THE UNIVERSAL THETA DIVISOR OVER THE MODULI SPACE OF CURVES

GAVRIL FARKAS AND ALESSANDRO VERRA

The universal theta divisor over the moduli space \mathcal{A}_{g} of principally polarized abelian varieties of dimension g, is the divisor $\boldsymbol{\Theta}_{g}$ inside the universal abelian variety \mathcal{X}_{g} over \mathcal{A}_{g}, characterized by two properties: (i) $\Theta_{g \mid[A, \Theta]}=\Theta$, for every principally polarized abelian variety $[A, \Theta] \in \mathcal{A}_{g}$, and (ii) the restriction $s^{*}\left(\boldsymbol{\Theta}_{g}\right)$ along the zero section $s: \mathcal{A}_{g} \rightarrow \mathcal{X}_{g}$ is trivial on \mathcal{A}_{g}. The study of the geometry of $\boldsymbol{\Theta}_{g}$ closely mirrors that of \mathcal{A}_{g} itself. Thus it is known that $\boldsymbol{\Theta}_{g}$ is unirational for $g \leq 4$; the case $g \leq 3$ is classical, for $g=4$, we refer to [Ve]. The geometry of $\boldsymbol{\Theta}_{5}$ will be addressed in the forthcoming paper [FV3]. Whenever \mathcal{A}_{g} is of general type (that is, in the range $g \geq 7$, cf. [Fr], [Mum], [T]), one can use Viehweg's additivity theorem [Vi] for the fibre space $\Theta_{g} \rightarrow \mathcal{A}_{g}$ whose generic fibre is a variety of general type, to conclude that Θ_{g} is of general type as well. The Kodaira dimension of Θ_{6} (and that of \mathcal{A}_{6}) is unknown.

The main aim of this paper is to present a complete birational classification by Kodaira dimension of the universal theta divisor

$$
\mathfrak{T h}_{g}:=\mathcal{M}_{g} \times_{\mathcal{A}_{g}} \boldsymbol{\Theta}_{g}
$$

over the moduli space of curves. If $[C] \in \mathcal{M}_{g}$ is a smooth curve, the Abel-Jacobi map $C_{g-1} \rightarrow \operatorname{Pic}^{g-1}(C)$ provides a resolution of singularities of the theta divisor Θ_{C} of the Jacobian of C. Thus one may regard the degree $g-1$ universal symmetric product $\overline{\mathcal{C}}_{g, g-1}:=\overline{\mathcal{M}}_{g, g-1} / \mathfrak{S}_{g-1}$ as a birational model of $\mathfrak{T h}_{g}$ (having only finite quotient singularities), and ask for the place of $\mathfrak{T h}_{g}$ in the classification of varieties. We provide a complete answer to this question. For small genus, $\mathfrak{T h}_{g}$ enjoys rationality properties:

Theorem 0.1. $\mathfrak{T h}_{g}$ is unirational for $g \leq 9$ and uniruled for $g \leq 11$.
The first part of the theorem, is a consequence of Mukai's work [M1], [M2] on representing canonical curves with general moduli as linear sections of certain homogeneous varieties. When $g \leq 9$, there exists a Fano variety $V_{g} \subset \mathbf{P}^{N_{g}}$ of dimension $n_{g}:=N_{g}-g+2$ and index $n_{g}-2$, such that general 1-dimensional complete intersections of V_{g} are canonical curves $[C] \in \mathcal{M}_{g}$ having general moduli. The correspondence

$$
\Sigma:=\left\{\left(\left(x_{1}, \ldots, x_{g-1}\right), \Lambda\right) \in V_{g}^{g-1} \times G\left(g, N_{g}+1\right): x_{i} \in \Lambda, \text { for } i=1, \ldots, g-1\right\}
$$

maps dominantly onto $\mathfrak{T h}_{g}$ via the map $\left(\left(x_{1}, \ldots, x_{g-1}\right), \Lambda\right) \mapsto\left[V_{g} \cap \Lambda, x_{1}+\cdots+x_{g-1}\right]$. Since Σ is a Grassmann bundle over the rational variety V_{g}^{g-1}, it follows that $\mathfrak{T h}_{g}$ is unirational in the range $g \leq 9$. The cases $g=10,11$ are settled by the observation that in this range the space $\overline{\mathcal{M}}_{g, g-1}$ is uniruled, see [FP], [FV2].

For the remaining genera, we prove the following classification result:
Theorem 0.2. The universal theta divisor $\mathfrak{T h}_{g}$ is a variety of general type for $g \geq 12$.
We also have a birational classification theorem for the universal degree n symmetric product $\overline{\mathcal{C}}_{g, n}:=\overline{\mathcal{M}}_{g, n} / \mathfrak{S}_{n}$ for all $1 \leq n \leq g-2$, and refer to Section 3 for details.

Our results are complete in degree $g-2$ and less precise as n decreases. Similarly to Theorem 0.2 , the nature of $\overline{\mathcal{C}}_{g, g-2}$ changes when $g=12$:

Theorem 0.3. The universal degree $g-2$ symmetric product $\overline{\mathcal{C}}_{g, g-2}$ is uniruled for $g<12$ and a variety of general type for $g \geq 12$.

The proofs of Theorems 0.2 and 0.3 rely on two ingredients. First, we use our result [FV2], stating that for $g \geq 4$, the singularities of $\overline{\mathcal{C}}_{g, n}$ impose no adjoint conditions, that is, pluricanonical forms defined on the smooth locus of $\overline{\mathcal{C}}_{g, n}$ extend to a smooth model of the symmetric product. Precisely, if $\epsilon: \widetilde{\mathcal{C}}_{g, n} \rightarrow \overline{\mathcal{C}}_{g, n}$ denotes any resolution of singularities, then for any $l \geq 0$, there is a group isomorphism

$$
\epsilon^{*}: H^{0}\left(\left(\overline{\mathcal{C}}_{g, n}\right)_{\mathrm{reg}}, K_{\overline{\mathcal{C}}_{g, n}^{\otimes l}}\right) \xlongequal{\cong} H^{0}\left(\widetilde{\mathcal{C}}_{g, n}, K_{\tilde{\mathcal{C}}_{g, n}(, .}\right) .
$$

In particular, $\mathfrak{T h}_{g}$ is of general type when the canonical class $K_{\overline{\mathcal{C}}_{g, g-1}} \in \operatorname{Pic}\left(\overline{\mathcal{C}}_{g, g-1}\right)$ is big. This makes the problem of understanding the effective cone of $\overline{\mathcal{C}}_{g, g-1}$ of some importance. If $\pi: \overline{\mathcal{M}}_{g, g-1} \rightarrow \overline{\mathcal{C}}_{g, g-1}$ is the quotient map, the Hurwitz formula gives that

$$
\begin{equation*}
\pi^{*}\left(K_{\overline{\mathcal{C}}_{g, g-1}}\right) \equiv K_{\overline{\mathcal{M}}_{g, g-1}}-\delta_{0: 2} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, g-1}\right) . \tag{1}
\end{equation*}
$$

The sum $\sum_{i=1}^{g-1} \psi_{i} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, g-1}\right)^{\mathfrak{S}_{g-1}}$ of cotangent tautological classes descends to a big and nef class on $\overline{\mathcal{C}}_{g, g-1}$ (cf. Proposition 1.2), thus in order to conclude that $\mathfrak{T h}_{g}$ is of general type, it suffices to exhibit an effective divisor $\mathfrak{D} \in \operatorname{Eff}\left(\overline{\mathcal{C}}_{g, g-1}\right)$, such that

$$
\begin{equation*}
\pi^{*}\left(K_{\overline{\mathcal{C}}_{g, g-1}}\right) \in \mathbb{Q}_{>0}\left\langle\lambda, \sum_{i=1}^{g-1} \psi_{i}\right\rangle+\phi^{*} \operatorname{Eff}\left(\overline{\mathcal{M}}_{g}\right)+\mathbb{Q}_{\geq 0}\left\langle\pi^{*}([\mathfrak{D}]), \delta_{i: c}: i \geq 0, c \geq 2\right\rangle . \tag{2}
\end{equation*}
$$

In this formula, $\phi: \overline{\mathcal{M}}_{g, g-1} \rightarrow \overline{\mathcal{M}}_{g}$ denotes the morphism forgetting the marked points, and refer to Section 1 for the standard notation for boundary divisor classes on $\overline{\mathcal{M}}_{g, n}$. Comparing condition (2) against the formula for $K_{\overline{\mathcal{C}}_{g, g-1}}$ given by (4), if one writes $\pi^{*}(\mathfrak{D}) \equiv a \lambda-b_{\text {irr }} \delta_{\text {irr }}+c \sum_{i=1}^{g-1} \psi_{i}-\sum_{i, c} b_{i: c} \delta_{i: c} \in \operatorname{Pic}\left(\mathcal{M}_{g, g-1}\right)$, the following inequality

$$
\begin{equation*}
3 c<b_{0: 2} \tag{3}
\end{equation*}
$$

is a necessary condition for the existence of a divisor \mathfrak{D} satisfying (2). It is straightforward to unravel the geometric significance of the condition (3). If $[C] \in \mathcal{M}_{g}$ is a general curve, there is a rational map $u: C_{g-1} \rightarrow \overline{\mathcal{C}}_{g, g-1}$ given by restriction. Denoting by $x, \theta \in N^{1}\left(C_{g-1}\right)_{\mathbb{Q}}$ the standard generators of the Néron-Severi group of the symmetric product, the inequality (3) characterizes precisely those divisors $\mathfrak{D} \in \operatorname{Pic}\left(\overline{\mathcal{C}}_{g, g-1}\right)$ for which $u^{*}([\mathfrak{D}])$ lies in the fourth quarter of the (θ, x)-plane (see [K1] for details on the effective cone of C_{g-1}). The divisor $\mathfrak{D} \subset \overline{\mathcal{C}}_{g, g-1}$ playing this role in our case, is the residual divisor of the universal ramification locus of the Gauss map.

For a curve $[C] \in \mathcal{M}_{g}$, we denote by $\gamma: C_{g-1} \rightarrow\left(\mathbf{P}^{g-1}\right)^{\vee}$ the Gauss map, given by $\gamma(D):=\langle D\rangle$ for $D \in C_{g-1}-C_{g-1}^{1}$. The branch divisor $\operatorname{Br}_{C}(\gamma) \subset\left(\mathbf{P}^{g-1}\right)^{\vee}$ is isomorphic to the dual of the canonical curve $C \subset \mathbf{P}^{g-1}$. The closure in C_{g-1} of the ramification divisor $\operatorname{Ram}_{C}(\gamma)$ is isomorphic to the diagonal $\Delta_{C}:=\left\{2 p+D: p \in C, D \in C_{g-3}\right\}$, see [An]. In particular, this identification allows one to reconstruct the curve C from the
theta divisor Θ_{C} and thus prove Torelli's theorem. Let us consider the residual divisor $\operatorname{Res}_{C}(\gamma)$, defined via the following equality of divisors on C_{g-1}

$$
\gamma^{*}\left(\operatorname{Br}_{C}(\gamma)\right)=\operatorname{Res}_{C}(\gamma)+\operatorname{Ram}_{C}(\gamma)
$$

Globalizing this construction over \mathcal{M}_{g}, we are lead to consider the effective divisor $\mathfrak{R T}_{g}:=\left\{\left[C, x_{1}, \ldots, x_{g}\right] \in \mathcal{M}_{g, g-1}: \exists p \in C\right.$ with $\left.H^{0}\left(C, K_{C}\left(-x_{1}-\cdots-x_{g-1}-2 p\right)\right) \neq 0\right\}$. The key ingredient in the proof of Theorem 0.2 is the calculation of the class of $\overline{\mathfrak{R T}}_{g}$:
Theorem 0.4. The closure in $\overline{\mathcal{M}}_{g, g-1}$ of the locus $\mathfrak{R T}_{g}:=\left\{\left[C, x_{1}, \ldots, x_{g-1}\right] \in \mathcal{M}_{g, g-1}\right.$: $\left.x_{1}+\cdots+x_{g-1} \in \operatorname{Res}_{C}(\gamma)\right\}$ is linearly equivalent to,

$$
\begin{gathered}
\overline{\mathfrak{R}}_{g} \equiv-4(g-7) \lambda+4(g-2) \sum_{i=1}^{g-1} \psi_{i}-2 \delta_{\mathrm{irr}}-(12 g-22) \delta_{0: 2}- \\
-\sum_{i=0}^{g} \sum_{s=0}^{i-1}\left(2 i^{3}-5 i^{2}-3 i+4 g-4 i^{2} s+14 s i-6 g s-s+2 s^{2} g-3 s^{2}+2\right) \delta_{i: s} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, g-1}\right) .
\end{gathered}
$$

