THE UNIVERSAL THETA DIVISOR OVER THE MODULI SPACE OF CURVES

GAVRIL FARKAS AND ALESSANDRO VERRA

The universal theta divisor over the moduli space \mathcal{A}_g of principally polarized abelian varieties of dimension g, is the divisor Θ_g inside the universal abelian variety \mathcal{X}_g over \mathcal{A}_g , characterized by two properties: (i) $\Theta_{g|[A,\Theta]} = \Theta$, for every principally polarized abelian variety $[A, \Theta] \in \mathcal{A}_g$, and (ii) the restriction $s^*(\Theta_g)$ along the zero section $s : \mathcal{A}_g \to \mathcal{X}_g$ is trivial on \mathcal{A}_g . The study of the geometry of Θ_g closely mirrors that of \mathcal{A}_g itself. Thus it is known that Θ_g is unirational for $g \leq 4$; the case $g \leq 3$ is classical, for g = 4, we refer to [Ve]. The geometry of Θ_5 will be addressed in the forthcoming paper [FV3]. Whenever \mathcal{A}_g is of general type (that is, in the range $g \geq 7$, cf. [Fr], [Mum], [T]), one can use Viehweg's additivity theorem [Vi] for the fibre space $\Theta_g \to \mathcal{A}_g$ whose generic fibre is a variety of general type, to conclude that Θ_g is of general type as well. The Kodaira dimension of Θ_6 (and that of \mathcal{A}_6) is unknown.

The main aim of this paper is to present a complete birational classification by Kodaira dimension of the universal theta divisor

$$\mathfrak{Ih}_g := \mathcal{M}_g imes_{\mathcal{A}_g} \mathbf{\Theta}_g$$

over the moduli space of curves. If $[C] \in \mathcal{M}_g$ is a smooth curve, the Abel-Jacobi map $C_{g-1} \to \operatorname{Pic}^{g-1}(C)$ provides a resolution of singularities of the theta divisor Θ_C of the Jacobian of C. Thus one may regard the degree g-1 universal symmetric product $\overline{\mathcal{C}}_{g,g-1} := \overline{\mathcal{M}}_{g,g-1}/\mathfrak{S}_{g-1}$ as a birational model of \mathfrak{Th}_g (having only finite quotient singularities), and ask for the place of \mathfrak{Th}_g in the classification of varieties. We provide a complete answer to this question. For small genus, \mathfrak{Th}_g enjoys rationality properties:

Theorem 0.1. \mathfrak{Th}_{g} is unirational for $g \leq 9$ and uniruled for $g \leq 11$.

The first part of the theorem, is a consequence of Mukai's work [M1], [M2] on representing canonical curves with general moduli as linear sections of certain homogeneous varieties. When $g \leq 9$, there exists a Fano variety $V_g \subset \mathbf{P}^{N_g}$ of dimension $n_g := N_g - g + 2$ and index $n_g - 2$, such that general 1-dimensional complete intersections of V_g are canonical curves $[C] \in \mathcal{M}_g$ having general moduli. The correspondence

$$\Sigma := \{ ((x_1, \dots, x_{g-1}), \Lambda) \in V_g^{g-1} \times G(g, N_g + 1) : x_i \in \Lambda, \text{ for } i = 1, \dots, g-1 \}$$

maps dominantly onto \mathfrak{Th}_g via the map $((x_1, \ldots, x_{g-1}), \Lambda) \mapsto [V_g \cap \Lambda, x_1 + \cdots + x_{g-1}]$. Since Σ is a Grassmann bundle over the rational variety V_g^{g-1} , it follows that \mathfrak{Th}_g is unirational in the range $g \leq 9$. The cases g = 10, 11 are settled by the observation that in this range the space $\overline{\mathcal{M}}_{g,g-1}$ is uniruled, see [FP], [FV2].

For the remaining genera, we prove the following classification result:

Theorem 0.2. The universal theta divisor \mathfrak{Th}_{g} is a variety of general type for $g \geq 12$.

We also have a birational classification theorem for the universal degree *n* symmetric product $\overline{C}_{g,n} := \overline{\mathcal{M}}_{g,n} / \mathfrak{S}_n$ for all $1 \le n \le g-2$, and refer to Section 3 for details.

Our results are complete in degree g - 2 and less precise as n decreases. Similarly to Theorem 0.2, the nature of $\overline{C}_{q,q-2}$ changes when g = 12:

Theorem 0.3. The universal degree g - 2 symmetric product $\overline{C}_{g,g-2}$ is uniruled for g < 12 and a variety of general type for $g \ge 12$.

The proofs of Theorems 0.2 and 0.3 rely on two ingredients. First, we use our result [FV2], stating that for $g \ge 4$, the singularities of $\overline{C}_{g,n}$ impose no *adjoint conditions*, that is, pluricanonical forms defined on the smooth locus of $\overline{C}_{g,n}$ extend to a smooth model of the symmetric product. Precisely, if $\epsilon : \widetilde{C}_{g,n} \to \overline{C}_{g,n}$ denotes any resolution of singularities, then for any $l \ge 0$, there is a group isomorphism

$$\epsilon^*: H^0\big((\overline{\mathcal{C}}_{g,n})_{\operatorname{reg}}, K_{\overline{\mathcal{C}}_{g,n}^{\otimes l}}\big) \xrightarrow{\cong} H^0\big(\widetilde{\mathcal{C}}_{g,n}, K_{\widetilde{\mathcal{C}}_{g,n}^{\otimes l}}\big).$$

In particular, \mathfrak{Th}_g is of general type when the canonical class $K_{\overline{\mathcal{C}}_{g,g-1}} \in \operatorname{Pic}(\overline{\mathcal{C}}_{g,g-1})$ is big. This makes the problem of understanding the effective cone of $\overline{\mathcal{C}}_{g,g-1}$ of some importance. If $\pi : \overline{\mathcal{M}}_{g,g-1} \to \overline{\mathcal{C}}_{g,g-1}$ is the quotient map, the Hurwitz formula gives that

(1)
$$\pi^*(K_{\overline{\mathcal{C}}_{g,g-1}}) \equiv K_{\overline{\mathcal{M}}_{g,g-1}} - \delta_{0:2} \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,g-1}).$$

The sum $\sum_{i=1}^{g-1} \psi_i \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,g-1})^{\mathfrak{S}_{g-1}}$ of cotangent tautological classes descends to a big and nef class on $\overline{\mathcal{C}}_{g,g-1}$ (cf. Proposition 1.2), thus in order to conclude that \mathfrak{Th}_g is of general type, it suffices to exhibit an effective divisor $\mathfrak{D} \in \operatorname{Eff}(\overline{\mathcal{C}}_{g,g-1})$, such that

(2)
$$\pi^*(K_{\overline{\mathcal{C}}_{g,g-1}}) \in \mathbb{Q}_{>0} \Big\langle \lambda, \sum_{i=1}^{g-1} \psi_i \Big\rangle + \phi^* \operatorname{Eff}(\overline{\mathcal{M}}_g) + \mathbb{Q}_{\geq 0} \Big\langle \pi^*([\mathfrak{D}]), \delta_{i:c} : i \geq 0, c \geq 2 \Big\rangle.$$

In this formula, $\phi : \overline{\mathcal{M}}_{g,g-1} \to \overline{\mathcal{M}}_g$ denotes the morphism forgetting the marked points, and refer to Section 1 for the standard notation for boundary divisor classes on $\overline{\mathcal{M}}_{g,n}$. Comparing condition (2) against the formula for $K_{\overline{\mathcal{C}}_{g,g-1}}$ given by (4), if one writes $\pi^*(\mathfrak{D}) \equiv a\lambda - b_{irr}\delta_{irr} + c\sum_{i=1}^{g-1}\psi_i - \sum_{i,c}b_{i:c}\delta_{i:c} \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,g-1})$, the following inequality (3) $3c < b_{0:2}$

is a necessary condition for the existence of a divisor \mathfrak{D} satisfying (2). It is straightforward to unravel the geometric significance of the condition (3). If $[C] \in \mathcal{M}_g$ is a general curve, there is a rational map $u : C_{g-1} \dashrightarrow \overline{\mathcal{C}}_{g,g-1}$ given by restriction. Denoting by $x, \theta \in N^1(C_{g-1})_{\mathbb{Q}}$ the standard generators of the Néron-Severi group of the symmetric product, the inequality (3) characterizes precisely those divisors $\mathfrak{D} \in \operatorname{Pic}(\overline{\mathcal{C}}_{g,g-1})$ for which $u^*([\mathfrak{D}])$ lies in the fourth quarter of the (θ, x) -plane (see [K1] for details on the effective cone of C_{g-1}). The divisor $\mathfrak{D} \subset \overline{\mathcal{C}}_{g,g-1}$ playing this role in our case, is the residual divisor of the universal ramification locus of the Gauss map.

For a curve $[C] \in \mathcal{M}_g$, we denote by $\gamma : C_{g-1} \dashrightarrow (\mathbf{P}^{g-1})^{\vee}$ the Gauss map, given by $\gamma(D) := \langle D \rangle$ for $D \in C_{g-1} - C_{g-1}^1$. The branch divisor $\operatorname{Br}_C(\gamma) \subset (\mathbf{P}^{g-1})^{\vee}$ is isomorphic to the dual of the canonical curve $C \subset \mathbf{P}^{g-1}$. The closure in C_{g-1} of the ramification divisor $\operatorname{Ram}_C(\gamma)$ is isomorphic to the diagonal $\Delta_C := \{2p + D : p \in C, D \in C_{g-3}\}$, see [An]. In particular, this identification allows one to reconstruct the curve C from the theta divisor Θ_C and thus prove Torelli's theorem. Let us consider the *residual divisor* $\operatorname{Res}_C(\gamma)$, defined via the following equality of divisors on C_{g-1}

$$\gamma^*(\operatorname{Br}_C(\gamma)) = \operatorname{Res}_C(\gamma) + \operatorname{Ram}_C(\gamma).$$

Globalizing this construction over \mathcal{M}_q , we are lead to consider the effective divisor

$$\mathfrak{RT}_g := \{ [C, x_1, \dots, x_g] \in \mathcal{M}_{g,g-1} : \exists p \in C \text{ with } H^0 (C, K_C(-x_1 - \dots - x_{g-1} - 2p)) \neq 0 \}.$$

The key ingredient in the proof of Theorem 0.2 is the calculation of the class of $\overline{\Re \mathfrak{T}}_g$:

Theorem 0.4. The closure in $\overline{\mathcal{M}}_{g,g-1}$ of the locus $\mathfrak{RT}_g := \{[C, x_1, \ldots, x_{g-1}] \in \mathcal{M}_{g,g-1} : x_1 + \cdots + x_{g-1} \in \operatorname{Res}_C(\gamma)\}$ is linearly equivalent to,

$$\overline{\mathfrak{RT}}_g \equiv -4(g-7)\lambda + 4(g-2)\sum_{i=1}^{g-1}\psi_i - 2\delta_{\rm irr} - (12g-22)\delta_{0:2} - 2\delta_{\rm irr} - 2\delta_{\rm irr} - (12g-22)\delta_{0:2} - 2\delta_{\rm irr} - 2\delta_{\rm irr}$$

$$-\sum_{i=0}^{g}\sum_{s=0}^{i-1} \left(2i^3 - 5i^2 - 3i + 4g - 4i^2s + 14si - 6gs - s + 2s^2g - 3s^2 + 2\right)\delta_{i:s} \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,g-1}).$$

