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INTRODUCTION

‘Let E be a Hermitian vector bundle over a compact Riemannian
manifold M and P:C™(E) —— C°(E) a strongly elliptic symmetric
and positive linear differential operator of order 2k. Then P
has eigenvalues Os;A&<:12 < ... tending to ihfinity and each
eigenspace P := {‘fJaCN(E)[ Pf = NF % has finite dimension.
Although one cannot expect precise information about the indi-
vidual eigenvalues in general one has the asymptotic formula

dim M
.= . N 2k
N(t) := dim P ~ const t s t — o .
rst

where - the constant is given by a:certain integral over TiM

(the unit cotangent bundle) involving the symbol of P. This

is the famous formula of Weyl [ 31] » 1f P is the Laplacian
acting on functions and M a bounded open set in Euclidean space,
extended to compact Riemannian manifolds by Minakshisundaram
and Pleijel '[ 26 ]. We now refine these considerations by
bringing in a compact Lie group G. In addition to the above
data we assume that E is a G-vectop bundle, that G acts on M

by isometries and unitarily on the fibers, and that P commutes
with the action of G on C (E). Then the eigenspaces P” are
unitary G-modules. Given a fixed unitary irreducible represen-
tation g of G we are interested in the multiplicity ve(x) of
e in- p> » and we study the asymptotic behavior as t goes to
infinity of the function

Ne (t) := ; Vb(kd.

Mgt

Of course the classical case is covered by 6 = {eg since then
p 1is trivial and (k) = dim P”. Our result will be given in

theorem 3.1 under con51derably weaker aﬁsumptlons than described
above. We single out two special cases. In the first case (cor. 3.2)

we assume that P is only transversally (strongly) elliptic in the
sense of Atiyah 3 ] . Although the eigenspaces will then be

f many times in each P . In the second case (cor. 3.4) we allow
M to have a boundary and consider certain elliptic boundary value
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problems e.g. the Dirichlet or Neumann problem for the
Laplacian acting on functions.

The main steps in the proof and the organization of the paper
are as follows. By a simple reduc~tiop we may assume that P
is the trivial representation, hence

N (t) = } dim (P*)©

£ st

Thus we only have to consider the space L (E) of G-invariant ele-'
ments in L2 (E) (i.e. the subspace on which G acts like p =1). We
observe that the selfadjoint operator generated by P allows re-
striction to L (E)G. Denoting this restriction by S, Ne turns out
to be the countlng function of Spec S. Now by a general con-
struction L2 (E) may be identified with 2 (F,h), where F is a
Hermitian vector bundle over MO/G, M, the union of principal
orbits in MleI and h is defined by h(q) := volume of the orbit
over q, qe¢ O/G. This result can be thought of as a generalized
Frobenius reciprocity theorem. As immediate consequences we

give necessary and sufficient condltlons for a unltary 1rredu01ble
representation of G to occur in L (E) (and thus in some p ) and
determlne its multiplicity. Using the identification L (E)

L2 (F;h) S corresponds to a selfadjoint operator in 12 (F h), say

T; which will be studied in section 2. We show that T is generated
by a strongly elliptic differential operator. Since N8 is also

the counting function of Spec T we have thus reduced the problem
to the case G = { e} . In contrast to the cla581cal situation
however, / w1ll not be compact in general (we have taken

out the 81ngularlt1es of M/ corresponding to exceptlonal and
singular orbits) and this causes the main difficulty. In section

3 we attack the asymptotics of N via its Laplace transform

which for s > o is given by the tgace in L (F,h) of the operator
e"ST, This in turn is given as an integral over O/G involving
the heat kernel of T. Using local results of Hrmander | 21 ]

we find the asymptotic behavior of the integrand as s — o. Thus
by the Lebesgue-Fatou lemma and a Tauberian theorem for the
Laplace transform the asymptotic behavior of Ne will follow from

a pointwise estimate of the heat kernel and the fact that vol. O/

is finite. Both results w1ll be derived in section 4., In section 5 we -




dim M-1
glve a remainder estimate for finite G of the form O(t 2Kk
This will be applied in section 6 to improve the Gelfand-

Gangolli-Wallach formula for the spectra of dnscrete uniform

subgroups of semisimple Lie groups.

Our main results (for the Laplacian acting on functions) have
been announced in [ 11 ] . As mentioned there our work on
this problem has been stimulated by the paper of Huber [23 ]
who proved 3.2 for M a compact Riemann surface of genus 2 2

and P= A the Laplacian acting on functions. More generally,
Wallach [29 ] proved 3.2 for operators with Laplacian type
symbols and G finite. While preparing the manuscript we learned
that Donelly [ 13] proved 3.2 for A acting én functions and
general compact G, using quite different methods however.

log t).




1. A BASIC CONSTRUCTION

As a motivation and to introduce some of our technical devices

we begin by determining how many times a given irreducible

unitary representation of G occurs in LQ(E). The answer being of
interest in itself will give strong hints how to get more refined
informations about the multiplicity of the representation in
spectral subspaces of Géinvariant.selfadjoint operators, especially

those arising from an elliptic differential operator.

Let us collect some notations. For a Riemannian manifold M we
denote'by dM the distance function and by dM the volume element.

G will be a compact Lie group kept fixed throughout this paper.

We choose a left invariant Riemannian metriec with volume element

dG on G. For a G-manifold M and p eM let Gp be the G-orbit of p

and G_ the isotropy group at p. oM —~>M/G will be the orbit

map and MG the set of elements left fixed by each geG. Let Mo be
the union of principal orbits in M. ;t is an open and dense subset
of M and M - }M_ has measure o. Also l/IO/G is a manifold which is |
connected 1if M is (cf.[ B J » th. IV, 3.1, th. IV, 3.3 and prop. IV,
3.7). We cohsider moreover Hermitian vector bundles over Riemannian
“manifolds. If E — M is such a bundle we denote by < +|*¢> . the
Hermitian structure and by ] ) IE the corresponding norm. Lgt C(E)
(C_(E)) and C™(E) (C:(E)) be the spaces of continuous and diffe-

rentiable sections of E (respectively with compact support). CO(E)

with the norm

- Y
£ (S CE[ED ¢ () aM () )%
S 3

becomes a pre-Hilbert space. Its comple-tion will be called LZ(E)

and we write (*]*) and || - I for its scalar product and

LA(E) L2(E)
norm. Since we will have to integrate several functions over G we
note that every continuous function on a compact measure space with
values in a complete locally convex Hausdorff space can be inte=-
grated and that the integral commutes with continuous linear ope-

2
rators between such spaces ( [ 8 ], Ch. III, pp. 81 and 85).
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We now fix a Hermitian G-vector bundle E over the connected
Riemannian manifold M, where G acts on M by isometries and
preserves the Hermitian structure in the fibers. Then & acts

also an the continuous sections of E by
ULE(P):=g(£(gTT(p))), £eC(E), g8, Del,

thus defining a unitary representation of G in L2(E). Let p

be a fixed irreducible unitary representation of G. To deter-
mine the multiplicity of p in LZ(E) we recall the following
facts about unitary representations of compact groups in Hil-
bert spaces. If & is a Hilbert space with a unitary represen-
tation of G, then for < e 8 (the set of equivalence classes of
finite dimensional irreducible unitary repfesentations of G)

we choose a representative G-module W and put
1.1) Ky =y Homg(W, D@ e L,

where H):f ® v —> f(v) is the natural homomorphism. Then Y is
in fact a G-equivariant isomorphism onto its image and %&_ is the
. subspace of & on which ¢ acts like % , for example Z€1=J£G,

1 denoting the trivial representation. We have

1.2) K = E qu
Te & :
as sum of mutually orthogonal subspaces. This is a well known
consequence of the classical Peter-Weyl theorem (and essentially
equivalent to it). For convenience of the reader we give the

following direct proof.
Lemma 1.1: Let G be a compact topological group and & a Hilbert

space with a continuous unitary representation U of G. Then &

can be orthogonally decomposed into finite dimensional G-irredu-
cible subspaces.

Proof: By elementary representation theory and Zorn's lemma it

is sufficient to exhibit. a G-invariant subspace ' of &# with
oxdim #£' < o0. To do so let T(H# ) be the trace class in # and

v - recall the following facts: T(# ) is a Banach space under the trace

norm contained in the set of compact operators, the conjugation i

3




1.3

)

of operators and the trace Tr define continuous linear maps
(A) —> T(#X) and T(H) —s ¢ respectively, and for each

X
AeT(#) the function Gag > Ug A U ¢T(# ) is continuous (cf. [28 ]

sec. 1.15). Now pick a Hermitian element AeT(H ) with TrA >o.
Then

Ai=58G

S U_ A UXas(g)
e & &
is also a Hermitian element of T(#£ ) with the same trace and

- £ o ~
commuting with G. Now being compact Hermitian and nonzero A
must possess a nontrivial eigenspace which has the desirped

. properties.

Now by ( 1.1 ) the multiplicity of % in & is dim Hom, (W, # )
(which may be infinite). By the finiteness of dim W we have

HomG(W,e?E) > (%@W*)C,

where G acts on W' via the conjugate representation = ¥. There-
fore,choosing a representative G-module V for the representatlon
f in question we find that the multiplicity of e in L (E) is
equal to

din Homy(V,L3(E)) =dim(L%(E) @ v5)C
= din L%(E@v5HC

since we have a canonical isomorphism LQ(E)® V*-—> L2(E®V*).
Replacing the Hermitian G-vector bundle E@ V¥ by L we see that
it is important to describe the space LZ(E)G. Our basic obser-
vation will be that L2(E)® is naturally 1somor§hlc to a space of
sections of a certain Hermitian bundle F over o/ To describe
F we introduce the set

E':= LJ E P,

p
peMO

‘i.e. the union of all elements in E&MO which are invariant under

the isotropy group of their base point. We then have

’




Lemma 1.2: E' is a G-invariant subbundle of E|Mo.

