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On the asymptotic expansion of some integrals

By

JOCHEN BRUNING

1. Consider the integral

1
1) I(s):= gg(X/S)f(X) dx

where g € & (R), the Schwartz space, and s > 0. If f € C*(R) then it is easy to calculate
the asymptotic expansion of I(s) as s — O:

g+t f(j)(O) ©

Is)~ ¥ g g(x) x/ dx.

izo j!
Asymptotic expansions for integrals of this type are needed in many places (e.g. in the
theory of special functions) and consequently there is a vast literature on this subject (a
rather comprehensive treatment can be found in [6]). One is mainly concerned with
weakening the assumptions on fi.e. one replaces the Taylor expansion of f at 0 by more
general asymptotic expansions involving for example real powers of x and integer powers
of log x.

The multidimensional versions of (1) i.e. integrals of the type

J(S):= [Ojl]" g((p(x)/s) f(x) dxa X = (xl""’ xn)a §> 05 v

do not seem to have attracted a similar interest. If ¢ is assumed to be real analytic there
is a systematic treatment, however, based on the coarea formula and the resolution of
singularities (cf. [3], Ch. ITI, [4], [5]). Thus one reduces essentially to the case

2) oxy=xp...x» a,eZ,, 1ZiZn

Integrals of this type play an important role in the asymptotic expansion of the-trace of
the equivariant heat kernel [2] which lead us to look for an elementary real variable
method for their asymptotic expansion. The method to be presented in this note turned
out to work in much greater generality, namely we can allow certain singularities for f
and, more importantly, the o, in (2) can be chosen arbitrarily in R*:= [0, o). Related
integrals have been treated recently by Barlet [1] in the analysis of complex spaces. As a
special case we obtain a short and simple proof of his result (Corollary to Theorem 2).
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2. Before presenting our result we have to prepare some notation. For x € R” and
aeR% we will write

x*i= xPxpn
andif x;,>0,1<i<n,
log*x:=log* x,...log*x,,.
For f € C*(R"), g in the Schwartz space (R"), s > 0, o, f € R and y € Z the integral

(s, f):= [Ofun g(x*/s)x" log’ x f (x) dx

is well defined. To avoid trivial cases we will require
>0, 1=Zisnh

Let us write K, := [0, 1]”. Also, since we are not going to vary the parameters a, 8,7, we
will suppress the dependence of I on these variables. We want to derive an asymptotic
expansion for I as s —» 0 but we are also interested in the dependence of the coefficients
on f. Since I defines a distribution with support in K, I(s,.) € &'(K,) for fixed s > 0, it
is reasonable to look for an asymptotic expansion of I in.&"(K,). Thus for a sequence
(V)nen © R with lim v, = 0, me Z ., and distributions I, € &'(K,) we will write

n=*c

1)~ T s"logs I(f)

as s — 0in &'(K,) if the following is true: there are sequences (Uen < ]R with hm =
and ();.n = Z, such that for NeNand 0 <s <1

3) (s, f) — ZN s* log*s Li(f)| S Cys'™ sup 0% f ()l .
Oékgm nsZ'L.InlnélN

with some positive constant C. Here we have used the multiindex notation

ol f

.. Ox™

M =mn+...+n, and GfE)=77 )

forneZ”.
We can now formulate our result.

Theorem 1. Let o, fe R with 0,>0, 1 <i<n, and yeZ'. For ge (R") and
fe C*(R") we have

[ gGefs)x" log’x f(x)dx ~ ¥ 7T loghs Iy(f)
K, jz 0
I+

151

Il/\ '

0k

||A+

as s— 0 asymptotically in & (K,). The I, are distributions with support in the set
{xe K,|x*=0}.
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The proof of Theorem 1 will be done by induction on n and occupy Sections 3
through 7.

