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ON THE EIGENVALUE PROBLEM
OF 'T HOOFT

Jochen Briining

We determine the asymptotic distribution of the eigenvalues in 't
Hoofts eigenvalue problem in two-dimensional quantum chromodynamics.
We formulate the problem as an eigenvalue problem for a singular
pseudodifferential operator and use systematically its basic inva-
riance properties.

1. Introduction

In 1974 't Hooft [7] proposed a model for the constitution of mesons

as bound states of a quark-antiquark pair. He derived the eigenvalue
equation.

1
M wE =-pov. 20 g v @ 4 by g, o,
0 (x-y)

where a,b > -1 and u satisfies the boundary conditions
(2) wu(o) = u(M) = o.

Moreover, the principal value of the integral is given by

1
lin 7 [ u(y) (Gey+ie) 2 + (xy-ie) D) gy.
€0 o]

't Hooft conjectured that (1) and (2) define an operator with pure

point spectrum and that the eigenvalues >‘n have the following asymp-
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2 BRUNING

totic behavior:

(3 A = nln + (a+b) log n + O(1), o

In a series of papers [41, [5], [6] Hildebrandt investigated 't Hoofts
eigenvalue problem. He proved‘the assertion on the spectrum (this was

also done independently in [3]) and gave lower and upper estimates for
the eigenvalues. He also estimated the mumber of nodal domains of the

eigenfunctions and showed that the eigenfunctions do satisfy (2). This
latter result was extended by Lewy [8] to a full asymptotic expansion
of the eigenfunctions at o and 1. It is the purpose of this note to
establish the first order asymptotics expressed in (3). We shall prove
the following.

THEOREM Let ‘a2, b = -1. Then the symmetric operator in L2 ([0,11) with
domain C((0,1)) degined by (1) s bounded bekow by o. Its Friedrichs
extension Q has a pure podnt spectuum and the operator e_SQ belongs

o the trace class, s > o. Moreover, gor its trace we have

tr e SQ = ] +a—;b—10gs+0(1), $50 .

2
TS ™

By standard methods we deduce from this the asymptotic behavior of
the eigenvalues.
COROLLARY The eigenvalues O‘n) 04 Q satisfy
nelN
}\n ~ ﬂzn , oo

14 an asymptotic relation of the fonm

>‘n= 'nzn+ o log n + o(log n), e,

holds then we must have oo = a +b .

Our proof starts in showing that (1) defines actually a boundary value
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BRUNING 3

problem for a singular elliptic pseudodifferential operator of order
1. This operator has rather bad regularity properties (cf. Lemma 2
below) preventing the application of standard techniques. We observe,
however, that the operator Q arising from (1) with b = o and domain
C:(IR*) » Ry 1 = (0,), has a remarkable invariance property under the
natural action of R, on L2 (]R+), R, : = [o,») (Proposition 3). This
allows localization away from the singular point and we can apply the
calculus of (smooth) pseudodifferential operators to study the opera-
tor e~ 5Q, Finally, using the regularity result we show that e is a
good approximation to e_SQ in a neighborhood of o, and by a simple
reflection argument we can also deal with the singular point 1.

2. Regularity properties

We now rewrite the operator (1) as a pseudodifferential operator. To
do so we put

1

Pux) : = Vi

I

™ Jgl u@) a5, ue W , xeR,

:1 denoting the Fourier transform as usual. P is a pseudodifferential
operator of order 1 with symbol m|Z| and extends continuously to an
operator i @®) - HS_1 @®) for every real s. For the definition and ba-
sic properties of the Sobolev spaces H® we refer to [9] Chapter 1. In
particular we have

2 2 2 2 1
@ o ) Zen?ul 2= 0ul?, ver'm.

PROPOSITION 1 We have

R . -2 )
(8) Pu(x) =-5lm [ u(y)((x-y+ie) “ + (x-y-ie) ) dy
€0 -0
forn u € C:GR) , X€ER .

PROOF For € # o we get from Fourier's inversion formula
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4 ‘ BRUNING

+oo

S um) ((=y+ie) 2 + (xy-ie)™2) dy
too . - +oo0 .
=‘2‘11T XS [ el ((z-ie) 2 + (z+ie)d) dz &

and from the residue theorem

- 2nig| oE6 , € 2 0,

+co
- P

. N2
(z-ie) o, e < o.

This implies

B

+oo

| uly) ((x=y+ie) 2 + (x-y-ie)™3) dy
too . -~
== 1 2 g oelEl Gy ax

hence the result.

