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1. Introduction
This is a description of recent work most of‘which has been done in
co11aborat1on with Ernst Heintze (theorems 1, 3, 4, 7). To keep the
expos1t1on c]ear the results will not be stated in full generality but
only for the Laplacian. Also most proofs will only be sketched. The full
details can either be found in [5] or will appear elsewhere.
We consider a Riemannian manifold M with boundary 3M, such that

. MU 3M is compact, and its Laplacian A which in local coordinates

X1s «ees X is given by

n
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where (9. is the metric in these coordinates, g its determinant,
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and (g J) its inverse. Then -a 1s positive with domain C (M) and there-

fore ‘has selfadjoint extensions; if 3M=0 _there is only one such extension
and if M + § we consider those generated by Dirichiet or Neumann

boundary conditions. Denoting any of these extensions also by =-A it is
well known that it has eigenvalues 0 < 2; <), < ...< A, > e with
eigenspaces Ay such that dima, < o "and”

LEM) = @ a,.

AZ0

1910 H. A. Lorentz conjectured that the 'asymptotic behavior of the eigen-
values depends only on the Riemannian volume of M. Introducing

j{: dim Ay

and putting 'n := dim M, W, i volume of the unit ball in IRn, H. Weyl -

[ 20] proved in 1911 the following celebrated formula (stated and oroved
for manifolds explicitely in [15]).




Theorem

w
: ;n vo1‘Mtn/2.
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We now assume that a compact Lie group G acts on M by isometries.
Then G is unitarily represented in LZ(M) by defining

CN(t) ~

U_f(p) := F (g (p))> g €G, f €LZ(M), p eM.

We are interested in the maximal number Nl(t) of linearly independent
G-invariant eigenfunctions of A with eigenvalue < t. Denoting the
G-invariant elements in a G-invariant subspace H of L°(M) by HG

we have

Ny (t) = > dim Al
At

Thus if G s trivial Nl reduces to the function N considered before.
We think of N1 as measuring the asygptotic distribution of the trivial
representation in the splitting of L“(M) 1into G-irreducible subspaces.
Therefore, in generalization of Weyl's theorem we analyze the asymptotic
behavior of N1 and also of its Laplace transform in what follows. In
section 2 we relate the analysis of N1 with a differential operator on

a dense submanifold of the orbit space. We use this in section 3 to derive
. the asymptotic behavior of N1 including remainder estimates for finite
group actions. Section 4 describes an asymptotic expansion for the Laplace

transform of Nl'

2. Separation of variables
If M dis homogeneous then clearly Nl(t) = 1. Therefore, we assume from

now on that G does not act transitively on M. Our first task will be to
show that the asymptotic analysis of invariant éigenfunctions is equiva-
Tent to the spectral asymptotics of a singular elliptic operator. This
operator is obtained by eliminating those variables which are inessential
in dealing with G-invariant functions i. e. by passing to the orbit space.
To do so we remark first of all that the operator S in LZ(M)_G defined

by

F(s) 1= &) nLdME, Sf = -af  for f ed(s),

where o denotes the domain, is selfadjoint and positive. Moreover its




spectrum consists of eigenvalues only and if SA denotes the eigenspace

with eigenvalue X we have SX = Ag which implies

N,(t) = § dim S,
Ast

These assertions are easily derived from the explicit description of the

orthogonal projection Q : LZ(M) - L (M) namely

1 2
of = 1= % U f dG(g), f €L (M),

where dG denotes Haar measure and |Gl the corresponding volume of G.