G G

Proof: The G-invariance of E' is clear from g(EP p)zEF(P)

for gedG, peMo. To prove local triviality of E' we may by the
slice theorem ( [ 9 ] » cor. VI, 2.4) assume that MO=G/H><D,
where D is an open ball in some Euclidean space and the G-action

is given by
g(xH,d)=(gxH,d), xe &, deD.
In particular G,=H for peD':=HxD. But then Et':=E'|D'=(E| D"

and this is a C® vector bundle because it is the image of the

C* vector bundle homomorphism

& U, dH(h)
H h

vol H
(note that U, e C™Hom(E|D', E/D')). By making D smaller if

necessary we may assume that E'' is trivial. Now if (si), is
’ _ i=1
a maximal set of linear irdependent sections of E'', such a set

for E' is defined by

5 (gH,d)) =g 5, ((H,d)),

M
lgisgk, geBG, deD, and therefore E' is also trivial. Since C)/,,

3

is connected the dimensior. of E' is constant on Mo.

Now G acts on E' with exactly one orbit type (namely H) and there-
fore EY/G?:F is a manifold. Using the slice theorem as in t%e proof
of 1.2 it is easy to see that F is a‘C“>vector bundle over ~o/G
which inherits a Hermitian structure from E'. We provide Mo/G with
the Riemannian structure that turns G%G into a Riemannian sub—

mersion and put for qe O/G
. -1
L. b4 ) h(g):=vol T G (q).

Denoting by LZ(F,h) the closure of CO(F) under the norm
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Sojs~

. M
o ( g <f[f>F (q) h(qg) 4 O/G(q) )
MO/
G

we come to the following basic construction.
Theorem 1.3: There is an isometric isomorphism of Hilbert spaces

Q2@ — L2r,m.
With §U':E' —> T denoting the orbit map @ is given by
3

G
B, o Wypr=wLor (p), £1eC (E[M )", peM_ ,

and its inverse @—1 by

-1
Qe e, e modnE L a0 (B), pen.

P

Pro¢f: Note first of all that Cé(ElMO)Gc_ C,C(E') so that @ is

well defined. It is obvious from the definition that

@(C(MD(E]M )G) = Cco’a)(F). Next it follows from the slice theorem
.0 O%R-1, (s (o0) G :

again that @ (Cy "(F)) = C (ElMO) implying

() G, _a (%)
®ecf ()%= p).

Now we observe that the orthogonal projection Q:LZ(E)—~9 LZ(E)G
i1s given by

_13
Qf = —— ) U, £ ae(g).

Therefore,Q maps Cgm)(EIMO) to Cgm)(E[MO)G. But since C (E|M_)

and CO(F) are dense in L2(EIMO)=L2(B) and LZ(F,h) respectively

the proof will be completed by showing that <D is isometric on

CO(E]MO)G, which is an easy consequence of Fubini's theorem for
Riemannian submersions (cf.[u ], p. 16):

M :ﬁ,
MS | ®f |3 nq) a WARCY o

o
/G




S S I“',,(p) da . “(g) .
! (p) 4 /G(q)
(q)

-3t

\ 1g2
‘ fflE(p) dM (p).
o

For later reference we collect the following properties

of@

Corotiary 1.4: 1) $ecl™ (zju )%= (r).
2) [P o ® (p)] = }f(p);E for £eC (E[M )¢ and peM .
3y Pt (¢ ) cfoauG@ f for £eC_(T) and g & C( O/G).

~— G
4) supp @f= JuG(supp £), f@CO(EIMO)
-1 ~1
supp@ f= Wa (supp £), feCO(F).
5) For fe C:(F) and pe M we have
jkf @rlf) (p)=o if jk(f)(ﬁvg(p)):o, where jk denotes the
k-jet, kg/Z .

2roof: 1% - 4) are immediate consequences of 1.3. To prove 5)
pick q ¢ o/G and assume jk\f)(q)—o for some k. By definition
( [ 27] » Ch. IV) we have a representation

£z
bxd
M o0
with ¢.e¢C ( %/, £, € C(F) and 3, (9;)(q)=0, 1sisr, By 3)
we find
r N
-1 E -1

Y= A
. . . . ~1 - -1
which implies jk( @ £)(p) = o for Pemy (q).
We now use this result to derive the desired information about

the multiplicity of e in L (E) Applying 1.3 to E@V* and de-
'notlng the resulting bundle on /G by F, we get immediately




1.6)
Gx
16
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1.7 )
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Corollary 1.5: (Generalized Frobenius reciprocity theorem)

There are natural isomorphisms

HomG(V,Lz(E)) =(L2(E) e VO L2(n g v¥)©

e‘_ 2
L (Ff’h>'

If G acts transitively on M, i.e. M is homogeneous, 1.5 reduces

by the construction of F, to

¢

HomG(V,LZ(E) ) % Homy, (V, W)

™

with H:zGP and W:=E_ for some peM. But E may be identified with

H W, so that (1.6 ) gives Bott's formulation ([ 7 ], Prop. 2.1)

of the classical Frobenius reciprocity theorem, which is due to

Frobenius for finite groups and to Weil for compact groups. By

5 and ( 1.3) we therefore see that the multiplicity of 4 in
(E) is given by

dim L2<Fe4,h),

and this is  nonzero iff dim HomG(V,EP)zdim FE,WG(F3 is nonzero

for some (and hence for all) pé;MéPiff there exists some irreducible

unitary representation of C_ contained in V and EP.

Corollary 1.6: Let E,M,E,V,and Eh be as above and put

1)
2)

3)

)

5)

s PRI i ‘
1l:=dim % =dim domG‘(V,EP), pe,Mo.

P
¢ occurs in L2(E) iff 15> o. M

If G does not act transitively on M, i.e. if din O/Gﬁno, then

p occurs with infinite multiplicity if it occurs at all.

If G acts transitively on M, i.e. if M is homogeneous, then ¢
occurs with multiplicityv 1. ‘

If G is finite and acts effectively on M, then avery ee;a occurs
with infinite multiplicity. '
If each GP acts trivially on Ep for peM_ (e.g. if E=Mx{ with
trivial action on the fibers), then precisely the class one

representations occur, i.e. those for which G, has a nonzero fixed
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vector in V.

6) If G is not finite and acts effectlvely on M, then L? (E)

contains infinitely many elements of G

Proof: 1) - 5) follow at once from the above con51deratlonb.

6) Under our conditions for each principal orbit 0, L (El 0)

has infinite dimension. By 3) and ( 1,7 ) it therefore con-

tains infinitely many e e(S .16RJ Then 1f V lS a represen-
tative G-module for e we have by 1)+ that for peO

Gim rIomG‘P (Vi,EP)><>,

and thus - again by 1) - that p; occurs in LQ(E), ieN.
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2. REPRESENTATIONS OF G IN SPECTRAL SUBSPACES OF SELFADJOINT
OPERATORS

In addition to the data of the preceding section - the G-bundle
E over M and the re?resentation p of G in V - we now bring in

a selfadjoint operator R in Lz(E) which commutes with G in the

following sense: if & (R) denotes the domaln of definition of

R then

U, R(R)) = & (R)
and

UgR(x)i'RUg(x), £¢G, x & O(R).

One of the most interesting cases arises when R lS generated by
an elliptic differential operator P acting on C (E) and M

is compact. Then P is essentially selfadjoint and thus R unlquely
determined by P. Moreover ( 2.1 ) must only be checked on C(E).

- However for other applications we have in mind we need a greater

generality. Let

+ 60

=Sth,c

be the spectral Pesolutlon of R w1th t — R left contlnuoug. We
identify R with its image in L (E). Then Ry is G-~invariant fop
teR, and we may consider the function

N(t):= multiplicity of e in Ry

=dim Homy(V,R)=din(R V"¢, teR.

It is the asymptotic behavior of this function that we want to

study. N may take infinite values, but if e. g+ the spectrum Spec R

+0f R consists of p051t1ve eigenvalues with finite multiplicity only

and has no finite accumulation points then

CN(t) = 5*_4 ¥ (M)

MeSpec R
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where < (\) denotes the multiplicity of e in the eigenspace
of R with eigenvalue M. I is related to our preceding cén-
siderations by

Lemma 2.1: We have

Lin N(t)=din Hom(V,L%(E))=cin L2(E, sh)

Tao00

= multiplicity of e in'LgﬁE),

Proof: Hom(V,Lz(E))e:Lz(E)g v* has a natural Hilbert space
structure which for telR implies the orthogonal decomposition

=43
2,0 L X _ *
LMEYQ V -Rtav $§j=1(Rt+j Rt+j_1)®v .

Now the orthogonal projection (1.5 ) maps each member of the
sum into itself, so we get by taking dimensions

OQ

din Homy(V,L2(E))=N(t)+)  dim Hom (V,R

_ EF) |

t+3 Reeg-1)
From this formula the assertion is obvious.

Thus p occurs in LZ(E) iff it occurs in some spectral subspace
Rt_of R. If G acts transitively on M we see from 1.6, 3) and 2.1
that the asymptotic behavior of N is completely determined in-
dependent of R. Therefore, from now on we assume that & does not

act transitively on M or, what is the same, that dim,;o/Ga.l. In
that case we have lim N(t)=oo if ¢ occurs in LQ(E) at all.and it
is reasonable to iﬁ?g%tigate the asymptotic behavior of N as

t —> 00 , which can be expzacted to involve R in an essential way .
To get hold of N we would like to restrict R to LZ(E)e (the sub-
space of Lz(E) on which G acts like ¢’ and to analyze the spectral
resolution of the resulting operator, because the g —part of Rt is
contained in LZ(E)Q. Now the following observation will allow us
again to assume that e is the trivial representation. We have the
G-bundle E g V¥ (where G acts via e* on v¥) and in Lz(Ea vy =
LZ(E)®\ﬁ%tme operator ﬁ:ﬂi@idv*. Note that R is selfadjoint with
spectral resolution ﬁt:?ta V*and commutes with G. Hence by ( 2.2 )




2

i

3

)

3

() =din(R, e v¥)Pzaim ﬁfé
Thus all we have to do is to restrict R to L (E) and this

is possible by the follow1ng lemma
Lemma 2.2: Put S:=R|¥R)n 1,2 (E) . Then S is a well defined

selfadjoint operator on LZ(E)® with &(S)= F(R)C. If its

spectral resolution is

Soo
S= t d S_t

~eg

then for teR

dim St=N(t).