Thus we are led to investigate the operator
= a b o
KU(X) ¢ = Pu(x) * (';( + "]—_’i) U(X), u € Co\((oJ))’ X € (011),

where a, b = - 1. K defines a symmetric operator in L?([o0,1]) with
domain C:((o,n). We will also consider the operator

Ku) : = Pu) +%u(x) s UEC:(]&.‘) » X ER,

which is symmetric in L? @R,) with domain C:GR*) . Now using (5), the

symmetry of P, and the identity

- 2 Re uy) U@ = [u@ - uy|? - @ |? - fue) |?
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BRUNING 5

we get for u € Cc;((o,ﬂ)

11
) =3 JJ 20 g gy 4 I 2 1) tueo?
00

and similarily for u € C:Cf&k)

oo 2 =
(Rafu) =3 JS [PQ2D ax gy + £ 2D e ?
o0 Y (o] X

Consequently, K and K are positive operators and their Friedrich
extensions exist; we will denote them by Q and Q respectively. More-
over, from the definition ([12], p. 317 £) and from [101, p. 81 we
infer that

B

© 2@ <u’%(0,1), 2@ <H’®) ,

D denoting the domain. By the well known compactness properties of
1/ ((0,1})([9] Theorem 16.1) we obtain the following result already
proved in [3] and [4].

PROPOSITION 2 The spectrum of Q consists only o4 eigenvalues

SA <A< <A v each having finite multiplicity.

P possesses a useful factorization. To describe it we introduce the
Hilbert transform

oo . -
J e™sgmru@) &, ueCR , xER,

which ‘is a pseudodifferential operator of order o with symbol sgn &,
thus extends to a continuous linear map o ®) -~ H® ®R) for s €R.
Writing

e d
D: = 1'"&

we arrive at the factorization
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6 BRUNING

(7) Pu = Hhu = DHu,uEch(IR)

Note that H is unitary and that H2 = id. We shall need the following
property of commutators. :
_LE__MML@trZo,oSssl

1, and r+s > olety e R 0 I°®)
and denote by MlP the conresponding multiplication operatorn. Then the

commutaton HM‘U - MUJH : L2R) » L2R) restnicts fo a continuous map

HS(]R) —>HS'(]R) for every s' < rts ——12-.

~ -~ -~
PROOF We have for f, g € L?(R) the identity f g = (Zﬂ)—1 fxg,
~ denoting convolution as usual. Hence we have for u € H® ®),
v €_C:(IR)

+oo L A N
(EMMED B =7 V(D) (sgn € W(E) - YHu() d8

1 +oo  too

=1 J [ %® um v(E-n)(sgn & - sgn n) dn dE .

) (2m )

On the support of the integrand we have |&-n| = |g| + |n| .
Thus we get for o <28< r+s - Vi by Cauchy - Schwarz

I ((HMw'MwH) ulv) |

s/2
N (P Y G M0 T "%,
< A (1+le=n|)  |v(E-m| -
@l = (ep BT .
‘ £)

. l;((rls) s € dn
(1+]g]9)

<

cs vl Hully Nvl

|
\
-(r+s-1/2) + 26 '
Using the Riesz representation theorem together with the fact that
|
|

the pseudodifferential operator given by
1 oo ixg 2 /2 A oo
A = o [ e 1+l uE) dg¢ , u€C ® ,x€ER,

extends to a continucus linear map o R) ~ HS_TQR) we conclude that
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BRUNING 7

r+s-1/2 - 2

(M, -MID u € H $ ®) and that

MM ull g 1/s s < Call vl 11wl

The factorization (7) enables us to extend K to a linear map sending
L?([o,11) into D'((0,1)), the space of distributions on (0,1). De-
noting by E; : L?([0,1]) » L2(R) the extension by o and by

R1 : '@ + D'((0,1)) the restriction we put for u € L?([o,1])

. = a b
(8) Ku: = R,]DHE.]'U + (E + -1—_X) u

where differentiation and multiplication with C -functions is carried

out in the distribution semse. It is easily checked that the adjoint
* : P ..

operator K in L?([o0,1]) of K|C0((o,1)) is given by

* = k|K (12 ([0,11))

Similarily we extend K to a linear map LZGR+) -~ D'R,) by

Ru : = RDHEu + % u, u € L*R) ,

where E : L*(R,) » L?(R) denotes extension by o and R: D'R) + D' Ry)
the restriction. We also find

B =rETarw)) .