To relate S to an operator on the orbit space seems to be difficult
since the orbit space is not a manifold in general. However, if we denote
by M the union of pr1nc1pa] orbits of the G-action then it is well
known that M is an open dense subset of M with vol MO = vol M and
that o/G 1s a manifold, too ([41, Ch. IV: 3.1, 3.3, and 3. 8). Also

dim °/G 21 by our assumpt;on that G does not act transitively on Mﬂ
Since we are working in a L%-framework °/G is indeed a good substitute
for the orbit space. Thus we consider the map

(2.1) o0 ¢®Mos) 3 f » forn ec™(m)8

where T : M~ M/G is the orbit map. We want . & to extend to an iso-
morphism between some Hilbert space of functions on MO/G and LZ(M)G.
The Fubini theorem for Riemannian submersions (31, p. 16) then shows
that a natural candidate is the space LZ(M°/G, h) which we define as
follows: we provide Mo/G with a Riemann1an metric such that w7 becomes
a Riemannian submersion. Denoting by d 0/ the volume element of this
metric and putting h(q) := vol Litgny, q ey, LZ(MO/G, h) is the
completion of C:(”Q/G) with respect to the norm

e Y e (g d"o /4 (a))1/2.
MO/G

It is then easy to see that & in fact extends to an isomorphism of

12Mayg, hy - L2(m)8

we are lead to study the operator

Hilbert spaces which we also denote by &. Thus

T := ¢-1 o S o ¢




which is positive and selfadjoint with domain ®-108(S)) in LZ(MQ/G).

Its spectrum consists of eigenvalues only and if TA denotes the eigen-
space with eigenvalue A we have

(2.2) Nl(t) = E dim TA

ALt
Concerning the structure of T we have the following crucial resu]t
Theorem 1 With A' the Laplacian on 0/G we have for f € Co( O/G)

(2.3) Tf = -A'"f -V logh (f).

w ,M . .
Proof Since P := T | CO( Q/G) does not increase supports it follows

from Peetre's theorem ([ 161, p. 154) that P 1is a differential operator.

Next, a stra1ghtf0rward comnutat1on us1ng (2.1) shows that P and -a'
have the same pr1nc1pa1 symbo] ‘Thus the operator X defined by

-1/2 1/2

Xf := Pf + h """ (h'/°f), f ¢ cj(”%/a),

is a first order differential operator. Moreover, Xf is real if f is
and X is symmetric in 2( °/g» h) with domain oo( °/g)- These facts

imply that X dis multiplication by some function which 1s easily found

to be hT1/2, (h 1/2). It follows

(2.4) PF o= -n" 20 (01 2e) oot/ 250 (y1/2y
-A'f - logh {F).

Thus we see that the asymptotic distribution of the invariant eigen-
functions coincides with the eigenvalue distribution of a certain self-
adJo1nt extension of the singular second order elliptic operator P on
/G which may also be a singular manifold. Because of these singulari-
ties we do not have a simpler problem than before in general. The only
insight we gain is the local structure of T. In fact it is more Tikely
that we obtain new information on P and T - auite contrar/ to the
~effect of the classical method of separation of variables: We try to 7
illustrate these remarks by means of two examples. '
Example 1 Surfaces of rotation
Let M be a surface of rotation in R3 obtained by rotating the ¢~ -

curve c : [o,L] 3|s =~ (cl(s)5 0, c2(s)) e R® around the x5 achsis.

Assuming that ¢ 1is parametrized by arc length we find that T is uni-
tarily eguiva]ent to a selfadjoint extension of the operator P in
L2((0,L)) with domain ¢®((0,L)) defined by




PF(x) = =F'(x) + ——0 (2c,(x)c!(x) - c1(x)2) F(x).

It should be noted that the potential has a rather restricted singularity

since it can always be written in the form

2 g e

where ¢ €C ([o,L]). By theorem 3 below we obtain in this way the eigen-
value distribution of several classical singular equations like the

Legendre equation which we get for M = S
Example 2 t'Hooft's operator
G. t'Hooft [12] introduced the following operator: let a1, 2, > -1,
x € (0,1), J”‘“e““‘c’;“uo,l)), and put
oo a a
N . L IXE| o) o 1 2
Hal,azu(k)."'f X e lgla(g)de + (77 + T:;)l}(x).
He conjectured that the Friedrichs extension of this operator has a pure
point spectrum and that the eigenvalues 1y obey the following asymptotic

n
Taw:

(2.5) Wy, = wzn + (a1 + a2) logn + 0(1), n » o,
Hildebrandt [9] proved the assertion on the nature of the spectrum and

Hildebrandt and ViSnjit [10] gave the following bounds for the eigen-

values:

2 -1

2¢ -1(n—1)W2 + 2ymT €

(2.6) My < (1 - =)

for 0 < g < % » Where Y = max {al + 1, a, + 1}, and

2(n-1) + ( Ja1+1 + \/a2+l)2,

v 51+ (Vag +\/3,)% if a; >0, a, > 0.

