
THE UNIVERSAL THETA DIVISOR OVER THE MODULI SPACE OF CURVES

GAVRIL FARKAS AND ALESSANDRO VERRA

The universal theta divisor over the moduli space Ag of principally polarized
abelian varieties of dimension g, is the divisor Θg inside the universal abelian variety
Xg over Ag, characterized by two properties: (i) Θg |[A,Θ] = Θ, for every principally

polarized abelian variety [A, Θ] ∈ Ag, and (ii) the restriction s∗(Θg) along the zero
section s : Ag → Xg is trivial on Ag. The study of the geometry of Θg closely mirrors
that of Ag itself. Thus it is known that Θg is unirational for g ≤ 4; the case g ≤ 3
is classical, for g = 4, we refer to [Ve]. The geometry of Θ5 will be addressed in the
forthcoming paper [FV3]. Whenever Ag is of general type (that is, in the range g ≥ 7,
cf. [Fr], [Mum], [T]), one can use Viehweg’s additivity theorem [Vi] for the fibre space
Θg → Ag whose generic fibre is a variety of general type, to conclude that Θg is of
general type as well. The Kodaira dimension of Θ6 (and that of A6) is unknown.

The main aim of this paper is to present a complete birational classification by
Kodaira dimension of the universal theta divisor

Thg := Mg ×Ag
Θg

over the moduli space of curves. If [C] ∈ Mg is a smooth curve, the Abel-Jacobi map
Cg−1 → Picg−1(C) provides a resolution of singularities of the theta divisor ΘC of the
Jacobian of C. Thus one may regard the degree g − 1 universal symmetric product
Cg,g−1 := Mg,g−1/Sg−1 as a birational model of Thg (having only finite quotient sin-
gularities), and ask for the place of Thg in the classification of varieties. We provide a
complete answer to this question. For small genus, Thg enjoys rationality properties:

Theorem 0.1. Thg is unirational for g ≤ 9 and uniruled for g ≤ 11.

The first part of the theorem, is a consequence of Mukai’s work [M1], [M2] on
representing canonical curves with general moduli as linear sections of certain homo-

geneous varieties. When g ≤ 9, there exists a Fano variety Vg ⊂ PNg of dimension
ng := Ng − g + 2 and index ng − 2, such that general 1-dimensional complete intersec-
tions of Vg are canonical curves [C] ∈ Mg having general moduli. The correspondence

Σ := {
(
(x1, . . . , xg−1), Λ) ∈ V g−1

g × G(g, Ng + 1) : xi ∈ Λ, for i = 1, . . . , g − 1
}

maps dominantly onto Thg via the map
(
(x1, . . . , xg−1), Λ

)
7→ [Vg ∩ Λ, x1 + · · · + xg−1].

Since Σ is a Grassmann bundle over the rational variety V g−1
g , it follows that Thg is

unirational in the range g ≤ 9. The cases g = 10, 11 are settled by the observation that
in this range the space Mg,g−1 is uniruled, see [FP], [FV2].

For the remaining genera, we prove the following classification result:

Theorem 0.2. The universal theta divisor Thg is a variety of general type for g ≥ 12.

We also have a birational classification theorem for the universal degree n sym-
metric product Cg,n := Mg,n/Sn for all 1 ≤ n ≤ g − 2, and refer to Section 3 for details.
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Our results are complete in degree g − 2 and less precise as n decreases. Similarly to
Theorem 0.2, the nature of Cg,g−2 changes when g = 12:

Theorem 0.3. The universal degree g−2 symmetric product Cg,g−2 is uniruled for g < 12 and
a variety of general type for g ≥ 12.

The proofs of Theorems 0.2 and 0.3 rely on two ingredients. First, we use our
result [FV2], stating that for g ≥ 4, the singularities of Cg,n impose no adjoint conditions,

that is, pluricanonical forms defined on the smooth locus of Cg,n extend to a smooth

model of the symmetric product. Precisely, if ǫ : C̃g,n → Cg,n denotes any resolution of
singularities, then for any l ≥ 0, there is a group isomorphism

ǫ∗ : H0
(
(Cg,n)reg, KC

⊗l

g,n

) ∼=
→ H0

(
C̃g,n, KeC⊗l

g,n

)
.

In particular, Thg is of general type when the canonical class KCg,g−1
∈ Pic(Cg,g−1) is

big. This makes the problem of understanding the effective cone of Cg,g−1 of some

importance. If π : Mg,g−1 → Cg,g−1 is the quotient map, the Hurwitz formula gives that

(1) π∗(KCg,g−1
) ≡ KMg,g−1

− δ0:2 ∈ Pic(Mg,g−1).

The sum
∑g−1

i=1 ψi ∈ Pic(Mg,g−1)
Sg−1 of cotangent tautological classes descends to a big

and nef class on Cg,g−1 (cf. Proposition 1.2), thus in order to conclude that Thg is of

general type, it suffices to exhibit an effective divisor D ∈ Eff(Cg,g−1), such that

(2) π∗(KCg,g−1
) ∈ Q>0

〈
λ,

g−1∑

i=1

ψi

〉
+ φ∗Eff(Mg) + Q≥0

〈
π∗([D]), δi:c : i ≥ 0, c ≥ 2

〉
.

In this formula, φ : Mg,g−1 → Mg denotes the morphism forgetting the marked points,

and refer to Section 1 for the standard notation for boundary divisor classes on Mg,n.
Comparing condition (2) against the formula for KCg,g−1

given by (4), if one writes

π∗(D) ≡ aλ − birrδirr + c
∑g−1

i=1 ψi −
∑

i,c bi:cδi:c ∈ Pic(Mg,g−1), the following inequality

(3) 3c < b0:2

is a necessary condition for the existence of a divisor D satisfying (2). It is straightfor-
ward to unravel the geometric significance of the condition (3). If [C] ∈ Mg is a general

curve, there is a rational map u : Cg−1 99K Cg,g−1 given by restriction. Denoting by
x, θ ∈ N1(Cg−1)Q the standard generators of the Néron-Severi group of the symmet-

ric product, the inequality (3) characterizes precisely those divisors D ∈ Pic(Cg,g−1) for
which u∗([D]) lies in the fourth quarter of the (θ, x)-plane (see [K1] for details on the ef-
fective cone of Cg−1). The divisor D ⊂ Cg,g−1 playing this role in our case, is the residual
divisor of the universal ramification locus of the Gauss map.

For a curve [C] ∈ Mg, we denote by γ : Cg−1 99K
(
Pg−1

)∨
the Gauss map, given

by γ(D) := 〈D〉 for D ∈ Cg−1 − C1
g−1. The branch divisor BrC(γ) ⊂ (Pg−1)∨ is isomor-

phic to the dual of the canonical curve C ⊂ Pg−1. The closure in Cg−1 of the ramification
divisor RamC(γ) is isomorphic to the diagonal ∆C := {2p + D : p ∈ C, D ∈ Cg−3}, see
[An]. In particular, this identification allows one to reconstruct the curve C from the
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theta divisor ΘC and thus prove Torelli’s theorem. Let us consider the residual divisor
ResC(γ), defined via the following equality of divisors on Cg−1

γ∗(BrC(γ)) = ResC(γ) + RamC(γ).

Globalizing this construction over Mg, we are lead to consider the effective divisor

RTg := {[C, x1, . . . , xg] ∈ Mg,g−1 : ∃p ∈ C with H0
(
C, KC(−x1−· · ·−xg−1−2p)

)
6= 0}.