The basic estimate of the next section will be derived from the
following regularity result.

IEMA 2 Lef o <s < % i

1) Suppose u, £ € H>((0,1)) and Xu = f. Then

x(1-x) Eu € HS'GR) fon everny s' < 1+s

and

1+s
u € Hloc((o,1)) .
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8 BRUNING

2) Suppose u, f € ©°®R,) and Ku = f. Then
xEu € H (lR) for every s' < 1+s

and
1+s

1oc Ry -

PROOF We give the proof of 2) only since 1) is proved analogously.
Given @ € C:(JR) with supp ¢ < (A,A) we put

xx), x >0,
e, x) =

0, X<o0

By assumption we have
(9) RDp HEu = R, DHEu + R(Dw,) HEu

S

= ¢ f - awu+R(D(p)I{Eu.

Now @, € H' ®R) foreveryr<% if o € supp ¢ and ¢, EC(]R) otherwi-

se. Moreover, if g € C @®,) with sup (lgx)| + Ig'(x)1) < = then
x>0

gVEHS(lR*) whenever v € HS(JRk) and 0 £ s <

ol =

This implies ¢ f, agu € Hs((o,A)) . From the continuity of H and [9]
Theorem 11.4 (for R,) we derive RHEu € HS(JR*) hence also

R(Dp,) HEu € " ((0,A)) and Rp HEu € B ((0,A)). But then we get from
(9) and [9] Theorem 9.7 that Rp, HEu € H1+s((o »A)). Let us write

Wy * R(pHEu— DX W,

Then w, € H((0,A)) and w; is absolutely continuocus on [0,A] ([10]
Chap. 2, Théoréme 2.2) with w1' € Hs((o,A)). Consequently

W (o) 1 X
wz(x) = 5 * o ({ wi(t) dt, x € [0,A] .
wy (0)
By Hardy's inequality ([10]1 Chap. 2, Lemme 5.1) ——— € L2([0,A])
hence o (0) = o. This implies that DEu)1 = EDu)1 = - in'E wi

€ ) by [9] Theorem 11.4 again hence as above
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BRUNING 9

Ew, = ¢, HEu € HHS(IR).

1
Finally, the identity
o,Eu = H Eu = H(HM , = M, ) Bu + Ho,fEn
combined with Lemma 1 leads to the conclusion
¢,Eu € Hs'(lR) for every s' < 1+s
if o € supp ¢ and
oFu € HS®)

otherwise. The proof is complete.

We expect that the above assertions can be improved to yield s' = s+1.
The restriction s <—;— however seems to be natural since u = const is
a solution of the equation Ku = owhena =b = - 1.

3. The kernel of e™SR

According to the spectral theorem e_SQ is a bounded operator for s = o.

Moreover, the abstract Cauchy problem

(10) @ +5§§) u(s) = o0, s >0, limu(s) = u
50

has a unique solution u € C1(JR*, L’®,)) N CO(IR+, L*®R,))

o)

with u(s) € D(Q for s > o, namely
u(s) = eSQ u.

Now fix x > o and pick ¢ € CZ’[]R*) with @) = 1. By (10) and Lemma 2,2

we have tpe_sQu € H1 R) for every s >0 and u € 1?2 R,). Since
Pe = D(Ho-¢H) + (D9) H + @P it follows from (1) and Lemma 1 that

loe™%]l, < ocll Poe™ Rl + [l oo™l )
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10 BRUNING

< C (el + [lull )
hence by the spectral theorem
Ll

oo™l < c

X 0]

By the version of Sobolev's inequality given in [1], Lemma 13.2

(applied to some interval containing supp ¢) we thus conclude that
= 1/2
-s T+s
le Qu(x)l < C () I u|]O , S, X > 0.

But this implies by the Riesz representation theorem that the distri-

‘bution kernel of e_SQ, to be denoted by I_’s, is a function satisfying

7= 2 1+
an g T G,y "dy < CX(TS) , s, X > o0.
The importance of fs for our problem stems from the following invari-

ance property under the natural isometric action of R, on L? ®,) .
This is defined by

U ) = ol/? f(ax), & >0, x >0, f € L’®R,).
PROPOSITION 3 1) For o > o we have U ( @) ¢ 2@ and

Qu,, = 'aUaQ

2) For o, s > 0 we have
U e—saQ = e_S(j U
o o

or equivalently

(12) fS(X,Y) = O TOLS(OLX’ ay) , XLy >0 .

