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1. Introduction

Let ae C®(R) be real valued and consider the differential expression

e _ 12 ax) .
'c.——dx-i-xz(l—_x)—z——.—dx—i—a(x) (L.
in I:=(0,1). If
a)=z—-1/4, i=0,1, (1.2)

the Friedrichs extension T of 7|Cg(I) exists in I?(I) and has a pure point spectrum.
In this paper we study the asymptotic expansion of tre™T as s—0+. If the
potential is smooth in T it is well known that

tre T ~ (4ns) " 112 _ZO s'*(4;+B)) (1.3
jz

(see e.g. [91]) where B; is a universal polynomial in the variables @*(0), a”(1), k,
[=0, and

A2j=£wj(x)dx: Azj+1=0,

where w; is again a universal polynomial in the variables @, k=0, in particular
wo(x) = 1. The proof of (1.3) starts with an asymptotic expansion of the kernel I of
e”*T on the diagonal, namely :

I(x, x)~ (4ms) ™1 3 dwix),xel. (1.49)
jz0

This determines already the coefficients 4; while the influence of the boundary is
reflected in the B;’s. Now in the singular case we meet the principal difficulty that in
the analogous expansion the coefficients are no longer integrable over I (see
Theorem 4.3 below). However, the existence of an expansion generalizing (1.3) is
suggested by the following example [2]. Let M be a compact surface of revolution
homeomorphic to S in R3, generated by a smooth curve c(£) =(c(£), 0, c,(t)) of
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length 1. M carries a natural $* action and — A|I(M) is unitarily equivalent to
the Friedrichs extension T in IZ(I) of ©|CF(I) where

2¢,(x)c;(0) —c1(x)?

)

R TN
— 72 a(x)

=l o

Assuming that ¢ is parametrized with arc length we must have
cP(0)=cfP(1)=0, k20,
(0= —ci(1)=1.
Hence ae C*(I) and we can write for i=0, 1

a(x) 1 by(i—x)

(1—x)% " 4x—i)? i—x

as x—i where b; is smooth and odd at i, i.e. b**(i)=0, k> 0. The existence of an
asymptotic expansion of tre*” is hence a special case of the result of [4] dealing
with the equivariant heat kernel on Riemannian G-manifolds. In general, this
expansion will contain also logarithmic terms which are, however, absent in the
most natural examples and also in the case at hand, due to the special nature of $*
actions [4, Theorem 7]. But the possibility of logarithmic terms even for one-
dimensional problems is indicated by tHooft’s operator this being the Friedrichs
extension Q in I*(I) of

Pu(x):=1/2 T e |E|u(E)dE+ <g + b )u(x) ,

1—x
xel, ueCyld), abz=z-1.

In fact, it has been shown in [3] that

0=+ T Ploger00), 50,

On the basis of this evidence we conjectured that logarithmic terms in the
expansion (1.3) can be produced by the “residues” of the potential at 0 and 1 i.e. by
b,(0) if we write

a(x) a; bii—x)

= ] 1.5
x*(1—x)? (_i——x)2+ i—x 2 xX7h (13)

whereas they should not occur if by, b, are odd at 0. Besides this question we were
interested to see how the structure of the coefficients for smooth potentials
generalizes to the singular case because this might serve as a model in more
complicated singular situations like orbit spaces.

We now present our result.
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Main Theorem. Consider the differential expression t defined by (1.1) and satisfying
(1.2). Assume that a;> —1/4 or a;= —1/4 and b (0)=0, i=0,1. Let T be the
Friedrichs extension of ©|C¥(I) in I*(I). Then e~*T is trace class for s>0 and

tre”*T~(4ns)" 2 3 §/2(4;+ B;+C;logs).

jz0
Here
Ap=1, A2j+1=Oa
Wy (%) .
Azjzp-fimd% jz0,

where w,; is a universal polynomial in the variables a®, k 20, and the “partie fini” is
calculated by integrating over (¢,1—¢) and taking the constant term in the
asymptotic expansion as 0. The coefficients B; and C; depend universally on
a®(0), a®(1), k,1=0 (the precise formulas are (6.4), (6.5)), in particular

By=Cy=Cy;4,,=0, j=0,

and usirig 1.5) bo(0) +b,(0)
ol0)+b,
2

If, however, by and b, are odd at 0 then C;=0 for all j.