Now some additional information on the eigenvalues of Ha 3 can be
gained by fitting it into our framework. Apparently the a%éve21ower
estimate is not sufficient to give the first term in t'Hooft's formula
(2.5). To improve the lower estimate we consider the following situation:




1, g), where g s %% times the standard metric,

on the manifold (S
we have a- Zz action givgn by the ref]e%;ion o in a fixed equator.

We introduce the space LYM)_ 5 = {f eL“M)I foo = - f} and restrict
the operator w(- A)l/ to 2(M) R Then a fundamental domain for the
ZZ action can be 1dent1f1eg with (0,1) and as abovi we obtain a self-
adjoint operator T_; on L°((0,1)) with domain H ((O 1)). This 1is a
natural object to compare Ha a with since by a theorem of Seeley
[17] Tr(—A)l/2 is a pseudod1%ferént1a] operator on M with symbol

mlgl . In fact, a computation using the calculus of pseudodifferential

~operators leads to the inequality
(T_lulu) + (Culu) = (H1 putu)

for -y € C:((O,l)), where (-I-) dengtes the LZ(M) scalar product

and C s some bounded operator in L™(M). The max-min principle com-
bined with theorem 3 below then gives a good lower estimate for the eigen-
values of Ha , a, with 1, a5 2 1. With a Tittle additional work along
the same 1ines we“obtain the following result.

Theorem 2 Let aps 2, 2 1. Then

n = ﬂzn,- const, n € N.

n
. _o=1/2 . . .
Putting € :=n in (2.6) this gives
ﬁn = wzn + O(nl/z), n - o,
If a1, 8, 2 o then stil]

2
U ~ T n, n - oo,

To conclude this section we remark that theorem 1 holds in much greater
generality. Neither we have to restrict to the trivial representation nor
to the Laplacian (in example 2 already another operator and another renre-
sentation occured). The general approach is given in [ 5] without the expli-
iVC1t formula (2.3), however. The first equa11ty in (2,4) formally coincides

with Helgason's formula for the radial part of the Lap]ad?éﬁ ([8], theorem
2.11). This is in fact no coincidence since a slight modification of the
above L2 approach yields his result, too, though he is dealing with

noncompact groups also.




3. The asymptotic behavior of N1

We now propose to determine the asymptotic behavior of Nl‘ Since we have
the relation (2.2) we try a similar procedure as in the nonsingular case
and study the Laplace transform Ly of Nis

oo

(3.1) Ly(s) = s (% e SN, (t) dt .

By a well known Tauberian argument the asymptotic behavior of N1 as
t >~ will follow from the asymptotic behavior of L1 as s > o. As
one might expect Ll(s) turns out to be the trace of the operator e_ST
which is smoothing in view of the ellipticity of T and therefore has

a C” kernel denoted by Fsl. We have

(3.2)  L(s) - I (a,a) h(q) d "9/g (q).
MQ/G

Further, the ellipticity of T allows us to apply a theorem of HGrmander
([11], theorem 5.1) which implies the pointwise asymptotic behavior of the
integrand in (3.2) as s - o, namely

1 w -m/?2
ro(a.9) h(q) ~ —"— 1 (B4 1) sTV2,
| (2m)"
where T denotes the gamma function and m := dim MO/G. From this one

conjectures the following result.
Theorem 3 As s -+ o |

Ly(s) ~ g+ 1) vol Moy 7M/2

and therefore as t > =
w

o vol Mo/G tm/z..
(2m)