In particular we note that condition (3) is satisfied. Since by construction, $\overline{\mathfrak{T}}_{g}$ is \mathfrak{S}_{g-1}-invariant, it descends to an effective divisor $\widetilde{\mathfrak{R}}_{g}$ on $\overline{\mathcal{C}}_{g, g-1}$ which, as it turns out, spans an extremal ray of the cone $\operatorname{Eff}\left(\overline{\mathcal{C}}_{g, g-1}\right)$. Indeed, the universal theta divisor comes equipped with the rational involution $\tau: \overline{\mathcal{C}}_{g, g-1} \rightarrow \overline{\mathcal{C}}_{g, g-1}$ given by

$$
\tau\left(\left[C, x_{1}+\cdots+x_{g-1}\right]\right):=\left[C, y_{1}+\cdots+y_{g-1}\right],
$$

where $\mathcal{O}_{C}\left(y_{1}+\cdots+y_{g-1}+x_{1}+\cdots+x_{g-1}\right)=K_{C}$. Then $\widetilde{\mathfrak{R T}}_{g}$ is the pull-back of the boundary divisor $\widetilde{\Delta}_{0: 2} \subset \overline{\mathcal{C}}_{g, g-1}$ under this map. Since the extremality of $\widetilde{\Delta}_{0: 2}$ is easy to establish, the following result comes naturally:
Theorem 0.5. The effective divisor $\widetilde{\mathfrak{R}}_{g}$ is covered by irreducible curves $\Gamma_{g} \subset \overline{\mathcal{C}}_{g, g-1}$ such that $\Gamma_{g} \cdot \widetilde{\mathfrak{R T}}_{g}<0$. In particular $\widetilde{\mathfrak{R}}_{g} \in \operatorname{Eff}\left(\overline{\mathcal{C}}_{g, g-1}\right)$ is a non-movable extremal effective divisor.

The curves Γ_{g} have a simple modular construction. One fixes a general linear series $A \in W_{g+1}^{2}(C)$, in particular A is complete and has only ordinary ramification points. The general point of Γ_{g} corresponds to an element $[C, D] \in \overline{\mathcal{C}}_{g, g-1}$, where $D \in$ C_{g-1} is an effective divisor such that $H^{0}\left(C, A \otimes \mathcal{O}_{C}(-2 p-D)\right) \neq 0$, for some point $p \in C$, that is, D is the residual divisor cut out by a tangent line to the degree $g+1$ plane model of C given by A. Once more we refer to Section 2 for details.

We explain briefly how Theorem 0.4 implies the statement about the Kodaira dimension of $\overline{\mathcal{C}}_{g, g-1}$. We choose an effective divisor $D \equiv a \lambda-\sum_{i=0}^{[g / 2]} b_{i} \delta_{i} \in \operatorname{Eff}\left(\overline{\mathcal{M}}_{g}\right)$ on the moduli space of curves, with $a, b_{i} \geq 0$, having slope $s(D):=\frac{a}{\min _{i} b_{i}}$ as small as possible. Then note that the following linear combination
$\pi^{*}\left(K_{\overline{\mathcal{C}}_{g, g-1}}\right)-\frac{1}{6 g-11}\left(\frac{3}{2}\left[\overline{\mathfrak{R T}}_{g}\right]-(12 g-25) \phi^{*}(D)-\sum_{i=1}^{g-1} \psi_{i}-((84 g-185)-(12 g-25) s(D)) \lambda\right)$
is expressible as a positive combination of boundary divisors on $\overline{\mathcal{M}}_{g, g-1}$. Since, as already pointed out, the class $\sum_{i=1}^{g-1} \psi_{i} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, g-1}\right)$ descends to a big class on $\overline{\mathcal{C}}_{g, g-1}$, one obtains the following:

Corollary 0.6. For all g such that the slope of the moduli space of curves satisfies the inequality

$$
s\left(\overline{\mathcal{M}}_{g}\right):=\inf _{D \in \operatorname{Eff}\left(\overline{\mathcal{M}}_{g}\right)} s(D)<\frac{84 g-185}{12 g-25},
$$

the universal theta divisor $\mathfrak{T h}_{g}$ is of general type.
The bound appearing in Corollary 0.6 holds precisely when $g \geq 12$; for g such that $g+1$ is composite, the inequality $s\left(\overline{\mathcal{M}}_{g}\right) \leq 6+12 /(g+1)$ is well-known, and D can be chosen to be a Brill-Noether divisor $\overline{\mathcal{M}}_{g, d}^{r}$ corresponding to curves with a \mathfrak{g}_{d}^{r} when the Brill-Noether number $\rho(g, r, d)=-1$, cf. [EH1]. When $g+1$ is prime and $g \neq 12$, then in practice $g=2 k-2 \geq 16$, and D can be chosen to be the Gieseker-Petri $\overline{\mathcal{G P}}_{g, k}^{1}$ consisting of curves C possessing a pencil $A \in W_{k}^{1}(C)$ such that the Petri map $\mu_{0}(C, A): H^{0}(C, A) \otimes H^{0}\left(C, K_{C} \otimes A^{\vee}\right) \rightarrow H^{0}\left(C, K_{C}\right)$ is not an isomorphism. When $g=12$, one has to use the divisor constructed on $\overline{\mathcal{M}}_{12}$ in [FV1]. Finally, when $g \leq 11$ it is known that $s\left(\overline{\mathcal{M}}_{g}\right) \geq 6+12 /(g+1)$ and inequality (0.6) is not satisfied. In fact, as already pointed out $\kappa\left(\mathfrak{T h}_{g}\right)=-\infty$ in this range.

The proof of Theorem 0.3 proceeds along similar lines, and relies on finding an explicit \mathfrak{S}_{g-2}-invariant extremal ray of the cone of effective divisors on $\overline{\mathcal{M}}_{g, g-2}$. A representative of this ray is characterized by the geometric condition that the marked points appear in the same fibre of a pencil of degree $g-1$. One can construct such divisors on all moduli spaces $\overline{\mathcal{M}}_{g, n}$ with $1 \leq n \leq g-2$, cf. Section 3 .

Theorem 0.7. The closure inside $\overline{\mathcal{M}}_{g, g-2}$ of the locus

$$
\mathcal{F}_{g, 1}:=\left\{\left[C, x_{1}, \ldots, x_{g-2}\right] \in \mathcal{M}_{g, g-2}: \exists A \in W_{g-1}^{1}(C) \text { with } H^{0}\left(C, A\left(-\sum_{i=1}^{g-2} x_{i}\right)\right) \neq 0\right\}
$$

is a non-movable, extremal effective divisor on $\overline{\mathcal{M}}_{g, g-2}$. Its class is given by the formula:

$$
\overline{\mathcal{F}}_{g, 1} \equiv-(g-12) \lambda+(g-3) \sum_{i=1}^{g-2} \psi_{i}-\delta_{\mathrm{irr}}-\frac{1}{2} \sum_{s=2}^{g-2} s(g-4+s g-2 s) \delta_{0: s}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, g-2}\right)
$$

Note that again, inequality (3) is satisfied, hence $\overline{\mathcal{F}}_{g, 1}$ can be used to prove that $K_{\overline{\mathcal{C}}_{g, g-2}}$ is big. Moreover, $\overline{\mathcal{F}}_{g, 1}$ descends to an extremal divisor $\widetilde{\mathcal{F}}_{g, 1} \in \operatorname{Eff}\left(\overline{\mathcal{C}}_{g, g-2}\right)$. In fact, we shall show that $\widetilde{\mathcal{F}}_{g, 1}$ is swept by curves intersecting its class negatively.

Divisors similar to those considered in Theorems 0.4 and 0.7 can be constructed on other moduli spaces. On $\overline{\mathcal{M}}_{g, g-3}$ we construct an extremal divisor using a somewhat similar construction. If $D \in C_{g-3}$ is a general effective divisor of degree $g-3$ on a curve $[C] \in \mathcal{M}_{g}$, we observe that $K_{C} \otimes \mathcal{O}_{C}(-D) \in W_{g+1}^{2}(C)$. A natural codimension one condition on $\overline{\mathcal{M}}_{g, g-3}$ is that this plane model have a triple point (a similar construction requiring instead that $K_{C} \otimes \mathcal{O}_{C}(-D)$ have a cusp, produces a "less extremal" divisor):

Theorem 0.8. The closure inside $\overline{\mathcal{M}}_{g, g-3}$ of the locus

$$
\mathcal{D}_{g}:=\left\{\left[C, x_{1}, \ldots, x_{g-3}\right] \in \mathcal{M}_{g, g-3}: \exists L \in W_{g}^{2}(C) \text { with } H^{0}\left(C, L\left(-\sum_{i=1}^{g-3} x_{i}\right)\right) \neq 0\right\}
$$

is an effective divisor. Its class in $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g, g-3}\right)$ is equal to

$$
\overline{\mathcal{D}}_{g} \equiv-\frac{2(g-17)}{3}\binom{g-3}{2} \lambda+\frac{2 g-3}{3}\binom{g-4}{2} \sum_{i=1}^{g-3} \psi_{i}-\binom{g-3}{2} \delta_{\mathrm{irr}}-\left(g^{2}-5 g+5\right)(g-5) \delta_{0: 2}-\cdots
$$

1. CONES OF DIVISORS ON UNIVERSAL SYMMETRIC PRODUCTS

The aim of this section is to establish certain facts about boundary divisors on $\overline{\mathcal{M}}_{g, n}$ and $\overline{\mathcal{C}}_{g, n}$, see [AC] for a standard reference. We follow the convention set in [FV2], that is, if M is a Deligne-Mumford stack, we denote by \mathcal{M} its coarse moduli space.

For an integer $0 \leq i \leq[g / 2]$ and a subset $T \subset\{1, \ldots, n\}$, we denote by $\Delta_{i: T}$ the closure in $\overline{\mathcal{M}}_{g, n}$ of the locus of n-pointed curves $\left[C_{1} \cup C_{2}, x_{1}, \ldots, x_{n}\right.$], where C_{1} and C_{2} are smooth curves of genera i and $g-i$ respectively meeting transversally in one point, and the marked points lying on C_{1} are precisely those indexed by T. We define $\delta_{i: T}:=\left[\Delta_{i: T}\right]_{\mathbb{Q}} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right)$. For $0 \leq i \leq[g / 2]$ and $0 \leq s \leq g$, we set

$$
\Delta_{i: s}:=\sum_{\#(T)=s} \delta_{i: T}, \quad \delta_{i: s}:=\left[\Delta_{i: s}\right]_{\mathbb{Q}} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right) .
$$

By convention, $\delta_{0: s}:=\emptyset$, for $s<2$, and $\delta_{i: s}:=\delta_{g-i: n-s}$. If $\phi: \overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g}$ is the morphism forgetting the marked points, we set $\lambda:=\phi^{*}(\lambda)$ and $\delta_{\text {irr }}:=\phi^{*}\left(\delta_{\text {irr }}\right)$, where $\delta_{\text {irr }}:=\left[\Delta_{\text {irr }}\right] \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$ denotes the class of the locus of irreducible nodal curves. Furthermore, $\psi_{1}, \ldots, \psi_{n} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right)$ are the cotangent classes corresponding to the marked points. The canonical class of $\overline{\mathcal{M}}_{g, n}$ is computed via Kodaira-Spencer theory:

$$
\begin{equation*}
K_{\overline{\mathcal{M}}_{g, n}} \equiv 13 \lambda-2 \delta_{\mathrm{irr}}+\sum_{i=1}^{n} \psi_{i}-2 \sum_{\substack{T \subset\{1, \ldots, n\} \\ i \geq 0}} \delta_{i: T}-\delta_{1: \emptyset} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right) . \tag{4}
\end{equation*}
$$