C2=

The case a(x)=a(0) (1 —x)* can be treated rather explicitly using Bessel
functions. This has been done in [6] and with a different point of view in [5].
Cheeger’s work provided the additional motivation to develop a method for the
general case not using special functions at all. Thus we treat the given operatorasa
perturbation of the Euler operator just mentioned. But instead of exploiting the
explicit formula for its heat kernel we use only the most elementary properties of
equations with a regular singular point together with the invariance property of
the Euler operator under the natural action of R,:=(0,00) on I*(R,),
IR, : =0, 00), which is the guiding principle for the treatment of the perturbation
series, too. To derive the structure of the coefficients we use an expansion of the
trace with respect to two (artificial) variables ¢ and o satisfying s = ¢%¢. This allows
us to use Taylor series near the singularities and to exhibit the “partie fini” terms.

The plan of the paper is as follows. In Sect. 2 we recall some known facts on the
Friedrichs extension of singular second order operators. Section 3 collects the.
necessary estimates, Sect. 4 contains pointwise asymptotic expansions of several
kernels, and in Sect. 5 we derive the perturbation series. Finally, the Main
Theorem is proved in Sect. 6.

2. Selfadjoint Extensions

We briefly recall some well known facts about selfadjoint operators T in I*(I)
generated by 7. We introduce the spaces

W:={feC'(D)|f" is absolutely continuous on compact subsets of I},
Wo:={f € Wisuppf is compact in I},
We={feW|f,if e (D)}
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Put Ty(v):=1|W, and Ty(r):=1|W,. Then Ty(v)*=T,(r) implying that 7 is
symmetric. To describe the behavior of  at the singular endpoints we write

Tef. (1.5)]
ax) a4 4 b,
x*(1—-x)?* " (i—x)?* (—x
Then 7 is bounded below on W, iff this is the case for
b;

X

1o, x—i, i=0,1.

ti:=-—di+%+

fori=0andi=1[11, Satz 2d]. Butfrom [11, Hilfssatz 2] we see that this is the case
iff the roots of the index equation

—MA—1)+a,=0,

ie. Ar(a):=1/2+}/a;+1/4, are both real which means that we must have
a;= —1/4 for i=0, 1. In view of [11, Satz 4] we can also say that all selfadjoint
extensions of Ty(z) are bounded below iff @;= —1/4 for i=0, 1; in particular, the
Friedrichs extension T does exist. We will assume that this is the case in the
following. If we assume o:=min{ag,a,}> —1/4 then it follows from Hardy’s
inequality [7, p. 532] that

”u“H1(I) < C((To(ryulu) + ”“”12,2(1)) , ueWg, 2.1

where H'(I) denotes the usual Sobolev space, (- |-) is the scalar product in IZ(I),
and C depends on o only. Of course, (2.1) holds without the restriction on ay, a4
with a constant C depending also on the distance of suppu and 0. The selfadjoint
extensions of Ty(z) are given by restriction of T;(t) to subspaces of W, which in turn
can be described by boundary conditions at 0 and 1; according to the number of
solutions of (t+}/ —1) u=0square integrable at 0 or 1 there are either two or no
boundary conditions at 0 or 1 which is referred to as the limit circle case and the
limit point case, respectively (cf. [7, Chap. XIII, Corollary 317]).

For the Friedrichs extension T the boundary conditions can be described very
explicitly (cf. [11, Sect. 3]). Fori=0, 1 we can find ; € R and a fundamental system
w;, ; of solutions of (t— ;) u=0 such that w; and v, do not vanish in a pointed
neighborhood of i and in addition 1x1£r} ox)p(x)~t=0. The domain of T is then

“given by
D(T)={ue WlimuCopd) ' =0,i=0,1}.