In particular we note that condition (3) is satisfied. Since by construction, $\Re \mathfrak{T}_g$ is \mathfrak{S}_{g-1} -invariant, it descends to an effective divisor $\widetilde{\mathfrak{RT}}_g$ on $\overline{\mathcal{C}}_{g,g-1}$ which, as it turns out, spans an extremal ray of the cone $\mathrm{Eff}(\overline{\mathcal{C}}_{g,g-1})$. Indeed, the universal theta divisor comes equipped with the rational involution $\tau : \overline{\mathcal{C}}_{g,g-1} \dashrightarrow \overline{\mathcal{C}}_{g,g-1}$ given by

$$\tau([C, x_1 + \dots + x_{g-1}]) := [C, y_1 + \dots + y_{g-1}],$$

where $\mathcal{O}_C(y_1 + \cdots + y_{g-1} + x_1 + \cdots + x_{g-1}) = K_C$. Then \mathfrak{RT}_g is the pull-back of the boundary divisor $\widetilde{\Delta}_{0:2} \subset \overline{\mathcal{C}}_{g,g-1}$ under this map. Since the extremality of $\widetilde{\Delta}_{0:2}$ is easy to establish, the following result comes naturally:

Theorem 0.5. The effective divisor \mathfrak{RT}_g is covered by irreducible curves $\Gamma_g \subset \overline{\mathcal{C}}_{g,g-1}$ such that $\Gamma_g \cdot \widetilde{\mathfrak{RT}}_g < 0$. In particular $\widetilde{\mathfrak{RT}}_g \in \text{Eff}(\overline{\mathcal{C}}_{g,g-1})$ is a non-movable extremal effective divisor.

The curves Γ_g have a simple modular construction. One fixes a general linear series $A \in W_{g+1}^2(C)$, in particular A is complete and has only ordinary ramification points. The general point of Γ_g corresponds to an element $[C, D] \in \overline{C}_{g,g-1}$, where $D \in C_{g-1}$ is an effective divisor such that $H^0(C, A \otimes \mathcal{O}_C(-2p - D)) \neq 0$, for some point $p \in C$, that is, D is the residual divisor cut out by a tangent line to the degree g+1 plane model of C given by A. Once more we refer to Section 2 for details.

We explain briefly how Theorem 0.4 implies the statement about the Kodaira dimension of $\overline{C}_{g,g-1}$. We choose an effective divisor $D \equiv a\lambda - \sum_{i=0}^{\lfloor g/2 \rfloor} b_i \delta_i \in \text{Eff}(\overline{\mathcal{M}}_g)$ on the moduli space of curves, with $a, b_i \geq 0$, having slope $s(D) := \frac{a}{\min_i b_i}$ as small as possible. Then note that the following linear combination

$$\pi^*(K_{\overline{\mathcal{C}}_{g,g-1}}) - \frac{1}{6g-11} \Big(\frac{3}{2} [\overline{\mathfrak{RT}}_g] - (12g-25)\phi^*(D) - \sum_{i=1}^{g-1} \psi_i - \big((84g-185) - (12g-25)s(D)\big)\lambda\Big)$$

is expressible as a positive combination of boundary divisors on $\overline{\mathcal{M}}_{g,g-1}$. Since, as already pointed out, the class $\sum_{i=1}^{g-1} \psi_i \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,g-1})$ descends to a big class on $\overline{\mathcal{C}}_{g,g-1}$, one obtains the following:

Corollary 0.6. For all g such that the slope of the moduli space of curves satisfies the inequality

$$s(\overline{\mathcal{M}}_g) := \inf_{D \in \operatorname{Eff}(\overline{\mathcal{M}}_g)} s(D) < \frac{84g - 185}{12g - 25},$$

the universal theta divisor \mathfrak{Th}_q is of general type.

The bound appearing in Corollary 0.6 holds precisely when $g \ge 12$; for g such that g + 1 is composite, the inequality $s(\overline{\mathcal{M}}_g) \le 6 + 12/(g + 1)$ is well-known, and D can be chosen to be a Brill-Noether divisor $\overline{\mathcal{M}}_{g,d}^r$ corresponding to curves with a \mathfrak{g}_d^r when the Brill-Noether number $\rho(g, r, d) = -1$, cf. [EH1]. When g + 1 is prime and $g \ne 12$, then in practice $g = 2k - 2 \ge 16$, and D can be chosen to be the Gieseker-Petri $\overline{\mathcal{GP}}_{g,k}^1$ consisting of curves C possessing a pencil $A \in W_k^1(C)$ such that the Petri map $\mu_0(C, A) : H^0(C, A) \otimes H^0(C, K_C \otimes A^{\vee}) \to H^0(C, K_C)$ is not an isomorphism. When g = 12, one has to use the divisor constructed on $\overline{\mathcal{M}}_{12}$ in [FV1]. Finally, when $g \le 11$ it is known that $s(\overline{\mathcal{M}}_g) \ge 6 + 12/(g + 1)$ and inequality (0.6) is not satisfied. In fact, as already pointed out $\kappa(\mathfrak{Th}_g) = -\infty$ in this range.

The proof of Theorem 0.3 proceeds along similar lines, and relies on finding an explicit \mathfrak{S}_{g-2} -invariant extremal ray of the cone of effective divisors on $\overline{\mathcal{M}}_{g,g-2}$. A representative of this ray is characterized by the geometric condition that the marked points appear in the same fibre of a pencil of degree g - 1. One can construct such divisors on all moduli spaces $\overline{\mathcal{M}}_{g,n}$ with $1 \le n \le g-2$, cf. Section 3.

Theorem 0.7. The closure inside $\overline{\mathcal{M}}_{g,g-2}$ of the locus

$$\mathcal{F}_{g,1} := \{ [C, x_1, \dots, x_{g-2}] \in \mathcal{M}_{g,g-2} : \exists A \in W_{g-1}^1(C) \text{ with } H^0(C, A(-\sum_{i=1}^{g-2} x_i)) \neq 0 \}$$

is a non-movable, extremal effective divisor on $\overline{\mathcal{M}}_{q,q-2}$. Its class is given by the formula:

$$\overline{\mathcal{F}}_{g,1} \equiv -(g-12)\lambda + (g-3)\sum_{i=1}^{g-2}\psi_i - \delta_{irr} - \frac{1}{2}\sum_{s=2}^{g-2}s(g-4+sg-2s)\,\delta_{0:s} - \dots \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,g-2}).$$

Note that again, inequality (3) is satisfied, hence $\overline{\mathcal{F}}_{g,1}$ can be used to prove that $K_{\overline{\mathcal{C}}_{g,g-2}}$ is big. Moreover, $\overline{\mathcal{F}}_{g,1}$ descends to an extremal divisor $\widetilde{\mathcal{F}}_{g,1} \in \text{Eff}(\overline{\mathcal{C}}_{g,g-2})$. In fact, we shall show that $\widetilde{\mathcal{F}}_{g,1}$ is swept by curves intersecting its class negatively.

Divisors similar to those considered in Theorems 0.4 and 0.7 can be constructed on other moduli spaces. On $\overline{\mathcal{M}}_{g,g-3}$ we construct an extremal divisor using a somewhat similar construction. If $D \in C_{g-3}$ is a general effective divisor of degree g-3 on a curve $[C] \in \mathcal{M}_g$, we observe that $K_C \otimes \mathcal{O}_C(-D) \in W^2_{g+1}(C)$. A natural codimension one condition on $\overline{\mathcal{M}}_{g,g-3}$ is that this plane model have a triple point (a similar construction requiring instead that $K_C \otimes \mathcal{O}_C(-D)$ have a cusp, produces a "less extremal" divisor):

Theorem 0.8. *The closure inside* $\overline{\mathcal{M}}_{g,g-3}$ *of the locus*

$$\mathcal{D}_g := \{ [C, x_1, \dots, x_{g-3}] \in \mathcal{M}_{g,g-3} : \exists L \in W_g^2(C) \text{ with } H^0(C, L(-\sum_{i=1}^{g-3} x_i)) \neq 0 \}$$

is an effective divisor. Its class in $Pic(\overline{\mathcal{M}}_{g,g-3})$ *is equal to*

$$\overline{\mathcal{D}}_g \equiv -\frac{2(g-17)}{3} \binom{g-3}{2} \lambda + \frac{2g-3}{3} \binom{g-4}{2} \sum_{i=1}^{g-3} \psi_i - \binom{g-3}{2} \delta_{irr} - (g^2 - 5g + 5)(g-5)\delta_{0:2} - \cdots$$

1. CONES OF DIVISORS ON UNIVERSAL SYMMETRIC PRODUCTS

The aim of this section is to establish certain facts about boundary divisors on $\overline{\mathcal{M}}_{g,n}$ and $\overline{\mathcal{C}}_{g,n}$, see [AC] for a standard reference. We follow the convention set in [FV2], that is, if **M** is a Deligne-Mumford stack, we denote by \mathcal{M} its coarse moduli space.

For an integer $0 \le i \le [g/2]$ and a subset $T \subset \{1, ..., n\}$, we denote by $\Delta_{i:T}$ the closure in $\overline{\mathcal{M}}_{g,n}$ of the locus of *n*-pointed curves $[C_1 \cup C_2, x_1, ..., x_n]$, where C_1 and C_2 are smooth curves of genera *i* and g - i respectively meeting transversally in one point, and the marked points lying on C_1 are precisely those indexed by *T*. We define $\delta_{i:T} := [\Delta_{i:T}]_{\mathbb{Q}} \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,n})$. For $0 \le i \le [g/2]$ and $0 \le s \le g$, we set

$$\Delta_{i:s} := \sum_{\#(T)=s} \delta_{i:T}, \quad \delta_{i:s} := [\Delta_{i:s}]_{\mathbb{Q}} \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,n}).$$

By convention, $\delta_{0:s} := \emptyset$, for s < 2, and $\delta_{i:s} := \delta_{g-i:n-s}$. If $\phi : \overline{\mathcal{M}}_{g,n} \to \overline{\mathcal{M}}_g$ is the morphism forgetting the marked points, we set $\lambda := \phi^*(\lambda)$ and $\delta_{irr} := \phi^*(\delta_{irr})$, where $\delta_{irr} := [\Delta_{irr}] \in \operatorname{Pic}(\overline{\mathcal{M}}_g)$ denotes the class of the locus of irreducible nodal curves. Furthermore, $\psi_1, \ldots, \psi_n \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,n})$ are the cotangent classes corresponding to the marked points. The canonical class of $\overline{\mathcal{M}}_{g,n}$ is computed via Kodaira-Spencer theory:

(4)
$$K_{\overline{\mathcal{M}}_{g,n}} \equiv 13\lambda - 2\delta_{\operatorname{irr}} + \sum_{i=1}^{n} \psi_i - 2\sum_{\substack{T \subset \{1,\dots,n\}\\i \ge 0}} \delta_{i:T} - \delta_{1:\emptyset} \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,n}).$$