Let $\overline{\mathcal{C}}_{g, n}:=\overline{\mathcal{M}}_{g, n} / \mathfrak{S}_{n}$ be the universal symmetric product and $\pi: \overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{C}}_{g, n}$ (respectively $\varphi: \overline{\mathcal{C}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g}$) the projection (respectively the forgetful map), so that $\phi=\varphi \circ \pi$. We denote by $\widetilde{\lambda}, \widetilde{\delta}_{\text {irr }}, \widetilde{\delta}_{i: c}:=\left[\widetilde{\Delta}_{i: c}\right] \in \operatorname{Pic}\left(\overline{\mathcal{C}}_{g, n}\right)$ the divisor classes on the symmetric product pulling-back to the same symbols on $\overline{\mathcal{M}}_{g, n}$. Clearly, $\pi^{*}(\widetilde{\lambda})=\lambda, \pi^{*}\left(\widetilde{\delta}_{\text {irr }}\right)=\delta_{\text {irr }}$, $\pi^{*}\left(\widetilde{\delta}_{i: c}\right)=\delta_{i: c}$; in the case $i=0, c=2$, this reflects the branching of the map π along the divisor $\widetilde{\Delta}_{0: 2} \subset \overline{\mathcal{C}}_{g, n}$. Following [FV2], let \mathbb{L} denote the line bundle on $\overline{\mathcal{C}}_{g, n}$, having fibre

$$
\mathbb{L}\left[C, x_{1}+\cdots+x_{n}\right]:=T_{x_{1}}^{\vee}(C) \otimes \cdots \otimes T_{x_{n}}^{\vee}(C),
$$

over a point $\left[C, x_{1}+\cdots+x_{n}\right]:=\pi\left(\left[C, x_{1}, \ldots, x_{n}\right]\right) \in \overline{\mathcal{C}}_{g, n}$. We set $\widetilde{\psi}:=c_{1}(\mathbb{L})$, and note:

$$
\begin{equation*}
\pi^{*}(\widetilde{\psi})=\sum_{i=1}^{n}\left(\psi_{i}-\sum_{i \in T \subset\{1, \ldots, n\}} \delta_{0: T}\right)=\sum_{i=1}^{n} \psi_{i}-\sum_{s=2}^{n} s \delta_{0: s} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right) . \tag{5}
\end{equation*}
$$

Proposition 1.1. For $g \geq 3$ and $n \geq 0$, the morphism $\pi^{*}: \operatorname{Pic}\left(\overline{\mathcal{C}}_{g, n}\right)_{\mathbb{Q}} \rightarrow \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right)_{\mathbb{Q}}$ is injective. Furthermore, there is an isomorphism of groups $\left.\operatorname{Pic}\left(\overline{\mathcal{C}}_{g, n}\right)_{\mathbb{Q}} \stackrel{\cong}{\leftrightarrows} N^{1}\left(\overline{\mathcal{C}}_{g, n}\right)\right)_{\mathbb{Q}}$.
Proof. The first assertion is an immediate consequence of the existence of the norm morphism $\operatorname{Nm}_{\pi}: \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right) \rightarrow \operatorname{Pic}\left(\overline{\mathcal{C}}_{g, n}\right)$, such that $\operatorname{Nm}_{\pi}\left(\pi^{*}(L)\right)=L^{\otimes \operatorname{deg}(\pi)}$, for every $L \in$ $\operatorname{Pic}\left(\overline{\mathcal{C}}_{g, n}\right)$. The second part comes from the isomorphism $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right)_{\mathbb{Q}} \xlongequal{\cong} N^{1}\left(\overline{\mathcal{M}}_{g, n}\right)_{\mathbb{Q}}$,
coupled with the commutativity of the obvious diagrams relating the Picard and NéronSeveri groups of $\overline{\mathcal{M}}_{g, n}$ and $\overline{\mathcal{C}}_{g, n}$ respectively.

One may thus identify $\operatorname{Pic}\left(\overline{\mathcal{C}}_{g, n}\right)_{\mathbb{Q}} \cong \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right)_{\mathbb{Q}}^{\mathfrak{G}_{n}}$. The Riemann-Hurwitz formula applied to the branched covering $\pi: \overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{C}}_{g, n}$ yields,

$$
\pi^{*}\left(K_{\overline{\mathcal{C}}_{g}, n}\right)=K_{\overline{\mathcal{M}}_{g, n}}-\delta_{0: 2} \equiv 13 \lambda+\sum_{i=1}^{n} \psi_{i}-2 \delta_{\mathrm{irr}}-3 \delta_{0: 2}-2 \sum_{s=3}^{n} \delta_{0: s}-\cdots
$$

As expected, the sum of cotangent classes descends to a big line bundle on $\overline{\mathcal{C}}_{g, n}$.
Proposition 1.2. The divisor class $N_{g, n}:=\widetilde{\psi}+\sum_{s=2}^{n} s \widetilde{\delta}_{0: s} \in \operatorname{Eff}\left(\overline{\mathcal{C}}_{g, n}\right)$ is big and nef.
Proof. The class $N_{g, n}$ is characterized by the property that $\pi^{*}\left(N_{g, n}\right)=\sum_{i=1}^{n} \psi_{i}$. This is a nef class on $\overline{\mathcal{M}}_{g, n}$, in particular, $N_{g, n}$ is nef on $\overline{\mathcal{C}}_{g, n}$. To establish that $N_{g, n}$ is big, we express it as a combination of effective classes and the class $\widetilde{\kappa}_{1} \in \operatorname{Pic}\left(\overline{\mathcal{C}}_{g, n}\right)$, where

$$
\pi^{*}\left(\widetilde{\kappa}_{1}\right)=\kappa_{1}=12 \lambda+\sum_{i=1}^{n} \psi_{i}-\delta_{\text {irr }}-\sum_{i=0}^{[g / 2]} \sum_{s \geq 0} \delta_{i: s} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right) .
$$

Since $\pi^{*}\left(\widetilde{\kappa}_{1}\right)$ is ample on $\overline{\mathcal{M}}_{g, n}$, it follows that $\widetilde{\kappa}_{1}$ is ample as well. To finish the proof, we exhibit a suitable effective class on $\overline{\mathcal{M}}_{g, n}$ having negative λ-coefficient. For that purpose, we choose $\mathcal{W}_{g, n} \subset \mathcal{C}_{g, n}$ to be the locus of effective divisors having a Weierstrass point in their support. For $i=1, \ldots, n$, we denote by $\sigma_{i}: \overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g, 1}$ the morphism forgetting all but the i-th point, and let

$$
\overline{\mathcal{W}} \equiv-\lambda+\binom{g+1}{2} \psi-\sum_{i=1}^{g-1}\binom{g-i+1}{2} \delta_{i: 1} \in \operatorname{Eff}\left(\overline{\mathcal{M}}_{g, 1}\right)
$$

be the class of the divisor of Weierstrass points on the universal curve. Then one finds

$$
\pi^{*}\left(\overline{\mathcal{W}}_{g, n}\right) \equiv \sum_{i=1}^{n} \sigma_{i}^{*}(\overline{\mathcal{W}})=-n \lambda+\binom{g+1}{2} \sum_{i=1}^{n} \psi_{i}-\binom{g+1}{2} \sum_{s=2}^{n} s \delta_{0: s}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right),
$$

and $\overline{\mathcal{W}}_{g, n} \equiv-g \widetilde{\lambda}+\binom{g+1}{2} \tilde{\psi}-\sum_{i=1}^{[g / 2]} \sum_{s \geq 0} b_{i: s} \widetilde{\delta}_{i: s}$, where $b_{i: s}>0$. One checks that $N_{g, n}$ can be written as a \mathbb{Q}-combination with positive coefficients of the ample class $\widetilde{\kappa}_{1}$, the effective class $\left[\overline{\mathcal{W}}_{g, n}\right]$ and other boundary divisor classes. In particular, $N_{g, n}$ is big.

2. The universal ramification locus of the Gauss map

We begin the calculation of the divisor $\overline{\mathfrak{R T}}_{g}$, and for a start we consider its restriction $\mathfrak{R T} \mathfrak{T}_{g}$ to $\mathcal{M}_{g, g-1}$. Recall that $\mathfrak{R T}_{g}$ is defined as the closure of the locus of pointed curves $\left[C, x_{1}, \ldots, x_{g-1}\right] \in \mathcal{M}_{g, g-1}$, such that there exists a holomorphic form on C vanishing at x_{1}, \ldots, x_{g-1} and having an unspecified double zero.

Let $u: \mathbf{M}_{g, g-1}^{(1)} \rightarrow \mathbf{M}_{g, g-1}$ be the universal curve over the stack of $(g-1)$-pointed smooth curves and we denote by $\left(\left[C, x_{1}, \ldots, x_{g-1}\right], p\right) \in \mathcal{M}_{g, g-1}^{(1)}$ a general point, where $\left[C, x_{1}, \ldots, x_{g-1}\right] \in \mathcal{M}_{g, g-1}$ and $p \in C$ is an arbitrary point. For $i=1, \ldots, g-1$, let $\Delta_{i p} \subset \mathcal{M}_{g, g-1}^{(1)}$ be the diagonal divisor given by the equation $p=x_{i}$. Furthermore, for $i=1, \ldots, g-1$ we consider as before the projections $\sigma_{i}: \mathbf{M}_{g, g-1}^{(1)} \rightarrow \mathbf{M}_{g, 1}$ (respectively
$\sigma_{p}: \mathbf{M}_{g, g-1}^{(1)} \rightarrow \mathbf{M}_{g, 1}$), obtained by forgetting all marked points except x_{i} (respectively p), and then set $K_{i}:=\sigma_{i}^{*}\left(\omega_{\phi}\right) \in \operatorname{Pic}\left(\mathbf{M}_{g, g-1}^{(1)}\right)$ and $K_{p}:=\sigma_{p}^{*}\left(\omega_{\phi}\right) \in \operatorname{Pic}\left(\mathbf{M}_{g, g-1}^{(1)}\right)$. We consider the following cartesian diagram of stacks

in which all the morphisms are smooth and ϕ (hence also q) is proper. For $1 \leq i \leq g-1$ there are tautological sections $r_{i}: \mathbf{M}_{g, g-1}^{(1)} \rightarrow \mathcal{X}$ as well as $r_{p}: \mathbf{M}_{g, g-1}^{(1)} \rightarrow \mathcal{X}$, and set $E_{i}:=\operatorname{Im}\left(r_{i}\right), E_{p}:=\operatorname{Im}\left(r_{p}\right)$. Thus $\left\{E_{i}\right\}_{i=1}^{g,-1}$ and E_{p} are relative divisors over q.

For a point $\left(\left[C, x_{1}, \ldots, x_{g-1}\right], p\right) \in \mathcal{M}_{g, g-1}^{(1)}$, we denote $D:=\sum_{i=1}^{g-1} x_{i}+2 p \in C_{g+1}$, and have the following exact sequence:

$$
0 \rightarrow \frac{H^{0}\left(\mathcal{O}_{C}(D)\right)}{H^{0}\left(\mathcal{O}_{C}\right)} \rightarrow H^{0}\left(\mathcal{O}_{D}(D)\right) \stackrel{\alpha_{D}}{\rightarrow} H^{1}\left(\mathcal{O}_{C}\right) \rightarrow H^{1}\left(\mathcal{O}_{C}(D)\right) \rightarrow 0
$$

In particular, the morphisms α_{D} globalize to a morphism of vector bundles over $\mathbf{M}_{g, g-1}^{(1)}$

$$
\alpha: \mathcal{A}:=q_{*}\left(\mathcal{O}_{\mathcal{X}}\left(\sum_{i=1}^{g-1} E_{i}+2 E_{p}\right) / \mathcal{O}_{\mathcal{X}}\right) \rightarrow R^{1} q_{*} \mathcal{O}_{\mathcal{X}}
$$