3. We start with the case n = 1. Using the substitution u:= s~ *x and Taylor’s

formula we find

I6s,f) = ig(x“/s) ** log!x £ (x) dx

s~ /e

= s+ = Z (D oa~ilog's f g uP log"Ju f(s**u) du

f"’( )

~ Z S(ﬁ+1+z)/a10g

Py —— (™ _f g uf* log" I u du
0=j=y

as s — 0 in &'([0, 1]).

4. Now suppose the theorem is true for all dimensions m, 1 £ m < n — 1. Before
treating the general case we deal with the special case that f is independent of x,. Using
the notation x =:(x/, x,) for x € R” and assuming 0 < s < 1 we write

I(s,f)=<f + )KI g9(*/s)x” log”x f (x') dx’' dx,
=:1,(s, f) + Ly(s, f).

The substitution y,:= s~ Y x  y':= x" yields
(5. ) = 3 sV logts a4 () § () o8 ¥ log ™"y, £ () dy.
Substituting x, =:s¥* 4~ in I, we find
s f) = s 0 () (= 17T logls
o

1
- | logm~Tuu "2 ['(uon, f) du

sife,
where

I't,f):= j g(x'“Jt) x'F log”’ ¥’ f(x)dx, O0<t<1.

Kn- 1

Using the induction hypothesis on I' we write with N sufficiently large

@ O = B e g L (f)
0gkg|y+n—-2 '
1<isn—1
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and
1
{ log™Juu™t"2 I'(u*™, f) du

sl/a"

1 slie, .
- (g - g > log~u u™ b2 (I' — I') (u™, f) du

1
—j — By 2H (B it 1) e /
A1) | ot
A

+ 2
0<j<N
0<k=|y[+n-2
1<isn~1

=:(J; + Jo + J3) (5, /)

n

Certainly, J, is a distribution in &'(K,) independent of s. The elementary formula, valid
forkeZ,,acR, and u >0,

k

urtt I_ZO Coq log'u, o+ —1,
5 loghu u®* du = -
( ) .‘- g logk+1u

k+1° #=-1

shows that s®=*1/ J.(s, f) has a (finite) asymptotic expansion of the desired form.
Finally, if N is large enough (I' — I") (u*", f) has an asymptotic expansion of the form (4)
by hypothesis but involving positive powers of u only. Using (5) again and an obvious
remainder estimate we conclude that J,(s, f) has an asymptotic expansion of the announ-
ced form, too.

5. We now describe a technique that will enable us to reduce the general case to the
special case already settled: We introduce a new variable ¢ € (0,1) and put ¢:= s/e*.
Writing I(s, /) = I(¢ 6, f) we shall show that

(6) I(e™0, )

g+ Danfar Bt + Dl o0k g 1ogh g Iy (f)

asymptotically in & (K,) as &2 + 62 — 0. The two-variable expansion is defined similar to
the one-variable case the only difference being that in the remainder estimate (3) we
replace s by (2 + 0?)V/2 It is easy to see that the coefficients I;;4.,-(f) are uniquely
determined. Now we substitute in (6) & = s*/2 = g, 0 < s < 1. Then we obtain an ex-
pansion for I(s,f) in &'(K,) as s—0 involving the functions log*s s’ where
0kl +n—1 and Aypi=B +j+ D/t B+ K + 1)/,,,. Resubstituting
s:= g% ¢ we obtain a second two-variable expansion for I(¢* o, f) and comparing the
coefficients we see that nonzero coefficients occur only if the exponents of & and o are
equal. This concludes the proof of Theorem 1.
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6. To apply the technique described above we write

1(s, 1)

£ 1
= (i + !) xBn log™x, Kj g(x*/s) x'% log” x' f(x, x,) dx’ dx,

=:1y(s,0,f) + I (s, 0, f).
Substituting x, =:¢ey,, x' =:)" we have with y;:= (¢, j)
1(60,) = 32 0 log s | g(y#i0) 1 oghy £ (7,03, d.
Replac%ng S{¥', ey,) by its Taylor series around (), 0) we certainly obtain an asymptotic
expansion in &'(K,) as &2 + ¢% — 0. Thus
1i(s,0,f)
~ E D o e [ 419 3, logy 8, (7,00

< il

0=j=vn

Applying the result of Section 4 we obtain an expansion of the type (6) for I, (s, s, f).

