Analysis 3, 347-354 (1983)

Analysis

© R. Oldenbourg Verlag, Miinchen 1983

ON THE DEFICIENCY OF CERTAIN SETS OF EXPONENTIALS

Jochen Brining and Joachim Petzold

October 14, 1982; revised May 18, 1983

Abstract: For certain functions f € L2([-1,1]) we show that the system
iz t
n
(e )nGN
_or a naturally related function has finite deficiency in L2 ([-1,11).

where (zn)nGN are the zeros of the Fourier transform of £

The deficiency is calculated.

42 A 65, 42 C 15, 42 C 30

1. A system of oscillators can be analysed by decomposing all inputs

and outpucts according to its eigenstates. If these are not known or if
no satisfying mathematical model of the process in question does exist,
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as for example in the case of electroencephalography, one tries to find
characteristic features of the output by using one of the standard
transforms. One may ask, however, for procedures which are more natural-
ly adapted to the output and do not impose artificial frequencies on
the system. It is the purpose of this note to propose one such possibi-
lity. More precisely, if f € Lz([-1,11) we try to decompose f according
to the system (elznt)nelN where (Zn)nGN are the zeros of the Fourier
transform of £ or some other function related to f. Obviously such a
system cannot be complete in L2([-1,11). Our observation is that under
simple assumptions on f the deficiency can be calculated explicitly and
turns out to be finite. This means that nonharmonic Fourier analysis
(which is, of course, a well established theory, see e. g. [1],[5])
could be a useful tool in many questionsof the above type.

We wish to thank the referee whose valuable remarks greatly improved

the presentation of this work.

2. Throughout Sections 2 - 5 f denotes a function of class C(k)([—1,1]),

k z o, such that f(i)(—1) + 0 for some index i < k and f(j)(1) + 0 for
some index j < k, where these derivatives are interpreted in the one-
sided sense. We denote by a the smallest index i such that f(i)(-1)¢ 0 and
by b the snallest index j such that £37(1) + 0, and we set, by defini-
tion, p := minf{a,b}. Thus, p is the smallest index i such that

f(i)(—1) + 0 or f(i)(1) + 0. According to a theorem of Pélya [2] the

Fourier transform
1 -1zt
F(z) := | e f(t)dt
-1

has infinitely many distinct zeros z,, n € N. Let z have multiplicity
m and put
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q:= £ (m-1)
n=1 o
iZnt) spans a
neN
proper subspace of L2([-1,1]) the codimension of which is called the

which might be infinite. The system of exponentials (e
degiciency of the system. Qur main result reads as follows:

THEOREM Under the above hypotheses on f we have q < « and the dééé—
iz t
, n ; .
clency of (e )nGN 45 p+q+t.
An important_aspect of the Theorem is the fact that the zeros are not
counted according to thein multiplicity. In all previous results of this
general type known to us (cf. [3]) the zeros are repeated, i. e. one
studies the deficiency of the system
. iz t
J ny
(t" e ‘nelN
osjgm -1

Our Theorem makes use of the pure exponential terms only. It is because
of this feature that the theory of nonharmonic Fourier analysis is
available to study the convergence, as explained in Section 6.

3. For the proof of the Theorem it suffices to establish the following
two lemmas.

LEMMA 1 The system (1) has deﬁiciency p+l.

LEMMA 2 The function F(z) 4in the Theorem has only §initely many multi-
ple zeros.

In passing from Lemma 1 to the Theorem we omit m -1 terms in (1) for each
zero of multiplicity m, > 1. Hence the set of omitted terms spans a sub-
space of dimension ¢, which is finite by Lemma 2, and the Theorem fol-
lows.
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Before turning to the proof of the lemmas we make. two preliminary re-
1zt whenever £(t) is ortho-
izt iZnt

gonal to e~ ", the completeness properties of the sets (e ) and
-iz_t

(e n ) are exactly the same. It is more convenient to deal with
-iz_t

e ™) in the sequel, and we shall do so. Second, if h € L*([-1,11),

marks. First, since f(-t) is orthogonal to e

an elementary theorem of Titchmarsh ([4], Lemma 2.2) gives

1. .
2) | [ e ith(pyat | = o(e?Isin Ol
!

uniformly in 6 as r,- o, where z = rele. We use this repeatedly with

various cnoices of h.

4. Proof of Lemma 1 By partial integration

3 F(2) = ¢"A() + e 2% + I | et W (pyat
(iz)" -1

where A(z) and B(z) are polynomials in 1/z of the form

o
a+l
z

o, B(z) = b3+1 ¥ ..., oB%0,
Z

4 A(z) =

where the terms not written involve only higher powers of 1/z.