The subvariety $\mathcal{Z}:=\left\{\left(\left[C, x_{1}, \ldots, x_{g-1}\right], p\right) \in \mathcal{M}_{g, g-1}^{(1)}: H^{0}\left(K_{C}\left(-2 p-\sum_{i=1}^{g-1} x_{i}\right)\right) \neq 0\right\}$ is the non-surjectivity locus of α and $\mathfrak{R T}_{g}:=u_{*}(\mathcal{Z}) \subset \mathcal{M}_{g, g-1}$. The class of \mathcal{Z} is equal to

$$
[\mathcal{Z}]=c_{2}\left(\mathcal{A}^{\vee}-\left(R^{1} q_{*} \mathcal{O}_{\mathcal{X}}\right)^{\vee}\right)=c_{2}\left(-q_{!} \mathcal{O}_{\mathcal{X}}\left(\sum_{i=1}^{g-1} E_{i}+2 E_{p}\right)\right) \in A^{2}\left(\mathbf{M}_{g, g-1}^{(1)}\right),
$$

where the last term can be computed by Grothendieck-Riemann-Roch:
$\operatorname{ch}\left(q!\mathcal{O}_{\mathcal{X}}\left(\sum_{i=1}^{g-1} E_{i}+2 E_{p}\right)\right)=q_{*}\left[\left(\sum_{k \geq 0} \frac{\left(\sum_{i=1}^{g-1} E_{i}+2 E_{p}\right)^{k}}{k!}\right) \cdot\left(1-\frac{c_{1}\left(\omega_{q}\right)}{2}+\frac{c_{1}^{2}\left(\omega_{q}\right)}{12}+\cdots\right)\right]$,
and we are interested in evaluating the terms of degree 1 and 2 in this expression. The result of applying GRR to the morphism q, can be summarized as follows:

Lemma 2.1. One has the following relations in $A^{*}\left(\mathbf{M}_{g, g-1}^{(1)}\right)$:

$$
\begin{equation*}
\operatorname{ch}_{1}\left(q_{*}\left(\mathcal{O}_{\mathcal{X}}\left(\sum_{i=1}^{g-1} E_{i}+2 E_{p}\right)\right)\right)=\lambda-\sum_{i=1}^{g-1} K_{i}-3 K_{p}+2 \sum_{i=1}^{g-1} \Delta_{i p} . \tag{i}
\end{equation*}
$$

(ii)

$$
\operatorname{ch}_{2}\left(q_{*}\left(\mathcal{O}_{\mathcal{X}}\left(\sum_{i=1}^{g-1} E_{i}+2 E_{p}\right)\right)\right)=\frac{5}{2} K_{p}^{2}+\frac{1}{2} \sum_{i=1}^{g-1} K_{i}^{2}-2 \sum_{i=1}^{g-1}\left(K_{i}+K_{p}\right) \cdot \Delta_{i p}
$$

Proof. We apply systematically the push-pull formula and the following identities:
$E_{i}^{2}=-E_{i} \cdot q^{*}\left(K_{i}\right), E_{p}^{2}=-E_{p} \cdot q^{*}\left(K_{p}\right), E_{i} \cdot c_{1}\left(\omega_{q}\right)=E_{i} \cdot q^{*}\left(K_{i}\right), E_{p} \cdot c_{1}\left(\omega_{q}\right)=E_{p} \cdot q^{*}\left(K_{p}\right)$,

$$
E_{i} \cdot E_{j}=0 \text { for } i \neq j, E_{i} \cdot E_{p}=E_{i} \cdot q^{*}\left(\Delta_{i p}\right), \text { and } q_{*}\left(c_{1}^{2}\left(\omega_{q}\right)\right)=12 \lambda
$$

Proposition 2.2. The formula $\mathfrak{R T}_{g} \equiv-4(g-7) \lambda+(4 g-8) \sum_{i=1}^{g-1} \psi_{i} \in \operatorname{Pic}\left(\mathbf{M}_{g, g-1}\right)$ holds.
Proof. We apply the results of Lemma 2.1, as well as the formulas from [HM] p. 55, in order to estimate the push-forward under u of the degree 2 monomials in tautological classes. Setting $\mathcal{F}:=q_{*}\left(\mathcal{O}_{\mathcal{X}}\left(\sum_{i=1}^{g-1} E_{i}+2 E_{p}\right)\right)$, we obtain that

$$
u_{*}\left(\operatorname{ch}_{1}^{2}(\mathcal{F})\right)=-(8 g-116) \lambda+(8 g-24) \sum_{i=1}^{g-1} \psi_{i}, \text { and } u_{*}\left(\operatorname{ch}_{2}(\mathcal{F})\right)=30 \lambda-4 \sum_{i=1}^{g-1} \psi_{i}
$$

hence $\left[\mathfrak{R T} T_{g}\right]=u_{*}\left(\operatorname{ch}_{1}^{2}(\mathcal{F})-2 \operatorname{ch}_{2}(\mathcal{F})\right) / 2$, and the claimed formula follows at once.
We proceed now towards proving Theorem 0.4 and expand the divisor class $\left[\mathfrak{R T}_{g}\right] \in$ $\operatorname{Pic}\left(\mathcal{M}_{g, g-1}\right)$ in the standard basis of the Picard group, that is,

$$
\overline{\mathfrak{R}}_{g} \equiv a \lambda+c \sum_{i=1}^{g-1} \psi_{i}-b_{\mathrm{irr}} \delta_{\mathrm{irr}}-\sum_{i=0}^{g} \sum_{s=0}^{i-1} b_{i: s} \delta_{i: s} .
$$

We have just computed $a=-4(g-7)$ and $c=4(g-2)$. The remaining coefficients are determined by intersecting $\overline{\mathfrak{R}}_{g}$ with curves lying in the boundary of $\overline{\mathcal{M}}_{g, g-1}$ and understanding how $\overline{\mathfrak{R T}}_{g}$ degenerates. We begin with the coefficient $b_{0: 2}$:
Proposition 2.3. One has the relation $(4 g-6) c-(g-2) b_{0: 2}=(4 g-2)(g-2)$. It follows that $b_{0: 2}=12 g-22$.
Proof. We fix a general pointed curve $\left[C, x_{1}, \ldots, x_{g-2}\right] \in \mathcal{M}_{g, g-2}$ and consider the family

$$
C_{x_{g-1}}:=\left\{\left[C, x_{1}, \ldots, x_{g-2}, x_{g-1}\right]: x_{g-1} \in C\right\} \subset \overline{\mathcal{M}}_{g, g-1} .
$$

The curve $C_{x_{g-1}}$ is the fibre over $\left[C, x_{1}, \ldots, x_{g-2}\right.$] of the morphism $\overline{\mathcal{M}}_{g, g-1} \rightarrow \overline{\mathcal{M}}_{g, g-2}$ forgetting the point labeled by x_{g-1}. Note that $C_{x_{g-1}} \cdot \psi_{i}=1$ for $i=1, \ldots, g-2$ and $C_{x_{g-1}} \cdot \psi_{g-1}=3 g-4=2 g-2+(g-2)$. Obviously $C_{x_{i}} \cdot \delta_{0: 2}=g-2$ and the points in the intersection correspond to the case when x_{g-1} collides with one of the fixed points x_{1}, \ldots, x_{g-2}. The intersection of $C_{x_{i}}$ with the remaining generators of $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g, g-1}\right)$ is equal to zero. We set $A:=K_{C} \otimes \mathcal{O}_{C}\left(-x_{1}-\cdots-x_{g-2}\right) \in W_{g}^{1}(C)$. By the generality assumption, $h^{0}(C, A)=2$, and all ramification points of A are simple. Pointed curves in the intersection $C_{x_{g-1}} \cdot \overline{\mathfrak{T}}_{g}$ correspond to points $x_{g-1} \in C$, such that there exists a (ramification) point $p \in C$ with $H^{0}\left(C, A \otimes \mathcal{O}_{C}\left(-2 p-x_{g-1}\right)\right) \neq 0$. The pencil A carries $4 g-2$ ramification points. For each of them there are $g-2$ possibilities of choosing $x_{g-1} \in C$ in the same fibre as the ramification point, hence the conclusion follows.

Next we determine the coefficient $b_{\text {irr }}$. First we note that the relation

$$
\begin{equation*}
a-12 b_{\text {irr }}+b_{1: 0}=0 \tag{6}
\end{equation*}
$$

holds. Indeed, the divisor $\overline{\mathfrak{R T}}_{g}$ is disjoint from the curve in $\Delta_{1: 0} \subset \overline{\mathcal{M}}_{g, g-1}$, obtained from a fixed pointed curve $\left[C, x_{1}, \ldots, x_{g-1}, q\right] \in \overline{\mathcal{M}}_{g-1, g}$, by attaching at the point q a pencil of plane cubics along a section of the pencil induced by one of the 9 base points.

Proposition 2.4. One has the relation $b_{\mathrm{irr}}=2$.
Proof. We fix a general curve $\left[C, q, x_{1}, \ldots, x_{g-1}\right] \in \overline{\mathcal{M}}_{g-1, g}$, and we define the family

$$
C_{\mathrm{irr}}:=\left\{\left[C / t \sim q, x_{1}, \ldots, x_{g-1}\right]: t \in C\right\} \subset \Delta_{\mathrm{irr}} \subset \overline{\mathcal{M}}_{g, g-1} .
$$

Then $C_{\text {irr }} \cdot \psi_{i}=1$ for $i=1, \ldots, g-1, C_{\text {irr }} \cdot \delta_{\text {irr }}=-\left(\operatorname{deg}\left(K_{C}\right)+2\right)=-2 g+2$, and finally $C_{\text {irr }} \cdot \delta_{1: 0}=1$. All other intersection numbers with generators of $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g, g-1}\right)$ equal zero.

We fix an effective divisor $D \in C_{e}$ of degree $e \geq g$ (for instance $D=q+\sum_{i=1}^{g-1} x_{i}$). For each pair of points $(t, p) \in C \times C$, there is an exact sequence on C

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(C, K_{C}\left(q+t-2 p-\sum_{i=1}^{g-1} x_{i}\right)\right) \rightarrow H^{0}\left(C, K_{C}\left(D+q+t-2 p-\sum_{i=1}^{g-1} x_{i}\right)\right) \xrightarrow{\beta_{t, p}} \\
& H^{0}\left(D, K_{C}\left(D+q+t-2 p-\sum_{i=1}^{g-1} x_{i}\right)\right) \rightarrow H^{1}\left(C, K_{C}\left(q+t-2 p-\sum_{i=1}^{g-1} x_{i}\right)\right) \rightarrow 0 .
\end{aligned}
$$

The intersection $C_{\text {irr }} \cdot \overline{\mathfrak{T}}_{g}$ corresponds to the locus of pairs $(t, p) \in C \times C$ such that the map $\beta_{t, p}$ is not injective. On the triple product of C, we consider two of the projections $f: C \times C \times C \rightarrow C \times C$ and $p_{1}: C \times C \times C \rightarrow C$ given by $f(x, t, p)=(t, p)$ and $p_{1}(x, t, p)=$ x, then set $A:=K_{C}\left(q-\sum_{i=1}^{g-1} x_{i}\right) \in \operatorname{Pic}^{g-2}(C)$. We denote by $\Delta_{12}, \Delta_{13} \subset C \times C \times C$ the corresponding diagonals, and finally, introduce the line bundle on $C \times C \times C$

$$
\mathcal{F}:=p_{1}^{*}(A) \otimes \mathcal{O}_{C \times C \times C}\left(\Delta_{12}-2 \Delta_{13}\right) .
$$

Applying the Porteous formula, one can write

$$
C_{\mathrm{irr}} \cdot \overline{\mathfrak{T}}_{g}=c_{2}\left(R^{1} f_{*} \mathcal{F}-R^{0} f_{*} \mathcal{F}\right)=\frac{\operatorname{ch}_{1}^{2}\left(f_{!} \mathcal{F}\right)+2 \operatorname{ch}_{2}\left(f_{!} \mathcal{F}\right)}{2} \in A^{2}(C \times C)
$$

We evaluate $\operatorname{ch}_{i}\left(f_{!} \mathcal{F}\right)$ using GRR applied to the morphism f, that is,

$$
\operatorname{ch}\left(f_{!} \mathcal{F}\right)=f_{*}\left[\left(\sum_{a \geq 0} \frac{\left(p_{1}^{*}(A)+\Delta_{12}-2 \Delta_{13}\right)^{a}}{a!}\right) \cdot\left(1-\frac{1}{2} p_{1}^{*}\left(K_{C}\right)\right)\right] .
$$