N (t) ~

The result as stated has been proved by Huber [13] for certain and by
Nallach [19] for all finite groups. Donnelly [6] proved it for general
compact groups and in [5] the analogous result for arbitrary represen-
tations and G-invariant elTiptic operators is given. To prove the theorem
we want to use the Lebesgue-Fatou lemma in (3.2). Thus we have to estab-
lish the following facts:




m/2 l

(3.4) (4:4) h(a) = 0(1) for s >0, qcly,

The proof of (3.3) uses the geometry of the G-action and is given in [5].
For the proof of (3.4) we 1ink Fsl with T which is by definition the

s
kernel of %% (the "heat kernel" of M). Using the definition of T one

easily shows that for p € Mo

1

(3.5)  ro(m(p)s T(P)) = rgr \ T (a(p).p) dG (g).

Do 9

To obtain an estimate for Fsl we now recall the following well known
inequality

| 2
. ~C' dy (p.p')/s
ro(p.p')l s ¢ sV e M

for S >0, p, p' €M and certain constants C, C' > o, where dM
denotes Riemannian distance on M. Thus the proof of theorem 3 is completed
by applying the following result.

Theorem 4 There is a constant C > o such that for p €M and s > o

vo] Gp % -d 2(g (p), p)/SdG(g) < ¢ ¢~dim Gp/2

where Gp 1is the G-orbit of p.

The proof of theorem 4 uses again the geometry of the G-action and pro-
ceeds by induction on dim M; it is given in [5], sec. 4.

Having generalized Weyl's result it is natural to ask for remainder
estimates. To see what we can expect we collect some results in the
classical case first. Putting

w
n 5 vol M tn/2
(2m)

the following estimates are known.
1. Let 3M = @. Then

a) R(t) = 0 (t""12) (Avakumovie [11),




b) R(t) = o (tn—1/2) if there are "not too many" closed geodesics
on M of som?/%iven Tength (Duistermaat and Guillemin [71),
_ tn- . v o ]
c) R(t) =0 (_T5§77) if the curvature of M is nonpositive (Bérard
[21).
2. Let 3M # 0. Then
a) R(t) = 0 (t"712)y (seeley [18 1),
b) it is conjectured that generically
“n

2 i

n-1/2 n-1/2)

+ 0 (t

where we have - or + according to Dirichlet or Neumann boundary
conditions. This has been proved in special cases where the eigen-
functions can be obtained by senaration of variables. Also we have
been told that R. Melrose proved (3.6) for certain manifolds with
a geodesically concave boundary.
We see that though the estimate la) is sharp for spheres it can be
improved depending on properties of the geodesic flow on M. On the
other hand there is no such improvement for 2a) as can be seen from
the asymptotic expansion of the trace of the heat kernel given in [14 }:

(3.7) L(s) := tr 5% = 5 § e”St N(t) dt = (4rs) "/2
0

(voT M % %; vol oM s1/2 4 0 (s)).

This expansion also dictates the first term in (3.6). However, (3.6) is
false for the hemisphere and therefore some extra condition is necessary
for its validity. Turning to G-manifolds we should expect 0 (tn-l/Z)
as best possible remainder estimate for N1 since M‘7-/(3 will have boun-

dary points in M

/G in general. Up to now we can present such a result
only in case the group G is finite.
Theorem 5 Let G be finite. Then we have as t + oo
“n vol M .n/2 n-1/2
t + 0 (t ).

Nl(t) - (Zw)n [ GI

This theorem improves on the remainder estimate given in [5], sec. 5 in
case of the Laplacian but it does not extend to operators on vector bund--
lTes. In the proof we use the spectral function ey of =-A which is by
definition the kernel o6f the orthogonal projection in LZ(M) onto the
space A, . We have

A<t




N(t) = CB e (p.p) dM (p)
M

and (compare (3.5))

=
m

(3.8) Ni(t) = é ey (9(p)sp) d¥ (p).

ge G

To evaluate this formula we use again Hormander's work [11 ]. He has
shown that for every coordinate system ¢: U > M, U C IRn, such that the
induced measure on U cCoincides with Lebesgue measure, and X,y €U

close to each other

(3.9)  eylo(x),0(y)) = —— Y elovs) gy g (£""1/2)
e (2m)" p(x,E)st

where p(x,&) denotes the principal symbol of -A 1in the @-coordinates

and ¢ is a suitably chosen phase function. Moreover, in compact subsets

of the complement of the diagonal in M x M we have uniformly

n'l/Z).