Thus N is the counting function of Spec S.

Proof: Since ®(R) is a Hilbert space with the graph norm,

which is bigger then the given one, we easily see that the
restriction of Q (whepe 7 is given by (1.5 )) to X (R) maps
into A(R). Moreover R: R(R) — 12 (E) is continuous which
implies that Q commutes with R on & (R) by (2.1 ). Therefore,
S is well deflned ‘and obviously selfadjoint, and its spectral
resolution is given by

c\ - G
Jt-Rt, te‘R-

From this (2.3 ) is immediate by ( 2.2 ).

We now use 1.3 to replace S by a unitarily equivalent operator
T acting on a Hilbert space of sections. Thus let F denote the
bundle corresponding to I under the construction of 1.3, and
lé%-§> be the isometric Isomorphism LZ(E)G-—-> L2(F,h). We
put

Pos o] O sy,

Then T is a selfadjoint operator in LZ(F,h) with 68’('1‘):@(«’8’(8)),
and 1f




2.7

2.8

)

)
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is its spectral resolution we have by (2.3 )
dim Tt=N(t).

Of course the study of the asymptotic behavior of N will
only make sense if N(t) < oo for teR. In view of (2.5 )
this is equivalent to the following property of T:

T is bounded below and Spec T.consists entirely
of eigenvalues of Ffinite multiplicity without
finite accumulation péints.

To check (2.6 ) in concrete cases the following simple
remark will be very useful.
Lemma 2.3: Spec Tw Spec R, and if A e Spec T is an isolated

M

eigenvalue of R then & is also an eigenvalue of 7.
Rfoéf: o ? - - '
'BZEEIEng as before by Q the orthogonal projection LZ(E)——>L2(E)G

we see that Q is a reducing: subspace fop (R-—z)"'1 whenever zéaSped R.
Thercfore Spec S « Spec R. If M is an isolated eigenvalue of

R with eigenspace W and Q(W)=zo then it follows from ( 2.4 )

that S, is constant near & and Qu ¢ Spec S which completes the
proof.

Thus ( 2.6 ) is certainly satisfied if it is satisfied by R.

The most interesting examples in applications are the opera-
tors arising from elliptic problems and these are known to
fulfill ¢ 2.6 ) if e.g. M is compact. Therefore,we now diseysg:
the case when R is generated by a differential operator P on
the C* sections of E which means simply that C:(Ev) < &(R) and
R»fC:(E)=P, This necessarily implies the following properties

of P:

- (]
(Pf,| £,) =(£,] P£,) > £1,5,e C(E),

LZ(E) LZ(E)

and

00
Ung = PUgf > 82e G, ﬁ@CO(E).
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We recall (see [ 27 1 » Ch. IV for these facts) that a
differential operator P is a linear map c™ (E) — C™(E)
satisfying for some ke Z + I (PEX(P) = o whenever jk(f)(p) = o
for f¢ CT(E) and pe M. Here Jk denotes the k-jet map. The
smallest k with this property is called the order of P. For -
a kth

defined as an element of C®™ Hom(s*E, w* E), where

order operator P the principal symbol &(P) of P is

@ TR -_9 M is the natural projection. More prpcisely,for

Pe M, g e Wp and e ¢ w'E, we choose ¢ e C M) satisfying
$(g) =0 and d$ s,and feCAE) satisfying f(p)=e. Then

& (P (o) =B\ )" $5) o,

and this is 1ndependent of the choices involved. (we insert
the factor (- l) for convénience in later formulas). Now P
is called elllptlc if G(P)(g) is an isomorphism fbr’é ¢ TfM
and strongly elllptlc, 1f k is even and <?(P)(?) is positi;e
definite foré_e¢T M. In dealing with G—manlfolds we also have
the weaker notion of transversal elllpt1c1ty let T M =
z§<aT‘PI { gtx) o for all Xe TMW F), tangent to uﬂKZ)% and
call P transversally e]llptlc if Sc(P)(é) is an is somorphism

*
for § c,TlM n TGM

It is natural to ask whether T is generated by a differential
operator whenever R is. This is in fact so as we are going to
show. It is again sufficient to deal with the trivial re-
presentation if R is generated by a dlfferent¢al operator

P then R R(&ldV* is generated. by the dlfferentldl operato“
P= P@,ldv* on C°(Eg v* ), and the symbols of P and P are re-
lated by

&(P) = &(P)® id,x .

Theorem 2.4: If R is generated in LZCE) by a differential
operator P of order k, then T is generated in LQ(F,h) by a

certain differential operator P' of orderp k. For the prin-

cipal symbol of P' we have the formula

GG () = my (o (p)( S FRICE

TETTI S e et L e o e b IH—
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for q(ZMO/G, % e (T’EMO/G)q , pe,miél(q) and ee,Eé.

As consequence P' is elliptic when-ever P is transversally
elliptic., A

Proof: By 1.4, 1) we have d:(F)::%%(T).Since R is generated
by P it then follows from 1.4, 4) that for fe C(F)

supp Tf = supp @(P(@—lf))

< supp f. '

Thus T ’C:(F) possesses a linear extension P' to C(F) satis-
fying ( 2.11) for feC (F). In fact P' is uniquely determined
and given by '

p'f=§ , TC o F) , feC (F),

ielN

M :

where ( P is a C” partition of unity on O/G. Now suppose
ie N

M M
jkf(q) =0 for feC (F) and q e o/ Choose 1feC ( /G) with =1
in a neighbourhood of q and p éJb (q) Then we find from (2.171)
and 1.4, 5)

P'f(q)

3]

P'Wf)cq) - @’(P(@“%f))m@(p))

-1
;y (PO (pE)) (p)) =0

showing that P' is a differential operator on C (F) of order s'&.

M
To prove (2.10 ) let g ¢ O/G, é & (T* ©/ ) ,and e'e Fq’ and
M

5O
choose (fe,d:( / .) satisfying ?(q) =0 and d? 2 » and fe CJ (F)

satisfying f(g)=e', Moreover pick §>efv (q)and ec;Eé with :W’(e)

Then we find with 1.4, 3)
SR (®yle)):=p (R l’ ¢¥E) (q)

@cpc@ tls l’ GKEN) (@ (p))

(-1)K K w1
= L(PCs (9om )" QTHE)(p))

= JUL( & (P) (M i Y(e)).

4]
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The proof is complete.

As a corollary of the proof we note that E' is an invariant
subspace of G(P)(é) whenever % e (Tt M) and pe,




N
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3. THE ASYMPTOTIC BEHAVIOR OF N

We now investigate the asymptotic behavior of ¥ in a special
case. We consider a set of conditions on R the validity of

which will be discussed afterwards. We start with

R is generated by a strongly elliptic operdtor P
of order 2k.

Then P automatically satisfies ( 2.7 ) and ( 2.8 ). D is
called formally positive if

(Pf]£) >0, £eC_ (E).

L2 (E)

The next condition is concerned with Spec T (the operator con-

structed from R in section 2) is and is almost the same as (2.5 ):

T is positive and Spec T consists entirely of
eigenvalues of finite multlpllcliy WlthOUL
finite accunulation points.

We also want some rough control over the. growth of N:
N is of polynomial growth as t — oo .,

Next we bring in the spectral function ei of R, teR, which is

the octhrtz kernel of R i.e. the distributional section of
EmE™ defined by

X \ so % o, _x
ef§<f*® D):=f (R, £eC(B), ffecl(Eh).

where ® denotes the ex\ernal tensor product (see [ 2 ] sec., 5
fop these notions). The elllpthlty of P then ea81ly 1mplles that
e ¢ C “(E ® E*) (cf. [ 21 ] . Moreover it follows from the

Sobolev lemma and the lacal regularlty results for elllptlc
systems ( [ 1 } sec. 6) that

] s aw) W), ter,
yley. ¥

for every distributional section Y of E¥ m E with compact
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support and certain positive constants
by | 8 ] Ch. VI, 51 n®, prop.
the integral

a(?), b(w).vTherefore,
7 and the reflexivity of C (F B )

o0
( 3.1) r“gzzs' S e 5t R dt, s >o0,
o

defines an element of Cw(F_m E*)

which is called Lhe heat kevnel -
of R

and is easily identified with the Schwartz kernel of e SR. We
put n: -dlm M. Then the condition on FP

2k
2k~-1
c dM(p,q)
. S T ——
) |5 (pya) SRS
E ; P,3)&C, s e
s Emx E* 1

for certain Ci>o, C2>o and all pv,qu, S>o0.

Finally, we need a condition-on M, namely
F ) ‘M can be 1oomatr10111y and C«nqujvarlantly imbedded
into a compact Rienannian G-manifold X as an open
subset,
We now present the main result of this paper.
Theorem 3.1: Suppose that m:=dim O/G,>1 and that (A) to (F)
are satisfied. Then we have for
N(t)=dim RS
the following asymptotic behavior as t— o0
m
2k L
. . t : 1 2k
3.2) Nt~ % — (G(D)( )) dw(§) dM(p).
m( 2m) vel Gp é é
M, (T 1M )r\TC

Here dw denotes the volume element induced by Lebe

Sgue measure.
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Before proving 3.1 we give several corollaries in order to make
our conditions morc explieit.