Denoting by $F_{1}, F_{2} \in H^{2}(C \times C)$ the class of the fibres, after calculations one finds that

$$
\begin{gathered}
\operatorname{ch}_{1}\left(f_{*} \mathcal{F}\right)=-(g-2) F_{1}-4(g-2) F_{2}-2 \Delta_{C} \in H^{2}(C \times C, \mathbb{Q}), \\
\operatorname{ch}_{2}\left(f^{*} \mathcal{F}\right)=-2(g-2) \in H^{4}(C \times C, \mathbb{Q}),
\end{gathered}
$$

that is, $c_{2}\left(R^{1} f_{*} \mathcal{F}-R^{0} f_{*} \mathcal{F}\right)=4(g-2)(g-1)$. Coupled with (6), this yields $b_{\text {irr }}=2$.
We are left with the task of determining the coefficient of $\delta_{i: s}$ in the expansion of $\left[\overline{\mathfrak{R}}_{g}\right]$. This requires solving a number of enumerative geometry problems in the spirit of de Jonquières' formula. We fix integers $0 \leq i \leq g$ and $s \leq i-1$ as well as general pointed curves $\left[C, x_{1}, \ldots, x_{s}\right] \in \overline{\mathcal{M}}_{i, s}$ and $\left[D, q, x_{s+1}, \ldots, x_{g-1}\right] \in \overline{\mathcal{M}}_{g-i, g-s}$, then construct a pencil of stable curves of genus g, by identifying the fixed point $q \in D$ with a variable point, also denoted by q, on the component C :

$$
C_{i: s}:=\left\{\left[C \cup_{q} D, x_{1}, \ldots, x_{s}, x_{s+1}, \ldots, x_{g-1}\right]: q \in C\right\} \subset \Delta_{i: s} \subset \overline{\mathcal{M}}_{g, g-1} .
$$

We summarize the non-zero intersection numbers of $C_{i: s}$ with generators of $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g, g-1}\right)$:

$$
C_{i: s} \cdot \psi_{1}=\cdots=C_{i: s} \cdot \psi_{s}=1, \quad C_{i: s} \cdot \delta_{i: s-1}=i, C_{i: s} \cdot \delta_{i: s}=2 i-2+s
$$

Theorem 2.5. We fix integers $0 \leq i \leq g$ and $0 \leq s \leq i-1$. Then, the following formula holds:

$$
b_{i: s}=2 i^{3}-5 i^{2}-3 i+4 g-4 i^{2} s+14 s i-6 g s-s+2 s^{2} g-3 s^{2}+2 .
$$

In the proof an essential role is played by the following calculation:
Proposition 2.6. Let i, s be integers such that $0 \leq s \leq i-1$, and $\left[C, x_{1}, \ldots, x_{s}\right] \in \mathcal{M}_{i, s} a$ general pointed curve. The number of pairs $(q, p) \in C \times C$ such that

$$
H^{0}\left(C, K_{C} \otimes \mathcal{O}_{C}\left(-x_{1}-\cdots-x_{s}-(i-s-1) q-2 p\right)\right) \neq 0
$$

is equal to $a(i, s):=2(i-s-1)\left(2 i^{3}-5 i^{2}+i+2-2 i^{2} s+3 i s\right)$.
Remark 2.7. By specializing, one recovers well-known formulas in enumerative geometry. For instance, $a(3,0)=56$ is twice the number of bitangents of a smooth plane quartic, whereas $a(4,0)=324$ equals the number of canonical divisors of type $3 q+2 p+x \in\left|K_{C}\right|$, where $[C] \in \mathcal{M}_{4}$. This matches de Jonquières' formula, cf. [ACGH] p.359.

Proof of Theorem[2.5 We fix a general point $\left[C \cup_{q} D, x_{1}, \ldots, x_{g-1}\right] \in C_{i: s} \cdot \overline{\mathfrak{T}}_{g}$, corresponding to a point $q \in C$. We shall show that q is not one of the marked points x_{1}, \ldots, x_{s} on C, then give a geometric characterization of such points and count their number. Let

$$
\omega_{D} \in H^{0}\left(D, K_{D} \otimes \mathcal{O}_{D}(2 i q)\right) \text { and } \omega_{C} \in H^{0}\left(C, K_{C} \otimes \mathcal{O}_{C}(2 g-2 i) q\right)
$$

be the aspects of the section of the limit canonical series on $C \cup_{q} D$, which vanishes doubly at an unspecified point $p \in C \cup D$ as well as along the divisor $x_{1}+\cdots+x_{g-1}$. The condition $\operatorname{ord}_{q}\left(\omega_{C}\right)+\operatorname{ord}_{q}\left(\omega_{D}\right) \geq 2 g-2$, comes from the definition of a limit linear series. We distinguish two cases depending on the position of the point p. If $p \in D$ then,

$$
\operatorname{div}\left(\omega_{C}\right) \geq x_{1}+\cdots+x_{s}, \quad \operatorname{div}\left(\omega_{D}\right) \geq x_{s+1}+\cdots+x_{g-1}+2 p .
$$

Since the points $q, x_{s+1}, \ldots, x_{g-1} \in D$ are general, we find that $\operatorname{ord}_{q}\left(\omega_{D}\right) \leq i+s-2$. Moreover, $K_{D} \otimes \mathcal{O}_{D}\left((i-s+2) q-x_{s+1}-\cdots-x_{g-1}\right) \in W_{g-i+1}^{1}(D)$ is a pencil, and $p \in D$ is one of its (simple) ramification points. The Hurwitz formula gives $4(g-i)$ choices for such $p \in D$.

By compatibility, $\operatorname{ord}_{q}\left(\omega_{C}\right) \geq 2 g-i-s$. A parameter count implies that equality must hold. The condition $H^{0}\left(C, K_{C} \otimes \mathcal{O}_{C}\left(-x_{1}-\cdots-x_{s}-(i-s) q\right) \neq 0\right.$, is equivalent to asking that $q \in C$ be a ramification point of $K_{C} \otimes \mathcal{O}_{C}\left(-\sum_{j=1}^{s} x_{j}\right) \in W_{2 i-2-s}^{i-s-1}(C)$. Since the points $x_{1}, \ldots, x_{s} \in C$ are chosen to be general, all ramification points of this linear series are simple and occur away from the marked points. From Plücker's formula, the number of ramification points equals $(i-s)\left(i^{2}-1-i s\right)$. Multiplying this with the number of choices for $p \in D$, we obtain a total contribution of $4(g-i)(i-s)\left(i^{2}-i s-1\right)$ to the intersection $C_{i: s} \cdot \overline{\mathfrak{T}}_{g}$, stemming from the case when $p \in D$. The proof that each of these points of intersection is to be counted with multiplicity 1 is standard and proceeds along the lines of [EH2] Lemma 3.4.

We assume now that $p \in C$. Keeping the notation from above, it follows that $\operatorname{ord}_{q}\left(\omega_{D}\right)=i+s-1$ and $\operatorname{ord}_{q}\left(\omega_{C}\right)=2 g-i-s-1$, therefore

$$
0 \neq \sigma_{C} \in H^{0}\left(C, K_{C} \otimes \mathcal{O}_{C}\left(-\sum_{j=1}^{s} x_{j}-(i-s-1) q-2 p\right)\right)
$$

The section ω_{D} is uniquely determined up to multiplication by scalars, whereas there are $a(i, s)$ choices on the side of C, each counted with multiplicity 1 .

In principle, the double zero of the limit holomorphic form could specialize to the point of attachment $q \in C \cap D$, and we prove that this would contradict our generality hypothesis. One considers the semistable curve $X:=C \cup_{q_{1}} E \cup_{q_{2}} D$, obtained from $C \cup D$ by inserting a smooth rational component E at q, where $\left\{q_{1}\right\}:=C \cap E$ and $\left\{q_{2}\right\}:=D \cap E$. There also exist non-zero sections

$$
\omega_{D} \in H^{0}\left(D, K_{D}\left(2 i q_{2}\right)\right), \omega_{E} \in H^{0}\left(E, \mathcal{O}_{E}(2 g-2)\right), \quad \omega_{C} \in H^{0}\left(C, K_{C}\left((2 g-2 i) q_{1}\right)\right),
$$

satisfying $\operatorname{ord}_{q_{1}}\left(\omega_{C}\right)+\operatorname{ord}_{q_{1}}\left(\omega_{E}\right) \geq 2 g-2$ and $\operatorname{ord}_{q_{2}}\left(\omega_{E}\right)+\operatorname{ord}_{q_{2}}\left(\omega_{D}\right) \geq 2 g-2$. Furthermore, ω_{E} vanishes doubly at a point $p \in\left\{q_{1}, q_{2}\right\}^{c}$. Since ω_{C} (respectively ω_{D}) also vanishes along the divisor $x_{1}+\cdots+x_{s}$ (respectively $x_{s+1}+\cdots+x_{g-1}$), it follows that $\operatorname{ord}_{q_{1}}\left(\omega_{C}\right) \leq 2 g-i-s$ and $\operatorname{ord}_{q_{2}}\left(\omega_{D}\right) \leq i+s-1$, hence by compatibility, $\operatorname{ord}_{q_{1}}\left(\omega_{E}\right)+\operatorname{ord}_{q_{2}}\left(\omega_{E}\right) \geq 2 g-3$. This rules out the possibility of a further double zero and shows that this case does not occur.

To summarize, keeping in mind that the ψ-coefficient of $\left[\overline{\mathfrak{R}}_{g}\right]$ is equal to $4 g-8$, we find the relation

$$
\begin{equation*}
(2 i-2+s) b_{i: s}-s b_{i: s-1}+s(4 g-8)=4(g-i)(s-1)(s i-2 i+2)+a(i, s) \tag{7}
\end{equation*}
$$

For $s=0$, we have by convention $b_{i:-1}=0$, which gives $b_{i: 0}=2 i^{3}-5 i^{2}-3 i+4 g+1$. By induction, we find using recursion (7) the claimed formula for $b_{i: s}$.

As already explained, having calculated the class $\left[\overline{\mathfrak{R T}}_{g}\right] \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, g-1}\right)$ and using known bound on the slope $s\left(\overline{\mathcal{M}}_{g}\right)$, one derives that $\mathfrak{T h}_{g}$ is of general type when $g \geq 12$. We discuss the last cases in Theorem 0.1 and thus complete the birational classification of $\mathfrak{T h}_{g}$:
End of proof of Theorem 0.1 We noted in the Introduction that for $g \leq 9$ the space $\mathfrak{T h}_{g}$ is unirational, being the image of a variety which is birational to a Grassmann bundle over the rational Mukai variety V_{g}^{g-1}. When $g \in\{10,11\}$, the space $\overline{\mathcal{M}}_{g, g-1}$ is uniruled [FP]. This implies the uniruledness of $\mathfrak{T h}_{g}$ as well.

3. The Kodaira dimension of $\overline{\mathcal{C}}_{g, n}$

In this section we provide results concerning the Kodaira dimension of the symmetric product $\overline{\mathcal{C}}_{g, n}$, where $n \leq g-2$. There are two cases depending on the parity of the difference $g-n$. When $g-n$ is even, we introduce a subvariety inside $\mathcal{C}_{g, n}$, consisting of divisors $D \in C_{n}$ which appear in a fibre of a pencil of degree $(g+n) / 2$ on a curve $[C] \in \mathcal{M}_{g}$. We set integers $g \geq 1$ and $1 \leq m \leq g / 2$, then consider the locus $\mathcal{F}_{g, m}:=\left\{\left[C, x_{1}, \ldots, x_{g-2 m}\right] \in \mathcal{M}_{g, g-2 m}: \exists A \in W_{g-m}^{1}(C)\right.$ with $\left.H^{0}\left(C, A\left(-\sum_{j=1}^{g-2 m} x_{j}\right)\right) \neq 0\right\}$.

