Humboldt-Universität zu Berlin Institut für Mathematik Blatt 10 Wintersemester 2011/12

Prof. Dr. Markus Reiß, Dr. Fares Maalouf, Caroline Löbhard, Alexander Fromm

Übung zur Linearen Algebra 1 für Informatiker/innen

Aufgabe 1 (4 Punkte).

Wir betrachten die reellwertige 4×3 Matrix

$$A := \left(\begin{array}{ccc} 1,5 & 3,25 & 6,25 \\ 0,5 & 1 & 2 \\ -2 & 3 & -1 \\ 1 & 2 & 4 \end{array}\right),$$

sowie die lineare Abbildung $F: \mathbb{R}^3 \to \mathbb{R}^4$, welche durch F(x) := Ax, für alle $x \in \mathbb{R}^3$, gegeben ist.

- a) Bestimmen Sie Ker(F), sowie den Rang von A.
- b) Ist F surjektiv? Ist F injektiv?
- c) Bestimmen Sie für $b=\begin{pmatrix}1,5\\0,5\\-2\\1\end{pmatrix}$ die Menge $\mathcal{L}(A,b),$ also die Menge aller Lösungen $x\in\mathbb{R}^3$ des linearen Gleichungssystems Ax=b.
- d) Zeichnen Sie Ker(F) und $\mathcal{L}(A,b)$ als Teilmengen des \mathbb{R}^3 .

Aufgabe 2 (4 Punkte).

Es sei $n \in \mathbb{N}$ beliebig und A eine reellwertige $n \times n$ -Matrix. Zeigen Sie mit Hilfe des Kern-Bild-Satzes, dass die folgenden drei Aussagen äquivalent sind.

- a) Für jedes $b \in \mathbb{R}^n$ besitzt die Gleichung Ax = b mindestens eine Lösung $x \in \mathbb{R}^n$.
- b) Für jedes $b \in \mathbb{R}^n$ besitzt die Gleichung Ax = b höchstens eine Lösung $x \in \mathbb{R}^n$.
- c) Für jedes $b \in \mathbb{R}^n$ besitzt die Gleichung Ax = b genau eine Lösung $x \in \mathbb{R}^n$.

Aufgabe 3 (4 Punkte).

Wir betrachteten einen gerichteten Graphen, d.h. eine Menge von n Knoten $\{K_1,...,K_n\}, n \in \mathbb{N}$ zusammen mit einer Menge $E \subseteq \{(K_1, K_1), (K_1, K_2), ..., (K_i, K_j), ..., (K_n, K_{n-1}), (K_n, K_n)\}$ von Kanten zwischen Knoten K_i und K_i .

Ein Weg der Länge $k \in \mathbb{N}$ ist ein (k+1) - Tupel von Knoten, so dass zwei aufeinanderfolgende Knoten K_i, K_j in diesem Tupel stets durch eine Kante (K_i, K_j) aus E verbunden sind.

Wir betrachten die Adjazenzmatrix $A = (a_{i,j})_{i,j=1,\dots,n}$, das heißt $a_{i,j} = 1$, gilt genau dann, wenn $(K_i, K_i) \in E$, d.h. wenn K_i und K_i durch eine Kante verbunden sind, ansonsten ist $a_{i,j}$ gleich 0. Damit ist A eine $n \times n$ - Matrix, welche ausschließlich aus Nullen und Einsen besteht.

- a) Begründen Sie: Für die Matrix $A^2 = A \cdot A$ mit $A^2 = \left(a_{i,j}^{(2)}\right)_{i,j=1,\dots,n}$ gilt, dass $a_{i,j}^{(2)}$ die Anzahl der Wege der Länge 2 zwischen K_i und K_j angibt.
- b) Verallgemeinern Sie a) für beliebige Potenzen $k \in \mathbb{N}$: Für die Matrix $A^k =: \left(a_{i,j}^{(k)}\right)_{i,j=1,\dots,n}$ gilt, dass $a_{i,j}^{(k)}$ die Anzahl der Wege der Länge k zwischen K_i und K_j angibt.

Aufgabe 4 (4 Punkte).

Für Winkel $\alpha,\beta\in[0,2\pi)$ betrachten wir die 3×3 Matrizen

$$A_{\alpha} := \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

und

$$B_{\beta} := \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{array}\right),$$

sowie die Matrix

$$D_{\alpha,\beta} := \begin{pmatrix} \cos \alpha & -\sin \alpha \cos \beta & \sin \alpha \sin \beta \\ \sin \alpha & \cos \alpha \cos \beta & -\cos \alpha \sin \beta \\ 0 & \sin \beta & \cos \beta \end{pmatrix}.$$

- a) Kommutieren A_{α} und B_{β} ? Interpretieren Sie die durch $A_{\alpha}, B_{\beta}, D_{\alpha,\beta}$ beschriebenen linearen Abbildungen.
- b) Wir modellieren die Erdoberfläche als Sphäre $S^2:=\{x\in\mathbb{R}^3\mid \|x\|_2=1\}$, so dass der Schnitt zwiwir modelheren die Erdoberflache als Sphare $S^2 := \{x \in \mathbb{R}^3 \mid \|x\|_2 = 1\}$, so dass der Schnitt zwischen dem Nullmeridian und Äquator gerade der Punkt $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, der Schnitt zwischen dem Meridian mit 90° östlicher Richtung und Äquator gerade der Punkt $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ und der Nordpol gerade der Punkt $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ ist. Demnach wäre Berlin beschrieben durch den Punkt $\begin{pmatrix} \cos(52,5^\circ)\cos(13,4^\circ) \\ \cos(52,5^\circ)\sin(13,4^\circ) \\ \sin(52,5^\circ) \end{pmatrix}$. Berechnen Sie alle Punkte der Sphäre, welche durch $D_{\frac{1}{3}\pi,\frac{5}{4}\pi}$ auf Punkte abgebildet werden, bei denen die ersten beiden Koordinaten denen von Berlin entsprechen.

denen die ersten beiden Koordinaten denen von Berlin entsprechen

Abgabe:

Montag, 23.01.2012 bis 15.10 Uhr, Ablagefach vor Raum 1.209, RUD 25 Johann von Neumann-Haus Die Aufgaben sind auf getrennten Blättern zu bearbeiten und mit Namen, Matrikelnummer und Übungsgruppe zu versehen. Bitte jeweils zu zweit oder zu dritt abgeben.