The key ingredient in the proof of Theorem 0.2 is the calculation of the class of RTg:

Theorem 0.4. The closure in Mg,g−1 of the locus RTg := {[C, x1, . . . , xg−1] ∈ Mg,g−1 :
x1 + · · · + xg−1 ∈ ResC(γ)} is linearly equivalent to,

RTg ≡ −4(g − 7)λ + 4(g − 2)

g−1∑

i=1

ψi − 2δirr − (12g − 22)δ0:2−

−

g∑

i=0

i−1∑

s=0

(
2i3 − 5i2 − 3i+4g− 4i2s+14si− 6gs− s+2s2g− 3s2 +2

)
δi:s ∈ Pic(Mg,g−1).

In particular we note that condition (3) is satisfied. Since by construction, RTg is

Sg−1-invariant, it descends to an effective divisor R̃Tg on Cg,g−1 which, as it turns out,

spans an extremal ray of the cone Eff(Cg,g−1). Indeed, the universal theta divisor comes

equipped with the rational involution τ : Cg,g−1 99K Cg,g−1 given by

τ
(
[C, x1 + · · · + xg−1]

)
:= [C, y1 + · · · + yg−1],

where OC(y1 + · · · + yg−1 + x1 + · · · + xg−1) = KC . Then R̃Tg is the pull-back of the

boundary divisor ∆̃0:2 ⊂ Cg,g−1 under this map. Since the extremality of ∆̃0:2 is easy to
establish, the following result comes naturally:

Theorem 0.5. The effective divisor R̃Tg is covered by irreducible curves Γg ⊂ Cg,g−1 such that

Γg · R̃Tg < 0. In particular R̃Tg ∈ Eff(Cg,g−1) is a non-movable extremal effective divisor.

The curves Γg have a simple modular construction. One fixes a general linear
series A ∈ W 2

g+1(C), in particular A is complete and has only ordinary ramification

points. The general point of Γg corresponds to an element [C, D] ∈ Cg,g−1, where D ∈
Cg−1 is an effective divisor such that H0

(
C, A ⊗ OC(−2p − D)

)
6= 0, for some point

p ∈ C, that is, D is the residual divisor cut out by a tangent line to the degree g+1 plane
model of C given by A. Once more we refer to Section 2 for details.

We explain briefly how Theorem 0.4 implies the statement about the Kodaira di-

mension of Cg,g−1. We choose an effective divisor D ≡ aλ−
∑[g/2]

i=0 biδi ∈ Eff(Mg) on the
moduli space of curves, with a, bi ≥ 0, having slope s(D) := a

minibi
as small as possible.

Then note that the following linear combination

π∗(KCg,g−1
)−

1

6g − 11

(3

2
[RTg]−(12g−25)φ∗(D)−

g−1∑

i=1

ψi−
(
(84g−185)−(12g−25)s(D)

)
λ
)

is expressible as a positive combination of boundary divisors on Mg,g−1. Since, as al-

ready pointed out, the class
∑g−1

i=1 ψi ∈ Pic(Mg,g−1) descends to a big class on Cg,g−1,
one obtains the following:
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Corollary 0.6. For all g such that the slope of the moduli space of curves satisfies the inequality

s(Mg) := infD∈Eff(Mg)s(D) <
84g − 185

12g − 25
,

the universal theta divisor Thg is of general type.

The bound appearing in Corollary 0.6 holds precisely when g ≥ 12; for g such
that g + 1 is composite, the inequality s(Mg) ≤ 6 + 12/(g + 1) is well-known, and

D can be chosen to be a Brill-Noether divisor M
r
g,d corresponding to curves with a gr

d

when the Brill-Noether number ρ(g, r, d) = −1, cf. [EH1]. When g + 1 is prime and
g 6= 12, then in practice g = 2k − 2 ≥ 16, and D can be chosen to be the Gieseker-Petri

GP
1
g,k consisting of curves C possessing a pencil A ∈ W 1

k (C) such that the Petri map

µ0(C, A) : H0(C, A) ⊗ H0(C, KC ⊗ A∨) → H0(C, KC) is not an isomorphism. When
g = 12, one has to use the divisor constructed on M12 in [FV1]. Finally, when g ≤ 11

it is known that s(Mg) ≥ 6 + 12/(g + 1) and inequality (0.6) is not satisfied. In fact, as
already pointed out κ(Thg) = −∞ in this range.

The proof of Theorem 0.3 proceeds along similar lines, and relies on finding an
explicit Sg−2-invariant extremal ray of the cone of effective divisors on Mg,g−2. A repre-
sentative of this ray is characterized by the geometric condition that the marked points
appear in the same fibre of a pencil of degree g − 1. One can construct such divisors on
all moduli spaces Mg,n with 1 ≤ n ≤ g − 2, cf. Section 3.

Theorem 0.7. The closure inside Mg,g−2 of the locus

Fg,1 := {[C, x1, . . . , xg−2] ∈ Mg,g−2 : ∃A ∈ W 1
g−1(C) with H0

(
C, A(−

g−2∑

i=1

xi)
)
6= 0}

is a non-movable, extremal effective divisor on Mg,g−2. Its class is given by the formula:

Fg,1 ≡ −(g−12)λ+(g−3)

g−2∑

i=1

ψi−δirr−
1

2

g−2∑

s=2

s(g−4+sg−2s) δ0:s−· · · ∈ Pic(Mg,g−2).

Note that again, inequality (3) is satisfied, hence Fg,1 can be used to prove that

KCg,g−2
is big. Moreover, Fg,1 descends to an extremal divisor F̃g,1 ∈ Eff(Cg,g−2). In

fact, we shall show that F̃g,1 is swept by curves intersecting its class negatively.

Divisors similar to those considered in Theorems 0.4 and 0.7 can be constructed
on other moduli spaces. On Mg,g−3 we construct an extremal divisor using a somewhat
similar construction. If D ∈ Cg−3 is a general effective divisor of degree g−3 on a curve
[C] ∈ Mg, we observe that KC ⊗ OC(−D) ∈ W 2

g+1(C). A natural codimension one

condition on Mg,g−3 is that this plane model have a triple point (a similar construction
requiring instead that KC ⊗OC(−D) have a cusp, produces a ”less extremal” divisor):

Theorem 0.8. The closure inside Mg,g−3 of the locus

Dg := {[C, x1, . . . , xg−3] ∈ Mg,g−3 : ∃L ∈ W 2
g (C) with H0

(
C, L(−

g−3∑

i=1

xi)
)
6= 0}
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is an effective divisor. Its class in Pic(Mg,g−3) is equal to

Dg ≡ −
2(g − 17)

3

(
g − 3

2

)
λ+

2g − 3

3

(
g − 4

2

) g−3∑

i=1

ψi−

(
g − 3

2

)
δirr−(g2−5g+5)(g−5)δ0:2−· · · .

1. CONES OF DIVISORS ON UNIVERSAL SYMMETRIC PRODUCTS

The aim of this section is to establish certain facts about boundary divisors on
Mg,n and Cg,n, see [AC] for a standard reference. We follow the convention set in [FV2],
that is, if M is a Deligne-Mumford stack, we denote by M its coarse moduli space.

For an integer 0 ≤ i ≤ [g/2] and a subset T ⊂ {1, . . . , n}, we denote by ∆i:T

the closure in Mg,n of the locus of n-pointed curves [C1 ∪ C2, x1, . . . , xn], where C1 and
C2 are smooth curves of genera i and g − i respectively meeting transversally in one
point, and the marked points lying on C1 are precisely those indexed by T . We define
δi:T := [∆i:T ]Q ∈ Pic(Mg,n). For 0 ≤ i ≤ [g/2] and 0 ≤ s ≤ g, we set

∆i:s :=
∑

#(T )=s

δi:T , δi:s := [∆i:s]Q ∈ Pic(Mg,n).

By convention, δ0:s := ∅, for s < 2, and δi:s := δg−i:n−s. If φ : Mg,n → Mg is the
morphism forgetting the marked points, we set λ := φ∗(λ) and δirr := φ∗(δirr), where
δirr := [∆irr] ∈ Pic(Mg) denotes the class of the locus of irreducible nodal curves.