. -iz t
If g is orthogonal to e M) then

neN
osjémn—1

1 . =iz t

% t)e ™ g(t)dt =0, n €N, osjsm -1,
that is, the Fourier transform G of g vanishes at all zeros of F and
at least of the same order. By the Hadamard factorization theorem
G(z) = F(z)H(z) where H if of order 1 and finite type. For fixed 6,
0 <9 <7, we see from (2) and (3) that '
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. r .
i6 € sin © 1
|F(re )|2C—F1—- for r 2z &

with some constant C > o, and by (2) again

G(reie) = o(erSin e), T o,
These inequalities combine to give H(reie) = o(rb+1).An entirely simi-
lar argument with the roles of A and B interchanged gives

H(reie) = o(ra+1) as r »wand -1 < § < 0. The two inequalities together
with the Phragmén-Lindeldf theorem show first that H is a polynomial,
and second that the degree of this polynomial is at most p. Hence the

deficiency is at most p+1. On the other hand by partial integration

j izt ()
(iz)’R(z) = [ e Y9 (pat, o < isp.
-1

Since the functions (f(j)(t))onép are obviously linearly independent

this shows that the deficiency is at least p+1. This proves Lemma 1. o

Let use not~ .nat this result is consistent with Theorem 22 of [3]
acr~ g to which the deficiency is |m| if m is the largest integer
.uch that F(x)/(1+x2)m/2 does not belong to L2(R). In the present case
this largest integer is m = -‘(1+p), and therefore the deficiency is

1+p.

5. Proof of Lemma 2 Since T(t) := f(-t) also satisfies the assumptions

of the Theorem, it suffices to show that F(z) has only finitely many
multiple zeros in the upper half plane, Im z 2 0. Suppose then that
Im z 2 0. If the third term on the right in (3) is denoted by I(z) we

have
(5 F(z) = eiZA(z) + e_iZE(z) where E(z) = B(z) + eiZI(z).

For sufficiently large |z| clearly
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A'(z) a+1
©) 'mr S Tl

and a short calculation using (2) together with the hypothesis Im z 2 0
gives

B(z) = 0(|z| ™, B'@) = o(]z|™™h

as z » ». Hence, for large |z|,

E'(z)
CHEN X

1.

Let C be so large that (6) and (7) hold for |z| 2 C, Imz 2 0 and let
z be a multiple zero of F in (5) satisfying these two conditions. Thus,

eiZA(z) + e_iZE(z) =0

H
et?(A'(2) + iA(z) + e TE(E'(2) - iE(z) = 0 .
This is a linear homogenecus system in the two unknowns elZ, e_lz,
which of course are not zero. Hence the coefficient determinant vanishes,
giving

A'(2)

o S A

By (6) and (7) this implies |z| € a+1 which completes the proof of Lemma
2. o

6. To describe a particularlyconvenient situation for applications
we assume f real valued and put T(t) := tf(t). Denote by ¥ the Fourier
transform of T with zeros 'Zn. Note that 'Zn's are the saddle points

of F. If f satisfies our condition with p = o so does T and if more-
iz t
over ¥ has no multiple zeros we get from the Theorem that (e )nGN
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has deficiency one. The orthogonal complement of the span of
iz t
(e n )nGN obviously contains g(t) := tf(-t). But

1 1
[ f() gl®) dt = [ tf(t) f(-t) dt =0
-1 -1

so we can try to represent f as a nonharmonic Fourier series
<«

(8) f(t) = £ o e
n=

To compute the coefficients we put

iz (u-t)

. t
R D) := S S F(w) du, t € [-1,1], n €N.

An easy computation shows that

1 i?mt
-f1 e h—I;(t) dt =6 _,n, mEN,

i.e. (h n) neN is a biorthogonal system for (e

1
o = [ £(t) Bn(tj dt, n €N .
-1

n

It remains to establish some sort of convergence for (8). To do so we assume
£{-1) + £(1) % 0 and note that by (3) and (4) the zeros of ¥ coincide
with the solutions of the equation

tanz=B+Ri(z) s

0, and

satisfies 1im IRi(z)l = 0. Hence outside some large circle the zeros
Z |00
are among the numbers

IA v

where B8 € { and R (z) is holomorphic for |z| large and Im z

Z_ +tnmm+ g
(o] m

: 1
where z_ € ¢, m € Z with |m| 2 C, and [eml <7-
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Using the results on Riesz bases and equiconvergence in [5] we see
that the series
w i(Z-z)t
e © f(t) = o, e noo

is convergent in L2([-1,1]1) and equiconvergent with the ordinary Fourier
-iz t
series of e ° £(t) on compact subsets of (-1,1).

The analogous considerations in case p > 0 are more cumbersome. It
should be noted, however, that p = q = 0 for T is a generic condition
in C*([-1,1]) i.e. is satisfied in an open dense subset.
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