The same discussion applies mutatis mutandis to the differential expressions
_ a;
To=—di+ ;;—

and their Friedrichs extensions T, in I?(R ), i=0, 1. It is easily checked that with

()= x*-@, a>—1/4,
ValX): = \x1210gx, x=—1/4,
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we have
D(T) = {ue W, |lim u(x)ip,(x) " =0} .
The operators T; have a remarkable invariance property under the natural unitary
action of R, on I*(R ), given by
U f(x):=a'?f(ax), acR,, fe}(R,), xecR,.
Namely, for f e W,, we find
£U,f =02U,5.f

implying U, W;,C W, Using the explicit form of the boundary condition we obtain
the following important fact.

Lemma 2.1. For ac R, we have
U2(T)C2(T)
and
TU,=a*U,T,. (2.2)

Near x =i we will use the heat kernel I} of e ~*T: as a parametrix for the heat kernel
I; of e™*7 (it will be shown in Lemma 3.1 below that these kernels are honest
functions). By a simple symmetry argument given in Sect. 6 we can restrict
attention to the left endpoint so we write a: =ay, b:=bg, T:=T,, I: =TI in what
follows. The study of the comparison kernel T is greatly simplified by the
invariance property (2.2) of T implying the following invariance of I_.

Lemma 2.2. For x,y,s,a>0 we have
I(x, y)=o? L2 (ox, ay) . 2.3)
Proof. For fe Z(R ) we find from (2.2)
(T+0)U,e™Tf=0.
Since
lim U,e™"f = U, f

—sa2T _

we must have U,e e *TU, implying the lemma. [
Finally, we need the following property of the domains 2(T) and 2(T).
Lemma 2.3. Assume that |
a>—1/4 or a=-1/4 and b=0. 2.4
Let e C3((—1,1)) with ¢ =1 in a neighborhood of 0. Then
oue X T) for ue(T)

and
oueP(T) for ueT).
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Proof. Suppose ue 2(T). Then we have Tpue I*(R,) by assumption hence
oue W= 9 (Ty(7)*). By definition of the Friedrichs extension there is a sequence
(U)new CCT (1) satisfying u= li,{n u, in I?(I) and in addition

lnurrnl (T(un - um)l U, — um) =0.

An easy calculation using the assumption, (2.1), and Hardy’s inequality shows that
also

Hm (H(pu, — @u,,)| pu, — Qu,,) =0

which means that gu= lim gu, is in (T). O

From now on we will assume that condition (2.4) is satisfied.

3. Estimates for I, and I

Let us write

a(x) _.a  bx
x*(1—x)? et xel,
and
N
7= dx+x2.

Asbefore, T and T will be the Friedrichs extensions of To(r) and Ty(7), respectively.

We start in showing that I(x, - ) and 9, i(x, - ) are in I?(IR , ) and estimate the
norms.

Lemma 3.1. For x 2 x>0 and 0 <s<s, there is a constant C= C(xy, 8o) such that

Ifs(x, 22dz<Cs V2, G.1)
I(axfs) (x,2)?dz<Cs™ 1. 3.2)

Proof. Put J:=(1/2,2). Then e™*TueC=(J) for ueI?(R,), s>0. The one-
dimensional interpolation inequality [1, Theorem 3.1] gives

”e—-STu”HZ(J) = C(”aie_STu”Lil(J)"l' ”e_ST““LZ(J))
SC(|Te Ty L2y + lle™"u 20y
= Csos_ ! ”u”L2(1R+)
for 0 <s<s, where the last estimate comes from the spectral theorem. Similarily

”axe_STu”Hl(J)g Csos_l ”u“Lz(]R+) :
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Using now Agmon’s version of the Sobolev inequality [1, Lemma 13.2] we obtain
for 0<s=<s, and ue I*(R,)
|e_STu(1)| = CS()S— 14 |Iu”L2(R+) N
0ce ™ Tu(D) S Cops™ 2 [ o, -

This proves (3.1) and (3.2) for x=1 in view of the Riesz representation theorem.
From the invariance property (2.3) we obtain with a:=1/x

O =8

f;(xa Z)de: l/xz .f E/xl(la Z/X)ZdZ
0

—1/x | Fpa(l,2)%dz -
0

proving (3.1) in general. Differentiating (2.3) with respect to x we obtain the
invariance property of 9,I(x, y), and (3.2) is proved analogously. [J

Next we derive a uniform estimate for the I? norm of I} as x—0.