7. On tl.le support of the integrand in I, (e, o, f) we have s/x* < ¢. Therefore, we can
apply the induction hypothesis to obtain the following asymptotic expansion in 8'(K,)
as e+ 020 ’

™ 15,0, f)

(o em)Prti* e Jog¥ (g goe) (5) (— o ¥

1
I Vel logn K x [ (£(+,x,) dx

&

ne

Since by hypothesis the I, are distributions with support in K,_, we have
al;c,. I;kz(f( © X)) = Ijkz(al;,,f( X)), k=0

Using a sufficiently long part of the Taylor series of L (f (-, x,)) around x, = 0 we obtain
asymptotic expansions of the integrals in (7) as in Section 4. These contain negative
powers of ¢ the smallest exponent being B, + 1 — (B, + j + 1)a,/a, which implies for the
whole sum an expansion of the type announced. This expansion is clearly asymptotic in
&' (K,) as &® + 0> — 0. Hence we have proved the expansion in Theorem 1 with
Iy, €& (K,). However, if x* = 0 for x e supp fn K, then clearly I (s, f) = Oy, ;(s") for
every N € N proving that supp I, = {x € K, |x* = 0}. ‘
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3] B. MarGraxce, Intégrales asymptotiques et monodromie. Ann. scient. Ec. Norm. Sup. 7 (4°
1o 5TIR) 405 430 (1974).
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. Vok 12 3 Risa 1974, 1977, 1981.

8. We finally indicate a variant of Theorem 1 which implies the result of Barlet
mentioned above.

Theorem 2. Let g € C°(R) satisfy g = 0 in a neighborhood of 0 and g = 1 in a neighbor-
hood of . Let a, e R* witha;> 0,1 £i<n, and yeZ",. For f € C*(IR") we have

[ ge/s)x log’x f(x)dx ~J(f)+ X s@HI D loghs I(f)
K, jiz0
05kl +n

1<isn

Eingegangen am 12. 2. 1982

asymptotically in &'(K,) as s — 0. Here J,I,,€ &'(K,).

Proof. The proof is done by induction on the number p of negative entries in §. If
p = 0 we write

| g(x/s) xP log?x f(x)dx = | [1 + (g — 1) (x*/s)] x* log’ x f (x) dx,
K, Kn

and since g — 1 € Z(R) the result follows from Theorem 1 in this case.

In the inductive step assume §, < 0. Introducing a sufficiently long part of the Taylor
series of f with respect to x, around (x’, 0) we split the integral into a sum. Then to a term
in the sum we can either apply the induction hypothesis or we have an integral with f
independent of x,. The expansion of these is obtained repeating the arguments of Sec-
tion4. [

Corollary (Barlet [1], Proposition 2). Let o,feR" with a;>0, 1 £i<n, and put .
og=Po=1. Let ge CX(R) satisfy g =1 in a neighborhood of 0. Then for fe C3(R"),
supp f < K, we have

[ gls/xy...x) x P f(xdx~ 3 st P loghs Ly(f) + J(f)
K, jz0

0=ksn
1512n

asymptotically in 2'(R") as s - 0.

Proof. Put §(x):=g@?), xe R\{0}. Then g extends to a smooth function on R
satisfying § = 0 in a neighborhood of 0 and § = lina nelghborhood of co. Substituting
yii=x%, 1 £ i £ n, the integral becomes

I;I 1 j g0%s)y" f(y)dy

where &:= 1/a;, Bii= 1jo;,(1 —a; — B;), 1 £i < n. The assertion follows from Theo-
rem 2. O
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