PROOF 1) Certainly Ua(C:G&k)) c C‘:(IR*) . One easily checks that

(13) Kanu = ocUOLKu , U€ COCR,(),
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BRUNING 11

hence

(I_(UaulUOLu) = oc(UOLI_(u[UOLu) = a(Ku|uw) .

By the definition of the Friedrichs extension it remains to show that
=% =% =¥
U,( D(K)) = D). For v € D(K) there is v* € L?®,) such that

(v|kw) = (v*|u) for all u € CDSGR*) .

It follows for o > o from (13) that

u, vikw) = (v]U,, Ku) = O‘(VIKUVOL u)

1/a
% %
= a(v |U1/OL u) = (oaUa v |w

: ok % *
ie. U v€ DK)and KU v=0a0 K v.
o - o o

2) We put for u € LZ(IR+) and o > o

-s0Q

o o= > .
vu(s). Uae U, S 20

From (13) and the spectral theorem we find

5, 0 - : -
(Q +§—S-) Va(S) =0, >0, i—)JJ(I)l VO(.(S) - UOLu ]

thus ch e-SOLQ u= e—SQ UOL u,(12) is an obvious consequence.

We can now improve on the estimate (11) for the L?-norm of fs'

LEMMA 3 For everny € > o there {4 a constant C. such that for

0<X,s <1

L = 2 Cs
(9 JTen® dy <
0

€
XS

in (12) we get from (11)

PROOF We first assume s < x. Choosing o = 51(-
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12 BRUNING

s 2 T Ts 2
[T dy=— [T 01, H% a
(o] X (o]

1 T = 2 c C
=z .I r (1 ’Y) dy £z £ —

X g s/x S *Es

Now assume x < s. We choose o = % in (12) to find
T = 2 1 7 = 2

) JTen“ =g [ I,EN° .
0 0

It follows from the spectral theorem and (6) that f‘1u and

9 /2

55 fsu are elements of H' ®,) for every u € L*(R,).

s=1

Hence we obtain from (10) and Lemma 2,2 that

o

R) for every s' < 3 .

- S'
v :=xET;,u€H >

1 loc
As in the proof of that result we see that v is absolutely continuous
and v(o) = o thus

I‘1u(x) = v'(t) dt, x> o0 .

O™

1

x
T 1

But v' € Hloc(R"‘) for every r < 7 SO we can apply [9] Theorem 11.2

together with the Cauchy - Schwarz inequality. This yields

o X X 2 1/2 _
IFued| < 101 % an'/2 ( f"—g—% ay sc, %" vz
[¢] o t ?

In other words: the family of bounded linear functionals on L2 (]R+)
given by u = x° 1:1u(x), 0 <x <1, is pointwise bounded for every

e > o. Therefore, we conclude from the resonance theorem ([12] p. 69)
that

o C
If‘1(x,y)2dys —%foreverye>o,o<xs1,
o x

hence by (15) and the assumption x < s < 1
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IA

J T e’ dy <
0 .

C

]

ﬁm

The proof is complete.

Following the method of Seeley [11] we now proceed to construct a
pointwise approximation to f‘s (x,y) locally away from o. Actually we
only need the result forx =y =1, 0<s < 1.

LEMA 4 For o <s <1 we have

F (1,10 - L5 /4

ST

IA

iz | Cs
il

—X— sgnt ’
PROOF Introducing the curve ¢ tR3t » te -1 € ¢ we obtain
from the spectral theorem and Cauchy's integral formula

) &R =1 [eStGpnT 4.
C

Obviously
= =1 C 2
“ (Q'C) u ”0 < T‘C"l' ” ullo » T € CGR) » UEL (-[R+) ’

so the integral (16) is convergent as a Bochner integral. To construct
a good approximation to (§-%) 1 e put

a1(x,£) : = Tw|g] , ao(x,g) :=%,x>o , EER,

and as in [11] p. 290

. 1
b_,(x,€,2) : = FET=T °

3.k 9.k #-p
b (a0} + % GF) " b_q_s(-ix) =0,
-T-m 1 j+krL=m BE) -1-3% "ox kT
i<m

mz1,x>0, £€ER, ¢ ¢R,,
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in particular

b_ (X’E’C)=_ —a—*_'_
2 x(rlg| -0)°

b L (x,E C)A= iam sgn & + a2

, =3 XZ(WIE‘ _ C)3

Now we choose ¢ € CZGR*) with ¢ = 1 in a neigborhood of 1 and
Y € COGR*) with ¢ § = ¢ and put for f € COGR*)

[HI e IRUN I
-

b_;(,E,0) £(€) &, x>0, L ER, .