Let $\overline{C}_{g,n} := \overline{\mathcal{M}}_{g,n} / \mathfrak{S}_n$ be the universal symmetric product and $\pi : \overline{\mathcal{M}}_{g,n} \to \overline{C}_{g,n}$ (respectively $\varphi : \overline{C}_{g,n} \to \overline{\mathcal{M}}_g$) the projection (respectively the forgetful map), so that $\phi = \varphi \circ \pi$. We denote by $\lambda, \delta_{irr}, \delta_{i:c} := [\widetilde{\Delta}_{i:c}] \in \operatorname{Pic}(\overline{C}_{g,n})$ the divisor classes on the symmetric product pulling-back to the same symbols on $\overline{\mathcal{M}}_{g,n}$. Clearly, $\pi^*(\lambda) = \lambda, \pi^*(\delta_{irr}) = \delta_{irr}, \pi^*(\delta_{i:c}) = \delta_{i:c}$; in the case i = 0, c = 2, this reflects the branching of the map π along the divisor $\widetilde{\Delta}_{0:2} \subset \overline{C}_{g,n}$. Following [FV2], let \mathbb{L} denote the line bundle on $\overline{C}_{g,n}$, having fibre

$$\mathbb{L}[C, x_1 + \dots + x_n] := T_{x_1}^{\vee}(C) \otimes \dots \otimes T_{x_n}^{\vee}(C),$$

over a point $[C, x_1 + \cdots + x_n] := \pi([C, x_1, \dots, x_n]) \in \overline{\mathcal{C}}_{g,n}$. We set $\widetilde{\psi} := c_1(\mathbb{L})$, and note:

(5)
$$\pi^*(\widetilde{\psi}) = \sum_{i=1}^n \left(\psi_i - \sum_{i \in T \subset \{1, \dots, n\}} \delta_{0:T} \right) = \sum_{i=1}^n \psi_i - \sum_{s=2}^n s \, \delta_{0:s} \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,n}).$$

Proposition 1.1. For $g \geq 3$ and $n \geq 0$, the morphism $\pi^* : \operatorname{Pic}(\overline{\mathcal{C}}_{g,n})_{\mathbb{Q}} \to \operatorname{Pic}(\overline{\mathcal{M}}_{g,n})_{\mathbb{Q}}$ is injective. Furthermore, there is an isomorphism of groups $\operatorname{Pic}(\overline{\mathcal{C}}_{g,n})_{\mathbb{Q}} \stackrel{\simeq}{\to} N^1(\overline{\mathcal{C}}_{g,n})_{\mathbb{Q}}$.

Proof. The first assertion is an immediate consequence of the existence of the norm morphism $\operatorname{Nm}_{\pi} : \operatorname{Pic}(\overline{\mathcal{M}}_{g,n}) \to \operatorname{Pic}(\overline{\mathcal{C}}_{g,n})$, such that $\operatorname{Nm}_{\pi}(\pi^*(L)) = L^{\otimes \operatorname{deg}(\pi)}$, for every $L \in \operatorname{Pic}(\overline{\mathcal{C}}_{g,n})$. The second part comes from the isomorphism $\operatorname{Pic}(\overline{\mathcal{M}}_{g,n})_{\mathbb{Q}} \xrightarrow{\cong} N^1(\overline{\mathcal{M}}_{g,n})_{\mathbb{Q}}$,

coupled with the commutativity of the obvious diagrams relating the Picard and Néron-Severi groups of $\overline{\mathcal{M}}_{g,n}$ and $\overline{\mathcal{C}}_{g,n}$ respectively.

One may thus identify $\operatorname{Pic}(\overline{\mathcal{C}}_{g,n})_{\mathbb{Q}} \cong \operatorname{Pic}(\overline{\mathcal{M}}_{g,n})_{\mathbb{Q}}^{\mathfrak{S}_n}$. The Riemann-Hurwitz formula applied to the branched covering $\pi : \overline{\mathcal{M}}_{g,n} \to \overline{\mathcal{C}}_{g,n}$ yields,

$$\pi^*(K_{\overline{\mathcal{C}}_{g,n}}) = K_{\overline{\mathcal{M}}_{g,n}} - \delta_{0:2} \equiv 13\lambda + \sum_{i=1}^n \psi_i - 2\delta_{irr} - 3\delta_{0:2} - 2\sum_{s=3}^n \delta_{0:s} - \cdots$$

As expected, the sum of cotangent classes descends to a big line bundle on $C_{g,n}$.

Proposition 1.2. The divisor class $N_{g,n} := \widetilde{\psi} + \sum_{s=2}^{n} s \widetilde{\delta}_{0:s} \in \text{Eff}(\overline{C}_{g,n})$ is big and nef.

Proof. The class $N_{g,n}$ is characterized by the property that $\pi^*(N_{g,n}) = \sum_{i=1}^n \psi_i$. This is a nef class on $\overline{\mathcal{M}}_{g,n}$, in particular, $N_{g,n}$ is nef on $\overline{\mathcal{C}}_{g,n}$. To establish that $N_{g,n}$ is big, we express it as a combination of effective classes and the class $\widetilde{\kappa}_1 \in \operatorname{Pic}(\overline{\mathcal{C}}_{g,n})$, where

$$\pi^*(\widetilde{\kappa}_1) = \kappa_1 = 12\lambda + \sum_{i=1}^n \psi_i - \delta_{\operatorname{irr}} - \sum_{i=0}^{\lfloor g/2 \rfloor} \sum_{s \ge 0} \delta_{i:s} \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,n}).$$

Since $\pi^*(\tilde{\kappa}_1)$ is ample on $\overline{\mathcal{M}}_{g,n}$, it follows that $\tilde{\kappa}_1$ is ample as well. To finish the proof, we exhibit a suitable effective class on $\overline{\mathcal{M}}_{g,n}$ having negative λ -coefficient. For that purpose, we choose $\mathcal{W}_{g,n} \subset \mathcal{C}_{g,n}$ to be the locus of effective divisors having a Weierstrass point in their support. For $i = 1, \ldots, n$, we denote by $\sigma_i : \overline{\mathcal{M}}_{g,n} \to \overline{\mathcal{M}}_{g,1}$ the morphism forgetting all but the *i*-th point, and let

$$\overline{\mathcal{W}} \equiv -\lambda + \binom{g+1}{2}\psi - \sum_{i=1}^{g-1} \binom{g-i+1}{2}\delta_{i:1} \in \operatorname{Eff}(\overline{\mathcal{M}}_{g,1}),$$

be the class of the divisor of Weierstrass points on the universal curve. Then one finds

$$\pi^*(\overline{\mathcal{W}}_{g,n}) \equiv \sum_{i=1}^n \sigma_i^*(\overline{\mathcal{W}}) = -n\lambda + \binom{g+1}{2} \sum_{i=1}^n \psi_i - \binom{g+1}{2} \sum_{s=2}^n s\delta_{0:s} - \dots \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,n}),$$

and $\overline{\mathcal{W}}_{g,n} \equiv -g\widetilde{\lambda} + {g+1 \choose 2}\widetilde{\psi} - \sum_{i=1}^{\lfloor g/2 \rfloor} \sum_{s \geq 0} b_{i:s}\widetilde{\delta}_{i:s}$, where $b_{i:s} > 0$. One checks that $N_{g,n}$ can be written as a \mathbb{Q} -combination with positive coefficients of the ample class $\widetilde{\kappa}_1$, the effective class $[\overline{\mathcal{W}}_{g,n}]$ and other boundary divisor classes. In particular, $N_{g,n}$ is big. \Box

2. The Universal Ramification locus of the Gauss map

We begin the calculation of the divisor \mathfrak{RT}_{g} , and for a start we consider its restriction \mathfrak{RT}_{g} to $\mathcal{M}_{g,g-1}$. Recall that \mathfrak{RT}_{g} is defined as the closure of the locus of pointed curves $[C, x_1, \ldots, x_{g-1}] \in \mathcal{M}_{g,g-1}$, such that there exists a holomorphic form on C vanishing at x_1, \ldots, x_{g-1} and having an unspecified double zero.

Let $u : \mathbf{M}_{g,g-1}^{(1)} \to \mathbf{M}_{g,g-1}$ be the universal curve over the stack of (g-1)-pointed smooth curves and we denote by $([C, x_1, \dots, x_{g-1}], p) \in \mathcal{M}_{g,g-1}^{(1)}$ a general point, where $[C, x_1, \dots, x_{g-1}] \in \mathcal{M}_{g,g-1}$ and $p \in C$ is an arbitrary point. For $i = 1, \dots, g-1$, let $\Delta_{ip} \subset \mathcal{M}_{g,g-1}^{(1)}$ be the diagonal divisor given by the equation $p = x_i$. Furthermore, for $i = 1, \dots, g-1$ we consider as before the projections $\sigma_i : \mathbf{M}_{g,g-1}^{(1)} \to \mathbf{M}_{g,1}$ (respectively $\sigma_p : \mathbf{M}_{g,g-1}^{(1)} \to \mathbf{M}_{g,1}$), obtained by forgetting all marked points except x_i (respectively p), and then set $K_i := \sigma_i^*(\omega_{\phi}) \in \operatorname{Pic}(\mathbf{M}_{g,g-1}^{(1)})$ and $K_p := \sigma_p^*(\omega_{\phi}) \in \operatorname{Pic}(\mathbf{M}_{g,g-1}^{(1)})$. We consider the following cartesian diagram of stacks

$$egin{array}{cccc} \mathcal{X} & \stackrel{q}{\longrightarrow} & \mathbf{M}_{g,g-1}^{(1)} \ & & & \downarrow \ f & & & \downarrow \ & \mathbf{M}_{g,1} & \stackrel{\phi}{\longrightarrow} & \mathbf{M}_g \end{array}$$

in which all the morphisms are smooth and ϕ (hence also q) is proper. For $1 \leq i \leq g-1$ there are tautological sections $r_i : \mathbf{M}_{g,g-1}^{(1)} \to \mathcal{X}$ as well as $r_p : \mathbf{M}_{g,g-1}^{(1)} \to \mathcal{X}$, and set $E_i := \mathrm{Im}(r_i), E_p := \mathrm{Im}(r_p)$. Thus $\{E_i\}_{i=1}^{g-1}$ and E_p are relative divisors over q.