Furthermore, ψ1, . . . , ψn ∈ Pic(Mg,n) are the cotangent classes corresponding to the

marked points. The canonical class of Mg,n is computed via Kodaira-Spencer theory:

(4) KMg,n
≡ 13λ − 2δirr +

n∑

i=1

ψi − 2
∑

T⊂{1,...,n}
i≥0

δi:T − δ1:∅ ∈ Pic(Mg,n).

Let Cg,n := Mg,n/Sn be the universal symmetric product and π : Mg,n → Cg,n (respec-

tively ϕ : Cg,n → Mg) the projection (respectively the forgetful map), so that φ = ϕ ◦ π.

We denote by λ̃, δ̃irr, δ̃i:c := [∆̃i:c] ∈ Pic(Cg,n) the divisor classes on the symmetric prod-

uct pulling-back to the same symbols on Mg,n. Clearly, π∗(λ̃) = λ, π∗(δ̃irr) = δirr,

π∗(δ̃i:c) = δi:c; in the case i = 0, c = 2, this reflects the branching of the map π along the

divisor ∆̃0:2 ⊂ Cg,n. Following [FV2], let L denote the line bundle on Cg,n, having fibre

L[C, x1 + · · · + xn] := T∨
x1

(C) ⊗ · · · ⊗ T∨
xn

(C),

over a point [C, x1 + · · · + xn] := π([C, x1, . . . , xn]) ∈ Cg,n. We set ψ̃ := c1(L), and note:

(5) π∗(ψ̃) =
n∑

i=1

(
ψi −

∑

i∈T⊂{1,...,n}

δ0:T

)
=

n∑

i=1

ψi −
n∑

s=2

s δ0:s ∈ Pic(Mg,n).

Proposition 1.1. For g ≥ 3 and n ≥ 0, the morphism π∗ : Pic(Cg,n)Q → Pic(Mg,n)Q is

injective. Furthermore, there is an isomorphism of groups Pic(Cg,n)Q

∼=
→ N1(Cg,n)Q.

Proof. The first assertion is an immediate consequence of the existence of the norm mor-

phism Nmπ : Pic(Mg,n) → Pic(Cg,n), such that Nmπ(π∗(L)) = L⊗deg(π), for every L ∈

Pic(Cg,n). The second part comes from the isomorphism Pic(Mg,n)Q

∼=
→ N1(Mg,n)Q,
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coupled with the commutativity of the obvious diagrams relating the Picard and Néron-
Severi groups of Mg,n and Cg,n respectively. ¤

One may thus identify Pic(Cg,n)Q
∼= Pic(Mg,n)Sn

Q . The Riemann-Hurwitz for-

mula applied to the branched covering π : Mg,n → Cg,n yields,

π∗(KCg,n) = KMg,n
− δ0:2 ≡ 13λ +

n∑

i=1

ψi − 2δirr − 3δ0:2 − 2
n∑

s=3

δ0:s − · · · .

As expected, the sum of cotangent classes descends to a big line bundle on Cg,n.

Proposition 1.2. The divisor class Ng,n := ψ̃ +
∑n

s=2 sδ̃0:s ∈ Eff(Cg,n) is big and nef.

Proof. The class Ng,n is characterized by the property that π∗(Ng,n) =
∑n

i=1 ψi. This is

a nef class on Mg,n, in particular, Ng,n is nef on Cg,n. To establish that Ng,n is big, we

express it as a combination of effective classes and the class κ̃1 ∈ Pic(Cg,n), where

π∗(κ̃1) = κ1 = 12λ +

n∑

i=1

ψi − δirr −

[g/2]∑

i=0

∑

s≥0

δi:s ∈ Pic(Mg,n).

Since π∗(κ̃1) is ample on Mg,n, it follows that κ̃1 is ample as well. To finish the proof,

we exhibit a suitable effective class on Mg,n having negative λ-coefficient. For that
purpose, we choose Wg,n ⊂ Cg,n to be the locus of effective divisors having a Weierstrass

point in their support. For i = 1, . . . , n, we denote by σi : Mg,n → Mg,1 the morphism
forgetting all but the i-th point, and let

W ≡ −λ +

(
g + 1

2

)
ψ −

g−1∑

i=1

(
g − i + 1

2

)
δi:1 ∈ Eff(Mg,1),

be the class of the divisor of Weierstrass points on the universal curve. Then one finds

π∗(Wg,n) ≡
n∑

i=1

σ∗
i (W) = −nλ +

(
g + 1

2

) n∑

i=1

ψi −

(
g + 1

2

) n∑

s=2

sδ0:s − · · · ∈ Pic(Mg,n),

and Wg,n ≡ −gλ̃ +
(
g+1
2

)
ψ̃ −

∑[g/2]
i=1

∑
s≥0 bi:sδ̃i:s, where bi:s > 0. One checks that Ng,n

can be written as a Q-combination with positive coefficients of the ample class κ̃1, the
effective class [Wg,n] and other boundary divisor classes. In particular, Ng,n is big. ¤

2. THE UNIVERSAL RAMIFICATION LOCUS OF THE GAUSS MAP

We begin the calculation of the divisor RTg, and for a start we consider its restric-
tion RTg to Mg,g−1. Recall that RTg is defined as the closure of the locus of pointed
curves [C, x1, . . . , xg−1] ∈ Mg,g−1, such that there exists a holomorphic form on C van-
ishing at x1, . . . , xg−1 and having an unspecified double zero.

Let u : M
(1)
g,g−1 → Mg,g−1 be the universal curve over the stack of (g − 1)-pointed

smooth curves and we denote by
(
[C, x1, . . . , xg−1], p

)
∈ M

(1)
g,g−1 a general point, where

[C, x1, . . . , xg−1] ∈ Mg,g−1 and p ∈ C is an arbitrary point. For i = 1, . . . , g − 1, let

∆ip ⊂ M
(1)
g,g−1 be the diagonal divisor given by the equation p = xi. Furthermore, for

i = 1, . . . , g − 1 we consider as before the projections σi : M
(1)
g,g−1 → Mg,1 (respectively
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σp : M
(1)
g,g−1 → Mg,1), obtained by forgetting all marked points except xi (respectively

p), and then set Ki := σ∗
i (ωφ) ∈ Pic(M

(1)
g,g−1) and Kp := σ∗

p(ωφ) ∈ Pic(M
(1)
g,g−1). We

consider the following cartesian diagram of stacks

X
q

−−−−→ M
(1)
g,g−1yf

y

Mg,1
φ

−−−−→ Mg

in which all the morphisms are smooth and φ (hence also q) is proper. For 1 ≤ i ≤ g − 1

there are tautological sections ri : M
(1)
g,g−1 → X as well as rp : M

(1)
g,g−1 → X , and set

Ei := Im(ri), Ep := Im(rp). Thus {Ei}
g−1
i=1 and Ep are relative divisors over q.

For a point
(
[C, x1, . . . , xg−1], p

)
∈ M

(1)
g,g−1, we denote D :=

∑g−1
i=1 xi + 2p ∈ Cg+1,

and have the following exact sequence:

0 →
H0

(
OC(D)

)

H0(OC)
→ H0

(
OD(D)

) αD→ H1(OC) → H1
(
OC(D)

)
→ 0.

In particular, the morphisms αD globalize to a morphism of vector bundles over M
(1)
g,g−1

α : A := q∗

(
OX

(g−1∑

i=1

Ei + 2Ep

)
/OX

)
→ R1q∗OX .