A parameter count shows that $\mathcal{F}_{g, m}$ is expected to be an effective divisor on $\overline{\mathcal{M}}_{g, g-2 m}$. We shall prove this, then compute the class of its closure in $\overline{\mathcal{M}}_{g, g-2 m}$.
Theorem 3.1. Fix integers $g \geq 1$ and $1 \leq m \leq g / 2$, then set $n:=g-2 m$ and $d:=g-m$. The class of the compactification inside $\overline{\mathcal{M}}_{g, g-2 m}$ of the divisor $\mathcal{F}_{g, m}$ is given by the formula:

$$
\overline{\mathcal{F}}_{g, m} \equiv\left(\frac{10 n}{g-2}\binom{g-2}{d-1}-\frac{n}{g}\binom{g}{d}\right) \lambda+\frac{n-1}{g-1}\binom{g-1}{d-1} \sum_{j=1}^{n} \psi_{j}-\frac{n}{g-2}\binom{g-2}{d-1} \delta_{\mathrm{irr}}-
$$

$$
-\sum_{s=2}^{n} \frac{s\left(n^{2}-g+s g n-s n\right)}{2(g-1)(g-d)}\binom{g-1}{d} \delta_{0: s}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

Proof. We fix a general curve $[C] \in \mathcal{M}_{g}$ and consider the incidence correspondence

$$
\Sigma:=\left\{(D, A) \in C_{g-2 m} \times W_{g-m}^{1}(C): H^{0}\left(C, A \otimes \mathcal{O}_{C}(-D)\right) \neq 0\right\}
$$

together with the projection $\pi_{1}: \Sigma \rightarrow C_{g-2 m}$. It follows from [F1] Theorem 0.5 , that Σ is pure of dimension $g-2 m-1(=\rho(g, 1, g-m)+1)$. To conclude that $\overline{\mathcal{F}}_{g, m}$ is a divisor inside $\overline{\mathcal{M}}_{g, g-2 m}$, it suffices to show that the general fibre of the map π_{1} is finite, which implies that $\phi^{-1}([C]) \cap \overline{\mathcal{F}}_{g, m}$ is a divisor in $\phi^{-1}([C])$; we also note that the fibre $\phi^{-1}([C])$ is isomorphic to the n-th Fulton-Macpherson configuration space of C. We specialize to the case $D=(g-2 m) \cdot p$, where $p \in C$. One needs to show that for a general curve $[C] \in \mathcal{M}_{g}$, there exist finitely many pencils $A \in W_{g-m}^{1}(C)$ with $h^{0}\left(C, A \otimes \mathcal{O}_{C}(-(g-m) p)\right) \geq 1$, for some point $p \in C$. This follows from [HM] Theorem B , or alternatively, by letting C specialize to a flag curve consisting of a rational spine and g elliptic tails, in which case the point p specializes to a ($g-2 m$)-torsion points on one of the elliptic tails (in particular it can not specialize to a point on the spine). For each of these points, the pencils in question are in bijective correspondence to points in a transverse intersection of Schubert cycles in $G(2, g-m+1)$. In particular their number is finite.

In order to compute the class $\left[\overline{\mathcal{F}}_{g, m}\right]$, we expand it in the usual basis of $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g, n}\right)$

$$
\overline{\mathcal{F}}_{g, m} \equiv a \lambda+c \sum_{i=1}^{g-2 m} \psi_{i}-b_{\mathrm{irr}} \delta_{\mathrm{irr}}-\sum_{i, s \geq 0} b_{i: s} \delta_{i: s},
$$

then note that the coefficients a, c and $b_{\text {irr }}$ respectively, have been computed in [F2] Theorem 4.9. The coefficient $b_{0: 2}$ is determined by intersecting $\overline{\mathcal{F}}_{g, m}$ with a fibral curve

$$
C_{x_{n}}:=\left\{\left[C, x_{1}, \ldots, x_{n-1}, x_{n}\right]: x_{n} \in C\right\} \subset \overline{\mathcal{M}}_{g, n},
$$

corresponding to a general ($n-1$)-pointed curve $\left[C, x_{1}, \ldots, x_{n-1}\right] \in \overline{\mathcal{M}}_{g, n-1}$. By letting the points $x_{1}, \ldots, x_{n-1} \in C$ coalesce to a point $q \in C$, points in the intersection $C_{x_{n}} \cdot \overline{\mathcal{F}}_{g, m}$ are in $1: 1$ correspondence with points $x_{n} \in C$, such that $h^{0}\left(C, A\left(-(n-1) q-x_{n}\right)\right) \geq 1$. This number equals $(g-2 m-1)\binom{g}{m}$, see [HM] Theorem A, that is,

$$
\begin{gathered}
(2 g+2 n-4) c-(n-1) b_{0: 2}=C_{x_{n}} \cdot \overline{\mathcal{F}}_{g, m}= \\
(m+1) \#\left\{A \in W_{g-m}^{1}(C): h^{0}\left(C, A \otimes \mathcal{O}_{C}(-(g-2 m-1) q)\right) \geq 1\right\}=(g-2 m-1)\binom{g}{m}
\end{gathered}
$$

which determines $b_{0: 2}$. The coefficients $b_{0: s}$ are computed recursively, by exhibiting an explicit test curve $\Gamma_{0: s} \subset \Delta_{0: s}$ which is disjoint from $\overline{\mathcal{F}}_{g, m}$. We fix a general element $\left[C, q, x_{s+1}, \ldots, x_{n}\right] \in \overline{\mathcal{M}}_{g, n+1-s}$ and a general s-pointed rational curve $\left[\mathbf{P}^{1}, x_{1}, \ldots, x_{s}\right] \in$ $\overline{\mathcal{M}}_{0, s}$. We glue these curves along a moving point q lying on the rational component:

$$
\Gamma_{0: s}:=\left\{\left[\mathbf{P}^{1} \cup_{q} C, x_{1}, \ldots, x_{s}, x_{s+1}, \ldots, x_{n}\right]: q \in \mathbf{P}^{1}\right\} \subset \Delta_{0: s} \subset \overline{\mathcal{M}}_{g, n} .
$$

Clearly, $\Gamma_{0: s} \cdot \overline{\mathcal{F}}_{g, m}=s c-(s-2) b_{0: s}+s b_{0: s-1}$. We claim $\Gamma_{0: s} \cap \overline{\mathcal{F}}_{g, m}=\emptyset$. Assume that on the contrary, one can find a point $q \in \mathbf{P}^{1}$ and a limit linear series \mathfrak{g}_{d}^{1} on $\mathbf{P}^{1} \cup_{q} C$,

$$
l=\left(\left(A, V_{C}\right),\left(\mathcal{O}_{\mathbf{P}^{1}}(d), V_{\mathbf{P}^{1}}\right)\right) \in G_{d}^{1}(C) \times G_{d}^{1}\left(\mathbf{P}^{1}\right)
$$

together with sections $\sigma_{C} \in V_{C}$ and $\sigma_{\mathbf{P}^{1}} \in V_{\mathbf{P}^{1}}$, satisfying $\operatorname{ord}_{q}\left(\sigma_{C}\right)+\operatorname{ord}_{q}\left(\sigma_{\mathbf{P}^{1}}\right) \geq d$ and

$$
\operatorname{div}\left(\sigma_{C}\right) \geq x_{s+1}+\cdots+x_{n}, \quad \operatorname{div}\left(\sigma_{\mathbf{P}^{1}}\right) \geq x_{1}+\cdots+x_{s} .
$$

Since $\sigma_{\mathbf{P}^{1}} \neq 0$, one finds that $\operatorname{ord}_{q}\left(\sigma_{\mathbf{P}^{1}}\right) \leq g-m-s$, hence by compatibility, $\operatorname{ord}_{q}\left(\sigma_{C}\right) \geq s$. We claim that this is impossible, that is, $H^{0}\left(C, A \otimes \mathcal{O}_{C}\left(-s q-x_{1}-\cdots-x_{n}\right)\right) \neq 0$, for every $A \in W_{g-m}^{1}(C)$. Indeed, by letting all points $x_{s+1}, \ldots, x_{n}, q \in C$ coalesce, the statement $H^{0}\left(C, A \otimes \mathcal{O}_{C}(-(g-2 m) \cdot q)\right)=0$, for a general $[C, q] \in \overline{\mathcal{M}}_{g, 1}$ is a consequence of the "pointed" Brill-Noether theorem as proved in [EH1] Theorem 1.1. This shows that

$$
0=\Gamma_{0: s} \cdot \overline{\mathcal{F}}_{g, m}=s c+(s-2) b_{0: s}-s b_{0: s-1},
$$

for $3 \leq s \leq n$, which determines recursively all coefficients $b_{0: s}$. The remaining coefficients $b_{i: s}$ with $1 \leq i \leq[g / 2]$ can be determined via similar test curve calculations, but we skip these details.

Keeping the notation from the proof of Theorem 3.1, a direct consequence is the calculation of the class of the divisor $\mathcal{F}_{g, m}[C]:=\pi_{1}(\Sigma)$ inside $C_{g-2 m}$. This offers an alternative proof of [Mus] Proposition III; furthermore the proof of Theorem 3.1, answers in the affirmative the question raised in loc.cit., concerning whether the cycle $\mathcal{F}_{g, m}[C]$ has expected dimension, and thus, it is a divisor on $C_{g-2 m}$.

We denote by $\theta \in H^{2}\left(C_{g-2 m}, \mathbb{Q}\right)$ the class of the pull-back of the theta divisor, and by $x \in H^{2}\left(C_{g-2 m}, \mathbb{Q}\right)$ the class of the locus $\left\{p_{0}+D: D \in C_{g-2 m-1}\right\}$ of effective divisors containing a fixed point $p_{0} \in C$. For a very general curve $[C] \in \mathcal{M}_{g}$, the group $N^{1}\left(C_{g-2 m}\right) \mathbb{Q}^{\text {i }}$ is generated by x and θ, see [ACGH].

Let $\widetilde{\mathcal{F}}_{g, m}$ be the effective divisor on $\overline{\mathcal{C}}_{g, g-2 m}$ to which $\overline{\mathcal{F}}_{g, m}$ descends, that is, $\pi^{*}\left(\widetilde{\mathcal{F}}_{g, m}\right)=\overline{\mathcal{F}}_{g, m}$. The class of $\widetilde{\mathcal{F}}_{g, m}$ is completely determined by Theorem 3.1.

Corollary 3.2. Let $[C] \in \mathcal{M}_{g}$ be a general curve. The cohomology class of the divisor

$$
\mathcal{F}_{g, m}[C]:=\left\{D \in C_{g-2 m}: \exists A \in W_{g-m}^{1}(C) \text { such that } H^{0}\left(C, A \otimes \mathcal{O}_{C}(-D)\right) \neq 0\right\}
$$

is equal to $\left(1-\frac{2 m}{g}\right)\binom{g}{m}\left(\theta-\frac{g}{g-2 m} x\right)$. In particular, the class $\theta-\frac{g}{g-2 m} x \in N^{1}\left(C_{g-2 m}\right) \mathbb{Q}$ is effective.

Proof. Let $u: C_{g-2 m} \rightarrow \overline{\mathcal{C}}_{g, g-2 m}$ be the rational map given by

$$
u\left(x_{1}+\cdots+x_{g-2 m}\right)=\left[C, x_{1}+\cdots+x_{g-2 m}\right] .
$$

Note that u is well-defined outside the codimension 2 locus of effective divisors with support of length at most $g-2 m-2$. We have that $u^{*}\left(\widetilde{\delta}_{0: 2}\right)=\delta_{C}$, where $\delta_{C}:=\left[\Delta_{C}\right] / 2$ is the reduced diagonal. Its class is given by the MacDonald formula, cf. [K1] Lemma 7:

$$
\delta_{C} \equiv-\theta+(g+d-1) x \equiv-\theta+(2 g-2 m-1) x .
$$

Furthermore, $u^{*}(\widetilde{\psi}) \equiv \theta+\delta_{C}+(g-n-1) x$, see [K2] Proposition 2.7. Thus $\mathcal{F}_{g, m}[C] \equiv$ $u^{*}\left(\left[\widetilde{\mathcal{F}}_{g, m}\right]\right)$, and the conclusion follows after some calculations.