Denoting by Z the component of (~c(®) not containing R, we get from
[11] Lemma 2

C N
o vtlly < zp £l - o€z,

hence

L= -sg
Es.—m ({e (.DF(:L[)dC

is well defined as a Bochner integral. It follows from [11] Lemma 2
that
S C
I 04, - eFu@-0) £, sqgpliell, Lzez

Thus the operator function

o ) T
GC ;= (M(p LDFC\IJ(Q £))(Q-2)

satisfies

an 16l < TZTT” £l cez, fERR),

and is holomorphic in Z. Using Cauchy's theorem we then find for

£ € C R,
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o1 -Sg_
Together with (17) this implies the estimate
-sQ 1/2
IR~k £ll, scs?| g, £el?®) ,0<s<1.

We now apply- [2] Theorem 2.1 to the operator (cpe_sQ -E.)| 12 ({o,2D).

This shows that the distribution kernel of ESILZ([O,Z]) is a function
Es(x,y) and that

(18) o0 T txy) - B ooy s e/ ocxy<2,0<s51.

It remains to compute ES (x,y). For £, g € Cog((o,Z)) we have

Gfle) =75 | 800000 J X ()

L ng EON]

[ 755 by (x,£,8) dz df dx

1
27r1.1 p

]

since the integral converges absolutely. Hence by Cauchy's integral

formula
(Eflg) = :
oo co oo .
f% [T g@Emevy) J dx-Y)E-smlg] »
00 L
2 Sj
' .Z ]—' CJ'(X,E) dg dy dx
j=o0
where
i 2
CO(X,E) =1, C1 (X,g) = —% s CZ(X,E) _ %—E—i

X
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16 BRUNING

Therefore
o 2
- 2
B Ge,x) = 2B oTSTE (g S5 2o ha
o) 2x
1 a a2
=00 (- = =t g s)
TS X 2mTx

From this identity and (18) the Lemma follows.

4. Asymptotic behavior of the eigenvalues

Our study of the eigenvalue distribution of Q is based on properties
of the Laplace transform

Lis) : = [ eStaN(), s> o,
(o]

where N(t) denotes the number of eigenvalues of Q not bigger than
t (counted with multiplicity). Formally, L(s) is the trace of the
operator e"SQ, i. e. if T denotes the distribution kernel of ™R

we have !

L(s) =

O — —

I‘s(x,x) dx

provided the integral exists. Using arguments analogous to those
given in section 3 we see that Fs is actually a function and

1
J’l‘s(x,y)2 dy <o ,,0<x<1.
)

Now we use our preceding results to show that fs is a good approxi-
“mation to I‘S away from 1.
IEMMA 5 Llet o <s <1 and 0o <x < 2/3 . For every € > o there 44 a
constant C_ such that

C

2/3 = 2 €
(19 Gy - Ty  dys < s
o b
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PROOF We choose @ € C:((-—1,1)) with ¢} (-2/3, 2/3) =1 ando <@ < 1.
Recall the operators of extemsion by zero, E : L2 ®R,) - L2®R),
E, : L%(lo,1]) » L2@R), and introduce in addition

E; : L2(lo,11) » L*®R,). We put for u € L?([0,1]), 0 <s < 1

.= o5t oS0
Bsu. cpE1e U.

It is easily checked that there is a sequence (vn) c C:( (0,1)) with

- — . 2 )
111—)10“:1» v, = Bsu in L*@R,) and (K(Vn—vm) Ivn-vm) + 0, n, m - », Moreover,

by the properties of e"SQ analogous to (10)

* omSQ, r3e 5

z , 0 _ a
(K +a—§) BSU—R(DH"'-)‘(‘)E(DE.‘ +(DE1 ——'———as

RD(Ho - ¢H) E1e-sQu + R(Do) HE1e'SQu +

- - -sQ
+ chDHE1e SQu + Rq)% E1e SQu + LpETaeTg

&S 4 (% ..b ) o-5Q, 4 3e—sQu)

T-x ?s

+
: LpE1 (R1DI-1E1

In view of Lemma 1 Cs is a continuous linear operator
L2([o,1]) » 12 (JR+) whose norm is bounded uniformly in s. Hence
Bsu € ?D(Q and from Duhamel's principle we get

— s —
Bu=e Qu + f I Cald O P
S o t

Restricting now to u € L?({o0,1]) with supp u < [0,2/3] we derive from
Lemma 3 for o < x < 2/3, 0 < s <1, and every € > 0

5 ‘ C s
1e7%%00 - e <= Jull, S0P a
X (o]
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C

1/2

< = s'2
X

which implies (19).