For a point $([C, x_1, \ldots, x_{g-1}], p) \in \mathcal{M}_{g,g-1}^{(1)}$, we denote $D := \sum_{i=1}^{g-1} x_i + 2p \in C_{g+1}$, and have the following exact sequence:

$$0 \to \frac{H^0\big(\mathcal{O}_C(D)\big)}{H^0(\mathcal{O}_C)} \to H^0\big(\mathcal{O}_D(D)\big) \xrightarrow{\alpha_D} H^1(\mathcal{O}_C) \to H^1\big(\mathcal{O}_C(D)\big) \to 0.$$

In particular, the morphisms α_D globalize to a morphism of vector bundles over $\mathbf{M}_{q,q-1}^{(1)}$

$$\alpha: \mathcal{A}:=q_*\left(\mathcal{O}_{\mathcal{X}}\left(\sum_{i=1}^{g-1}E_i+2E_p\right)/\mathcal{O}_{\mathcal{X}}\right)\to R^1q_*\mathcal{O}_{\mathcal{X}}.$$

The subvariety $\mathcal{Z} := \left\{ \left([C, x_1, \dots, x_{g-1}], p \right) \in \mathcal{M}_{g,g-1}^{(1)} : H^0 \left(K_C \left(-2p - \sum_{i=1}^{g-1} x_i \right) \right) \neq 0 \right\}$ is the non-surjectivity locus of α and $\Re \mathfrak{T}_g := u_*(\mathcal{Z}) \subset \mathcal{M}_{g,g-1}$. The class of \mathcal{Z} is equal to

$$[\mathcal{Z}] = c_2 \Big(\mathcal{A}^{\vee} - \left(R^1 q_* \mathcal{O}_{\mathcal{X}} \right)^{\vee} \Big) = c_2 \Big(-q_! \mathcal{O}_{\mathcal{X}} \left(\sum_{i=1}^{g-1} E_i + 2E_p \right) \Big) \in A^2(\mathbf{M}_{g,g-1}^{(1)}),$$

where the last term can be computed by Grothendieck-Riemann-Roch:

$$\operatorname{ch}\left(q_{!}\mathcal{O}_{\mathcal{X}}\left(\sum_{i=1}^{g-1} E_{i}+2E_{p}\right)\right) = q_{*}\left[\left(\sum_{k\geq 0} \frac{\left(\sum_{i=1}^{g-1} E_{i}+2E_{p}\right)^{k}}{k!}\right) \cdot \left(1-\frac{c_{1}(\omega_{q})}{2}+\frac{c_{1}^{2}(\omega_{q})}{12}+\cdots\right)\right],$$

and we are interested in evaluating the terms of degree 1 and 2 in this expression. The result of applying GRR to the morphism q, can be summarized as follows:

Lemma 2.1. One has the following relations in $A^*(\mathbf{M}_{g,g-1}^{(1)})$: *(i)*

$$ch_1\Big(q_*\big(\mathcal{O}_{\mathcal{X}}(\sum_{i=1}^{g-1} E_i + 2E_p)\big)\Big) = \lambda - \sum_{i=1}^{g-1} K_i - 3K_p + 2\sum_{i=1}^{g-1} \Delta_{ip}.$$

(ii)

$$ch_2\Big(q_*\big(\mathcal{O}_{\mathcal{X}}(\sum_{i=1}^{g-1} E_i + 2E_p)\big)\Big) = \frac{5}{2}K_p^2 + \frac{1}{2}\sum_{i=1}^{g-1}K_i^2 - 2\sum_{i=1}^{g-1}(K_i + K_p) \cdot \Delta_{ip}$$

Proof. We apply systematically the push-pull formula and the following identities:

$$E_{i}^{2} = -E_{i} \cdot q^{*}(K_{i}), \ E_{p}^{2} = -E_{p} \cdot q^{*}(K_{p}), \ E_{i} \cdot c_{1}(\omega_{q}) = E_{i} \cdot q^{*}(K_{i}), \ E_{p} \cdot c_{1}(\omega_{q}) = E_{p} \cdot q^{*}(K_{p}),$$
$$E_{i} \cdot E_{j} = 0 \ \text{for} \ i \neq j, \ E_{i} \cdot E_{p} = E_{i} \cdot q^{*}(\Delta_{ip}), \text{ and } \ q_{*}(c_{1}^{2}(\omega_{q})) = 12\lambda.$$

Proposition 2.2. The formula $\Re \mathfrak{T}_g \equiv -4(g-7)\lambda + (4g-8)\sum_{i=1}^{g-1}\psi_i \in \operatorname{Pic}(\mathbf{M}_{g,g-1})$ holds. *Proof.* We apply the results of Lemma 2.1, as well as the formulas from [HM] p. 55, in

order to estimate the push-forward under u of the degree 2 monomials in tautological classes. Setting $\mathcal{F} := q_* \left(\mathcal{O}_{\mathcal{X}}(\sum_{i=1}^{g-1} E_i + 2E_p) \right)$, we obtain that

$$u_*(\mathrm{ch}_1^2(\mathcal{F})) = -(8g - 116)\lambda + (8g - 24)\sum_{i=1}^{g-1}\psi_i, \text{ and } u_*(\mathrm{ch}_2(\mathcal{F})) = 30\lambda - 4\sum_{i=1}^{g-1}\psi_i,$$

hence $[\mathfrak{RT}_g] = u_* (ch_1^2(\mathcal{F}) - 2ch_2(\mathcal{F}))/2$, and the claimed formula follows at once. \Box

We proceed now towards proving Theorem 0.4 and expand the divisor class $[\mathfrak{RT}_g] \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,g-1})$ in the standard basis of the Picard group, that is,

$$\overline{\mathfrak{RT}}_g \equiv a\lambda + c\sum_{i=1}^{g-1} \psi_i - b_{irr}\delta_{irr} - \sum_{i=0}^g \sum_{s=0}^{i-1} b_{i:s}\delta_{i:s}.$$

We have just computed a = -4(g - 7) and c = 4(g - 2). The remaining coefficients are determined by intersecting $\overline{\mathfrak{MT}}_g$ with curves lying in the boundary of $\overline{\mathcal{M}}_{g,g-1}$ and understanding how $\overline{\mathfrak{MT}}_g$ degenerates. We begin with the coefficient $b_{0:2}$:

Proposition 2.3. One has the relation $(4g - 6)c - (g - 2)b_{0:2} = (4g - 2)(g - 2)$. It follows that $b_{0:2} = 12g - 22$.

Proof. We fix a general pointed curve $[C, x_1, \ldots, x_{g-2}] \in \mathcal{M}_{g,g-2}$ and consider the family

$$C_{x_{g-1}} := \left\{ [C, x_1, \dots, x_{g-2}, x_{g-1}] : x_{g-1} \in C \right\} \subset \overline{\mathcal{M}}_{g,g-1}.$$

The curve $C_{x_{g-1}}$ is the fibre over $[C, x_1, \ldots, x_{g-2}]$ of the morphism $\overline{\mathcal{M}}_{g,g-1} \to \overline{\mathcal{M}}_{g,g-2}$ forgetting the point labeled by x_{g-1} . Note that $C_{x_{g-1}} \cdot \psi_i = 1$ for $i = 1, \ldots, g-2$ and $C_{x_{g-1}} \cdot \psi_{g-1} = 3g - 4 = 2g - 2 + (g - 2)$. Obviously $C_{x_i} \cdot \delta_{0:2} = g - 2$ and the points in the intersection correspond to the case when x_{g-1} collides with one of the fixed points x_1, \ldots, x_{g-2} . The intersection of C_{x_i} with the remaining generators of $\operatorname{Pic}(\overline{\mathcal{M}}_{g,g-1})$ is equal to zero. We set $A := K_C \otimes \mathcal{O}_C(-x_1 - \cdots - x_{g-2}) \in W_g^1(C)$. By the generality assumption, $h^0(C, A) = 2$, and all ramification points of A are simple. Pointed curves in the intersection $C_{x_{g-1}} \cdot \overline{\mathfrak{RT}}_g$ correspond to points $x_{g-1} \in C$, such that there exists a (ramification) point $p \in C$ with $H^0(C, A \otimes \mathcal{O}_C(-2p - x_{g-1})) \neq 0$. The pencil A carries 4g - 2 ramification points. For each of them there are g - 2 possibilities of choosing $x_{g-1} \in C$ in the same fibre as the ramification point, hence the conclusion follows. \Box

Next we determine the coefficient b_{irr} . First we note that the relation

(6)
$$a - 12b_{\rm irr} + b_{1:0} = 0$$

holds. Indeed, the divisor $\overline{\mathfrak{RT}}_g$ is disjoint from the curve in $\Delta_{1:0} \subset \overline{\mathcal{M}}_{g,g-1}$, obtained from a fixed pointed curve $[C, x_1, \ldots, x_{g-1}, q] \in \overline{\mathcal{M}}_{g-1,g}$, by attaching at the point q a pencil of plane cubics along a section of the pencil induced by one of the 9 base points.

Proposition 2.4. One has the relation $b_{irr} = 2$.

Proof. We fix a general curve $[C, q, x_1, \ldots, x_{g-1}] \in \overline{\mathcal{M}}_{g-1,g}$, and we define the family

$$C_{\operatorname{irr}} := \left\{ [C/t \sim q, x_1, \dots, x_{g-1}] : t \in C \right\} \subset \Delta_{\operatorname{irr}} \subset \overline{\mathcal{M}}_{g,g-1}.$$

Then $C_{irr} \cdot \psi_i = 1$ for i = 1, ..., g - 1, $C_{irr} \cdot \delta_{irr} = -(\deg(K_C) + 2) = -2g + 2$, and finally $C_{irr} \cdot \delta_{1:0} = 1$. All other intersection numbers with generators of $\operatorname{Pic}(\overline{\mathcal{M}}_{g,g-1})$ equal zero.

We fix an effective divisor $D \in C_e$ of degree $e \ge g$ (for instance $D = q + \sum_{i=1}^{g-1} x_i$). For each pair of points $(t, p) \in C \times C$, there is an exact sequence on C

$$0 \to H^0(C, K_C(q+t-2p-\sum_{i=1}^{g-1} x_i)) \to H^0(C, K_C(D+q+t-2p-\sum_{i=1}^{g-1} x_i)) \xrightarrow{\beta_{t,t}} H^0(D, K_C(D+q+t-2p-\sum_{i=1}^{g-1} x_i)) \to H^1(C, K_C(q+t-2p-\sum_{i=1}^{g-1} x_i)) \to 0.$$

The intersection $C_{irr} \cdot \overline{\Re \mathfrak{T}_g}$ corresponds to the locus of pairs $(t, p) \in C \times C$ such that the map $\beta_{t,p}$ is not injective. On the triple product of C, we consider two of the projections $f: C \times C \times C \to C \times C$ and $p_1: C \times C \times C \to C$ given by f(x, t, p) = (t, p) and $p_1(x, t, p) = x$, then set $A := K_C(q - \sum_{i=1}^{g-1} x_i) \in \operatorname{Pic}^{g-2}(C)$. We denote by $\Delta_{12}, \Delta_{13} \subset C \times C \times C$ the corresponding diagonals, and finally, introduce the line bundle on $C \times C \times C$

$$\mathcal{F} := p_1^*(A) \otimes \mathcal{O}_{C \times C \times C}(\Delta_{12} - 2\Delta_{13}).$$

Applying the Porteous formula, one can write

$$C_{\operatorname{irr}} \cdot \overline{\mathfrak{RT}}_g = c_2(R^1 f_* \mathcal{F} - R^0 f_* \mathcal{F}) = \frac{\operatorname{ch}_1^2(f_! \mathcal{F}) + 2\operatorname{ch}_2(f_! \mathcal{F})}{2} \in A^2(C \times C).$$

We evaluate $ch_i(f_!\mathcal{F})$ using GRR applied to the morphism f, that is,

$$ch(f_{!}\mathcal{F}) = f_{*} \Big[\Big(\sum_{a \ge 0} \frac{\left(p_{1}^{*}(A) + \Delta_{12} - 2\Delta_{13} \right)^{a}}{a!} \Big) \cdot \Big(1 - \frac{1}{2} p_{1}^{*}(K_{C}) \Big) \Big].$$

Denoting by $F_1, F_2 \in H^2(C \times C)$ the class of the fibres, after calculations one finds that

$$ch_1(f_*\mathcal{F}) = -(g-2)F_1 - 4(g-2)F_2 - 2\Delta_C \in H^2(C \times C, \mathbb{Q}),$$

$$ch_2(f^*\mathcal{F}) = -2(g-2) \in H^4(C \times C, \mathbb{Q}),$$

that is, $c_2(R^1f_*\mathcal{F} - R^0f_*\mathcal{F}) = 4(g-2)(g-1)$. Coupled with (6), this yields $b_{irr} = 2$. \Box