Corollary 3.2: Let M be a compact Riemannian manifold, E a

Hermitian G-vector bundle over M such that G acts on M by
isometries and unitarily on the fibers. Let P be a trans-
versally strongly elliptic differential operator of order

2k on C(E) commuting with the action of G. Assume further
that P is essentially selfadjoint in L2(E) (which is auto-
matically fulfilled if P is stronglyielliptid and symmetric
on C(E)), For an irreducible unitary representation

p :6 — Au%t(V)_denote"by >k(%) the multiplicity of 4
in-the eigenspace of P with eigenvalue N\ and put

»Nect»:‘ > ACOR

Nt

Then N€ is finitely-valued and for t —> o0

m

tgk 1 §> "%R
He (£)n ——— — Tr 5, (8(P)(&)"g id
¢ m(2w)"™ vol Gp CE?@V*)fi ? v
M <T§MO)nT*M

P G.hzO
x  @w(§) aM(p).

Here n and dw are as in 3.1.

Proof: By ( 2.9 ) it is clearly sufficient to prove the corollary

for the trivial representation. Assume first of all that P is
strongly elliptic. It is well known that P is essentially selfad-
-p* satisfies condition (2.5 ) (see [27 ] Ch. XI
Th. 14). Moreover R commutes with Q. By adding some multiple of the

joint and that R:

identity to P we may assume that P is formally positive and hence
that R is positive. This is no loss of generality since the asymp-
totic behavior of N will not be changed. Thus conditions (A) and
(B) are satisfied and (C) follows from the definition of T and

2.3, Now we clearly have
N(t)g dim R =:N (), teR.

£y

Therefore, condition (D) holds since Np is of polynomial growth

b
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(a well known fact which follows e.g. from formula (3.12 )
below, condition ( E ) and the Tauberian theorem in [12 J,

p. 517). Finally, the estimate ( Z ) is proved in [17 J s
theorem 1.4.3. Thus in this case 3.2 follows from 3.1 with E re-

"placed by EgV* and p replaced by P@idv* .

Now consider more generally a transvérsally strongly elliptic
operator P which moreover is assumed to be essentially self-
adjoint. Then R:=P¥ is selfadjoint and commutes with Q. We will
reduce this case to the previous one by constructing a differential
operator P' of order 2 such that P"::P+CP"k is strongly eliiptic
for some constant C, commutes with G, and leads to the same func-
tion N as P (compare [_3 J sec. 2). To do so we choose on the Lie
algebra ¥ of G a basis (Xi)li:1 orthonoimal with respect to a Ad G-
invariant scalar product. We denote by X; the corresponding killing‘
vector fields on M and define first opder differential operators

on C(E) by

i .4 1 | ' g , 5
Xif(p).‘dtL:O‘Jexp e x, £0% TecTE), pen,

1sig1. It is then easily checked that the second order diffe-

rential operator

1
P':= - E %?
4 i

>
is formally positive on 2 (E) and commutes with G, and that its
symbol is given by

@(P'><§; = ( Ef; §;§i<w<é>>>2>'idE

= w<z>“

. * * .
Now since Ter\TGM 15 a closed subset of the compact set T?M
and P is transversally strongly elliptic, we can find constants

C3,C4> o such that for é @'TiM
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, (K ly 12k
S(PI(5) + C&(P)7(3) > C, ‘i’ 1dEm(g).

¢
Thus P":=P+C3P'k is a strongly elliptic differential operator
of order 2k on C (E) and satisfies ( 2.7 ) and ( 2.3 ). Now let
R'':=P'"'* and denote by 5, T, 8'', T'' the operators construc-
ted form R and R'' as in section 2. We want to show that S=S'' .
This implies that the multiplicities of the trivial representation
in Rt and R%’ are the same for teR. Therefore, we can apply the
part of the theorem already proved to P'' and since @(P")(i‘=
@(P)(é) for %{a ?;M by ( 3.4 ) we are done.

Now a differential operator of order 2k on C (E) extends by conti-
nuity to the Sobolev spice H2F(E) (see [27]Ch. IX for the defi-
nition). It follows from this fact that

-

R =28(E) e &(R)
and thus‘(with Q ziven Hy (1.5 ))
AS™M=0 (R = 3 F(R)= F(3).

Let

- 60 . - A
; n neN‘C:C (E) with fn——>f anlefn-——> Rf

"~ ¢ X(R) and choose (f_)
in L°(E). Clearly P'f=o for fe‘dm(B)G and we find

But R'' is the closure of P'' which implies
Af ¢ Q&(R"') and R''Qf = RQf.

Thus & (3) = &(3'') and S$=S''. The proof is complete.

Corollary 3.3: Let M,E and P be as in Cor. 3.2. Then the eigen-

2,m
vectors of P span L°(E).

Proof; ie recall the decomposition ( 1.2 ):

2y = ) L2(E) ., .

Te@
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. . .. . . e .
Using the G-equlvarlantisomorphlsm LZ(E @Y ) @ W Lg(E)t of

section 1 and noting that
Lo g w &L gyt @ W)©

where G acts triviaily on W, we see that RIL2(E)ﬁ is unitarily
equivalent to the operator § constructed from R: =R ® idv*® idv

in L(E @ w¥ ® W) as in section 2. Now the assertion follows from
(the proof of) 3.2, It should be noted that for P transversally
Strongly elliptic the multiplicity of the eigenspaces need not

be finite,

Corollary 3.4: Let M be the interior of a compact Riemannian

manifold M with boundary, E a Hermitian G-vector bundle over M
such that G acts by isometries on M ang unitarily on the fibers

and put E:=E|M. Let P be a strongly elliptic differential operator
of order 2k on Gz(f) commuting with the action of G. Assume further
that P is formally positive and let R be & positive selfadjoint ex-

tension of P in Lz(f) = LZ(E) arising from an elliptic boundary
value problem and commuting with G. For an irreducible unitary
representation 6 —> Aut (V) denote by )%(k) the nmultipli-
city of e in the eigenspace of p with eigenvalue X\ and put

N (t) := (W),
e Z %

Mgt

Then Ne is finitely-valued and has the asymptotic behavior described

in (3.3 ) as t —» oo,

Proof: We have to check conditions ( A ) +to ( F ). (C A ) and
( B ) are fulfilled by assumption and ( ¢ ) ig proved in [ 20]
sec 10.6 (see also [27] Appendix I). ( E ) 1s proved in [17 } )
theorem 1.4.3 and formula (2.4.22). To prove ( T ) we imbed ¥

into its double X. Then X 1s a compact G-manifold indueing the giyen

G-action on M. Extending the metric of M to X somehow and averaging

over G gives a G-invariant metric on X which induces the given one

on M. Thus 3.1 applies and the corollary is proved,

We remark that the assumptions of 3.4 are always satisfied if
E:=M x ¢ is the trivial bundle, P:= -\ the Laplacian acting




( 3.5)

[ 3.6 )

on functions, and R is generated by Dirichlet or Neumann boundary
conditions. Because of its importance we finally single out the
special form of 3.1 for Laplacian type symbols.

Corollary 3.5: Suppose that the assumptions of 3.1 hold and that

in addition

es(P)(gi = ]§[2 id
Then

N(t) ~ ¢t

wherecﬁm denotes the volume of the m~dimensional unit ball.

The proof of 3.1 requires several Lemmas and will occupy the next
two sections. Before entering into it we will add some remarks on
the formula ( 3.2 ). Note first of all that the right hand side
is well defined by the strang (tréhsversal) ellipficity of P and
the remark at the end of section 2. Next we spec1allze to G= {e%
and M compact. Then we have E':=E, h(g)=1, q ¢ O/u, m=n, T*M=Tu

G
and ( 3.2 ) gives

RO
2k
N(t) o e
M

0 O
2k
S Ty (6(P)(E)) d (8) dM(p).
n(2w)n X T E i
1

(T7M)
P

This formula is due to Weyl for bounded open sets in R" and the
Laplacian on functions [ 31] and to Minaks hisundaram and Pleijel
for Riemannian manifolds and the Laplacian on functions [ 26 ]

A proof in the general case follows e.g. from [ 171 theorem
1.6.1. The question of remainder estimates in { 3.8 ) has been
discussed by many authors in many special cases and is not yet
completely settled. For nontrivial G we have two partial results
in this direction, one of which applies to finite G only and will
be given in section 5. The other one, requires a very special 0O-

structure on M but is then an easy consequence of known theorems.




( 3.7)

( 3.8 )

- 3.10)
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t reads as follows.

Theorem 3.6: Suppose that the assumptions of 3.1 are satisfied

and that in addition M=M_ and M is compact. Denoting by H the
remainder in ( 3,2 ) we have as t —s 00

m=-1
2 = 0(t2F )y,
if all eigenvalues oL S(P)(E) are dlotlnCL for evary E e'T*W ~ éo%
or if &(P)(§) = ]%! id; s for %cT M, and
- )
m* g

2k

H(t) = O(t )

for every ¢ >-:l in general.
2 M

Yroof: 2y assumption o/G is a compact Riemannian manifold and by 2.4
and ( 2.10) P' is a formally positive elliptic operator on C(TF).
Therefore P' is essentially selfadjoint and T must be its closure

in L° (Fyh). Let us denotes by et:;eg the spectral function of T.

Slnce T satisfies ( C ) one readily verifies the identity

N(t) = dim T, = §& Try g*et(q) h(g) d MO/G(q).
MO/
G
Here % denotes the .diagonal map. Now the asymptotic behavior
of Tr &* et‘has been investigated in [ zi.} . 8rmander's
results imply

‘ i mn
2k -
¥ 21
TrpSe (q) ~ t % Trp (&P (537 qu(s)
h(q) m(2m)™ MO v '
(T /)
e
M 1
for q ¢ O/g‘ Now for pew,. (7) Xy:ED —— Fq is an isometpic
: ‘
isomorphism. By 2.% we therefore have Lfor % & (Tf o/G)
4

]‘}

it

an_
= Tag, (S(P) (8 TEL

H

Tp (G(P')(ﬁ))
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. ; ¥ Ol . . .
Noting that %f:(TA °/) — (T d) n T,M is an isometric
&1 L ot q 1 p G
lsomorphism too we get
ok A, 2K IR
TPFS e (q) ~ = TrB,(G(P)(E)) dw(f).
h(q) m(29¢) -

(J.* ’I) Al LC’\’I

Therefore,the TFubini theorem for Alewannlan submersions 1mpllﬂc

o

2K
N(t) ~ —L q% - oiw = x Lpﬂ,’ca(v)(g)ﬂk dw(§) aM(p).
a (20" 5P A
17 G

M

h)

- . . . . C
But the remainder in ( 3,11 ) can be estimated uniformly on / A
3

yielding by integration remainder estimates fop N. The estimate
( 3.8 ) 1s established in [21] for the general case and ( 3.7 )
in [ 22] and [ 19] respectively.