Lemma 3.2. Let 0<x, s<2. Then there is a constant 0<v<1 such that

I(x,2)*dz< Cs™ 12040 xv (3.3)

Q=8

Proof. Consider the Friedrichs extension S of 7 in I?([0,1]). Then S is
semibounded and for p e C§((—1,1)) with ¢ =1 in a neighborhood of 0 and
ve Z(T) we have pve 2(S). Chose ¢>0 such that S +c is invertible. It follows

(S+c)pe Tu=pTe Tu—q"e " Tu—2¢'6,e Tu
=:4,u)

for ue IZ(R ).
We derive from Lemma 3.1

”A(p(u)”Lz(I) = C¢|’”'IL2(1R+) .

Now let 14,1, € X(I) be the solutions of (74 c)p=0 satisfying the boundary
conditions for § at 0 and 1, respectively. It follows for 0 <x <1 (cf. [7, Chap. XIIL3,
Theorem 10]) that with certain constants 7, y’

00T =110 | o) AUy +7po(x) | 710 A1)y

But 7+c is a differential equation with a regular singular point at 0 and has the
index equation
0=—A4—-D+a=—(A*—1—a)

with solutions

Ap(@=12%1/1/4%a.




180 J. Briining

From the general theory (see e.g. [8, p. 147, Satz 1]) we derive for a> —1/4 the
representation

wilx)=:x"OgF (x) +x*- g7 (x),
where :0<x<d<1, gF € C*([0,6]), i=0, 1. If a= — 1/4 we have instead
pi(x)=:x"2g,(x)+x'? logxh(x),

0<x=é<1, g;, h;eC*([0,]), i=0,1. We know from the discussion in Sect. 2
that go =0 (a> —1/4) or hy =0 (a= —1/4). Estimating e~ Tu(x) by the Cauchy-
Schwarz inequality we find with O0<v<1

|e_Tu(x)| = Caxvlz ]|”“L2(1R+)

for 0<x <4, ¢ sufficiently small. As before we conclude that (3.3) is valid for s=1
and 0<x <4. Applying now (2.3) with a?=1/s we get

[e0) . o0 .
VT, 2)2dz=5"Y2 [ [ (s Y2x, z)2dz
0 o !
<Cps~ 1A 12y <

By Lemma 3.1, the same estimate holds for s™*2x>§, 0<x, s<2. The proof is
complete. [

Corollary 3.3. We have for 0<x,y,s<2 with 0<v<1
T30, YIS Cs™ 1A eyl
Proof. This follows from the semigroup property of e *T. [
Now we derive similar estimates for I,
Lemma 3.4. Choose 6 with 0 <6 <1. We have for 0<s<1,0<x,y<dwithO<v<1
130, YIS Cps™ 12 ()2
Proof. Pick ¢ € C§ ((— 1, 1)) with ¢|[0, 6] = 1. By Lemma 2.3, our assumption, and
(2.1) we have for ueZ(I) pe *Tue P(T) and pbe TuecZ(I), b(x):= @
Moreover, '
”q’ge_ﬂu”m(nécs_llz el L2y (34)
- which is certainly true for 5(0)=0 and follows from (2.1) otherwise. We compute
(T+0)peTu=(T+0d)e Tu
—pbe  Tu—¢ e Tu—2¢'0,e Tu=:Bu.
From (3.4) and Lemma 3.1 we conclude
||Bs”||L2(m+)§CaS—1/2 el L2y - 3.5)
Applying Duhamel’s principle it follows for 0<x <5

e Tu(x)=e Tou(x)+ [ e 9T B,u(x)ds.
0
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Using (3.5) and Lemma 3.2 we estimate

[ e~ 6=9T B y(x)dt
0

<1 T 1l (x.2) Bu(@)|dzdt
00

H © _ 1/2
< Cyllullzag | t_”z(f I, (x, Z)ZdZ> dt
0 0
S
< Cyllull oy [ £ 12 (s— 1) " 1A+ gy
0
é Caxvlz ”uHLZ(I) .
With Lemma 3.2 again'we conclude that