The subvariety Z :=
{(

[C, x1, . . . , xg−1], p
)
∈ M

(1)
g,g−1 : H0

(
KC(−2p−

∑g−1
i=1 xi)

)
6= 0

}
is

the non-surjectivity locus of α and RTg := u∗(Z) ⊂ Mg,g−1. The class of Z is equal to

[Z] = c2

(
A∨ −

(
R1q∗OX

)∨)
= c2

(
−q!OX (

g−1∑

i=1

Ei + 2Ep)
)
∈ A2(M

(1)
g,g−1),

where the last term can be computed by Grothendieck-Riemann-Roch:

ch
(
q!OX

(g−1∑

i=1

Ei + 2Ep

))
= q∗

[(∑

k≥0

(
∑g−1

i=1 Ei + 2Ep)
k

k!

)
·
(
1 −

c1(ωq)

2
+

c2
1(ωq)

12
+ · · ·

)]
,

and we are interested in evaluating the terms of degree 1 and 2 in this expression. The
result of applying GRR to the morphism q, can be summarized as follows:

Lemma 2.1. One has the following relations in A∗(M
(1)
g,g−1):

(i)

ch1

(
q∗

(
OX (

g−1∑

i=1

Ei + 2Ep)
))

= λ −

g−1∑

i=1

Ki − 3Kp + 2

g−1∑

i=1

∆ip.

(ii)

ch2

(
q∗

(
OX (

g−1∑

i=1

Ei + 2Ep)
))

=
5

2
K2

p +
1

2

g−1∑

i=1

K2
i − 2

g−1∑

i=1

(Ki + Kp) · ∆ip.
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Proof. We apply systematically the push-pull formula and the following identities:

E2
i = −Ei ·q

∗(Ki), E2
p = −Ep ·q

∗(Kp), Ei ·c1(ωq) = Ei ·q
∗(Ki), Ep ·c1(ωq) = Ep ·q

∗(Kp),

Ei · Ej = 0 for i 6= j, Ei · Ep = Ei · q
∗(∆ip), and q∗(c

2
1(ωq)) = 12λ.

¤

Proposition 2.2. The formula RTg ≡ −4(g − 7)λ + (4g − 8)
∑g−1

i=1 ψi ∈ Pic(Mg,g−1) holds.

Proof. We apply the results of Lemma 2.1, as well as the formulas from [HM] p. 55, in
order to estimate the push-forward under u of the degree 2 monomials in tautological

classes. Setting F := q∗
(
OX (

∑g−1
i=1 Ei + 2Ep)

)
, we obtain that

u∗

(
ch2

1(F)
)

= −(8g − 116)λ + (8g − 24)

g−1∑

i=1

ψi, and u∗

(
ch2(F)

)
= 30λ − 4

g−1∑

i=1

ψi,

hence [RTg] = u∗

(
ch2

1(F) − 2ch2(F)
)
/2, and the claimed formula follows at once. ¤

We proceed now towards proving Theorem 0.4 and expand the divisor class [RTg] ∈
Pic(Mg,g−1) in the standard basis of the Picard group, that is,

RTg ≡ aλ + c

g−1∑

i=1

ψi − birrδirr −

g∑

i=0

i−1∑

s=0

bi:sδi:s.

We have just computed a = −4(g − 7) and c = 4(g − 2). The remaining coefficients

are determined by intersecting RTg with curves lying in the boundary of Mg,g−1 and

understanding how RTg degenerates. We begin with the coefficient b0:2:

Proposition 2.3. One has the relation (4g − 6)c − (g − 2)b0:2 = (4g − 2)(g − 2). It follows
that b0:2 = 12g − 22.

Proof. We fix a general pointed curve [C, x1, . . . , xg−2] ∈ Mg,g−2 and consider the family

Cxg−1
:=

{
[C, x1, . . . , xg−2, xg−1] : xg−1 ∈ C

}
⊂ Mg,g−1.

The curve Cxg−1
is the fibre over [C, x1, . . . , xg−2] of the morphism Mg,g−1 → Mg,g−2

forgetting the point labeled by xg−1. Note that Cxg−1
· ψi = 1 for i = 1, . . . , g − 2 and

Cxg−1
· ψg−1 = 3g − 4 = 2g − 2 + (g − 2). Obviously Cxi

· δ0:2 = g − 2 and the points in
the intersection correspond to the case when xg−1 collides with one of the fixed points

x1, . . . , xg−2. The intersection of Cxi
with the remaining generators of Pic(Mg,g−1) is

equal to zero. We set A := KC ⊗ OC(−x1 − · · · − xg−2) ∈ W 1
g (C). By the generality

assumption, h0(C, A) = 2, and all ramification points of A are simple. Pointed curves

in the intersection Cxg−1
· RTg correspond to points xg−1 ∈ C, such that there exists a

(ramification) point p ∈ C with H0
(
C, A ⊗ OC(−2p − xg−1)

)
6= 0. The pencil A carries

4g − 2 ramification points. For each of them there are g − 2 possibilities of choosing
xg−1 ∈ C in the same fibre as the ramification point, hence the conclusion follows. ¤

Next we determine the coefficient birr. First we note that the relation

(6) a − 12birr + b1:0 = 0

holds. Indeed, the divisor RTg is disjoint from the curve in ∆1:0 ⊂ Mg,g−1, obtained

from a fixed pointed curve [C, x1, . . . , xg−1, q] ∈ Mg−1,g, by attaching at the point q a
pencil of plane cubics along a section of the pencil induced by one of the 9 base points.
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Proposition 2.4. One has the relation birr = 2.

Proof. We fix a general curve [C, q, x1, . . . , xg−1] ∈ Mg−1,g, and we define the family

Cirr :=
{
[C/t ∼ q, x1, . . . , xg−1] : t ∈ C} ⊂ ∆irr ⊂ Mg,g−1.

Then Cirr ·ψi = 1 for i = 1, . . . , g − 1, Cirr · δirr = −(deg(KC) + 2) = −2g + 2, and finally
Cirr ·δ1:0 = 1. All other intersection numbers with generators of Pic(Mg,g−1) equal zero.

We fix an effective divisor D ∈ Ce of degree e ≥ g (for instance D = q +
∑g−1

i=1 xi).
For each pair of points (t, p) ∈ C × C, there is an exact sequence on C

0 → H0
(
C, KC(q + t − 2p −

g−1∑

i=1

xi)
)
→ H0

(
C, KC(D + q + t − 2p −

g−1∑

i=1

xi)
) βt,p
→

H0
(
D, KC(D + q + t − 2p −

g−1∑

i=1

xi)
)
→ H1

(
C, KC(q + t − 2p −

g−1∑

i=1

xi)
)
→ 0.

The intersection Cirr ·RTg corresponds to the locus of pairs (t, p) ∈ C ×C such that the
map βt,p is not injective. On the triple product of C, we consider two of the projections
f : C×C×C → C×C and p1 : C×C×C → C given by f(x, t, p) = (t, p) and p1(x, t, p) =

x, then set A := KC(q −
∑g−1

i=1 xi) ∈ Picg−2(C). We denote by ∆12, ∆13 ⊂ C ×C ×C the
corresponding diagonals, and finally, introduce the line bundle on C × C × C

F := p∗1(A) ⊗OC×C×C(∆12 − 2∆13).

Applying the Porteous formula, one can write

Cirr · RTg = c2(R
1f∗F − R0f∗F) =

ch2
1(f!F) + 2ch2(f!F)

2
∈ A2(C × C).

We evaluate chi(f!F) using GRR applied to the morphism f , that is,

ch(f!F) = f∗

[(∑

a≥0

(
p∗1(A) + ∆12 − 2∆13

)a

a!

)
·
(
1 −

1

2
p∗1(KC)

)]
.