The divisor $\widetilde{\mathcal{F}}_{g, m}$ is defined in terms of a correspondence between pencils and effective divisors on curves, and it is fibred in curves as follows: We fix a complete pencil $A \in W_{g-m}^{1}(C)$ with only simple ramification points. The variety of secant divisors

$$
V_{g-2 m}^{1}(A):=\left\{D \in C_{g-2 m}: H^{0}\left(C, A \otimes \mathcal{O}_{C}(-D)\right) \neq 0\right\}
$$

is a curve (see [F1]), disjoint from the indeterminacy locus of the rational map u : $C_{g-2 m} \rightarrow \overline{\mathcal{C}}_{g, g-2 m}$. We set $\Gamma_{g-2 m}(A):=u\left(V_{g-2 m}^{1}(A)\right) \subset \overline{\mathcal{C}}_{g, g-2 m}$. By varying $[C] \in \mathcal{M}_{g}$ and $A \in W_{g-m}^{1}(C)$, the curves $\Gamma_{g-2 m}(A)$ fill-up the divisor $\widetilde{\mathcal{F}}_{g, m}$. It is natural to test the extremality of $\widetilde{\mathcal{F}}_{g, m}$ by computing the intersection number $\Gamma_{g-2 m}(A) \cdot \widetilde{\mathcal{F}}_{g, m}$. To state the next result in a unified form, we adopt the convention $\binom{a}{b}:=0$, whenever $b<0$.
Proposition 3.3. For all integers $1 \leq m<g / 2$, we have the formula:

$$
\Gamma_{g-2 m}(A) \cdot \widetilde{\mathcal{F}}_{g, m}=(m-1)\binom{g-m-2}{m}\binom{g}{m} .
$$

In particular, $\Gamma_{g-2}(A) \cdot \widetilde{\mathcal{F}}_{g, 1}=0$, and the divisor $\widetilde{\mathcal{F}}_{g, 1} \in \operatorname{Eff}\left(\overline{\mathcal{C}}_{g, g-2}\right)$ is extremal.
Proof. This is an immediate application of Corollary 3.2. The class $\left[V_{g-2 m}^{1}(A)\right]$ can be computed using Porteous' formula, see [ACGH] p.342:

$$
\left[V_{g-2 m}^{1}(A)\right] \equiv \sum_{j=0}^{g-2 m-1}\binom{-m-1}{j} \frac{x^{j} \cdot \theta^{g-2 m-j-1}}{(g-2 m-1-j)!} \in H^{2(g-2 m-1)}\left(C_{g-2 m}, \mathbb{Q}\right)
$$

Using the push-pull formula, we write $\Gamma_{g-2 m}(A) \cdot \widetilde{\mathcal{F}}_{g, m}=\mathcal{F}_{g, m}[C] \cdot\left[V_{g-2 m}^{1}(A)\right]$, then estimate the product using the identity $x^{k} \theta^{g-2 m-k}=g!/(2 m+k)!\in H^{2(g-2 m)}\left(C_{g-2 m}, \mathbb{Q}\right)$ for $0 \leq k \leq g-2 m$. For $m=1$, observe that $\Gamma_{g-2}(A) \cdot \widetilde{\mathcal{F}}_{g, 1}=0$. Since the curves of type $\Gamma_{g-2}(A)$ cover $\widetilde{\mathcal{F}}_{g, 1}$, this implies that $\left[\widetilde{\mathcal{F}}_{g, 1}\right] \in \operatorname{Eff}\left(\overline{\mathcal{C}}_{g, g-2}\right)$ generates an extremal ray.

We can use Theorem 3.1 to describe the birational type of $\overline{\mathcal{C}}_{g, n}$ when $12 \leq g \leq 21$ and $1 \leq n \leq g-2$. We recall that when $g \leq 9$, the space $\overline{\mathcal{C}}_{g, n}$ is uniruled for all values of n. The transition cases $g=10,11$, as well as the case of the universal Jacobian $\overline{\mathcal{C}}_{g, g}$, are discussed in detail in [FV2]. Furthermore $\overline{\mathcal{C}}_{g, n}$ is uniruled when $n \geq g+1$; in this case the symmetric product C_{n} of any curve $[C] \in \mathcal{M}_{g}$ is birational to a \mathbf{P}^{n-g}-bundle over the Jacobian $\operatorname{Pic}^{n}(C)$. Our main result is that, in the range described above, $\overline{\mathcal{C}}_{g, n}$ is of general type in all the cases when $\overline{\mathcal{M}}_{g, n}$ is known to be of general type, see [Log], [F2]. We note however that the divisors $\overline{\mathcal{F}}_{g, m}$ only carry one a certain distance towards a full solution. The classification of $\overline{\mathcal{C}}_{g, n}$ is complete only when $n \in\{g-1, g-2, g\}$.
Theorem 3.4. For integers $g=12, \ldots, 21$, the universal symmetric product $\overline{\mathcal{C}}_{g, n}$ is of general type for all $f(g) \leq n \leq g-1$, where $f(g)$ is described in the following table.

$$
\begin{array}{c|cccccccccc}
g & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
\hline f(g) & 10 & 11 & 10 & 10 & 9 & 9 & 9 & 7 & 6 & 4
\end{array}
$$

Proof. The strategy described in the Introduction to prove that $K_{\overline{\mathcal{C}}_{g, g-1}}$ is big, applies to the other spaces $\overline{\mathcal{C}}_{g, n}$, with $1 \leq n \leq g-2$ as well. To show that $\overline{\mathcal{C}}_{g, n}$ is of general type, it suffices to produce an effective class on $\overline{\mathcal{C}}_{g, n}$ which pulls back via π to $a \lambda+c \sum_{i=1}^{n} \psi_{i}-$ $b_{\text {irr }} \delta_{\text {irr }}-\sum_{i, s} b_{i: s} \delta_{i: s} \in \operatorname{Eff}\left(\overline{\mathcal{M}}_{g, n}\right)^{\mathfrak{G}_{n}}$, such that the following conditions are fulfilled:

$$
\begin{equation*}
\frac{a+s\left(\overline{\mathcal{M}}_{g}\right)\left(2 c-b_{\mathrm{irr}}\right)}{13 c}<1 \quad \text { and } \quad \frac{b_{0: 2}}{3 c}>1 . \tag{8}
\end{equation*}
$$

When $g-n$ is even, we write $g-n=2 m$, and for all entries in the table above one can express $K_{\overline{\mathcal{C}}_{g, n}}$ as a positive combination of $\sum_{i=1}^{n} \psi_{i},\left[\overline{\mathcal{F}}_{g, m}\right], \varphi^{*}(D)$, where $D \in$ $\operatorname{Eff}\left(\overline{\mathcal{M}}_{g}\right)$, and other boundary classes.

If $g-n=2 m+1$ with $m \in \mathbb{Z}_{\geq 0}$, for each integer $1 \leq j \leq n+1$, we denote by $\phi_{j}: \overline{\mathcal{M}}_{g, n+1} \rightarrow \overline{\mathcal{M}}_{g, n}$ the projection forgetting the j-th marked point and consider the effective \mathfrak{S}_{n}-invariant effective \mathbb{Q}-divisor on $\overline{\mathcal{M}}_{g, n}$

$$
E:=\frac{1}{n+1} \sum_{j=1}^{n+1}\left(\phi_{j}\right)_{*}\left(\overline{\mathcal{F}}_{g, m} \cdot \delta_{0:\{j, n+1\}}\right) \in \operatorname{Eff}\left(\overline{\mathcal{M}}_{g, n}\right) .
$$

Using Theorem 3.1 as well as elementary properties of push-forwards of tautological classes, $K_{\overline{\mathcal{C}}_{g, n}}$ is expressible as a positive \mathbb{Q}-combination of boundaries, $[E]$, a pull-back of an effective divisor on $\overline{\mathcal{M}}_{g}$, and the big and nef class $\sum_{i=1}^{n} \psi_{i}$ precisely in the cases appearing in the table.
Remark 3.5. When $g \notin\{12,16,18\}$, the bound $s\left(\overline{\mathcal{M}}_{g}\right) \leq 6+12 /(g+1)$, emerging from the slope of the Brill-Noether divisors, has been used to verify (8). In the remaining cases, we employ the better bounds $s\left(\overline{\mathcal{M}}_{12}\right)=4415 / 642<6+12 / 13$ (see [FV1]), and $s\left(\overline{\mathcal{M}}_{16}\right)=407 / 61<6+12 / 17$ see [F2], coming from Koszul divisors on $\overline{\mathcal{M}}_{12}$ and $\overline{\mathcal{M}}_{16}$ respectively. On $\overline{\mathcal{M}}_{18}$, we use the estimate $s\left(\overline{\mathcal{M}}_{18}\right) \leq 302 / 45$ given by the class of the Petri divisor $\overline{\mathcal{G P}}_{18,10}^{1}$, see [EH1]. Improvements on the estimate on $s\left(\overline{\mathcal{M}}_{g}\right)$ in the other cases, will naturally translate in improvements in the statement of Theorem 3.4.

4. AN effective divisor on $\overline{\mathcal{M}}_{g, g-3}$

The aim of this section is to prove Theorem 0.8. We begin by solving the following enumerative question which comes up repeatedly in the process of computing $\left[\overline{\mathcal{D}}_{g}\right]$.

Theorem 4.1. Let $[C, p] \in \mathcal{M}_{g, 1}$ be a general pointed curve of genus g and $0 \leq \gamma \leq g-3 a$ fixed integer. Then there exist a finite number of pairs $(L, x) \in W_{g}^{2}(C) \times C$ such that

$$
H^{0}\left(C, L \otimes \mathcal{O}_{C}(-\gamma x-(g-3-\gamma) p)\right) \geq 1
$$

Their number is computed by the formula

$$
N(g, \gamma):=\frac{g(g-1)(g-5)}{3} \gamma(\gamma g-3 \gamma-1) .
$$

Proof. We introduce auxiliary maps $\chi: C \times C_{3} \rightarrow C_{\gamma+3}$ and $\iota: C_{\gamma+3} \rightarrow C_{g}$ given by,

$$
\chi(x, D):=\gamma \cdot x+D, \text { and } \iota(E):=E+(g-3-\gamma) \cdot p
$$

The number we evaluate is $N(g, \gamma):=\chi^{*} \iota^{*}\left(\left[C_{g}^{2}\right]\right)$, where $C_{g}^{2}:=\left\{D \in C_{g}: \operatorname{dim}|D| \geq 3\right\}$. The cohomology class of this variety of special divisors is computed in [ACGH] p.326:

$$
\left[C_{g}^{2}\right]=\frac{\theta^{4}}{12}-\frac{x \theta^{3}}{3}+\frac{x^{2} \theta^{2}}{6} \in H^{8}\left(C_{g-3}, \mathbb{Q}\right)
$$

Noting that $\iota^{*}(\theta)=\theta$ and $\iota^{*}(x)=x$, one needs to estimate the pull-backs of the tautological monomials $x^{\alpha} \theta^{4-\alpha}$. For this purpose, we use ACGH] p.358:

$$
\chi^{*}\left(x^{\alpha} \theta^{4-\alpha}\right)=\frac{g!}{(g-4+\alpha)!}\left[\left(1+\gamma t_{1}+t_{2}\right)^{\alpha} \cdot\left(1+\gamma^{2} t_{1}+t_{2}\right)^{4-\alpha}\right]_{t_{1} t_{2}^{3}},
$$

where the last symbol indicates the coefficient of the monomial $t_{1} t_{2}^{3}$ in the polynomial appearing on the right side of the formula. The rest follows after a routine evaluation.

The second enumerative ingredient in the proof of Theorem 0.8 is the following result, which can be proved by degeneration using Schubert calculus:

Proposition 4.2. For a general curve $[C] \in \mathcal{M}_{g-1}$, there exist a finite number of pairs $(L, x) \in$ $W_{g}^{2}(C) \times C$ satisfying the conditions

$$
h^{0}\left(C, L \otimes \mathcal{O}_{C}(-2 x)\right) \geq 2, \text { and } h^{0}\left(C, L \otimes \mathcal{O}_{C}(-(g-2) x)\right) \geq 1
$$