I(x,2)*dz S Cys™ 120y

O

for 0<x =9, 0<s=1. Now the lemma follows from the semigroup property. [

We now proceed to derive estimates off the diagonal. To do so we put
C2(R):= {(p e C*(R) sup| &% o(x)| < co for every keZ+}. For ¢, pe C2(R) we
xelR

introduce the operators

H%u:=pe Tyu, K&Yu:=0 H"%u,

where ue I?(R ) and s> 0, with the kernels
HP* (x,y):=o(x) I(x, y)p(y) ,
K3 ¥(x, y):= 0 (o) I(x, yyw(»)) -
Lemma 3.5. Let ¢, p e CZ(IR) satisfy
suppe and suppy have a positive distance (3.6)
énd
0 ¢ suppo’usuppy’. (3.7)

Then for every N € N there is a constant C depending only on N, ¢, and y such that
Jor 0<x,y,s22 withO<v<l1

IHE ¥ (x, y)| < CsM(xy)'? .

If condition (3.7) is replaced by

0¢ supp o Usuppy’ (3.8)
then also

K& (x, D= Cs™y*2.
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Proof. Suppose first that (3.6) and (3.8) are satisfied. Then ge*Tyue 2(T) for
ueI’(R.), s>0, and we have

(T+8)pe Typu=(T+d)e Tyu
_q)//ewsT
n —sT

=¢"e " Tpu—20,(¢’eTyu)
=H?"Yy—2K¢ Pu=:J"%y.

Yu—200.e Typu

Now 1i_1)r& H?¥y=0 hence Duhamel gives

H?Vu= ge_(s_”TJ?"”udt. (3.9)

Choose y € C(R) such that y and y also satisfy (3.6), (3.8), and in addition y¢ = ¢.
Then also

K?vu= (j) 0 e~ T Jo vyt . (3.10)

If w e CZ(R) satisfies 0 ¢ suppw then we obtain from the analogue of (2.1) for T
l6,we™"Tullpag 1y S Cos™ 2 ltll 2y (3.11)
consequently we have for the operator norms in I?(R )
TEPI < | HE P+ 2| K| =C,p s ™2 (3.12)
Now suppose we had proved
R FOVI (3.13)

for some NeZ, and 0<s=<2. Then we deduce from (3.9), (3.10), and (3.11)

8
IH ¥ = (I) 1JE*] dE< Cy s 12,

s
1K1 écxg(s—t)_”zll Jeeldt=Cy,q,,s"*

hence by (3.12)
1TE P = Cr,p, 5™

Since (3.12) establishes (3.13) for N =01t is proved in general. Thus we obtain from
(3.9), (3.1), and (3.13) for x>0, 0<s<2, ue (R ,)

|HE Y u(x)| < Cy,g,8" Ul 2w . (3.14)
for every N e Z ., similarily from (3.10), (3.2), and (3.13)
K& Yu(x)| < CN,q),(pSé’ ”””LZ(]R+) . (3.15)

Note that (3.14) remains valid if we only require (3.6), (3.7) since then ¢ and
satisfy (3.6) and (3.8). Now choose y € C3(IR) such that y, y and ¢, 1 —y also satisfy
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—sT

(3.6) and (3.7). Using the semigroup property of e
estimate

we obtain for 0 < x, y, s<2the

H (5,91 S T (0603002 HYF G2
+IHE "1, 2) Loz, yyw()Ddz,
hence from (3.14) and (3.3)
[HE* (X, IS Cy, g, 5" (x3)""?
for every NeZ .. A similar argument using (3.11), (3.3), (3.14), and (3.15) proves
IKE¥(x, )| < Cy, g, 5" "
if @ and y satisfy (3.6) and (3.8). [

The given proof can be repeated with T replaced by T and with
o, pe CP((—1,1)). Using everywhere the analogous estimates for I, we obtain

Lemma 3.6. Let ¢, € CF((—1, 1)) satisfy (3.6) and (3.7). Then for every NeN
there is a constant C depending only on N, @, and v such that for 0<x,y,s <1 with
O<vxl

lpCOT(x, Yp()I < Cs"(xy)".
In the next section we will also need estimates for I(x, y) as x— 0.