Denoting by F1, F2 ∈ H2(C × C) the class of the fibres, after calculations one finds that

ch1(f∗F) = −(g − 2)F1 − 4(g − 2)F2 − 2∆C ∈ H2(C × C, Q),

ch2(f
∗F) = −2(g − 2) ∈ H4(C × C, Q),

that is, c2(R
1f∗F − R0f∗F) = 4(g − 2)(g − 1). Coupled with (6), this yields birr = 2. ¤

We are left with the task of determining the coefficient of δi:s in the expansion

of [RTg]. This requires solving a number of enumerative geometry problems in the
spirit of de Jonquières’ formula. We fix integers 0 ≤ i ≤ g and s ≤ i − 1 as well
as general pointed curves [C, x1, . . . , xs] ∈ Mi,s and [D, q, xs+1, . . . , xg−1] ∈ Mg−i,g−s,
then construct a pencil of stable curves of genus g, by identifying the fixed point q ∈ D
with a variable point, also denoted by q, on the component C:

Ci:s :=
{
[C ∪q D, x1, . . . , xs, xs+1, . . . , xg−1] : q ∈ C

}
⊂ ∆i:s ⊂ Mg,g−1.

We summarize the non-zero intersection numbers of Ci:s with generators of Pic(Mg,g−1):

Ci:s · ψ1 = · · · = Ci:s · ψs = 1, Ci:s · δi:s−1 = i, Ci:s · δi:s = 2i − 2 + s.
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Theorem 2.5. We fix integers 0 ≤ i ≤ g and 0 ≤ s ≤ i−1. Then, the following formula holds:

bi:s = 2i3 − 5i2 − 3i + 4g − 4i2s + 14si − 6gs − s + 2s2g − 3s2 + 2.

In the proof an essential role is played by the following calculation:

Proposition 2.6. Let i, s be integers such that 0 ≤ s ≤ i − 1, and [C, x1, . . . , xs] ∈ Mi,s a
general pointed curve. The number of pairs (q, p) ∈ C × C such that

H0
(
C, KC ⊗OC(−x1 − · · · − xs − (i − s − 1)q − 2p)

)
6= 0,

is equal to a(i, s) := 2(i − s − 1)(2i3 − 5i2 + i + 2 − 2i2s + 3is).

Remark 2.7. By specializing, one recovers well-known formulas in enumerative ge-
ometry. For instance, a(3, 0) = 56 is twice the number of bitangents of a smooth
plane quartic, whereas a(4, 0) = 324 equals the number of canonical divisors of type
3q + 2p + x ∈ |KC |, where [C] ∈ M4. This matches de Jonquières’ formula, cf. [ACGH]
p.359.

Proof of Theorem 2.5. We fix a general point [C∪qD, x1, . . . , xg−1] ∈ Ci:s·RTg, correspond-
ing to a point q ∈ C. We shall show that q is not one of the marked points x1, . . . , xs on
C, then give a geometric characterization of such points and count their number. Let

ωD ∈ H0
(
D, KD ⊗OD(2iq)

)
and ωC ∈ H0

(
C, KC ⊗OC(2g − 2i)q

)

be the aspects of the section of the limit canonical series on C ∪q D, which vanishes
doubly at an unspecified point p ∈ C ∪ D as well as along the divisor x1 + · · · + xg−1.
The condition ordq(ωC) + ordq(ωD) ≥ 2g − 2, comes from the definition of a limit linear
series. We distinguish two cases depending on the position of the point p. If p ∈ D then,

div(ωC) ≥ x1 + · · · + xs, div(ωD) ≥ xs+1 + · · · + xg−1 + 2p.

Since the points q, xs+1, . . . , xg−1 ∈ D are general, we find that ordq(ωD) ≤ i + s − 2.
Moreover, KD ⊗OD((i−s+2)q−xs+1−· · ·−xg−1) ∈ W 1

g−i+1(D) is a pencil, and p ∈ D

is one of its (simple) ramification points. The Hurwitz formula gives 4(g− i) choices for
such p ∈ D.

By compatibility, ordq(ωC) ≥ 2g − i − s. A parameter count implies that equality
must hold. The condition H0

(
C, KC ⊗OC(−x1−· · ·−xs− (i−s)q

)
6= 0, is equivalent to

asking that q ∈ C be a ramification point of KC ⊗OC(−
∑s

j=1 xj) ∈ W i−s−1
2i−2−s(C). Since

the points x1, . . . , xs ∈ C are chosen to be general, all ramification points of this linear
series are simple and occur away from the marked points. From Plücker’s formula,
the number of ramification points equals (i − s)(i2 − 1 − is). Multiplying this with the
number of choices for p ∈ D, we obtain a total contribution of 4(g−i)(i−s)(i2−is−1) to
the intersection Ci:s · RTg, stemming from the case when p ∈ D. The proof that each of
these points of intersection is to be counted with multiplicity 1 is standard and proceeds
along the lines of [EH2] Lemma 3.4.

We assume now that p ∈ C. Keeping the notation from above, it follows that
ordq(ωD) = i + s − 1 and ordq(ωC) = 2g − i − s − 1, therefore

0 6= σC ∈ H0
(
C, KC ⊗OC(−

s∑

j=1

xj − (i − s − 1)q − 2p)
)
.

The section ωD is uniquely determined up to multiplication by scalars, whereas there
are a(i, s) choices on the side of C, each counted with multiplicity 1.
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In principle, the double zero of the limit holomorphic form could specialize to the
point of attachment q ∈ C ∩ D, and we prove that this would contradict our generality
hypothesis. One considers the semistable curve X := C ∪q1

E ∪q2
D, obtained from

C ∪ D by inserting a smooth rational component E at q, where {q1} := C ∩ E and
{q2} := D ∩ E. There also exist non-zero sections

ωD ∈ H0
(
D, KD(2iq2)

)
, ωE ∈ H0

(
E,OE(2g − 2)

)
, ωC ∈ H0

(
C, KC((2g − 2i)q1)

)
,

satisfying ordq1
(ωC) + ordq1

(ωE) ≥ 2g − 2 and ordq2
(ωE) + ordq2

(ωD) ≥ 2g − 2. Fur-
thermore, ωE vanishes doubly at a point p ∈ {q1, q2}

c. Since ωC (respectively ωD)
also vanishes along the divisor x1 + · · · + xs (respectively xs+1 + · · · + xg−1), it fol-
lows that ordq1

(ωC) ≤ 2g − i − s and ordq2
(ωD) ≤ i + s − 1, hence by compatibility,

ordq1
(ωE) + ordq2

(ωE) ≥ 2g − 3. This rules out the possibility of a further double zero
and shows that this case does not occur.

To summarize, keeping in mind that the ψ-coefficient of [RTg] is equal to 4g − 8,
we find the relation

(7) (2i − 2 + s)bi:s − sbi:s−1 + s(4g − 8) = 4(g − i)(s − 1)(si − 2i + 2) + a(i, s).

For s = 0, we have by convention bi:−1 = 0, which gives bi:0 = 2i3 − 5i2 − 3i + 4g + 1.
By induction, we find using recursion (7) the claimed formula for bi:s. ¤

As already explained, having calculated the class [RTg] ∈ Pic(Mg,g−1) and using

known bound on the slope s(Mg), one derives that Thg is of general type when g ≥ 12.
We discuss the last cases in Theorem 0.1 and thus complete the birational classification
of Thg:

End of proof of Theorem 0.1. We noted in the Introduction that for g ≤ 9 the space Thg

is unirational, being the image of a variety which is birational to a Grassmann bundle

over the rational Mukai variety V g−1
g . When g ∈ {10, 11}, the space Mg,g−1 is uniruled

[FP]. This implies the uniruledness of Thg as well. ¤

3. THE KODAIRA DIMENSION OF Cg,n

In this section we provide results concerning the Kodaira dimension of the sym-
metric product Cg,n, where n ≤ g−2. There are two cases depending on the parity of the
difference g − n. When g − n is even, we introduce a subvariety inside Cg,n, consisting
of divisors D ∈ Cn which appear in a fibre of a pencil of degree (g + n)/2 on a curve
[C] ∈ Mg. We set integers g ≥ 1 and 1 ≤ m ≤ g/2, then consider the locus

Fg,m := {[C, x1, . . . , xg−2m] ∈ Mg,g−2m : ∃A ∈ W 1
g−m(C) with H0

(
C, A(−

g−2m∑

j=1

xj)
)
6= 0}.