Each pair corresponds to a complete linear series L. The number of such pairs is equal to

$$
n(g-1):=(g-1)(g-2)(g-3)(g-4)^{2} .
$$

Proof of Theorem 0.8 We expand $\left[\overline{\mathcal{D}}_{g}\right] \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, g-3}\right)$, and begin the calculation by determining the coefficients of $\lambda, \delta_{\text {irr }}$ and $\sum_{i=1}^{g-3} \psi_{i}$ respectively. It is useful to observe that if $\phi_{n}: \overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g, n-1}$ is the map forgetting the marked point labeled by n for some $n \geq 1$ and D is any divisor class on $\overline{\mathcal{M}}_{g, n}$, then for distinct labels $i, j \neq n$, the $\lambda, \delta_{i r r}$ and ψ_{j} coefficients of the divisors D on $\overline{\mathcal{M}}_{g, n}$ and $\left(\phi_{n}\right)_{*}\left(D \cdot \delta_{0: i n}\right)$ on $\overline{\mathcal{M}}_{g, n-1}$ respectively, coincide. The divisor $\left(\phi_{n}\right)_{*}\left(D \cdot \delta_{0: i n}\right)$ can be thought of as the locus of points $\left[C, x_{1}, \ldots, x_{n}\right] \in D$ where the points x_{i} and x_{n} are allowed to come together. By iteration, the divisor $\overline{\mathcal{D}}_{g}^{g-3}$ on $\overline{\mathcal{M}}_{g, 1}$ obtained by letting all points x_{1}, \ldots, x_{g-3} coalesce, has the same λ and $\delta_{\text {irr }}$ coefficients as $\overline{\mathcal{D}}_{g}$. But obviously

$$
\overline{\mathcal{D}}_{g}^{g-3}=\left\{[C, x] \in \mathcal{M}_{g, 1}: \exists L \in W_{g}^{2}(C) \text { such that } h^{0}\left(C, L \otimes \mathcal{O}_{C}(-(g-3) x)\right) \geq 1\right\}
$$

and note that this is a "pointed Brill-Noether divisor" in the sense of Eisenbud-Harris. The cone of Brill-Noether divisors on $\overline{\mathcal{M}}_{g, 1}$ is 2-dimensional, see [EH2] Theorem 4.1, and exists constants $\mu, \nu \in \mathbb{Q}$, such that $\overline{\mathcal{D}}_{g}^{g-3} \equiv \mu \cdot \mathfrak{B N}+\nu \cdot \overline{\mathcal{W}}$, where

$$
\mathfrak{B N}:=(g+3) \lambda-\frac{g+1}{6} \delta_{\text {irr }}-\sum_{j=1}^{g-1} j(g-j) \delta_{j: 1} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right)
$$

is the pull-back from $\overline{\mathcal{M}}_{g}$ of the Brill-Noether divisor class and $\overline{\mathcal{W}} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right)$ is the class of the Weierstrass divisor. The coefficients μ and ν are computed by intersecting both sides of the previous identity with explicit curves inside $\overline{\mathcal{M}}_{g, 1}$. First we fix a genus g curve C and let the marked point vary along C. If $C_{x}:=\phi^{-1}([C]) \subset \overline{\mathcal{M}}_{g, 1}$ denotes the induced curve in moduli, then the only generator of $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right)$ which has non-zero intersection number with C_{x} is ψ, and $C_{x} \cdot \psi=2 g-2$. On the other hand $C_{x} \cdot \overline{\mathcal{D}}_{g}^{g-3}=$ $N(g, g-3)$, that is, $\nu=N(g, g-3) /(g(g-1)(g+1))$.

To compute μ, we construct a curve inside $\Delta_{1: 1}$ as follows: Fix a 2-pointed elliptic curve $[E, x, y] \in \mathcal{M}_{1,2}$ such that the class $x-y \in \operatorname{Pic}^{0}(E)$ is not torsion, and a general curve $[C] \in \mathcal{M}_{g-1}$. We define the family $\bar{C}_{1}:=\left\{\left[C \cup_{y} E, x\right]\right\}_{y \in C}$, obtained by varying the point of attachment along C, while keeping the marked point fixed on E. The only generator of $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right)$ meeting \bar{C}_{1} non-trivially is $\delta_{1: 1}=\delta_{g-1: \emptyset}$, in which case $\bar{C}_{1} \cdot \delta_{1: 1}=-2 g+4$. On the other hand, $\bar{C}_{1} \cdot \overline{\mathcal{D}}_{g}^{g-3}$ is equal to the number of limit linear series \mathfrak{g}_{g}^{2} on curves of type $C \cup_{y} E$, having vanishing sequence at least $(0,1, g-3)$ at $x \in E$. This can happen only if this linear series is refined and its C-aspect has vanishing sequence at the point of attachment $y \in C$ equal to either (i) $(1,2, g-3)$, or (ii) $(0,2, g-2)$. In both cases, the E-aspect being uniquely determined, we obtain that $\bar{C}_{1} \cdot \overline{\mathcal{D}}_{g}^{g-3}=N(g-1, g-4)+n(g-1)$. This leads to $\mu=3(g-3)(g-4) /(g+1)$.

Next, let $\overline{\mathcal{D}}_{g}^{g-4}$ be the divisor on $\overline{\mathcal{M}}_{g, 2}$ obtained from $\overline{\mathcal{D}}_{g}$ by letting all marked points except one, come together. Precisely, $\overline{\mathcal{D}}_{g}^{g-4}$ is the closure of the locus of curves $[C, x, y] \in \mathcal{M}_{g, 2}$ such that there exists $L \in W_{g}^{2}(C)$ with $h^{0}\left(C, L \otimes \mathcal{O}_{C}(-x-(g-4) y)\right) \geq 1$. We express $\overline{\mathcal{D}}_{g}^{g-4} \equiv c_{x} \psi_{x}+c_{y} \psi_{y}-e \delta_{0: x y}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 2}\right)$, and observe that c_{x} equals the ψ-coefficient of $\overline{\mathcal{D}}_{g}$, whereas the coefficient $e=\nu\binom{g+1}{2}$ has already been calculated. We fix a general curve $[C] \in \overline{\mathcal{M}}_{g}$ and define test curves $C_{x}:=\{[C, x, y]: x \in C\} \subset \overline{\mathcal{M}}_{g, 2}$ and $C_{y}:=\{[C, x, y]: y \in C\} \subset \overline{\mathcal{M}}_{g, 2}$, by fixing one general marked point on C and letting the other vary freely. By intersecting $\overline{\mathcal{D}}_{g}^{g-4}$ with these curves we obtain the formulas:
$(2 g-1) c_{x}+c_{y}-e=C_{x} \cdot \overline{\mathcal{D}}_{g}^{g-4}=N(g, 1)$ and $c_{x}+(2 g-1) c_{y}-e=C_{y} \cdot \overline{\mathcal{D}}_{g}^{g-4}=N(g, g-4)$.
Solving this system, determines c_{x}. Finally, the $\delta_{0: 2}$-coefficient of $\overline{\mathcal{D}}_{g}$ is computed by intersecting $\overline{\mathcal{D}}_{g}$ with the test curve $\phi_{g-3}^{-1}\left(\left[C, x_{1}, \ldots, x_{g-4}\right]\right) \subset \overline{\mathcal{M}}_{g, g-3}$, obtained by fixing $g-4$ marked points on a general curve, and letting the remaining point vary.

As an application, we bound the effective cone of the symmetric product of degree $g-3$ on a general curve $[C] \in \mathcal{M}_{g}$. As before, let $u: C_{g-3} \rightarrow \overline{\mathcal{D}}_{g, g-3}$ the (rational) fibre map and $\widetilde{\mathcal{D}}_{g}$ the effective divisor on $\overline{\mathcal{C}}_{g, g-3}$ to which $\overline{\mathcal{D}}_{g}$ descends. Then $\mathcal{D}_{g}[C]:=u^{*}\left(\widetilde{\mathcal{D}}_{g}\right)$ is an effective divisor on C_{g-3} :
Theorem 4.3. The cohomology class of the codimension one locus inside C_{g-3}

$$
\begin{gathered}
\mathcal{D}_{g}[C]:=\left\{D \in C_{g-3}: \exists L \in W_{g}^{2}(C) \text { with }^{0}\left(C, L \otimes \mathcal{O}_{C}(-D)\right) \geq 1\right\} \text { equals } \\
{\left[\mathcal{D}_{g}(C)\right]=\frac{(g-5)(g-3)(g-1)}{3}\left(\theta-\frac{g}{g-3} x\right) .}
\end{gathered}
$$

It is natural to wonder whether the class $\theta-\frac{g}{g-3} x$ is extremal in $\operatorname{Eff}\left(C_{g-3}\right)$. If so, $\mathcal{D}_{g}[C]$ together with the diagonal class $\delta_{C} \equiv-\theta+(2 g-4) x$ would generate the effective cone inside the 2-dimensional space $N^{1}\left(C_{g-3}\right)_{\mathbb{Q}}$. We refer to [K1] Theorem 3, for a proof that δ_{C} spans an extremal ray, which shows that in order to compute $\operatorname{Eff}\left(C_{g-3}\right)$, one only has to determine the slope of $\operatorname{Eff}\left(C_{g-3}\right)$ in the fourth quadrant of the (θ, x)-plane. A similar description of the effective cone of C_{g-2} was given in [Mus]. We have a partial result in this direction, showing that all effective divisors of slope higher than $\frac{g}{g-3}$ (if any), must contain a geometric codimension one subvariety of $\mathcal{D}_{g}[C]$.

Proposition 4.4. Any irreducible effective divisor on C_{g-3} with class proportional to $\theta-\alpha x \in$ $H^{2}\left(C_{g-3}, \mathbb{Q}\right)$, where $\alpha>\frac{g}{g-3}$, contains the codimension two locus inside C_{g-3}

$$
Z_{g-3}[C]:=\left\{D \in C_{g-3}: \exists A \in W_{g-2}^{1}(C) \text { with } H^{0}(C, A \otimes(-D)) \neq 0\right\} .
$$

Proof. By calculation, note that for $A \in W_{g-2}^{1}(C)$, the inequality $\left[V_{g-3}^{1}(A)\right] \cdot(\theta-\alpha x)<0$ holds, whereas $\left[V_{g-3}^{1}(A)\right] \cdot \mathcal{D}_{g}[C]=0$.

References

[AC] E. Arbarello and M. Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987), 153-171.
[ACGH] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of algebraic curves, Grundlehren der mathematischen Wissenschaften 267, Springer.
[An] A. Andreotti, On a theorem of Torelli, American Journal of Math. 80 (1958), 801-828.
[EH1] D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus 23 Inventiones Math. 90 (1987), 359-387.
[EH2] D. Eisenbud and J. Harris, Irreducibility of some families of linear series with Brill-Noether number -1, Annales Scientifique École Normale Supérieure 22 (1989), 33-53.
[F1] G. Farkas, Higher ramification and varieties of secant divisors on the generic curve, Journal of the London Mathematical Society 78 (2008), 418-440 .
[F2] G. Farkas, Koszul divisors on moduli spaces of curves, American Journal of Math. 131 (2009), 819-869.
[FP] G. Farkas and M. Popa, Effective divisors on $\overline{\mathcal{M}}_{g}$, curves on $K 3$ surfaces and the Slope Conjecture, Journal of Algebraic Geometry 14 (2005), 151-174.
[FV1] G. Farkas and A. Verra, The geometry of the moduli space of odd spin curves, arXiv:1004.0278.
[FV2] G. Farkas and A. Verra, The classification of the universal Jacobian over the moduli space of curves, arXiv:1005.5354.
[FV3] G. Farkas and A. Verra, The universal theta divisor over \mathcal{A}_{5}, in preparation.
[Fr] E. Freitag, Die Kodairadimension von Körpern automorpher Funktionen, J. reine angew. Mathematik 296 (1977), 162-170.
[HM] J. Harris and D. Mumford, On the Kodaira dimension of $\overline{\mathcal{M}}_{g}$, Inventiones Math. 67 (1982), 23-88.
[K1] A. Kouvidakis, Divisors on symmetric products of curves, Transactions American Math. Soc. 337 (1993), 117-128.
[K2] A. Kouvidakis, On some results of Morita and their application to questions of ampleness, Math. Zeitschrift 241 (2002), 17-33.
[Log] A. Logan, The Kodaira dimension of moduli spaces of curves with marked points, American Journal of Math. 125 (2003), 105-138.
[M1] S. Mukai, Fano 3-folds, in: Complex Projective Geometry (Trieste/Bergen 1989), London Math. Society Lecture Notes Series, 179, 255-263.
[M2] S. Mukai, Curves and symmetric spaces I, American Journal of Math. 117 (1995), 1627-1644.
[Mum] D. Mumford, On the Kodaira dimension of the Siegel modular variety, in: Algebraic Geometry-Open problems (Ravello 1982), Lecture Notes in Mathematics 997 (1983), 348-375.
[Mus] Y. Mustopa, Kernel bundles, syzygies and the effective cone of C_{g-2}, International Math. Research Notices 2010, doi:10.1093/imrn/rnq119.
[T] Y.S. Tai, On the Kodaira dimension of the moduli space of abelian varieties, Inventiones Math. 69 (1982), 425-439.
[Ve] A. Verra, On the universal principally polarized abelian variety of dimension 4, in: Curves and abelian varieties (Athens, Georgia, 2007) Contemporary Mathematics 465 (2008), 253-274.
[Vi] E. Viehweg, Die Additivität der Kodaira Dimension für projektive Fasserräume über Varietäten des allgemeinen Typs, J. reine angew. Mathematik, 330 (1982), 132-142.

Humboldt-Universität zu Berlin, Institut Für Mathematik, Unter den Linden 6 10099 Berlin, Germany
E-mail address: farkas@math.hu-berlin.de

Universitá Roma Tre, Dipartimento di Matematica, Largo San Leonardo Murialdo 1-00146 Roma, Italy
E-mail address: verra@mat.unirom3.it