3.1 was also known before in special cases when & is nontrivial.
For ™M a éompact Riemanr. surface of genus > 2, P== N on functions
and G a subgroup of the isometry group of M (thus necessarily
finite) 3.1 was proved by Huber [ 23] For M= P\ Gy where G1 is

a semisimple Lie group and [T a cocompact discrete subgroup, P

the Casimir operator on functlon ,and G=K a maximal compact sub-
group of G1 3.1 is due to Gelfand [15:], Gangolli [14J,and
Wallach [ 29J ; Wallach also proves 3.1 for M compact, Pz~ A on
functions, and G finite. This will be discussed in more detail

in section 8.

4

We now start with the proof of 3.%. Since T is a positive selfad-
joint extension of a formally positive and strongly elliptic
operator P' in 1, (F,h), the spectral function e of T is well
defined and satisfies ( % .11) by [21 ] However the asymptotic
%;@ht not be uniform on /T’ §0 we cannot just integrate over

N satisfies condition ( D ) we see that fop s >0 the Laplace
transform of N is in fact well defined. Introducing for s> o the

/F‘ Instead we want to consider the Laplace transform of N. Since.
3




3.12)

3.13)

3.14)

3.15)
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heat kernel r; of T as above, we get from ( 3.1 ), ( 3.9 Yy, and

Fubini's theorem

> ) M o
s X e Sty(ty dat = X Tr, S*Tﬂs(q) h(q) d o/G(q).
o] M
o
/G

Now ( 3.1 ), ( 3.11), and Abelian theorems for the Laplace trans-
form ( [121 » D 456) lead to

m m '
-5 T(z+1) m -
¥ 2k 2k -

Tr. & [ (q) ~ s & s 2k
F S h(Q) m2m™ ) TPF(G(L')(E | dw(g)

(T My, )
1 /Gq

M
for q ¢ O/G as sy o.

Suppose then that we can find a constant C5:>o such that

m
o C
|52k ¥ l g —=
{S TPF S r;(q) = n(g)
MO ‘ M
for all s>0 and q ¢ /G' As will be proved in 4.4 below vol O/d<C”'

Thus the Lebesgue - Fatou lemma implies the asymptotic behavior:
of ( 3.12) as svo. From this fact in turn we deduce theovem 3.1
by ( 2.5 ) and the Tauberian theorem for the Laplace .transform

( E 12 ], p. 517). Thus we are left with the proof of (3.13 ).

It is useful to relate r; and T”g. To do so let Q:LZ(E)Q——>L2(E)G
be the orthogonal projection given by ( 1.5 ), and let Q@ be the
corresponding projection in LQ(E*). We then have

Lemma 3.7: For s >o

) * %
TPFE*T*S‘)‘%G:TPE'SQ@Q(FSR)‘
Proof: 'le want to establish the identity

X e
Trp, g e, o ija.z = TPE' S Q@Q*(elé )
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for teR. To do so we recall that the action of G on the dual
bundle E¥ is defined by

. PR P X *
gle®)(e) := e™ (g “(e)), efe Ep, ec Eg(P)°

Denoting the isomorphism L (E*) —> L (F*,h) also by d@ we
then find for e c S(FH), fo COE)

( 3.16) et(f*® £) = f*crtf> = £"for, o §7';
=@ QR @70 = of §iMr, @ §ln)

e%(Q* 1 eq o |

cedEH§tte § oo

H

Now let pe M, and put q:=ﬁtG(p). Ye choose a basis (Un) of

| M S Mo el
neighbourhoods of q in /G and a family (g ) o CO( / ) with
. nelN

supp g, Un and

M
O -
& £,(2) h(a) 4 °/ (@) = 1.
M

o]
/4

X
Moreover we choose f. e.dx(F*) f.eC (F) such that (f (q)) forms
an orthonormal basis of Tq with dual basis (f ;(ad)d, 1 gdim F.

Then we obviously have
dim F

. ‘
Tr. § e o T.(p) = lim e(gf ®gf)
°F t G T
n-eo 1=1

On the other hand we get from 1.4, 3) and (3,15 )

* . X R -1 % A1
e leyf; ®g ) =280Q (e)z o Ry O i ®g o B P E.

Since q;if and @51fi are G-invariant and since (d?-lf (p)) 1is

:»  an orthonormal basis of E'! with dual basis ( q> 1f (p)), ( 3.15)
follows. Now ( 3.14) follows from ( 3. 18) and ( 3.1 ) since the
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( 3.18 )
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integral commutes with linear maps.

Now clearly

X
Q®Q*(r'§)= 2SU@U,(I")deG(G,g')
(vol G g x G &
and ther’efore-fdr peM
ISQ®Q (TR>! «(P)
: E® E
{ —— % ind L&), () a6 x 6 (g,g")
(vol G) C x G ERE
S % R ' ' o).
S 551G sup ““S!B 2 E£g(p )5p") d 6(g)

1
P'ée GP, G

Making use of the assumption ( E ) we get the following inequality

Iﬂk ry 0@ (| e
(g(p'),p")
m-n -C, 1 1
82]{""' Sk »
£ Cy———sup e s d 6(g).
vol G p'eGp

G

Therefore,the proof of 3.1 is complefed by the followinhg theorem
which will proved in section 4.

Theorem 3.8: Let M be a Riemannian manifold satisfying ( F ), &

a compact Lie group acting on M by isometries, and « > o. Then there
exists a constant CB>-o depending only on G, M, and % such that

for all peM and t>o0

.4
_dye@),p) dim Gp
_!EE_EE_S e t d 6(g) g CG £ %
G h

vol G




%. THE VOLUME OF ORBITS AND THE PROOF 0T THEOREYM 3.3

In this section we Supply two results completing the proof

of 3.1, namely theorem 4.4 and the proof of theorem 3.8. Since

our discussion will be local the following terminology is conve-
nient. For fixed Pell we put N:=Gp ang H::Gp. Denoting the ortho-
gonal complement of TPN in TDM by W we have an orthogonal represen-
tation p:H —— 0(W). Thus we can form the G-vector bundle

™

2:=G xe W associated to the principal bundle 0 — G — G/LI
which is defined as the quotient of @ x i by the equivalencelre-.
lation (g,w)fv(gh,g(hfl)w), geG, welW, heH. The G-action on E

is given by g[g’,@}::ﬂgg',wj and the projection & :& —-a§/H§by
[g,w] —> g(H). It is then easy to see that the map

T:E 3 [g,w]’p~ag*(w)e.TM defines a @-equivariant diffeomorphism

E  —— »N where YN denotes the normal bundle to N ip M. Now

for ¢ small the normal exponential Map exp, gives a B~aquivariant
diffeomorphism from »¢y:-= { § € le f€[< 3 % onto an invari?nt
neighbourhood of N in M which we denote by T¢v. Putting E¢:=ze (&)
and $ = exp, % we therefore have a G-equivariant diffeomorphism |
¢ B¢ — T®M. This is the slice theoren. For our purposés we need
& special left invariant metric on E. -
Lemma 4.1: There is a left invariant metric on E with the following

properties:
- G . . . .
1) ®W:2 — /H 1s a Riemannian submersion.

2) Tor each veE ®|av : av —> G, 1s a Riemannian submersion.
3) The fibers ﬂfi(gH), ge G, are cgnonically isometric to YW with
the Euclidean metric,

Proof: It is sufficier+ to construct a connectionéf’z(Hv)vé’E on I
with the following properties:

) Al o o ce ¢
1) & is G-invariant, i.e. Horyy=ax(m)
fm*ggG,veE,

f‘) : T "

2) for each vet H,eT, G,

In fact given such an # we have TvzqvesKerﬂt and we can provide

X, v
H, with the pull back under Ty of the metric in mev)G/-° Moreover

if v = [g,w] we get a linear isomorphism W3 w#~9[g,w] e Em(v) =

Ker JQ* v and the induced metric on Kerp W* v is independent of the
3 2

choice of g. Thus requiring Hv L Ker ﬂ@ v We have a metric on E

2
which is easily seen to PoOssess, the desired properties.
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To find & we start with a Ad(H) - invariant decomposition g,“ﬁ+rwv,
where 3 and ( denote the Lie algebras of G and H respectively. Then

i L OW)] gé.G§ defines a H-invariant connection for the princi-
G

pal bundle H — G - /H' Let & be the corresponding connec-

tion in the associated bundle E (cf. L25 ] p. 87/88). If ,

v = [g,w] ¢ E & can be described as follows: Hv :=é/%% [c(t),W]’
' t=o0

¢ : (-1,1) —> G horizontal curve in G with c(o) = c} .

It is now obvious that & = (Hv)ve:E

Lemma 4.2: Define the nonnegative function ¢ on £® by

satisfies 1) and 2).

c(v) := |det q*i T, Gv| .

1) For v ¢ 5 we have
vol G %(v) = cl{v) vol N vol Gva)V'

C., > o such

2) For & sufficiently small there are constants C,, Cg

that for v ¢E¥

- C, vol N vol Gu(yyV S Vol G ﬁ(v) s C, vol N vol Gm(v)v.

8
3) If all orbits in E% are nonsingular then ce«éw(Ea).
Proof: 1) Let x := T(V), then
vol Gx = X ldet ¢, |T GVl d(Gv)(w) = e(v) vol Gv
Gv

= c¢(v) vol N vol GW(V)V

by the equivariance of g and 4.1, 2). ,
] 2 \ . N '
2) Let C' be a uniform bound for the norm of ?*v" TVG\L_—9 T (V)o?(v),

vé;Eg, which certainly exists for & small. Then if (ei) denotes
i=1
an orthonormal basis for TVGV we get

c(v) = h&(el)A N ?*(er)l
.

