [ζ(E)] appears to be insensitive to the
stability of E. If E = A1⊕A2, where A1, A2 are base point free line bundles
on C contributing to Cliff(C), if we set ri := h0(C, Ai) − 1 ≥ 1, then

0 6= [ζ(A1 ⊕ A2)] ∈ Kr1+r2−1(C, A1 ⊗ A2)

is the Green-Lazarsfeld syzygy [GL1]. It is the content of Green’s Conjecture
that in the case of the canonical bundle KC , in some sense, all non-trivial
syzygies appear in such a way. We refer to [V2], [V3] for a solution of Green’s
Conjecture for general curves and to [AF] for a survey.

Mercat’s Conjecture can be rewritten as

h0(E) ≤ sup
{

h0(A1) + h0(A2) : A1 ⊗ A2 = det(E),

hi(A1), h
i(A2) ≥ 2, i = 0, 1

}

.



20 Gavril Farkas and Angela Ortega

We conclude that the assignment

BNC(d, p + 3) ∋ E 7→ [ζ(E)] ∈ Kp,1(C,det(E))

is not expected to produce non-trivial syzygies other than in the range where
Green-Lazarsfeld syzygies are already known to appear.

This last observation, prompts us to formulate a Minimal Resolution Con-
jecture for the syzygies of curves embedded in projective space by complete
linear series. We fix a curve [C] ∈ Mg, a complete base point free linear
series L ∈ W r

d (C), and an integer 1 ≤ p ≤ d−g+1. Let φL : C → Pr be the
induced morphism. Using (8), the condition Kp,1(C, L) = 0 is equivalent to
the injectivity of the restriction map, cf. [PR] or [F5] Proposition 2.3,

(9) u(C, L) : H0
(

Pr,

p−1
∧

MP
r(2)

) |C
−→ H0

(

C,

p−1
∧

ML ⊗ L⊗2
)

.

Note that MP
r = ΩP

r(1) and by definition ML = φ∗
LMP

r . The dimensions
of both vector spaces appearing in the map (9) are independent of C and L:

h0(Pr,∧p−1MP
r(2)) =

(

r

p − 1

)

(r + 1)(r + 2)

p + 1

and

h0(C,∧p−1ML ⊗ L⊗2) =

(

r

p − 1

)

(

−
d

r
(p − 1) + 2d + 1 − g

)

,

where for the second calculation we have used a filtration argument due
to Lazarsfeld to show that H1(C,∧p−1ML ⊗ L⊗2) = 0. We refer to [F5]
Proposition 2.1 for details.

If σ : Gr
d → Mg is the space of pairs [C, L], where [C] ∈ Mg and L ∈

W r
d (C) − W r+1

d (C) is base point free, there exist vector bundles A and B
over Gr

d such that,

A[C, L] = H0
(

Pr,

p−1
∧

MP
r(2)

)

and B[C, L] = H0
(

C,

p−1
∧

ML ⊗ L⊗2
)

,

as well as a vector bundle morphism u : A → B which globalizes the maps
u(C, L). We raise the following logical possibility, which is a wide-range
generalization of both the Maximal Rank Conjecture (MRC)r

g,d and Green’s
Conjecture for general curves:

Conjecture 5.4. (Minimal Resolution Conjecture)
We fix integers g, r, d, p ≥ 1 such that g − d + r ≥ 0, and assume that

(10) r − 1 −
[g − 1

2

]

≤ p ≤ d − g + 1

and

(11)

(

r

p − 1

)

(

−
d

r
(p − 1) + 2d + 1 − g −

(r + 1)(r + 2)

p + 1

)

+ 1 > ρ(g, r, d).

Then for a general curve [C] ∈ Mg, we have that Kp,1(C, L) = 0, for all
L ∈ W r

d (C).
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The quantity [(g − 1)/2] is the Clifford index of the general curve of
genus g. Condition (10) ensures (via Mercat’s Conjecture), that non-trivial
syzygies of the form [ζ(E)] ∈ Kp,1(C,det(E)) do not appear in the predicted
range. Note that certainly, syzygies of Green-Lazarsfeld type do not appear
in Kp,1(C, L), for they would correspond to a pencil A ∈ W 1

r−p(C) and
a decomposition L = A ⊗ (L ⊗ A∨) where r(A) + r(L ⊗ A∨) = p. But
r − p > gon(C), thus W 1

r−p(C) = ∅.