We are left with the task of determining the coefficient of $\delta_{i:s}$ in the expansion of $[\mathfrak{RT}_g]$. This requires solving a number of enumerative geometry problems in the spirit of de Jonquières' formula. We fix integers $0 \leq i \leq g$ and $s \leq i - 1$ as well as general pointed curves $[C, x_1, \ldots, x_s] \in \overline{\mathcal{M}}_{i,s}$ and $[D, q, x_{s+1}, \ldots, x_{g-1}] \in \overline{\mathcal{M}}_{g-i,g-s}$, then construct a pencil of stable curves of genus g, by identifying the fixed point $q \in D$ with a variable point, also denoted by q, on the component C:

$$C_{i:s} := \left\{ [C \cup_q D, x_1, \dots, x_s, x_{s+1}, \dots, x_{g-1}] : q \in C \right\} \subset \Delta_{i:s} \subset \overline{\mathcal{M}}_{g,g-1}.$$

We summarize the non-zero intersection numbers of $C_{i:s}$ with generators of $\operatorname{Pic}(\overline{\mathcal{M}}_{g,g-1})$:

$$C_{i:s} \cdot \psi_1 = \dots = C_{i:s} \cdot \psi_s = 1, \ C_{i:s} \cdot \delta_{i:s-1} = i, \ C_{i:s} \cdot \delta_{i:s} = 2i - 2 + s.$$

Theorem 2.5. We fix integers $0 \le i \le g$ and $0 \le s \le i-1$. Then, the following formula holds:

$$b_{i:s} = 2i^3 - 5i^2 - 3i + 4g - 4i^2s + 14si - 6gs - s + 2s^2g - 3s^2 + 2.$$

In the proof an essential role is played by the following calculation:

Proposition 2.6. Let *i*, *s* be integers such that $0 \le s \le i - 1$, and $[C, x_1, ..., x_s] \in \mathcal{M}_{i,s}$ a general pointed curve. The number of pairs $(q, p) \in C \times C$ such that

$$H^0(C, K_C \otimes \mathcal{O}_C(-x_1 - \dots - x_s - (i - s - 1)q - 2p)) \neq 0,$$

is equal to $a(i,s) := 2(i-s-1)(2i^3-5i^2+i+2-2i^2s+3is).$

Remark 2.7. By specializing, one recovers well-known formulas in enumerative geometry. For instance, a(3,0) = 56 is twice the number of bitangents of a smooth plane quartic, whereas a(4,0) = 324 equals the number of canonical divisors of type $3q + 2p + x \in |K_C|$, where $[C] \in \mathcal{M}_4$. This matches de Jonquières' formula, cf. [ACGH] p.359.

Proof of Theorem 2.5. We fix a general point $[C \cup_q D, x_1, \ldots, x_{g-1}] \in C_{i:s} \cdot \Re \mathfrak{T}_g$, corresponding to a point $q \in C$. We shall show that q is not one of the marked points x_1, \ldots, x_s on C, then give a geometric characterization of such points and count their number. Let

$$\omega_D \in H^0(D, K_D \otimes \mathcal{O}_D(2iq))$$
 and $\omega_C \in H^0(C, K_C \otimes \mathcal{O}_C(2g-2i)q)$

be the aspects of the section of the limit canonical series on $C \cup_q D$, which vanishes doubly at an unspecified point $p \in C \cup D$ as well as along the divisor $x_1 + \cdots + x_{g-1}$. The condition $\operatorname{ord}_q(\omega_C) + \operatorname{ord}_q(\omega_D) \ge 2g - 2$, comes from the definition of a limit linear series. We distinguish two cases depending on the position of the point p. If $p \in D$ then,

$$\operatorname{div}(\omega_C) \ge x_1 + \dots + x_s, \quad \operatorname{div}(\omega_D) \ge x_{s+1} + \dots + x_{g-1} + 2p.$$

Since the points $q, x_{s+1}, \ldots, x_{g-1} \in D$ are general, we find that $\operatorname{ord}_q(\omega_D) \leq i + s - 2$. Moreover, $K_D \otimes \mathcal{O}_D((i-s+2)q - x_{s+1} - \cdots - x_{g-1}) \in W^1_{g-i+1}(D)$ is a pencil, and $p \in D$ is one of its (simple) ramification points. The Hurwitz formula gives 4(g-i) choices for such $p \in D$.

By compatibility, $\operatorname{ord}_q(\omega_C) \geq 2g - i - s$. A parameter count implies that equality must hold. The condition $H^0(C, K_C \otimes \mathcal{O}_C(-x_1 - \cdots - x_s - (i - s)q) \neq 0$, is equivalent to asking that $q \in C$ be a ramification point of $K_C \otimes \mathcal{O}_C(-\sum_{j=1}^s x_j) \in W_{2i-2-s}^{i-s-1}(C)$. Since the points $x_1, \ldots, x_s \in C$ are chosen to be general, all ramification points of this linear series are simple and occur away from the marked points. From Plücker's formula, the number of ramification points equals $(i - s)(i^2 - 1 - is)$. Multiplying this with the number of choices for $p \in D$, we obtain a total contribution of $4(g-i)(i-s)(i^2-is-1)$ to the intersection $C_{i:s} \cdot \mathfrak{MT}_g$, stemming from the case when $p \in D$. The proof that each of these points of intersection is to be counted with multiplicity 1 is standard and proceeds along the lines of [EH2] Lemma 3.4.

We assume now that $p \in C$. Keeping the notation from above, it follows that $\operatorname{ord}_q(\omega_D) = i + s - 1$ and $\operatorname{ord}_q(\omega_C) = 2g - i - s - 1$, therefore

$$0 \neq \sigma_C \in H^0\big(C, K_C \otimes \mathcal{O}_C\big(-\sum_{j=1}^s x_j - (i-s-1)q - 2p\big)\big).$$

The section ω_D is uniquely determined up to multiplication by scalars, whereas there are a(i, s) choices on the side of *C*, each counted with multiplicity 1.

In principle, the double zero of the limit holomorphic form could specialize to the point of attachment $q \in C \cap D$, and we prove that this would contradict our generality hypothesis. One considers the semistable curve $X := C \cup_{q_1} E \cup_{q_2} D$, obtained from $C \cup D$ by inserting a smooth rational component E at q, where $\{q_1\} := C \cap E$ and $\{q_2\} := D \cap E$. There also exist non-zero sections

$$\omega_D \in H^0(D, K_D(2iq_2)), \ \omega_E \in H^0(E, \mathcal{O}_E(2g-2)), \ \ \omega_C \in H^0(C, K_C((2g-2i)q_1)),$$

satisfying $\operatorname{ord}_{q_1}(\omega_C) + \operatorname{ord}_{q_1}(\omega_E) \geq 2g - 2$ and $\operatorname{ord}_{q_2}(\omega_E) + \operatorname{ord}_{q_2}(\omega_D) \geq 2g - 2$. Furthermore, ω_E vanishes doubly at a point $p \in \{q_1, q_2\}^c$. Since ω_C (respectively ω_D) also vanishes along the divisor $x_1 + \cdots + x_s$ (respectively $x_{s+1} + \cdots + x_{g-1}$), it follows that $\operatorname{ord}_{q_1}(\omega_C) \leq 2g - i - s$ and $\operatorname{ord}_{q_2}(\omega_D) \leq i + s - 1$, hence by compatibility, $\operatorname{ord}_{q_1}(\omega_E) + \operatorname{ord}_{q_2}(\omega_E) \geq 2g - 3$. This rules out the possibility of a further double zero and shows that this case does not occur.

To summarize, keeping in mind that the ψ -coefficient of $[\overline{\mathfrak{RT}}_g]$ is equal to 4g - 8, we find the relation

(7)
$$(2i-2+s)b_{i:s} - sb_{i:s-1} + s(4g-8) = 4(g-i)(s-1)(si-2i+2) + a(i,s).$$

For s = 0, we have by convention $b_{i:-1} = 0$, which gives $b_{i:0} = 2i^3 - 5i^2 - 3i + 4g + 1$. By induction, we find using recursion (7) the claimed formula for $b_{i:s}$.

As already explained, having calculated the class $[\mathfrak{RT}_g] \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,g-1})$ and using known bound on the slope $s(\overline{\mathcal{M}}_g)$, one derives that \mathfrak{Th}_g is of general type when $g \geq 12$. We discuss the last cases in Theorem 0.1 and thus complete the birational classification of \mathfrak{Th}_g :

End of proof of Theorem 0.1. We noted in the Introduction that for $g \leq 9$ the space \mathfrak{Th}_g is unirational, being the image of a variety which is birational to a Grassmann bundle over the rational *Mukai variety* V_g^{g-1} . When $g \in \{10, 11\}$, the space $\overline{\mathcal{M}}_{g,g-1}$ is uniruled [FP]. This implies the uniruledness of \mathfrak{Th}_g as well.

3. THE KODAIRA DIMENSION OF $\overline{C}_{q,n}$

In this section we provide results concerning the Kodaira dimension of the symmetric product $\overline{C}_{g,n}$, where $n \leq g-2$. There are two cases depending on the parity of the difference g - n. When g - n is even, we introduce a subvariety inside $C_{g,n}$, consisting of divisors $D \in C_n$ which appear in a fibre of a pencil of degree (g + n)/2 on a curve $[C] \in \mathcal{M}_g$. We set integers $g \geq 1$ and $1 \leq m \leq g/2$, then consider the locus

$$\mathcal{F}_{g,m} := \{ [C, x_1, \dots, x_{g-2m}] \in \mathcal{M}_{g,g-2m} : \exists A \in W^1_{g-m}(C) \text{ with } H^0(C, A(-\sum_{j=1}^{g-2m} x_j)) \neq 0 \}$$

A parameter count shows that $\mathcal{F}_{g,m}$ is expected to be an effective divisor on $\overline{\mathcal{M}}_{g,g-2m}$. We shall prove this, then compute the class of its closure in $\overline{\mathcal{M}}_{g,g-2m}$.