< } 3of(e )| (a+e)R

1
e

which implles the second inequality. The first one follows from the
same argument applied to %fl. 2 '

3) That all orbits in E® are nonsingular is equlvalent to dim Gv = dim N
for veEY. Denote by ﬁ,the Lie algebra of G and by i, X the Killing
vector fields correspondlng to Xe % on E® and TEN respectively. The

G-equivariance of ¢ implies the relatlonv




Cou.u)

2
¢

X?(v) - ?*(JV/'

Now pick v ¢ £% and choose a complamentary subspace - to the
.‘ o

. . 1 , &~ 1
Lie alzebra of G Lnl% with basis (Xj). . Then (Xj(v))}
VO : 1=1
basis for T Gv in a neishbourhood of Vo 8ince the dimension is
is T, _ .
constant. Thus we have in this nelighbourhood of v from ( TN
' ~ = .
A T
1’*1/\ ¢ o o J\A_l-\(?(v))‘
~

LR APU o

Corollary 4,.3: Suppose that all orbits in M are nonsingular and

put

nlp) := [Gp : HRJ R

where II c_Gp is a principal isotropy group for e M. Then

ﬁ(p) 2= n(p) vol Gp

2] . H_‘
defines a C -functioén on M.

"

. . oo, - . . .
In particular h o g ¢ C (MO), where h was defined in ( 1.4 ).

u

~d
Doy Fe T a N T A e et £ N I s
Proof: By ( 4.2 ) we nave in @ neighbourhood of A=8py with v=(p)

i)

vol Gp = c(v) vol N vol @ V.
I (v) a(vyVe

. . . . . o0 ,
The absence of singuler orbits implies that ¢ is by 4.2, 3)
and that G%<v)v is finite because lGv is a submersion. There-
fore
13 ' ["1 : I-I]
Tnv) . Llatv)

5 ;= |
vol Gx(v>w G 3

for any priacipal isotropy group I with H(:Gvc:GﬂKv).Since
Gv = GP the proof is complete.

Mo
We now proceed to show that /G has finite volume, which was essential
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in r2iducing the proof of 3.1 to the proof ol 3.8,

1eorem o 4: Suppose that M satisfies ( F ). Then

Proof: By the Fubini theorem and ( T ) we have

Mo & 1
vol /A = _\76]_ Gp di“f(p)

3

1 s
D X vol ap Pl
1{0

z,
T
]
®
e
}_.J
[
o
=
(g2

compact Riemannian C-manifold in which M ig im-
bedded. ¥We therefore may asswne that M is compact. Now we use

induction on dim M. For dim M = 1 the assertion is obviously true.

By compactness of M it is sufficient to show

1 A7
& Vol 6p dM{p) < o~
TéN »

for arbitrary Poe i, N = Gp, and some & > o.

> =& s 4 . -
Inviewof ( 4.3 ) and the boundedness of c(v) for ve £~ with & small
all we need to estimate is

-

1
vol G“(V>v

dE(v).
EE

R . -l s . .. . . .

Jow since @ : EY —— Y is a Riemannian submersion with fibers

isometric under the G-action, the Fubini theorem zives

1 ™ - x ____..j;___ ™ f
g N 5 df(v) = vol N S RCINEY: dapo(v).
£ TC( v ) ™ £ pO
E L n E
Po
Recall that Een E = oyt carries the Zuclicean metric inherited

D
Y0 £
from Tp M and that G_ acts orthogonally on "7~ . Therefore
0 Fo




%
1 _ S 1 e dina V- 1,
X vol Gn’v v = g vol G rw dS{W) (w) r dr
wé o o S Po
6 .
dim V - 1 - dim G, W % )
- ®) — r
= r dr o1 Go pp dS(W) (w)
o S(W) Yo
- ‘ - ._______1-__ ; T, .
£ const ol 6w as(i) (w),

S Po

where S3(W) denotes the unit sphere lnﬁEp.But dim S(N)<<ij Wdim M
and the induction hypothesis applies to the last written integral
thus completing the proof.

The remainder of this section is devoted to the proof of theorem 2.8
which will be based on the following three lemmas. The first deals
with the case of a single orbit.

Lamma 4.5: Let N be a compact connected Riemannian manifold and

® > o. Then there is a constant C9><3 such that for all x'e N and
Tt>o0

.
dN(x,y)

&e t dN(y) € C, t
N

?roof: In geodesic polar coordinates (r,v) at x we have

(v)
& e t dN(y) = e °© ]det ExXD y,*(r,v)} rl—i dr dw(s

1...4

N st o

where l:=dim ¥, dw:=volume element on Slwl and . pWv) denotes the
cut locus distance ia divection vQ,TXN. Now |det expx*(r,v)]
can be uniformly bounded in tevms of a lower bound for the
Ricei curvature and an upper bound for the diameter of N

( [ 5 ] » P 253) which implies the lemma.

In the next lemma we reduce to the case of connected Q.
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Lemma 4.6: 3uppose that ( 3,18 ) has been proved for fixed !

and all connected groups G. Then it holds also for general G.

Proof: Let G, be the identity component in & and put 1l:= [G

the number of components of &. For PeM we then can find
. 1
g;°8;(p)e G, 15151, such that ¢ = ¢ vy Uy ¢ g: and
i7e1 °" T ol

dM(g gi(p),p) > dM(gi(p),p)
for g2eG,, 1<1i<1l. This implies

1,
dM(g gi(p),p).> 5 QM(g(p),p)

for geG,, 1151, since otherwise by ( 4.5 ) dw(gi(p),p)
<3 dw(g(p),p) for some e G, and therefore

dM(g(p),p) < dM(g gi(p), g(p)) + dM(g gi(p),p)
= dM(gi(p),p) + dM(g g;:(p)hp) < dn(g(p),p).

N

Now we find with 3o ' e by ( 4,6 )

e

_vol 8p & e t aG(g)
vol G
G
1 o
dy, (g g;(p),p)
B vol ¢ p ; & -2 i ’
A e aG(g)
vol GO -§;54 K e
"o
x
dM(g(p),p)
~vol G p - < )
< (1+1) — 0% % 27t -
S vol G, e dG(g) .




( 4.7 )

We now assume that G is connected and that it does not act
transitively on M. Fop Pe M we introduce as before TN and ES

for ¢ small, N=Gp. We put in addition Y= %—1 (where ¢ :

E®¥ — TN was the canonical G-equivariant diffeomorphism)

~

& .
and ™ := W . Y - For x,y @ T°N we then define

d.(v, ?(x)) is minimalg.

Alx,y) := éV@G?«y) Y ()

This makes sense since G is compact and connected. Finally we
denote in case that codim H>2 by dsph the Riemannian distances
induced on the spheres in the (Euclidean) fibers of E. The
following technical lemma makes it possible to prove 3.8 by
induction on dim M. |

Lemma Y4.7: Suppose that G is connected and does not act transi-

tively on M. Then for >0, DeM and & small there is a constant

C10 = C10 (,p,&) such that for all x,ye'TaN and veA(x,y)

L s~ '

dN(M(x), W(y)) if codim N=1,
o« v
dyy (x5 ) > Cyq

X A ~ o~
dN(W(X),%(y)) + dsph(?cy)’V)

otherwise.

Proof: We begin with the remark +that on a connacted manifold any

two Riemannian metrics are equivalent on compact subsets. Fuprthep-

more, if N is an imbedded submanifold of the Riemannian manifold

N' then dN and dN' are equivalent on compact subsets of N. These

facts give the existence of constants C', C'' such that
dg(y(x)),ﬂf(y))s_C'dM(x,y)

for x,ye;TsN and

dE(w(x),'y(y)) > C"dE (W(x),ﬁp(y))
q |

for x,ye,TaN with @(x) = %(y) = q for gqeN, if only & is

sufficiently small.A priori C''depends on g, but the ac+ion




(

4.8)

of G is transitive on N and maps the fibers of E isomatrically

onto each other implying that C'' can be chosen independent of

e

q- Next we recall that ® :E — > N is a2 Riemannian submersion

which gives
dE(ty(x),zY(y)) 2 A (W(x), T (y))

' . mE - .
for x,7¢ T'N. From ( 4.7 ) and (4.8 ) the lTemma follows if
. . €
cedin N = 1, 30 we assume codim N> 2 from now on. For X,y € TN
° ~ ot
with ®(x) = &L (y)

mentary geometry d . 4

H

q and }y(x)jF = yy(y)gr we have by ele-

2
dEp(W(X)"?(y)) > o dsph(y(x), y(y)).
We now find for x,ye/TeN and v ¢ Al(x,y) by the triangle ineéuality
x &
dr(w(x),’y(y)) + dp(?(y),v)
(W), W) + (do(u(x), A (v)) (p(x),v)) "
S O X/, 5 + YL X N + d. (plx v
\“'LV H)/ E’Y 9,3‘}.)7 - Ltf 3 g

o
g (1+2

) d:{w(x),?(y)).

o

he proof is complated by combininz the above inequalities an:

noting that Ve’Eﬁ(y) with Jv|= (W(y)

~

‘e are now ready for the proof of 3.8.