Condition (11) which implies in particular that rank(A) ≤ rank(B), ex-
presses the belief/hope that the first degeneracy locus of the morphism
u : A → B has the expected dimension and maps to a proper subvariety
of Mg. Conjecture 5.4 implies Mercat’s Conjecture. Of course, we regard
the Minimal Resolution Conjecture as being vastly more difficult than Mer-
cat’s Conjecture, but would still like to point out a remarkable compatibility
between two predictions which have been formulated independently.

Remark 5.5. When d = 2g − 2, r = g − 1, hence W g−1
2g−2(C) = {KC},

Conjecture 5.4 specializes to Green’s Conjecture for general curves. This
has been established by Voisin [V2], [V3]. The case p = 1 of the Mini-
mal Resolution Conjecture is simply the statement (MRC)r

g,d formulated

in Section 2. Various other cases have been proved when ρ(g, r, d) = 0 and
rank(A) = rank(B), that is, when the failure locus

Syzr
g,d := {[C] ∈ Mg : Kp,1(C, L) 6= 0 for a certain L ∈ W r

d (C)}

is a divisor. We mention the case (g, r, d) = (10, 4, 12) cf. [FP], when the
locus Syz1210,4 is the K3 divisor on M10, as well as the cases (g, r, d) =
(16, 7, 21), (22, 10, 30) see [F5].

Remark 5.6. When p = 1 condition (10) is superfluous, being a conse-
quence of (11). For higher values of p it can happen that (11) holds but (10)
fails. An instructive example is that of 2-canonically embedded curves

C
|K⊗2

C
|

−→ P3g−4,

when d = 4g−4, r = 3g−4. Assume g = 4a, where a ∈ Z. For p = 9a−5, one
notices by direct calculation that rank(A) = rank(B), and one would expect
the degeneracy locus of u : A → B to be a divisor. However inequality (10)
is not satisfied since p ≤ h0(C, K⊗2

C )− 1−Cliff(C), and indeed by [GL1] we

have that Kp,1(C, K⊗2
C ) 6= 0, for every curve [C] ∈ Mg. Therefore u : A → B

is everywhere degenerate.

Remark 5.7. The name Minimal Resolution Conjecture already appears
in literature and refers to a statement predicting that if X ⊂ Pr is an
embedded projective variety, the resolution of general sets of points Γ ⊂
X is ”minimal”, being determined by the Hilbert function of X and the
cardinality |Γ|. We refer to [FMP] for a formulation of the most general
form of the conjecture and to [EPSW] for the most studied case, that of
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X = Pr. In the case when X = C
|L|
→ Pr is a smooth curve of genus g

embedded by a very ample linear series L ∈ W r
d (C), MRC for points as

formulated in [FMP] Corollary 1.8 is equivalent to a collection of vanishing
statements for every integer 0 ≤ i ≤ r:

H1(C,∧iML ⊗ ξ) = 0, for a general ξ ∈ Picj(C), where j = g − 1 + ⌈
di

r
⌉,

and

H0(C,∧iML ⊗ ξ) = 0, for a general ξ ∈ Picj(C), where j = g − 1 + ⌊
di

r
⌋.

We do not see an obvious connection between Conjecture 5.4 which predicts
the minimality of the resolution of C itself, and MRC for general points
on C. This discrepancy is vividly illustrated when L = KC : Conjecture 5.4
specializes to Green’s Conjecture for general curves, whereas the Minimal
Resolution Conjecture for points boils down to the following equality of
cycles in the Jacobian, see [FMP] Theorem 3.1:

ΘVi M∨
KC

= Cg−i−1 − Ci ⊂ Picg−2i−1(C).

This is a statement of a different flavour, for instance it is insensitive to
Cliff(C).

We record various applications of the Conjecture 5.4:

Proposition 5.8. We fix integers 1 ≤ r ≤ g − 2, a general curve [C] ∈ Mg

and a general line bundle L ∈ Picg+r(C). Assuming the Minimal Resolu-
tion Conjecture for C, for any vector bundle E ∈ SUC(2, L), the following
inequality holds:

h0(C, E) < 3 +
r2 − g

r + g
.

Proof. We assume that E is a semistable vector bundle on C with det(E) =
L and write

h0(C, E) = p + 3 ≥ 3 +
r2 − g

r + g
.