Theorem 3.1. Fix integers $g \ge 1$ and $1 \le m \le g/2$, then set n := g - 2m and d := g - m. The class of the compactification inside $\overline{\mathcal{M}}_{g,g-2m}$ of the divisor $\mathcal{F}_{g,m}$ is given by the formula:

$$\overline{\mathcal{F}}_{g,m} \equiv \left(\frac{10n}{g-2} \binom{g-2}{d-1} - \frac{n}{g} \binom{g}{d}\right) \lambda + \frac{n-1}{g-1} \binom{g-1}{d-1} \sum_{j=1}^{n} \psi_j - \frac{n}{g-2} \binom{g-2}{d-1} \delta_{\mathrm{irr}} - \frac{n}{g-2} \binom$$

G. FARKAS AND A. VERRA

$$-\sum_{s=2}^{n} \frac{s(n^2-g+sgn-sn)}{2(g-1)(g-d)} \binom{g-1}{d} \delta_{0:s} - \dots \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,n}).$$

Proof. We fix a general curve $[C] \in \mathcal{M}_q$ and consider the incidence correspondence

$$\Sigma := \{ (D, A) \in C_{g-2m} \times W^1_{g-m}(C) : H^0(C, A \otimes \mathcal{O}_C(-D)) \neq 0 \},\$$

together with the projection $\pi_1 : \Sigma \to C_{g-2m}$. It follows from [F1] Theorem 0.5, that Σ is pure of dimension $g - 2m - 1 (= \rho(g, 1, g - m) + 1)$. To conclude that $\overline{\mathcal{F}}_{g,m}$ is a divisor inside $\overline{\mathcal{M}}_{g,g-2m}$, it suffices to show that the general fibre of the map π_1 is finite, which implies that $\phi^{-1}([C]) \cap \overline{\mathcal{F}}_{g,m}$ is a divisor in $\phi^{-1}([C])$; we also note that the fibre $\phi^{-1}([C])$ is isomorphic to the *n*-th Fulton-Macpherson configuration space of C. We specialize to the case $D = (g - 2m) \cdot p$, where $p \in C$. One needs to show that for a general curve $[C] \in \mathcal{M}_g$, there exist finitely many pencils $A \in W_{g-m}^1(C)$ with $h^0(C, A \otimes \mathcal{O}_C(-(g-m)p)) \ge 1$, for some point $p \in C$. This follows from [HM] Theorem B, or alternatively, by letting C specialize to a flag curve consisting of a rational spine and g elliptic tails, in which case the point p specializes to a (g - 2m)-torsion points on one of the elliptic tails (in particular it can not specialize to a point on the spine). For each of these points, the pencils in question are in bijective correspondence to points in a transverse intersection of Schubert cycles in G(2, g-m+1). In particular their number is finite.

In order to compute the class $[\overline{\mathcal{F}}_{g,m}]$, we expand it in the usual basis of $\operatorname{Pic}(\overline{\mathcal{M}}_{g,n})$

$$\overline{\mathcal{F}}_{g,m} \equiv a\lambda + c \sum_{i=1}^{g-2m} \psi_i - b_{irr} \delta_{irr} - \sum_{i,s \ge 0} b_{i:s} \delta_{i:s},$$

then note that the coefficients a, c and b_{irr} respectively, have been computed in [F2] Theorem 4.9. The coefficient $b_{0:2}$ is determined by intersecting $\overline{\mathcal{F}}_{q,m}$ with a fibral curve

$$C_{x_n} := \{ [C, x_1, \dots, x_{n-1}, x_n] : x_n \in C \} \subset \overline{\mathcal{M}}_{g,n},$$

corresponding to a general (n-1)-pointed curve $[C, x_1, \ldots, x_{n-1}] \in \overline{\mathcal{M}}_{g,n-1}$. By letting the points $x_1, \ldots, x_{n-1} \in C$ coalesce to a point $q \in C$, points in the intersection $C_{x_n} \cdot \overline{\mathcal{F}}_{g,m}$ are in 1 : 1 correspondence with points $x_n \in C$, such that $h^0(C, A(-(n-1)q - x_n)) \ge 1$. This number equals $(g - 2m - 1) {g \choose m}$, see [HM] Theorem A, that is,

$$(2g+2n-4)c - (n-1)b_{0:2} = C_{x_n} \cdot \overline{\mathcal{F}}_{g,m} = (m+1) \# \left\{ A \in W^1_{g-m}(C) : h^0(C, A \otimes \mathcal{O}_C(-(g-2m-1)q)) \ge 1 \right\} = (g-2m-1)\binom{g}{m},$$

which determines $b_{0:2}$. The coefficients $b_{0:s}$ are computed recursively, by exhibiting an explicit test curve $\Gamma_{0:s} \subset \Delta_{0:s}$ which is disjoint from $\overline{\mathcal{F}}_{g,m}$. We fix a general element $[C, q, x_{s+1}, \ldots, x_n] \in \overline{\mathcal{M}}_{g,n+1-s}$ and a general *s*-pointed rational curve $[\mathbf{P}^1, x_1, \ldots, x_s] \in \overline{\mathcal{M}}_{0,s}$. We glue these curves along a moving point *q* lying on the rational component:

$$\Gamma_{0:s} := \{ [\mathbf{P}^1 \cup_q C, x_1, \dots, x_s, x_{s+1}, \dots, x_n] : q \in \mathbf{P}^1 \} \subset \Delta_{0:s} \subset \overline{\mathcal{M}}_{g,n}.$$

Clearly, $\Gamma_{0:s} \cdot \overline{\mathcal{F}}_{g,m} = s \ c - (s-2) \ b_{0:s} + s \ b_{0:s-1}$. We claim $\Gamma_{0:s} \cap \overline{\mathcal{F}}_{g,m} = \emptyset$. Assume that on the contrary, one can find a point $q \in \mathbf{P}^1$ and a limit linear series \mathfrak{g}_d^1 on $\mathbf{P}^1 \cup_q C$,

$$l = \left((A, V_C), (\mathcal{O}_{\mathbf{P}^1}(d), V_{\mathbf{P}^1}) \right) \in G_d^1(C) \times G_d^1(\mathbf{P}^1),$$

12

together with sections $\sigma_C \in V_C$ and $\sigma_{\mathbf{P}^1} \in V_{\mathbf{P}^1}$, satisfying $\operatorname{ord}_q(\sigma_C) + \operatorname{ord}_q(\sigma_{\mathbf{P}^1}) \ge d$ and

$$\operatorname{div}(\sigma_C) \ge x_{s+1} + \dots + x_n, \quad \operatorname{div}(\sigma_{\mathbf{P}^1}) \ge x_1 + \dots + x_s.$$

Since $\sigma_{\mathbf{P}^1} \neq 0$, one finds that $\operatorname{ord}_q(\sigma_{\mathbf{P}^1}) \leq g - m - s$, hence by compatibility, $\operatorname{ord}_q(\sigma_C) \geq s$. We claim that this is impossible, that is, $H^0(C, A \otimes \mathcal{O}_C(-sq - x_1 - \cdots - x_n)) \neq 0$, for every $A \in W^1_{g-m}(C)$. Indeed, by letting all points $x_{s+1}, \ldots, x_n, q \in C$ coalesce, the statement $H^0(C, A \otimes \mathcal{O}_C(-(g - 2m) \cdot q)) = 0$, for a general $[C, q] \in \overline{\mathcal{M}}_{g,1}$ is a consequence of the "pointed" Brill-Noether theorem as proved in [EH1] Theorem 1.1. This shows that

$$0 = \Gamma_{0:s} \cdot \overline{\mathcal{F}}_{g,m} = sc + (s-2)b_{0:s} - sb_{0:s-1},$$

for $3 \le s \le n$, which determines recursively all coefficients $b_{0:s}$. The remaining coefficients $b_{i:s}$ with $1 \le i \le \lfloor g/2 \rfloor$ can be determined via similar test curve calculations, but we skip these details.

Keeping the notation from the proof of Theorem 3.1, a direct consequence is the calculation of the class of the divisor $\mathcal{F}_{g,m}[C] := \pi_1(\Sigma)$ inside C_{g-2m} . This offers an alternative proof of [Mus] Proposition III; furthermore the proof of Theorem 3.1, answers in the affirmative the question raised in loc.cit., concerning whether the cycle $\mathcal{F}_{g,m}[C]$ has expected dimension, and thus, it is a divisor on C_{g-2m} .

We denote by $\theta \in H^2(C_{g-2m}, \mathbb{Q})$ the class of the pull-back of the theta divisor, and by $x \in H^2(C_{g-2m}, \mathbb{Q})$ the class of the locus $\{p_0 + D : D \in C_{g-2m-1}\}$ of effective divisors containing a fixed point $p_0 \in C$. For a very general curve $[C] \in \mathcal{M}_g$, the group $N^1(C_{g-2m})_{\mathbb{Q}}$ is generated by x and θ , see [ACGH].

Let $\widetilde{\mathcal{F}}_{g,m}$ be the effective divisor on $\overline{\mathcal{C}}_{g,g-2m}$ to which $\overline{\mathcal{F}}_{g,m}$ descends, that is, $\pi^*(\widetilde{\mathcal{F}}_{g,m}) = \overline{\mathcal{F}}_{g,m}$. The class of $\widetilde{\mathcal{F}}_{g,m}$ is completely determined by Theorem 3.1.

Corollary 3.2. Let $[C] \in \mathcal{M}_q$ be a general curve. The cohomology class of the divisor

$$\mathcal{F}_{g,m}[C] := \{ D \in C_{g-2m} : \exists A \in W^1_{q-m}(C) \text{ such that } H^0(C, A \otimes \mathcal{O}_C(-D)) \neq 0 \}$$

is equal to $(1 - \frac{2m}{g}) {g \choose m} (\theta - \frac{g}{g-2m}x)$. In particular, the class $\theta - \frac{g}{g-2m}x \in N^1(C_{g-2m})_{\mathbb{Q}}$ is effective.

Proof. Let $u : C_{g-2m} \dashrightarrow \overline{\mathcal{C}}_{g,g-2m}$ be the rational map given by

$$u(x_1 + \dots + x_{g-2m}) = [C, x_1 + \dots + x_{g-2m}].$$

Note that *u* is well-defined outside the codimension 2 locus of effective divisors with support of length at most g - 2m - 2. We have that $u^*(\delta_{0:2}) = \delta_C$, where $\delta_C := [\Delta_C]/2$ is the reduced diagonal. Its class is given by the MacDonald formula, cf. [K1] Lemma 7:

$$\delta_C \equiv -\theta + (g+d-1)x \equiv -\theta + (2g-2m-1)x.$$

Furthermore, $u^*(\tilde{\psi}) \equiv \theta + \delta_C + (g - n - 1)x$, see [K2] Proposition 2.7. Thus $\mathcal{F}_{g,m}[C] \equiv u^*([\tilde{\mathcal{F}}_{g,m}])$, and the conclusion follows after some calculations.

The divisor $\mathcal{F}_{g,m}$ is defined in terms of a correspondence between pencils and effective divisors on curves, and it is fibred in curves as follows: We fix a complete pencil $A \in W^1_{g-m}(C)$ with only simple ramification points. The variety of secant divisors

$$V_{q-2m}^{1}(A) := \{ D \in C_{g-2m} : H^{0}(C, A \otimes \mathcal{O}_{C}(-D)) \neq 0 \}$$

is a curve (see [F1]), disjoint from the indeterminacy locus of the rational map $u : C_{g-2m} \longrightarrow \overline{C}_{g,g-2m}$. We set $\Gamma_{g-2m}(A) := u(V_{g-2m}^1(A)) \subset \overline{C}_{g,g-2m}$. By varying $[C] \in \mathcal{M}_g$ and $A \in W_{g-m}^1(C)$, the curves $\Gamma_{g-2m}(A)$ fill-up the divisor $\widetilde{\mathcal{F}}_{g,m}$. It is natural to test the extremality of $\widetilde{\mathcal{F}}_{g,m}$ by computing the intersection number $\Gamma_{g-2m}(A) \cdot \widetilde{\mathcal{F}}_{g,m}$. To state the next result in a unified form, we adopt the convention $\binom{a}{b} := 0$, whenever b < 0.

Proposition 3.3. For all integers $1 \le m < g/2$, we have the formula:

$$\Gamma_{g-2m}(A) \cdot \widetilde{\mathcal{F}}_{g,m} = (m-1) \binom{g-m-2}{m} \binom{g}{m}$$

In particular, $\Gamma_{g-2}(A) \cdot \widetilde{\mathcal{F}}_{g,1} = 0$, and the divisor $\widetilde{\mathcal{F}}_{g,1} \in \text{Eff}(\overline{\mathcal{C}}_{g,g-2})$ is extremal.