Jroof of Theorem 3.8: We proceed by inducticn on dim 1.

ma
.

ne

assertion is trivial for dim M = o. So assume the theorem is
proved for all Xiemannian manifolds satisfying ( F ) with
dimension smaller then dim M. Now by ( F ) we can furtherp
assume 1 to be compact (since dM > dX), and G to be connected
inview of lemma 4.6. Moreover by compactness we need only prove
the theorem for pe,TEN where N = G%po is arbitrary and & gsuffi-
ciently small. To do so we fix Poe M and choose a suitable €& such
that all the above lemmas hold. We put I := Gp and provide G/q
from N gnd G with a left

invariant metric turring the canonical projection G — ’/,_T

+ 4

with the left invarient metric induced

into a Riemannian submersion. We can use the corresponding volume

element dG in ( 3.18) since the le®t hand side is independent
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o0f the choice of left invariant measure on G. Thus we get from

Fubini's theorem for pe,T N

o
dy(z(pl,p)
- t
vol G S
oo g e ae(g)
G
g;(gh(p),i)
- t
_ vol Gp R - G
" vol N vol H SS © C¢H(h) d¥/y4(gH).
G/?T i
L
By the left invariance of dG we may assume &(p) = pg-

e then have for ge@G, heH

X~ ~
dN(ﬂ(gh(p)),%(p)) = dN(g(po),po).

29

If M is homogeneous ws have dw(gh(p),p) dq(g(p;),po) and the

n

DDOOf is immediate From 4.5; if codim N = 1 the proof follows
from 4.7, (4.10o ) and 4.5 again. So let codinm N 2»2. We choose

ve Alp,gh(p)). By definition ve gliy(p) implying g-l(v) = ho(T(P))
for some hy = h (v,p)e H. Therefore

x ~
(gn(y(p)) v) = dSPh(h(W<p))’ho(W(P)))

Sﬁh

- x rn—1
= dsph\ho h(w(p)), W(p)),

Thus we conclude from ( b,10), 4.7 and (4.,11)

«
QMfg(p),p)
e} B
zgi G) € as(g)
G
S (q )>

= —vol Gp . Tlo €t %
" vol N vol H X © di(q)




_qO.—

(74
dsph(h(y(p)),p(p))

-C
X e 1o t dH(h).

H

Now it is easily checked that the validity of (3,18 ) for a

given metric implies the same estimate with the same constant
for any metric differing only by a scalar factor. Therefore we
may assume that leP)‘E = g - Consequently the induction hypo-

thesis applies to the second integral above and (4.3 ) completes

the proof.
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5. AN IMPROVED ESTIATE OF N FOR TINITE @

In this section we vresent another renainde estimate Tor

in a special situation. Oup assumptions are the following.
G is a finite group and acts effectively on M.
M is compact.

R is the closure in L2 (E ) of a strongly elliptic and formally
positive operator P on C “(E) of order 2k satisfying ( 2,1).

R is then a pdsitive selfadjoint operator in LQ(E) with & (R)=
sz(E). Finally we require the following asymptotic Lehavior of

the spectral function of R:

121? n_
Tr §eR(p) = & - <e<P><§>>7‘< @ (§)
= 11(25&)
'T;MP
n-1
+ 0(1:2}< )

uniformly in pe M. This is known to be true in many cases
. 12 . ,

(e.g. if P acts on flncLlons or & (P)(%) =)§] id px-) though
not in general, cf. L 22 . However thls time the estimate
of N will not be achieved via the heat kernel but more directly

X - y + o 3 e o . .
using the relation ( 3.9 ) as in the Proof of 3.6. This is possible
since by the finitensss of O We can construct a nice funda-
sental domain Y for © in M. The main tool in this construction

E=

is a recent theorem of Illman Lzu J. The operator T is then
essentially the restriction of g to sections of E|Y. Therefore,
we have some control over its domain and can apply a suitable
globalization of the method in [ lonj. This yields a pvecise
estimate of TrF S*et which can be integrated over Y +to
following result.

heorem 5.1: Suppose that conditions ( &« ) to ( § ) hold.

For an irreducible unitary representation £:5 —— Aut (V)
denote by '%(%) the multiplicity of P in the eigenspace of P
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with eigenvalue M and put

neft) 1= >W~J %(N)-
Nt

Then we have with |G| := order of G.

..n
T () % %Tf ey (e g id ) «
; nCom)™ ) I€! (E, 8 V") P ¢ v

M (¥ M) '

n-1 ,
x aw(§) aM(p) + 0(t% 105 t).

Thus we obtain an improvement of Huber's vesult [23] and also

of results of Wallach [29] which will be discussed in the next
section. It should be remarked however that ( 5,1 ) does not seem
to be best possible. One expects an estimate with the log - +erm
removed. The proof of 5.1 will raqulre several lcﬂmas. To begin
with we note that we can assume 2k;>n which is convenlent for
technical reasons. In fact if 2k ¢n we choose leN with 2kl »n.
Then Rl will be the closure of Pt and for the spectral resolution

we have

Therefore, it suffices to prove 5.1 for RY. Our first task will be
the construction of a fundamental domain Y for € in M. To describe
it we assume that M is G-equivariantly imbedded in some RY and that
G acts orthogonally on M (this is possible in view of the Mostow-
Palais-theorem, [ 9 ] p. 111, th. 10.1). Then by the result of

[ 24 } there is a finite equivariant rectangular simplicial G-com-
plex X with |K| @ R® for some s and a G-equivariant map

¢ :|K| —— M, such that ¢ 1s a homeomorphism |K| — M and

?l 16 is a differentiable imbedding for cach simplex & ¢ K. Let
K" be the set of n-dimensional simplexes in X, n=dim M, and denote
by L, the affine space generated by |¢| in R® for ¢ ¢ K. Moreover
let U(M) be a tubular neighbourhood of M in RY. Then we need the

following lemma.
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Lemma 5.2: 1) G acts freely on ko,
2) For & € K there is a neighborhood Up of I®1 in L. and a
C&’imbedding 9 g —— U extending ?]IWI.

' 3) ?((KI - U _I1¥ ) has measure zero in M.
& e K"

Proof: 1) G acts on <k by the definition of K and by fzu ],

P- 201 g(&) = & implies b(p) = p for all p 3 ?(WD But then g
since g is an isometry.

2) By definition there is a neldhbourhood q, of |¢] in Lg and a C™
extension ?? of whﬁlsuch that c%* has rank n on 1€’ » This eaally
implies the assertion.

3) This is obvious since K is finite and $|!GI1° differentiable

for each & ¢ K

We now select one simplex from each G- -orbit in Kn, say 6&

and put
t

O
Y := Int U CF(G’.) .
j=1 ’

Then Y is an open subset of M and vol Y = IG[— vol M. Letting
F:= E[Y we obtain the following simple and explicit ver51on of
1.2,

Lemma 5.3: The map

NI

O: 2@®%s 5 —— J0)? flv e L2m)

is an isometric isomorphisn.

Proof: We compute for f ¢ C(E)C

g If(p)]é aM(p) = z : S ]f(p)}é dM(p)

v 1sjsto
ges  gleQeyd)

tO
IGIZ & g ECa(p)) |2 autp)
=1

(f(lgjl)

H

Sf@f(p)]}% dY (p)

Y .

e
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. & 2 G § .
Since C(F) = @(L (E)7) the proof is complete.

As before we introduce the p081t1ve selfadjoint operators

5= R[F®ALEC  anaT = Do s o B uitn SeT) - CRCIEIE

Denoting by (T,.) the spectral resolution and by e teR, the
te R

spectral function of T we have again

T +2

| | . |
N(t) = dim T, = g Tr & e (p) d¥(p).
Y

Now P is also a differential operator on C (T) and it is obvious
that T is a positive selfadjoint extension of P in LZ(F); Ve
propose to estimate the function

% xR
Bp(t) 1= TPFS et(p) - TrEg ey (p)

for peY, teR, which implies an estimate with remainder term for

5 e, because of ( § ). This will be done using the method of

[ 10 ] » l.e. we will apply a Tauberian theorem of the Fatou type
to the Laplace transform of Bp which in turn is given by an integral
involving the Green's kernels of T and R. These are by definition
the Schwartz kernels of the operators (T-z.id ) -1 and (R - z.id) -1
respectively for Z#JR+, and we will denote them by T and R . The
condition 2k > n yields that T and R are COntlnuous Functlons uni-
formly bounded in the space varlables To formulate the precise
estimates we choose € with o« a<;2 .and put Z ~{;e,¢!;arg z| < 5}

Furthermore for pe Y we define
1(p) := dist é P, 0Y %.
Lemma 5.4: For z4=,1R we have T ¢ C(FgF*) and R ¢ CCE®E™) with

continuous dependence on z. Thero are constants Clo’cﬂl’ci2 such
that for z ¢ Z |

X [z] » Cio,and D,3eY

T ( ) + [R_(p,a) < C 7] 2K
|T2(P> 'Far* |22 2, Egp* 11 17|

and
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) _
,TPF % T (p) - TrEg*Rz(pﬂ < C

Proof: Since 2k >n the continuity of R, and the estimate ( 5.3 )
for R alone follow from (the matrix version of) 4.2, 4.7 and 4.8
in [ 21] and the compactness of M, Arzuing as in the proof of
lemma 3.7 we obtain the relation

T, = |G| Q®Q*(RZ)’ Y, 2¢R,

This implieé the continuity of T and (5.3 ). ( 5.4 ) is proved

£y

as in [10 J » Hilfsatz 3 with obvious modifications.

As in [ 10'] we now find the following estimate.