(3.10) e, (p.q) = 0 (t
Thus the integration in (3.8) can be reduced to tubular neighborhoods of
the fixed point set M9 of g which is a disjoint union of totally
geodesic compact submanifolds of M. The result then follows by choosing
suitable coordinates and applying the method of stationary phase. The
same argument shows that an estimate similar to (3.6) above can be ob-
tained once we can improve on (3.9) and (3.10).

Theorem 6 Suppose that (3.9) and (3.10) hold with 0's replaced by
o's 1in both cases and that G s finite. Then

w ' w :
n vol M tn/2 + n-1 E vol N tn-1/2 + 0 (tn—l/%‘

No(t) = =T
1 (2m)" 16l 2Ny " ge G 10

"N conn.comp.of ME
\codim N=1

It is not clear at the moment which geometrié”prbpef£5es of M imply

the assumptions of theorem 6. However, the above mentioned paper of
Duistermaat and Guillemin seems to indicate a connection with the geodesic
flow on M. ‘

For an application of the results of this section in the representation
theory of semisimple Lie groups we refer the reader to [5], sec. 6.




4. The asymptotic expansion of Ll

As indicated in (3.7) the function L has an asymptotic expansion in

powers of s as s = o ([151, [14]):

L(s) ~ (4Trs)_n/2 :E::aj sj/z,
j=o0

The coefficients aj are interesting geometric invariants of M com-
pletely determined by the spectrum of A (c¢cf. [14] for the computation

of the first a.'s). This leads us to ask for an asymptotic expansion of
the function L1 defined by (3.1) since its coefficients can be expected
to contain interesting geometric information on the orbit space. The
solution of this problem naturally falls into two parts, namely to prove
the existence of such an expansion and to calculate the coefficients, at
Teast in principle. Donnelly has solved the whole problem for finite groups
and the first part in case the G-action has no singular orbits.in [6] . The
following theorem gives an existence proof for connected G.

Theorem 7 Let G be connected. Then there is an asymptotic expansion

as s =+ 0

kK o
Li(s) ~ (4ﬂs)“m/2 (ao + ;1“ ;{;Faij (log s)i /2 ).

d=0 J=

Here k 1is a certain nonnegative integer and m = dim Mo/G as before.

The proof of the theorem is based on the formula

Li(s) = r—é-r g% F‘S(g(p),p) dM (p) dG (g)
G M

resulting from (3.2), (3.5), and the Fubini theorem. We observe that the
G-integrand is invariant under conjugation. By the Weyl integration
formula we can therefore replace the G-integral by an integral over a
maximal torus T of G. Now using the properties of torus actions (in
particular the fact that there are only finitely many fixed point sets),
and the asymptotic expansion of o in a neighborhood of.the diagonal
(cf. [15]) the above integral is reduced to a finite sum of integrals
in "normal form". These integrals can then be shown to possess asymptotic
expansions of the above type. The argument proceeds by induction on the
number of fixed point sets of the T-action and requires a precise knowl-
edge of the function dﬁz.'However, the proof is rather involved and
requires many technical details which cannot be given here. Also the




formulas for the coefficients are very complicated; so far we have been
unable to determine more than just the first one: '

_ M ﬁ
a, = vol O/G;’

thus establishing a new proof of theorem 3 for connected G. In particular
it is not clear at the moment whether the logarithmic terms do really
occur. If we had a4 * 0 -for some M and G, this would mean that
theorem 5 does not generalijze to arbitrary G.
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