Proof. This is an immediate application of Corollary 3.2. The class $[V_{g-2m}^1(A)]$ can be computed using Porteous' formula, see [ACGH] p.342:

$$[V_{g-2m}^{1}(A)] \equiv \sum_{j=0}^{g-2m-1} \binom{-m-1}{j} \frac{x^{j} \cdot \theta^{g-2m-j-1}}{(g-2m-1-j)!} \in H^{2(g-2m-1)}(C_{g-2m}, \mathbb{Q}).$$

Using the push-pull formula, we write $\Gamma_{g-2m}(A) \cdot \widetilde{\mathcal{F}}_{g,m} = \mathcal{F}_{g,m}[C] \cdot [V_{g-2m}^1(A)]$, then estimate the product using the identity $x^k \theta^{g-2m-k} = g!/(2m+k)! \in H^{2(g-2m)}(C_{g-2m},\mathbb{Q})$ for $0 \le k \le g - 2m$. For m = 1, observe that $\Gamma_{g-2}(A) \cdot \widetilde{\mathcal{F}}_{g,1} = 0$. Since the curves of type $\Gamma_{g-2}(A)$ cover $\widetilde{\mathcal{F}}_{g,1}$, this implies that $[\widetilde{\mathcal{F}}_{g,1}] \in \text{Eff}(\overline{\mathcal{C}}_{g,g-2})$ generates an extremal ray. \Box

We can use Theorem 3.1 to describe the birational type of $\overline{C}_{g,n}$ when $12 \le g \le 21$ and $1 \le n \le g-2$. We recall that when $g \le 9$, the space $\overline{C}_{g,n}$ is uniruled for all values of n. The transition cases g = 10, 11, as well as the case of the universal Jacobian $\overline{C}_{g,g}$, are discussed in detail in [FV2]. Furthermore $\overline{C}_{g,n}$ is uniruled when $n \ge g + 1$; in this case the symmetric product C_n of any curve $[C] \in \mathcal{M}_g$ is birational to a \mathbf{P}^{n-g} -bundle over the Jacobian $\operatorname{Pic}^n(C)$. Our main result is that, in the range described above, $\overline{C}_{g,n}$ is of general type in all the cases when $\overline{\mathcal{M}}_{g,n}$ is known to be of general type, see [Log], [F2]. We note however that the divisors $\overline{\mathcal{F}}_{g,m}$ only carry one a certain distance towards a full solution. The classification of $\overline{C}_{q,n}$ is complete only when $n \in \{g - 1, g - 2, g\}$.

Theorem 3.4. For integers g = 12, ..., 21, the universal symmetric product $\overline{C}_{g,n}$ is of general type for all $f(g) \le n \le g - 1$, where f(g) is described in the following table.

Proof. The strategy described in the Introduction to prove that $K_{\overline{C}_{g,g-1}}$ is big, applies to the other spaces $\overline{C}_{g,n}$, with $1 \le n \le g-2$ as well. To show that $\overline{C}_{g,n}$ is of general type, it suffices to produce an effective class on $\overline{C}_{g,n}$ which pulls back via π to $a\lambda + c \sum_{i=1}^{n} \psi_i - b_{irr}\delta_{irr} - \sum_{i,s} b_{i:s}\delta_{i:s} \in \text{Eff}(\overline{\mathcal{M}}_{g,n})^{\mathfrak{S}_n}$, such that the following conditions are fulfilled:

(8)
$$\frac{a + s(\mathcal{M}_g)(2c - b_{\rm irr})}{13c} < 1 \text{ and } \frac{b_{0:2}}{3c} > 1.$$

When g - n is even, we write g - n = 2m, and for all entries in the table above one can express $K_{\overline{\mathcal{C}}_{g,n}}$ as a positive combination of $\sum_{i=1}^{n} \psi_i$, $[\overline{\mathcal{F}}_{g,m}]$, $\varphi^*(D)$, where $D \in$ Eff $(\overline{\mathcal{M}}_g)$, and other boundary classes. If g - n = 2m + 1 with $m \in \mathbb{Z}_{\geq 0}$, for each integer $1 \leq j \leq n + 1$, we denote by $\phi_j : \overline{\mathcal{M}}_{g,n+1} \to \overline{\mathcal{M}}_{g,n}$ the projection forgetting the *j*-th marked point and consider the effective \mathfrak{S}_n -invariant effective \mathbb{Q} -divisor on $\overline{\mathcal{M}}_{q,n}$

$$E := \frac{1}{n+1} \sum_{j=1}^{n+1} (\phi_j)_* \left(\overline{\mathcal{F}}_{g,m} \cdot \delta_{0:\{j,n+1\}} \right) \in \operatorname{Eff}(\overline{\mathcal{M}}_{g,n}).$$

Using Theorem 3.1 as well as elementary properties of push-forwards of tautological classes, $K_{\overline{C}_{g,n}}$ is expressible as a positive \mathbb{Q} -combination of boundaries, [E], a pull-back of an effective divisor on $\overline{\mathcal{M}}_g$, and the big and nef class $\sum_{i=1}^n \psi_i$ precisely in the cases appearing in the table.

Remark 3.5. When $g \notin \{12, 16, 18\}$, the bound $s(\overline{\mathcal{M}}_g) \leq 6 + 12/(g+1)$, emerging from the slope of the Brill-Noether divisors, has been used to verify (8). In the remaining cases, we employ the better bounds $s(\overline{\mathcal{M}}_{12}) = 4415/642 < 6 + 12/13$ (see [FV1]), and $s(\overline{\mathcal{M}}_{16}) = 407/61 < 6 + 12/17$ see [F2], coming from Koszul divisors on $\overline{\mathcal{M}}_{12}$ and $\overline{\mathcal{M}}_{16}$ respectively. On $\overline{\mathcal{M}}_{18}$, we use the estimate $s(\overline{\mathcal{M}}_{18}) \leq 302/45$ given by the class of the Petri divisor $\overline{\mathcal{GP}}_{18,10}^1$, see [EH1]. Improvements on the estimate on $s(\overline{\mathcal{M}}_g)$ in the other cases, will naturally translate in improvements in the statement of Theorem 3.4.

4. AN EFFECTIVE DIVISOR ON $\overline{\mathcal{M}}_{q,q-3}$

The aim of this section is to prove Theorem 0.8. We begin by solving the following enumerative question which comes up repeatedly in the process of computing $[\overline{D}_q]$.

Theorem 4.1. Let $[C, p] \in \mathcal{M}_{g,1}$ be a general pointed curve of genus g and $0 \le \gamma \le g - 3$ a fixed integer. Then there exist a finite number of pairs $(L, x) \in W_q^2(C) \times C$ such that

$$H^0(C, L \otimes \mathcal{O}_C(-\gamma \ x - (g - 3 - \gamma) \ p)) \ge 1.$$

Their number is computed by the formula

$$N(g,\gamma) := \frac{g(g-1)(g-5)}{3}\gamma(\gamma g - 3\gamma - 1).$$

Proof. We introduce auxiliary maps $\chi : C \times C_3 \to C_{\gamma+3}$ and $\iota : C_{\gamma+3} \to C_g$ given by,

$$\chi(x,D) := \gamma \cdot x + D$$
, and $\iota(E) := E + (g - 3 - \gamma) \cdot p$

The number we evaluate is $N(g, \gamma) := \chi^* \iota^* ([C_g^2])$, where $C_g^2 := \{D \in C_g : \dim |D| \ge 3\}$. The cohomology class of this variety of special divisors is computed in [ACGH] p.326:

$$[C_g^2] = \frac{\theta^4}{12} - \frac{x\theta^3}{3} + \frac{x^2\theta^2}{6} \in H^8(C_{g-3}, \mathbb{Q}).$$

Noting that $\iota^*(\theta) = \theta$ and $\iota^*(x) = x$, one needs to estimate the pull-backs of the tautological monomials $x^{\alpha}\theta^{4-\alpha}$. For this purpose, we use [ACGH] p.358:

$$\chi^*(x^{\alpha}\theta^{4-\alpha}) = \frac{g!}{(g-4+\alpha)!} \Big[\big(1+\gamma t_1+t_2\big)^{\alpha} \cdot \big(1+\gamma^2 t_1+t_2\big)^{4-\alpha} \Big]_{t_1t_2^3}.$$

where the last symbol indicates the coefficient of the monomial $t_1t_2^3$ in the polynomial appearing on the right of the formula. The rest follows after a routine evaluation.

The second enumerative ingredient in the proof of Theorem 0.8 is the following result, which can be proved by degeneration using Schubert calculus:

Proposition 4.2. For a general curve $[C] \in \mathcal{M}_{g-1}$, there exist a finite number of pairs $(L, x) \in W_q^2(C) \times C$ satisfying the conditions

$$h^0(C, L \otimes \mathcal{O}_C(-2x)) \ge 2$$
, and $h^0(C, L \otimes \mathcal{O}_C(-(g-2)x)) \ge 1$.

Each pair corresponds to a complete linear series L. The number of such pairs is equal to

$$n(g-1) := (g-1)(g-2)(g-3)(g-4)^2.$$

Proof of Theorem 0.8. We expand $[\overline{\mathcal{D}}_g] \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,g-3})$, and begin the calculation by determining the coefficients of λ , $\delta_{\operatorname{irr}}$ and $\sum_{i=1}^{g-3} \psi_i$ respectively. It is useful to observe that if $\phi_n : \overline{\mathcal{M}}_{g,n} \to \overline{\mathcal{M}}_{g,n-1}$ is the map forgetting the marked point labeled by n for some $n \geq 1$ and D is any divisor class on $\overline{\mathcal{M}}_{g,n}$, then for distinct labels $i, j \neq n$, the λ , δ_{irr} and ψ_j coefficients of the divisors D on $\overline{\mathcal{M}}_{g,n}$ and $(\phi_n)_*(D \cdot \delta_{0:in})$ on $\overline{\mathcal{M}}_{g,n-1}$ respectively, coincide. The divisor $(\phi_n)_*(D \cdot \delta_{0:in})$ can be thought of as the locus of points $[C, x_1, \ldots, x_n] \in D$ where the points x_i and x_n are allowed to come together. By iteration, the divisor $\overline{\mathcal{D}}_g^{g-3}$ on $\overline{\mathcal{M}}_{g,1}$ obtained by letting all points x_1, \ldots, x_{g-3} coalesce, has the same λ and $\delta_{\operatorname{irr}}$ coefficients as $\overline{\mathcal{D}}_g$. But obviously

$$\overline{\mathcal{D}}_g^{g-3} = \{ [C, x] \in \mathcal{M}_{g,1} : \exists L \in W_g^2(C) \text{ such that } h^0(C, L \otimes \mathcal{O}_C(-(g-3)x)) \ge 1 \},\$$

and note that this is a "pointed Brill-Noether divisor" in the sense of Eisenbud-Harris. The cone of Brill-Noether divisors on $\overline{\mathcal{M}}_{g,1}$ is 2-dimensional, see [EH2] Theorem 4.1, and exists constants $\mu, \nu \in \mathbb{Q}$, such that $\overline{\mathcal{D}}_{q}^{g-3} \equiv \mu \cdot \mathfrak{BN} + \nu \cdot \overline{\mathcal{W}}$, where

$$\mathfrak{B}\mathfrak{N} := (g+3)\lambda - \frac{g+1}{6}\delta_{\operatorname{irr}} - \sum_{j=1}^{g-1} j(g-j)\delta_{j:1} \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,1})$$

is the pull-back from $\overline{\mathcal{M}}_g$ of the Brill-Noether divisor class and $\overline{\mathcal{W}} \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,1})$ is the class of the Weierstrass divisor. The coefficients μ and ν are computed by intersecting both sides of the previous identity with explicit curves inside $\overline{\mathcal{M}}_{g,1}$. First we fix a genus g curve C and let the marked point vary along C. If $C_x := \phi^{-1}([C]) \subset \overline{\mathcal{M}}_{g,1}$ denotes the induced curve in moduli, then the only generator of $\operatorname{Pic}(\overline{\mathcal{M}}_{g,1})$ which has non-zero intersection number with C_x is ψ , and $C_x \cdot \psi = 2g - 2$. On the other hand $C_x \cdot \overline{\mathcal{D}}_g^{g-3} = N(g, g-3)$, that is, $\nu = N(g, g-3)/(g(g-1)(g+1))$.