Lemma 5.5: There is a constant C13:>o such that

e n=-1
A )
;Bpmf TS

Proof: We have the identity (see [ 10 | )

oo 1
ST 4 B (£) = --1. % o"sz2k<'r ST - e 'R (oY a
© p - i - otz 3 z’ P “
0 ?Za

where Re s > o and z°X is chosen positive on the positive axis.
Denoting the left hand side by ¢_(s) we then conclude from 5.4
that ¢, has an analytic thanlon to { se.$, EYIRS C'l(n)% and

satisfies the estimate ?p(s) < for these s, where cr,ct?
are independent of pe.Y Thus the gp%umptlon d) of the Tauberian
theorem ( [ 1o ] » Hilfssatz 4) is satisfied. Assumption a) is
obviously fulfilled, since Bp is the difference of two monotone

¢ and ( 5
Finally, b) follows immediately from ( 3,15 ) and ( 3 ) again.

functions and ¢) follows from the monotonicity of Tr 8 e

The proof of the lemma follows from the Tauberian theorem.
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Yith these results established 5.1 is easily proved.
Proof of Theorem 5.1 It is sufficient to deal with the trivial

representation. From ( § ) and 5.5 we get Lhe estimate

n
TPF%'@%(p) - Try (8(P)(£)) dw(§)
S n L
1"p
n-1
2
B +t
ST

for peY with 0 independent of P. On the other hand we have fron
( 3.15) and ¢ § )

n
* 2k
TPF § et(p) = 0(t™™)

for pe Y, again with 0 independent of p. Now we extend the metric on
M to some metric in the ﬁgbular neighbourhood U(M), which can be
pulled back under. ?Wj to a metric on rij by §. 2, 2), and this
metric is equivalent to the Euclidean metric on [@ji,'jnsj N
Denoting by lj(p) the boundary distance of P e %(my) in quﬂ) we

J
clearly have

1(p) > lj(p), 1s;jsfk

Now we can apply the method in [18 ] » 56 to derive the estimates

) % g n_
(Tr. e (p) - —f-§5  Trg ((PY(E)) Paudd)) amep)
s - 25 X D .
qEAp! n (T¥M)
g "
n~-1

= O(t2k log t)

for 1< < &+ Because of ( 3.9 ) the theorem is proved by summing
over j.
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6. APPLICATION TO THE SPECTRUM OF ™\ G

In this section we give an application of our results.
We con81der a semisimple connected Lie group G w1th
finite center Z(G), a maximal compact subgroup K, and

a discrete cocompact subgroup 1 . Then M := "\ ¢ is

@ compact manifold. If ¢ = & + p  is a Cartan de-
composition of the Lie algebra of @ with & the Lie
algebra of K, and if B denotes the Killing form on

then a left invariant metric <'|*>on G is defined by

the conditions 4 L g , {(X|X> := B(X,X) fop

X ¢y , and <X I X> 1= =B(X,X) for X ¢ & . Thus we
get a Riemannian metric on M by requiring the projection
Wp ¢ 8 —— T\G to be a Riemannian submersion.
Since Ad k preserves the above Cartan decomposition

and the Killing form for ke K, we see that K acts by
isometries from the right on G and on M. Next we con-
sider the Casimir element C in the universal enveloping
algebra of g. defined by

»+3

o i
C = s X: X*,

iz1 1

where r = dim p , s = dim 4 , and (X4 )P S is a basis
of %zw1th dual basis (Xl)r+s. With C we assdc1ate the
second order dlfferentlal operator ¢ on C™(G) defined
by '

~
where Xf(g) := f(g exp t X) for Xe feC (G),
dt £ 3’

and ge G. Obviously C is biinvariant; thus by

~ (>
Crf o Wy 2 CIf = @, ), foC (),

r
we define a second order differential operator on ¢’ (M)
commutlng with the action of X, Choosing bases (X. )l -4 and

(YJ) for F and 4 satisfying B(X;,X;) = 1, B(Y Y30 =
i=1
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-1, 1gigr, 13« s,wecmmwmxefmrfe,C(Mh pe M

T 12 ~ v 12
C.f(p) = 1Z=1 T (X3 )2 (E) -2 By (152006,

i=1
This implies
ey (§) = - [E]%, & oin,

which means that -C~ 1is strongly transversally elliptic.
Moreover -Cp 1s certainly symmetric on C (M). Now we
have by the unlmodularlty of G a unltary representation
R of G in L2(M) given by

Rgf(iﬁg') := f(T'g'g), feC(M), g,g'e G.

U51ng the termlnology of [ 30] » 4.4 one finds that
L (M) = C(M) and that

Ch = R (C).

Therefore, it follows from [35 ], P. 269 that -C. is‘,
essentially selfadjoint and we can apply Cor. 3.2. To do
so let p be a unitary irreducible representation of

K in V and denote by Yo (M) the multiplicity of e in the

A ¢

eigenspace  C” of -Cp with eigenvalue N . With

M

m := dim O/K = dim G/K, 1 := dim HomK>(V,¢), pggMo,
P
we then find by ¢ 6.1 ), 3.2 and 3.5
o o 2
N (t) = ____,5 VoW~ —B— 1 wol %/ t%.
4 MeSpec(-C.) (2%)
Nt

Putting

:égg@ g x K = x K fmﬁau.xéG§
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it is not hard +o see that

M
o, _volM |[TnaNI
vol /K = .

vol K

Moreover we have

1= dim v 0N,

: -1 '
To see this we note that Krg = g TﬁgK g, Z¢G.

Since T acts by isometries on G/K and is countable, we

have IﬂgK = T'A N whenever gK lies on a pPrincipal T -orbit.
But every g¢ G can be written g = 8,84 where g4 belongs to
the compact factors and hence to K, and 8, belongs to the
noncompact factors and hence commutes with N. If G has no

compact factors we have [~ N = A Z(G) =: Z(") and there-
fore dim VZ(P) = 0 or = dim V. Thus @ occurs in L2(M) iff
plzam = 1.

‘Now N€ can be expressed in terms of representations of @
and K. Obviously Cr commutes with the representation R of
G in LZ(M). Therefore, each eigenspace C¥ is G-invariant,
Noe Spec(-CP). Using the arguments in [ 16 } sy 2.3 we
then find that ¢ * splits into a direct sum of G-irreducible
subspaces, say

c* = @ mO¥,

XA,

If we denote the representation of G in Hx’x by ye® and if
(U™ , HOX ) belongs to w e @ it follows from (6.2 )
that

UEM ) = el | B%Y 1 A g
0o Ho(,()u

and therefore

A = value of the Casimir element on all re-
presentations of the class ¢y which is de-
noted by Xy o




(6.4 )
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Thus letting}nr(w) := multiplicity of w in LZ(M) and

DuiK : e] := multiplicity of P in w|K we find
. N . e
W%CX) = dim HomK(V,C ) = é dim HomK(V,H )
xe,ua
= é nr(w) [a:lK : e]
we G
gy = N
and
Ng () = > e [w|k oz ],
Amsf
we G

~ v
In particular, n.(w) < e for wWeG. Summing up we have
proved the formula -

, o W - . TaN  vol P\G [TnN]
n (@) [wK :p] e~ dim V ~
E::: r [ l e (20)™ vol K
st

[\ ~
we G

( 6.4 ) has been conjéctured by Gelfand [‘ 15] s proved by
Sangolli for G complex [ 14 |, and by Wallach |29 | in
general. (up to a minor correction which is necessary if G
has nontrivial compact factors). Using the existence of a
torsionfree subgroup of finite index in T (as done in

[ 29 ] to obtain ( 6.4 )) we now proceed to estimate the
remainder in ( 6.4 ) by means of theorem 5.1.

Theorem 6.1: Let G,T,K,V, and 8 be as above. Then we have
as t —» o0

:nPCW) [wa : 8] =

wei
D»wst
- ™ ™\ | Vi ==
D gim v "N Yol AN IPaNle2 6t 2 10g 1),
(29) v

Proof: Let T; be a torsionfree normal subgroup of [’ (which

t

o
2
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exists by { 6 j ) with finite index and put H := "'/ __,

I

o
Denote by Svr1 i1 6 — FB\G the canonical projection
o
and define a metric on F;\G as above. Moreover let CP be
o

the Casimir operator corresponding to T;. As before we see

%ﬁgt u"cm is a stronglxxtransversally elliptie differential
operator of order 2 on C (M) commuting with the action of

K, which is symmetric and essentially selfadjoint in LQ(M),M:zTB\\
" Applying 1.3 and 2.4 to the K-vector bundle M x v* and the
selfadjoint operator (—CE)* & idV* in LQ(M x V) we obtain

by our basic construction a Hermitian vector bundle F over
M
O/K and a strongly elliptic operator P on C (F) with prin-

cipal symbol

TP = |5 qay, et ©

vy

2(F,h) with domain CF)

where h(q) = volﬂvél(q), qC’MO/K‘ Now since T; is torsion-
®l = My = TG/ is a
compact manifold. Denoting by 8, the Riemannian structure

Moreover P is symmetric in L

=

free K acts freely on M and

on M/K induced by GtK we define a new metric by 8q *7 h(g)g
ae/. We then write L2(F) ;- L®(F,h) and we call R the
closure of P in LZ(F), Now observe that the finite group

>
059

H acts on M and also on %/K‘by
@rB(T;g K) := ngrg K.

This is in fact an isametric action since h ahd’go are H - in-
variant. Then F becomes an H-vector bundle with trivial
action on the fibers. In the same way H acts isometrically
on M and on the bundle M x V *, and the isomorphism of 1.3

q> : L2(M X V*)K —_— LZ(F) is easily seen to be H-equi-
variant since K acts from the right. This implies that P
and its closure R commute with the action of H. As before
We may assume that R is positive so that the conditions

() to (8) of theorem 5.1 are satisfied in view of ( 6.1 ).
Thus denoting by S the restriction of R to L2(F)H (see 2.2)




( 8.5)

( 6.5 )

and by NS the counting function of Spec S we find as
t —> oo
m m-1

Ng(t) = const t? + ot 2 log t)

where m := dim M/K. To complete the prdof we turn to
L2('P\ G x V*). We denote by R, the closure of

-C @ idy+ in that space and by S, the restriction of
R, to LZC ™\ 6 x V)X, Then by 2.2 we have

Ne = NSi’
Nsi being the counting function of Spec S4. Introduce

&: [\NG 2Tgr—TIg ¢ T'\G such that & = & o .
o o r s

Then the map

WL mex vHOKy £ Qree) e L2m

is readily seen to be an isometric isomorphism.

Moreover for fe.ém( ™\ G x V*)K we have
S(¥E) = s(Pegeen = Pi-c R,) ® idya(f @)
= Qe @ 1apemroe) = s, 0.

Therefore, S, = Hfglso?f'and Ng = NSl' The theorem follows

from ( 6.4 ), ¢ 6.5 ) and ( 8.6 ).
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