A parameter count shows that Fg,m is expected to be an effective divisor on Mg,g−2m.

We shall prove this, then compute the class of its closure in Mg,g−2m.

Theorem 3.1. Fix integers g ≥ 1 and 1 ≤ m ≤ g/2, then set n := g − 2m and d := g − m.
The class of the compactification inside Mg,g−2m of the divisor Fg,m is given by the formula:

Fg,m ≡
( 10n

g − 2

(
g − 2

d − 1

)
−

n

g

(
g

d

))
λ +

n − 1

g − 1

(
g − 1

d − 1

) n∑

j=1

ψj −
n

g − 2

(
g − 2

d − 1

)
δirr−
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−
n∑

s=2

s(n2 − g + sgn − sn)

2(g − 1)(g − d)

(
g − 1

d

)
δ0:s − · · · ∈ Pic(Mg,n).

Proof. We fix a general curve [C] ∈ Mg and consider the incidence correspondence

Σ := {(D, A) ∈ Cg−2m × W 1
g−m(C) : H0(C, A ⊗OC(−D)) 6= 0},

together with the projection π1 : Σ → Cg−2m. It follows from [F1] Theorem 0.5, that

Σ is pure of dimension g − 2m − 1
(
= ρ(g, 1, g − m) + 1

)
. To conclude that Fg,m is

a divisor inside Mg,g−2m, it suffices to show that the general fibre of the map π1 is

finite, which implies that φ−1([C]) ∩ Fg,m is a divisor in φ−1([C]); we also note that
the fibre φ−1([C]) is isomorphic to the n-th Fulton-Macpherson configuration space of
C. We specialize to the case D = (g − 2m) · p, where p ∈ C. One needs to show that
for a general curve [C] ∈ Mg, there exist finitely many pencils A ∈ W 1

g−m(C) with

h0
(
C, A⊗OC(−(g−m)p)

)
≥ 1, for some point p ∈ C. This follows from [HM] Theorem

B, or alternatively, by letting C specialize to a flag curve consisting of a rational spine
and g elliptic tails, in which case the point p specializes to a (g − 2m)-torsion points on
one of the elliptic tails (in particular it can not specialize to a point on the spine). For
each of these points, the pencils in question are in bijective correspondence to points in
a transverse intersection of Schubert cycles in G(2, g−m+1). In particular their number
is finite.

In order to compute the class [Fg,m], we expand it in the usual basis of Pic(Mg,n)

Fg,m ≡ aλ + c

g−2m∑

i=1

ψi − birrδirr −
∑

i,s≥0

bi:sδi:s,

then note that the coefficients a, c and birr respectively, have been computed in [F2]
Theorem 4.9. The coefficient b0:2 is determined by intersecting Fg,m with a fibral curve

Cxn := {[C, x1, . . . , xn−1, xn] : xn ∈ C} ⊂ Mg,n,

corresponding to a general (n− 1)-pointed curve [C, x1, . . . , xn−1] ∈ Mg,n−1. By letting

the points x1, . . . , xn−1 ∈ C coalesce to a point q ∈ C, points in the intersection Cxn ·Fg,m

are in 1 : 1 correspondence with points xn ∈ C, such that h0
(
C, A(−(n− 1)q−xn)

)
≥ 1.

This number equals (g − 2m − 1)
(

g
m

)
, see [HM] Theorem A, that is,

(2g + 2n − 4)c − (n − 1)b0:2 = Cxn · Fg,m =

(m + 1) #
{

A ∈ W 1
g−m(C) : h0

(
C, A ⊗OC(−(g − 2m − 1)q)

)
≥ 1

}
= (g − 2m − 1)

(
g

m

)
,

which determines b0:2. The coefficients b0:s are computed recursively, by exhibiting an
explicit test curve Γ0:s ⊂ ∆0:s which is disjoint from Fg,m. We fix a general element

[C, q, xs+1, . . . , xn] ∈ Mg,n+1−s and a general s-pointed rational curve [P1, x1, . . . , xs] ∈
M0,s. We glue these curves along a moving point q lying on the rational component:

Γ0:s := {[P1 ∪q C, x1, . . . , xs, xs+1, . . . , xn] : q ∈ P1} ⊂ ∆0:s ⊂ Mg,n.

Clearly, Γ0:s · Fg,m = s c− (s− 2) b0:s + s b0:s−1. We claim Γ0:s ∩Fg,m = ∅. Assume that
on the contrary, one can find a point q ∈ P1 and a limit linear series g1

d on P1 ∪q C,

l =
(
(A, VC), (OP1(d), VP1)

)
∈ G1

d(C) × G1
d(P

1),
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together with sections σC ∈ VC and σP1 ∈ VP1 , satisfying ordq(σC) + ordq(σP1) ≥ d and

div(σC) ≥ xs+1 + · · · + xn, div(σP1) ≥ x1 + · · · + xs.

Since σP1 6= 0, one finds that ordq(σP1) ≤ g−m−s, hence by compatibility, ordq(σC) ≥ s.
We claim that this is impossible, that is, H0

(
C, A⊗OC(−sq−x1−· · ·−xn)

)
6= 0, for every

A ∈ W 1
g−m(C). Indeed, by letting all points xs+1, . . . , xn, q ∈ C coalesce, the statement

H0
(
C, A ⊗ OC(−(g − 2m) · q)

)
= 0, for a general [C, q] ∈ Mg,1 is a consequence of the

”pointed” Brill-Noether theorem as proved in [EH1] Theorem 1.1. This shows that

0 = Γ0:s · Fg,m = sc + (s − 2)b0:s − sb0:s−1,

for 3 ≤ s ≤ n, which determines recursively all coefficients b0:s. The remaining coeffi-
cients bi:s with 1 ≤ i ≤ [g/2] can be determined via similar test curve calculations, but
we skip these details. ¤

Keeping the notation from the proof of Theorem 3.1, a direct consequence is the
calculation of the class of the divisor Fg,m[C] := π1(Σ) inside Cg−2m. This offers an al-
ternative proof of [Mus] Proposition III; furthermore the proof of Theorem 3.1, answers
in the affirmative the question raised in loc.cit., concerning whether the cycle Fg,m[C]
has expected dimension, and thus, it is a divisor on Cg−2m.

We denote by θ ∈ H2(Cg−2m, Q) the class of the pull-back of the theta divisor,
and by x ∈ H2(Cg−2m, Q) the class of the locus {p0 + D : D ∈ Cg−2m−1} of effective
divisors containing a fixed point p0 ∈ C. For a very general curve [C] ∈ Mg, the group
N1(Cg−2m)Q is generated by x and θ, see [ACGH].

Let F̃g,m be the effective divisor on Cg,g−2m to which Fg,m descends, that is,

π∗(F̃g,m) = Fg,m. The class of F̃g,m is completely determined by Theorem 3.1.

Corollary 3.2. Let [C] ∈ Mg be a general curve. The cohomology class of the divisor

Fg,m[C] := {D ∈ Cg−2m : ∃A ∈ W 1
g−m(C) such that H0(C, A ⊗OC(−D)) 6= 0}

is equal to (1 − 2m
g )

(
g
m

)(
θ − g

g−2mx
)
. In particular, the class θ − g

g−2mx ∈ N1(Cg−2m)Q is

effective.