Next we have to estimate T_ and fs off the diagonal.

PROPOSITION 4 For o <x <+, 0<s <1

5 , and every € > o we have

1 o C

@)  reen’ay e [ Fenias £ s,
2/3 _ 2/3 X

PROOF We pick ¢ € dz((—Z/S, 2/3)) with | (-1/2, 1/2) = 1.
For u € L2(lo,1T) we compute
@Q+52) v e = rmEe sy @+ e

"V Z% e+ RTD(Hw_wH) E1e_SQu Ry (Db) HE1€_SQu =:D.u

where D_ : 12(lo,11) + L?([0,1]) is linear and bounded uniformly in s.

Restricting to u with supp u < [2/3, 1] we find as in the proof of
Lemma 5 for o < x < 1/2

e—sQu(x) = ? e~ (5-1Q D,u dt
)

hence by Lemma 3 and Lemma 5

C

mlm

1
f I‘s(x,y)z dy < s .
2/3

X

A similar argument for l:s completes the proof.

We are now ready to establish our Theorem.
PROOF OF THE THEOREM Let o < s < 1/2. By the semigroup property of
¢ 5Q and the symetry of r, we find for o <x < 1
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BRUNING 19

1
2
I‘Zs(x,x) = £ Ts(x,y) dy < .
Next we introduce the isometric involution

o : L2([0,1]) 3 £(x) » £(1x) € L%(lo,1]),

i.e. o is reflection in 1/2. Denoting by Q' the operator arising from
Q by interchanging a and b it is easily checked that o( 2(Q")) = »(Q
and

Q'=0Qgo

hence
T;(X,}’) = FS(1—X’ 1_}’)9 0 <X, ¥y< 1’

and therefore

1 1/2
21) ] Tr_(x,x) d&x = [ T!(x,x) dx .
1/2 s o °

Now we have for o < x < 1/2

2/3 _ ) 23 _ )
Mo = [ty - Tx)” &+ I Fen? o

2/3 ] _ 1 )
2 g (TgGoy) = Tx,y)) T (x,y) dy + 2;3 rs,y)” dy
J
(o]

+

F oo ay + R

fzs(x,x) + RS(X) .

Combining (19), (20), and (14) we find for ¢ >0 and 0 < x < 1/2

C
= €
T Gox) - T x| < —
X
Fixing € : = 1/2 it follows that
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1/2
22) | II‘s(x,x) - f‘s(x,x)l &x<cC.
o]

Putting o : = 1/x in (12) we find

1/2 _ 1/2 1 = '
(23) I FS(X:X) ax = .or SE PS/X(1’1) dx
o} 0
w T, (1,1)
= J 7 dt
2s t
where we have substituted t : = s/x in the second integral.

From Lemma 4 we derive

1T,

1 1
1 dt a dt
24) [ ——— At == [ = - [ 5 +w(s)
2s t 1T2 2Js ‘c2 m 2s t

where

|w1(s)| <C.

Thus we conclude from (22), (23), and (24) that

172 1 a
| J r(6x) d&X = —5— - = log s| <cC.
o 21°s m

Finally, taking (21) into account it follows that e_SQ is a trace

class operator and that for s + o

1

1
I FS(X,X) dx = 7
(0] mSs

+Elf2:Q log s + O(1)
T

completing the proof of the theorem.
PROOF OF THE COROLLARY The well known Tauberian theorem for the Laplace

transform derives from

e St anee) ~—;— , S~ o0,
s

o— 8
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the conclusion

N(t)~——tz—, t >,
T

For € > o and n€N we obviously have

(25) N(,-e) sn<NO) ,

which implies
. n _ 1
1im ">\— = -—2-
e n ™

Assume now an asymptotic relation of the form

An=1r2n+onlogn+o(1ogn) .

From this we get A - A, ; = o(log n) and

A
S
n = F -T—TT log )\n + o(log >\n) .

Together with(25) this implies

N(t) =5 - % log t + o(log t)
k) ki
and by integration
{ ¢ St dN(t) = -—%—— + ~%—— log s + o(log s).
0 ‘s o

Thus we must necessarily have o =a + b .
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