To compute μ , we construct a curve inside $\Delta_{1:1}$ as follows: Fix a 2-pointed elliptic curve $[E, x, y] \in \mathcal{M}_{1,2}$ such that the class $x - y \in \operatorname{Pic}^0(E)$ is not torsion, and a general curve $[C] \in \mathcal{M}_{g-1}$. We define the family $\overline{C}_1 := \{[C \cup_y E, x]\}_{y \in C}$, obtained by varying the point of attachment along C, while keeping the marked point fixed on E. The only generator of $\operatorname{Pic}(\overline{\mathcal{M}}_{g,1})$ meeting \overline{C}_1 non-trivially is $\delta_{1:1} = \delta_{g-1:\emptyset}$, in which case $\overline{C}_1 \cdot \delta_{1:1} = -2g + 4$. On the other hand, $\overline{C}_1 \cdot \overline{\mathcal{D}}_g^{g-3}$ is equal to the number of limit linear series \mathfrak{g}_g^2 on curves of type $C \cup_y E$, having vanishing sequence at least (0, 1, g - 3)at $x \in E$. This can happen only if this linear series is refined and its C-aspect has vanishing sequence at the point of attachment $y \in C$ equal to either (i) (1, 2, g - 3), or (ii) (0, 2, g - 2). In both cases, the E-aspect being uniquely determined, we obtain that $\overline{C}_1 \cdot \overline{\mathcal{D}}_g^{g-3} = N(g-1, g-4) + n(g-1)$. This leads to $\mu = 3(g-3)(g-4)/(g+1)$. Next, let $\overline{\mathcal{D}}_g^{g-4}$ be the divisor on $\overline{\mathcal{M}}_{g,2}$ obtained from $\overline{\mathcal{D}}_g$ by letting all marked points except one, come together. Precisely, $\overline{\mathcal{D}}_g^{g-4}$ is the closure of the locus of curves $[C, x, y] \in \mathcal{M}_{g,2}$ such that there exists $L \in W_g^2(C)$ with $h^0(C, L \otimes \mathcal{O}_C(-x-(g-4)y)) \ge 1$. We express $\overline{\mathcal{D}}_g^{g-4} \equiv c_x \psi_x + c_y \psi_y - e \delta_{0:xy} - \cdots \in \operatorname{Pic}(\overline{\mathcal{M}}_{g,2})$, and observe that c_x equals the ψ -coefficient of $\overline{\mathcal{D}}_g$, whereas the coefficient $e = \nu \binom{g+1}{2}$ has already been calculated. We fix a general curve $[C] \in \overline{\mathcal{M}}_g$ and define test curves $C_x := \{[C, x, y] : x \in C\} \subset \overline{\mathcal{M}}_{g,2}$ and $C_y := \{[C, x, y] : y \in C\} \subset \overline{\mathcal{M}}_{g,2}$, by fixing one general marked point on C and letting the other vary freely. By intersecting $\overline{\mathcal{D}}_g^{g-4}$ with these curves we obtain the formulas:

$$(2g-1)c_x + c_y - e = C_x \cdot \overline{\mathcal{D}}_g^{g-4} = N(g,1) \text{ and } c_x + (2g-1)c_y - e = C_y \cdot \overline{\mathcal{D}}_g^{g-4} = N(g,g-4).$$

Solving this system, determines c_x . Finally, the $\delta_{0:2}$ -coefficient of $\overline{\mathcal{D}}_g$ is computed by intersecting $\overline{\mathcal{D}}_g$ with the test curve $\phi_{g-3}^{-1}([C, x_1, \dots, x_{g-4}]) \subset \overline{\mathcal{M}}_{g,g-3}$, obtained by fixing g - 4 marked points on a general curve, and letting the remaining point vary.

As an application, we bound the effective cone of the symmetric product of degree g - 3 on a general curve $[C] \in \mathcal{M}_g$. As before, let $u : C_{g-3} \longrightarrow \overline{C}_{g,g-3}$ the (rational) fibre map and $\widetilde{\mathcal{D}}_g$ the effective divisor on $\overline{\mathcal{C}}_{g,g-3}$ to which $\overline{\mathcal{D}}_g$ descends. Then $\mathcal{D}_g[C] := u^*(\widetilde{\mathcal{D}}_g)$ is an effective divisor on C_{g-3} :

Theorem 4.3. The cohomology class of the codimension one locus inside C_{q-3}

$$\mathcal{D}_{g}[C] := \{ D \in C_{g-3} : \exists L \in W_{g}^{2}(C) \text{ with } h^{0}(C, L \otimes \mathcal{O}_{C}(-D)) \ge 1 \} \text{ equals}$$
$$[\mathcal{D}_{g}(C)] = \frac{(g-5)(g-3)(g-1)}{3} \Big(\theta - \frac{g}{g-3} x \Big).$$

It is natural to wonder whether the class $\theta - \frac{g}{g-3}x$ is extremal in $\text{Eff}(C_{g-3})$. If so, $\mathcal{D}_g[C]$ together with the diagonal class $\delta_C \equiv -\theta + (2g-4)x$ would generate the effective cone inside the 2-dimensional space $N^1(C_{g-3})_{\mathbb{Q}}$. We refer to [K1] Theorem 3, for a proof that δ_C spans an extremal ray, which shows that in order to compute $\text{Eff}(C_{g-3})$, one only has to determine the slope of $\text{Eff}(C_{g-3})$ in the fourth quadrant of the (θ, x) -plane. A similar description of the effective cone of C_{g-2} was given in [Mus]. We have a partial result in this direction, showing that all effective divisors of slope higher than $\frac{g}{g-3}$ (if any), must contain a geometric codimension one subvariety of $\mathcal{D}_g[C]$.

Proposition 4.4. Any irreducible effective divisor on C_{g-3} with class proportional to $\theta - \alpha x \in H^2(C_{g-3}, \mathbb{Q})$, where $\alpha > \frac{g}{q-3}$, contains the codimension two locus inside C_{g-3}

$$Z_{g-3}[C] := \{ D \in C_{g-3} : \exists A \in W^1_{g-2}(C) \text{ with } H^0(C, A \otimes (-D)) \neq 0 \}.$$

Proof. By calculation, note that for $A \in W_{g-2}^1(C)$, the inequality $[V_{g-3}^1(A)] \cdot (\theta - \alpha x) < 0$ holds, whereas $[V_{g-3}^1(A)] \cdot \mathcal{D}_g[C] = 0$.

REFERENCES

- [AC] E. Arbarello and M. Cornalba, *The Picard groups of the moduli spaces of curves*, Topology **26** (1987), 153-171.
- [ACGH] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of algebraic curves, Grundlehren der mathematischen Wissenschaften 267, Springer.
- [An] A. Andreotti, On a theorem of Torelli, American Journal of Math. 80 (1958), 801-828.

G. FARKAS AND A. VERRA

- [EH1] D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus 23 Inventiones Math. 90 (1987), 359–387.
- [EH2] D. Eisenbud and J. Harris, *Irreducibility of some families of linear series with Brill-Noether number* −1, Annales Scientifique École Normale Supérieure **22** (1989), 33-53.
- [F1] G. Farkas, Higher ramification and varieties of secant divisors on the generic curve, Journal of the London Mathematical Society 78 (2008), 418-440.
- [F2] G. Farkas, Koszul divisors on moduli spaces of curves, American Journal of Math. 131 (2009), 819-869.
- [FP] G. Farkas and M. Popa, Effective divisors on M_g, curves on K3 surfaces and the Slope Conjecture, Journal of Algebraic Geometry 14 (2005), 151-174.
- [FV1] G. Farkas and A. Verra, The geometry of the moduli space of odd spin curves, arXiv:1004.0278.
- [FV2] G. Farkas and A. Verra, The classification of the universal Jacobian over the moduli space of curves, arXiv:1005.5354.
- [FV3] G. Farkas and A. Verra, *The universal theta divisor over* A_5 , in preparation.
- [Fr] E. Freitag, Die Kodairadimension von Körpern automorpher Funktionen, J. reine angew. Mathematik 296 (1977), 162-170.
- [HM] J. Harris and D. Mumford, On the Kodaira dimension of $\overline{\mathcal{M}}_{q}$, Inventiones Math. 67 (1982), 23-88.
- [K1] A. Kouvidakis, Divisors on symmetric products of curves, Transactions American Math. Soc. 337 (1993), 117-128.
- [K2] A. Kouvidakis, On some results of Morita and their application to questions of ampleness, Math. Zeitschrift **241** (2002), 17-33.
- [Log] A. Logan, The Kodaira dimension of moduli spaces of curves with marked points, American Journal of Math. 125 (2003), 105-138.
- [M1] S. Mukai, Fano 3-folds, in: Complex Projective Geometry (Trieste/Bergen 1989), London Math. Society Lecture Notes Series, 179, 255-263.
- [M2] S. Mukai, Curves and symmetric spaces I, American Journal of Math. 117 (1995), 1627-1644.
- [Mum] D. Mumford, On the Kodaira dimension of the Siegel modular variety, in: Algebraic Geometry-Open problems (Ravello 1982), Lecture Notes in Mathematics **997** (1983), 348-375.
- [Mus] Y. Mustopa, Kernel bundles, syzygies and the effective cone of C_{g-2} , International Math. Research Notices 2010, doi:10.1093/imrn/rnq119.
- [T] Y.S. Tai, On the Kodaira dimension of the moduli space of abelian varieties, Inventiones Math. 69 (1982), 425-439.
- [Ve] A. Verra, On the universal principally polarized abelian variety of dimension 4, in: Curves and abelian varieties (Athens, Georgia, 2007) Contemporary Mathematics **465** (2008), 253-274.
- [Vi] E. Viehweg, Die Additivität der Kodaira Dimension für projektive Fasserräume über Varietäten des allgemeinen Typs, J. reine angew. Mathematik, 330 (1982), 132-142.

HUMBOLDT-UNIVERSITÄT ZU BERLIN, INSTITUT FÜR MATHEMATIK, UNTER DEN LINDEN 6 10099 BERLIN, GERMANY *E-mail address*: farkas@math.hu-berlin.de

UNIVERSITÁ ROMA TRE, DIPARTIMENTO DI MATEMATICA, LARGO SAN LEONARDO MURIALDO 1-00146 ROMA, ITALY

E-mail address: verra@mat.unirom3.it