Proof. Let u : Cg−2m 99K Cg,g−2m be the rational map given by

u(x1 + · · · + xg−2m) = [C, x1 + · · · + xg−2m].

Note that u is well-defined outside the codimension 2 locus of effective divisors with
support of length at most g− 2m− 2. We have that u∗(δ̃0:2) = δC , where δC := [∆C ]/2 is
the reduced diagonal. Its class is given by the MacDonald formula, cf. [K1] Lemma 7:

δC ≡ −θ + (g + d − 1)x ≡ −θ + (2g − 2m − 1)x.

Furthermore, u∗(ψ̃) ≡ θ + δC + (g − n − 1)x, see [K2] Proposition 2.7. Thus Fg,m[C] ≡

u∗([F̃g,m]), and the conclusion follows after some calculations. ¤

The divisor F̃g,m is defined in terms of a correspondence between pencils and ef-
fective divisors on curves, and it is fibred in curves as follows: We fix a complete pencil
A ∈ W 1

g−m(C) with only simple ramification points. The variety of secant divisors

V 1
g−2m(A) := {D ∈ Cg−2m : H0(C, A ⊗OC(−D)) 6= 0}
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is a curve (see [F1]), disjoint from the indeterminacy locus of the rational map u :

Cg−2m 99K Cg,g−2m. We set Γg−2m(A) := u(V 1
g−2m(A)) ⊂ Cg,g−2m. By varying [C] ∈ Mg

and A ∈ W 1
g−m(C), the curves Γg−2m(A) fill-up the divisor F̃g,m. It is natural to test the

extremality of F̃g,m by computing the intersection number Γg−2m(A) · F̃g,m. To state the
next result in a unified form, we adopt the convention

(
a
b

)
:= 0, whenever b < 0.

Proposition 3.3. For all integers 1 ≤ m < g/2, we have the formula:

Γg−2m(A) · F̃g,m = (m − 1)

(
g − m − 2

m

)(
g

m

)
.

In particular, Γg−2(A) · F̃g,1 = 0, and the divisor F̃g,1 ∈ Eff(Cg,g−2) is extremal.

Proof. This is an immediate application of Corollary 3.2. The class [V 1
g−2m(A)] can be

computed using Porteous’ formula, see [ACGH] p.342:

[V 1
g−2m(A)] ≡

g−2m−1∑

j=0

(
−m − 1

j

)
xj · θg−2m−j−1

(g − 2m − 1 − j)!
∈ H2(g−2m−1)(Cg−2m, Q).

Using the push-pull formula, we write Γg−2m(A) · F̃g,m = Fg,m[C] · [V 1
g−2m(A)], then

estimate the product using the identity xkθg−2m−k = g!/(2m+k)! ∈ H2(g−2m)(Cg−2m, Q)

for 0 ≤ k ≤ g − 2m. For m = 1, observe that Γg−2(A) · F̃g,1 = 0. Since the curves of type

Γg−2(A) cover F̃g,1, this implies that [F̃g,1] ∈ Eff(Cg,g−2) generates an extremal ray. ¤

We can use Theorem 3.1 to describe the birational type of Cg,n when 12 ≤ g ≤ 21

and 1 ≤ n ≤ g − 2. We recall that when g ≤ 9, the space Cg,n is uniruled for all values of

n. The transition cases g = 10, 11, as well as the case of the universal Jacobian Cg,g, are

discussed in detail in [FV2]. Furthermore Cg,n is uniruled when n ≥ g + 1; in this case
the symmetric product Cn of any curve [C] ∈ Mg is birational to a Pn−g-bundle over

the Jacobian Picn(C). Our main result is that, in the range described above, Cg,n is of

general type in all the cases when Mg,n is known to be of general type, see [Log], [F2].

We note however that the divisors Fg,m only carry one a certain distance towards a full

solution. The classification of Cg,n is complete only when n ∈ {g − 1, g − 2, g}.

Theorem 3.4. For integers g = 12, . . . , 21, the universal symmetric product Cg,n is of general
type for all f(g) ≤ n ≤ g − 1, where f(g) is described in the following table.

g 12 13 14 15 16 17 18 19 20 21
f(g) 10 11 10 10 9 9 9 7 6 4

Proof. The strategy described in the Introduction to prove that KCg,g−1
is big, applies to

the other spaces Cg,n, with 1 ≤ n ≤ g − 2 as well. To show that Cg,n is of general type, it

suffices to produce an effective class on Cg,n which pulls back via π to aλ + c
∑n

i=1 ψi −
birrδirr −

∑
i,s bi:sδi:s ∈ Eff(Mg,n)Sn , such that the following conditions are fulfilled:

(8)
a + s(Mg)

(
2c − birr

)

13c
< 1 and

b0:2

3c
> 1.

When g − n is even, we write g − n = 2m, and for all entries in the table above
one can express KCg,n

as a positive combination of
∑n

i=1 ψi, [Fg,m], ϕ∗(D), where D ∈

Eff(Mg), and other boundary classes.
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If g − n = 2m + 1 with m ∈ Z≥0, for each integer 1 ≤ j ≤ n + 1, we denote by
φj : Mg,n+1 → Mg,n the projection forgetting the j-th marked point and consider the

effective Sn-invariant effective Q-divisor on Mg,n

E :=
1

n + 1

n+1∑

j=1

(φj)∗
(
Fg,m · δ0:{j,n+1}

)
∈ Eff(Mg,n).

Using Theorem 3.1 as well as elementary properties of push-forwards of tautological
classes, KCg,n

is expressible as a positive Q-combination of boundaries, [E], a pull-back

of an effective divisor on Mg, and the big and nef class
∑n

i=1 ψi precisely in the cases
appearing in the table. ¤

Remark 3.5. When g /∈ {12, 16, 18}, the bound s(Mg) ≤ 6 + 12/(g + 1), emerging from
the slope of the Brill-Noether divisors, has been used to verify (8). In the remaining
cases, we employ the better bounds s(M12) = 4415/642 < 6 + 12/13 (see [FV1]), and
s(M16) = 407/61 < 6 + 12/17 see [F2], coming from Koszul divisors on M12 and M16

respectively. On M18, we use the estimate s(M18) ≤ 302/45 given by the class of the

Petri divisor GP
1
18,10, see [EH1]. Improvements on the estimate on s(Mg) in the other

cases, will naturally translate in improvements in the statement of Theorem 3.4.

4. AN EFFECTIVE DIVISOR ON Mg,g−3

The aim of this section is to prove Theorem 0.8. We begin by solving the following
enumerative question which comes up repeatedly in the process of computing [Dg].

Theorem 4.1. Let [C, p] ∈ Mg,1 be a general pointed curve of genus g and 0 ≤ γ ≤ g − 3 a
fixed integer. Then there exist a finite number of pairs (L, x) ∈ W 2

g (C) × C such that

H0
(
C, L ⊗OC(−γ x − (g − 3 − γ) p)

)
≥ 1.

Their number is computed by the formula

N(g, γ) :=
g(g − 1)(g − 5)

3
γ(γg − 3γ − 1).

Proof. We introduce auxiliary maps χ : C × C3 → Cγ+3 and ι : Cγ+3 → Cg given by,

χ(x, D) := γ · x + D, and ι(E) := E + (g − 3 − γ) · p.

The number we evaluate is N(g, γ) := χ∗ι∗
(
[C2

g ]
)
, where C2

g := {D ∈ Cg : dim|D| ≥ 3}.
The cohomology class of this variety of special divisors is computed in [ACGH] p.326:

[C2
g ] =

θ4

12
−

xθ3

3
+

x2θ2

6
∈ H8(Cg−3, Q).

Noting that ι∗(θ) = θ and ι∗(x) = x, one needs to estimate the pull-backs of the tauto-
logical monomials xαθ4−α. For this purpose, we use [ACGH] p.358:

χ∗(xαθ4−α) =
g!