First we note that E carries no sub-pencils. Indeed, a general L ∈ Picg+r(C)
cannot be expressed as a sum L = A⊗A′, where h0(C, A)+h0(C, A′) ≥ p+3.
It follows that 0 6= [ζ(E)] ∈ Kp,1(C, L). The numerical assumption on p is
equivalent to the condition rank(A) ≤ rank(B), in particular Conjecture 5.4
implies that Kp,1(C, L) = 0, which is a contradiction. ¤

Remark 5.9. To derive Proposition 5.8 we have used a much weakened

version of Conjecture 5.4. Precisely, for a general [C] ∈ Mg and p ≥ r2−g
r+g ,

it suffices to produce a single example of a line bundle L ∈ Picg+r(C) such
that Kp,1(C, L) = 0, for Theorem 5.8 to hold true.
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Example 5.10. The assumptions of Theorem 5.8 can be fulfilled for
bounded genus. A nice illustration is the case g = 8, r = 6. The Mini-
mal Resolution Conjecture predicts that K2,1(C, L) = 0 for a general line

bundle L ∈ Pic14(C). Equivalently, the ideal of the curve C
|L|
−→ P6 is cut

out by quadrics. This has been verified by Verra [Ve] Theorem 5.16, in the
course of his proof of the unirationality of M14. Then from Proposition
5.8 we deduce that h0(C, E) ≤ 4, for any E ∈ SUC(2, L). If we drop the
genericity assumption on the determinant bundle L, we can find vector bun-
dles having more sections. For instance, there exists a unique vector bundle
E ∈ SUC(2, KC) with h0(C, E) = 6, see [M2] Theorem A.

An important particular case of Theorem 5.8 is when r = g − 2. In this
situation, the predicted vanishing for Koszul cohomology is equivalent to the
Prym-Green Conjecture, already formulated in [AF] 1.4: If L ∈ Pic2g−2(C)
is a general line bundle,

(12) Kp,1(C, L) = 0 ⇔ p ≥
g − 4

2
.

The Prym-Green Conjecture predicts in particular, that for g = 2i + 6, the
general paracanonical curve C ⊂ Pg−2 embedded by a g

g−2
2g−2, enjoys property

(Ni). This statement has important applications to the birational geometry
of the moduli spaces Rg,l parametrizing pairs [C, ξ] where [C] ∈ Mg and

ξ⊗l = OC . The Prym-Green Conjecture has been verified for all g ≤ 16 and
details will appear in [EFS].

Proposition 5.11. For a general curve [C] ∈ Mg with g ≤ 16, and a
general line bundle L ∈ Pic2g−2(C), one has the following inequality for all
E ∈ SUC(2, L):

h0(C, E) ≤
g + 1

2
.

It is worth pointing out that when L = KC , the conclusion of Theo-
rem 5.11 no longer holds. If [C] ∈ M2a lies on a K3 surface, Mukai
and Voisin [V1] have showed that there exists a (unique!) vector bundle
E ∈ SUC(2, KC) with h0(C, E) = a + 2. On the other hand, the Brill-
Noether subvarieties of SUC(2, KC) have a Lagrangian structure and are
governed by different numerical invariants [BF], [T3].

We close, by pointing out that each time a form of the Minimal Resolution
Conjecture is known, one can derive a corresponding non-existence result
for rank 2 vector bundles. The following result, is just one example of a
statement of this type:

Proposition 5.12. We fix a general curve [C] ∈ M16 and L ∈ W 7
21(C) one

of the finitely many linear series residual to a minimal pencil. Then there
exist no semistable bundles E ∈ SUC(2, L) with h0(C, E) = 5.

Proof. We observe that Cliff(C) = Cliff(L) = 7. Let E be a semistable
bundle with det(E) = L and h0(C, E) ≥ 5. First we claim that E cannot
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have sub-pencils. Indeed, if

0 → A → E → A′ → 0

is an extension with h0(C, A) ≥ 2, then deg(A) ≥ 9 = gon(C), hence
deg(A′) ≤ 12 and h0(C, A′) ≤ 2 by Brill-Noether theory. In particular
h0(C, E) ≤ h0(C, A) + h0(C, A′) ≤ 4, a contradiction. Thus the bundle E
is free of sub-pencils, and then 0 6= [ζ(E)] ∈ K2,1(C, L). This implies that
K1,2(C, L) 6= 0, in particular using [F5] Theorem 1.1, [C] ∈ M16 belongs to

the Koszul divisor Syz716,21, which contradicts the generality of C. ¤
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