(g − 4 + α)!

[(
1 + γt1 + t2

)α
·
(
1 + γ2t1 + t2

)4−α]
t1t3

2

,

where the last symbol indicates the coefficient of the monomial t1t
3
2 in the polynomial

appearing on the right side of the formula. The rest follows after a routine evaluation.
¤
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The second enumerative ingredient in the proof of Theorem 0.8 is the following
result, which can be proved by degeneration using Schubert calculus:

Proposition 4.2. For a general curve [C] ∈ Mg−1, there exist a finite number of pairs (L, x) ∈
W 2

g (C) × C satisfying the conditions

h0
(
C, L ⊗OC(−2x)

)
≥ 2, and h0

(
C, L ⊗OC(−(g − 2)x)

)
≥ 1.

Each pair corresponds to a complete linear series L. The number of such pairs is equal to

n(g − 1) := (g − 1)(g − 2)(g − 3)(g − 4)2.

Proof of Theorem 0.8. We expand [Dg] ∈ Pic(Mg,g−3), and begin the calculation by de-

termining the coefficients of λ, δirr and
∑g−3

i=1 ψi respectively. It is useful to observe that

if φn : Mg,n → Mg,n−1 is the map forgetting the marked point labeled by n for some

n ≥ 1 and D is any divisor class on Mg,n, then for distinct labels i, j 6= n, the λ, δirr

and ψj coefficients of the divisors D on Mg,n and (φn)∗(D · δ0:in) on Mg,n−1 respec-
tively, coincide. The divisor (φn)∗(D · δ0:in) can be thought of as the locus of points
[C, x1, . . . , xn] ∈ D where the points xi and xn are allowed to come together. By itera-

tion, the divisor D
g−3
g on Mg,1 obtained by letting all points x1, . . . , xg−3 coalesce, has

the same λ and δirr coefficients as Dg. But obviously

D
g−3
g = {[C, x] ∈ Mg,1 : ∃L ∈ W 2

g (C) such that h0
(
C, L ⊗OC(−(g − 3)x)

)
≥ 1},

and note that this is a ”pointed Brill-Noether divisor” in the sense of Eisenbud-Harris.
The cone of Brill-Noether divisors on Mg,1 is 2-dimensional, see [EH2] Theorem 4.1,

and exists constants µ, ν ∈ Q, such that D
g−3
g ≡ µ · BN + ν · W , where

BN := (g + 3)λ −
g + 1

6
δirr −

g−1∑

j=1

j(g − j)δj:1 ∈ Pic(Mg,1)

is the pull-back from Mg of the Brill-Noether divisor class and W ∈ Pic(Mg,1) is the
class of the Weierstrass divisor. The coefficients µ and ν are computed by intersecting
both sides of the previous identity with explicit curves inside Mg,1. First we fix a genus

g curve C and let the marked point vary along C. If Cx := φ−1([C]) ⊂ Mg,1 denotes

the induced curve in moduli, then the only generator of Pic(Mg,1) which has non-zero

intersection number with Cx is ψ, and Cx · ψ = 2g − 2. On the other hand Cx · D
g−3
g =

N(g, g − 3), that is, ν = N(g, g − 3)/(g(g − 1)(g + 1)).
To compute µ, we construct a curve inside ∆1:1 as follows: Fix a 2-pointed elliptic

curve [E, x, y] ∈ M1,2 such that the class x − y ∈ Pic0(E) is not torsion, and a general
curve [C] ∈ Mg−1. We define the family C̄1 := {[C ∪y E, x]}y∈C , obtained by varying
the point of attachment along C, while keeping the marked point fixed on E. The
only generator of Pic(Mg,1) meeting C̄1 non-trivially is δ1:1 = δg−1:∅, in which case

C̄1 · δ1:1 = −2g + 4. On the other hand, C̄1 · D
g−3
g is equal to the number of limit

linear series g2
g on curves of type C ∪y E, having vanishing sequence at least (0, 1, g− 3)

at x ∈ E. This can happen only if this linear series is refined and its C-aspect has
vanishing sequence at the point of attachment y ∈ C equal to either (i) (1, 2, g − 3), or
(ii) (0, 2, g − 2). In both cases, the E-aspect being uniquely determined, we obtain that

C̄1 · D
g−3
g = N(g − 1, g − 4) + n(g − 1). This leads to µ = 3(g − 3)(g − 4)/(g + 1).
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Next, let D
g−4
g be the divisor on Mg,2 obtained from Dg by letting all marked

points except one, come together. Precisely, D
g−4
g is the closure of the locus of curves

[C, x, y] ∈ Mg,2 such that there exists L ∈ W 2
g (C) with h0

(
C, L⊗OC(−x−(g−4)y)

)
≥ 1.

We express D
g−4
g ≡ cxψx+cyψy−eδ0:xy−· · · ∈ Pic(Mg,2), and observe that cx equals the

ψ-coefficient of Dg, whereas the coefficient e = ν
(
g+1
2

)
has already been calculated. We

fix a general curve [C] ∈ Mg and define test curves Cx := {[C, x, y] : x ∈ C} ⊂ Mg,2 and

Cy := {[C, x, y] : y ∈ C} ⊂ Mg,2, by fixing one general marked point on C and letting

the other vary freely. By intersecting D
g−4
g with these curves we obtain the formulas:

(2g−1)cx+cy−e = Cx ·D
g−4
g = N(g, 1) and cx+(2g−1)cy−e = Cy ·D

g−4
g = N(g, g−4).

Solving this system, determines cx. Finally, the δ0:2-coefficient of Dg is computed by

intersecting Dg with the test curve φ−1
g−3([C, x1, . . . , xg−4]) ⊂ Mg,g−3, obtained by fixing

g − 4 marked points on a general curve, and letting the remaining point vary. ¤

As an application, we bound the effective cone of the symmetric product of de-
gree g − 3 on a general curve [C] ∈ Mg. As before, let u : Cg−3 99K Cg,g−3 the (ra-

tional) fibre map and D̃g the effective divisor on Cg,g−3 to which Dg descends. Then

Dg[C] := u∗(D̃g) is an effective divisor on Cg−3:

Theorem 4.3. The cohomology class of the codimension one locus inside Cg−3

Dg[C] := {D ∈ Cg−3 : ∃L ∈ W 2
g (C) with h0

(
C, L ⊗OC(−D)

)
≥ 1} equals

[Dg(C)] =
(g − 5)(g − 3)(g − 1)

3

(
θ −

g

g − 3
x
)
.

It is natural to wonder whether the class θ − g
g−3x is extremal in Eff(Cg−3). If so,

Dg[C] together with the diagonal class δC ≡ −θ+(2g−4)x would generate the effective
cone inside the 2-dimensional space N1(Cg−3)Q. We refer to [K1] Theorem 3, for a proof
that δC spans an extremal ray, which shows that in order to compute Eff(Cg−3), one
only has to determine the slope of Eff(Cg−3) in the fourth quadrant of the (θ, x)-plane.
A similar description of the effective cone of Cg−2 was given in [Mus]. We have a partial
result in this direction, showing that all effective divisors of slope higher than g

g−3 (if

any), must contain a geometric codimension one subvariety of Dg[C].

Proposition 4.4. Any irreducible effective divisor on Cg−3 with class proportional to θ−αx ∈
H2(Cg−3, Q), where α > g

g−3 , contains the codimension two locus inside Cg−3

Zg−3[C] := {D ∈ Cg−3 : ∃A ∈ W 1
g−2(C) with H0(C, A ⊗ (−D)) 6= 0}.

Proof. By calculation, note that for A ∈ W 1
g−2(C), the inequality [V 1

g−3(A)] · (θ − αx) < 0

holds, whereas [V 1
g−3(A)] · Dg[C] = 0. ¤
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