Lémma 3.7. Thereis sy < 1 suchthat for x=2,0<y<1,0<5=<s,, and every Ne N
with 0<v<1

_ _x—y)?
IG(x, »I S CysVe 144 pI2,

Proof. Denote by Ty, the closure of —d2 with domain CP(IR) in I?(IR). Then ¢ ~5T¢
has the kernel

(x—y?

[, y):=(4ns)~2e 4,

To compare I, with I'° away from 0 we choose ¢ € C*(IR) with supp ¢ C[3/4, )
and ¢|[5/3, 0)=1 and p e CF((—4/3,4/3)) with y|[—1,1]=1. We put .

. f—a/x*, xesuppo,
x(x):= {0 otherwise .

For ue I?(R ) we have pe *Typue D(T,) (cf. Lemma 2.3) and

(To+0)pe  Tyu=¢"e Typu—20,(¢’e Tyu)
~sT

+ype  Tyu=:Lu+ype Typu,

hence

(pé—sTwu: j‘e—(s—t)To(Ltu+X(pe_tT1pu)dt_ (316)
) 0
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We put
S
M2 =e5To, M;:zj(;e_‘s_‘)T"XM;“‘dt, i=1.

For the kernel Mi(x, y) we obviously have

(x—y)?

IMi(x, y)| S Clst=12g  4s 3.17) -

for x, ye R, s >0, and some positive constant C. From (3.16) we obtain by iteration
the following identity for operators in I*(IR ) (cf. the proof of Lemma 5.1) '

_ N s . s _
peTy=3 fMﬁ_tL:dtJrgM’!_txcoe"’det, (3.18) -

j=00

NeZ.,. From (3.17) and Lemma 3.2 we derive the kernel estimate
I M pe Tpdi(x, y)| < (Cs™2) 1y

if x=>2and 0<s, y<1. Thus the series (3.18) for the kernels is convergent if x=2,
0<y=<1,and 0<s<s, where Csi/> < 1. Estimating the terms in the series by (3.17)
and Lemma 3.5 and noting that LJ(z,y)+0 only for z<5/3 the proof is
completed. [ ‘

4. Some Convolution Integrals

The study of the perturbation series in the next section leads to the following
definition. Let (8;); be a sequence of real numbers with ;= —1 and put

Lf(x, p):=I(x,),

s © “4.1)
Ervl(x,yyi= 1 | Lt (x,2) 2P Lz, y)dzdt,  iz1.
00

Of course, the definition of I%# depends only on f; for 1 <j<i—1ie. L is well
defined for any feZ' ! provided that the above integrals do converge.

Lemma 4.1. The integrals in (4.1) are absolutely convergent and we have the
estimates

B ISCis 20 )2 (14 %) 2)

valid for 0<s<s,,0<y<1, and x>0. Here C;>0,y;,€R, and 0 <v < 1. Moreover,
we have the scaling property

Ef (oox, ay) =02 Ph-1 =3 f(x, y), (4.3)
i-1
where 0>0 and |fl;_:= X B;.
j=1

Proof. We proceed by induction on i. For i=1 (4.2) is satisfied in view of
Corollary 3.3 and Lemma 3.7, and (4.3) reduces to (2.3). Assume now that (4.2) and
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(4.3) are satisfied for some i = 1. Choosing s, as in Lemma 3.7 we obtain (4.2) by a
straightforward estimate based on Corollary 3.3, Lemma 3.7, and the induction
hypothesis if we require 0<x,y<1, 0<s<s,,.

Now let x>1, 0<y=1, 0<s=s,. From (2.3) we obtain with «=1/x

(2]

. 1 - i
E:l’ﬂ(x’ y)= I (s—t)/xz(laz/x)zﬁiﬁ;fl}(z’ y)dzdt
0

X

Ot

implying the absolute convergence of the integral as before. Using (4.3) it follows

S 0
L3P (x, y)=xHWh=am4 [ LT (L, 2/%) 2% Bifa(2/x, y/x) dzdt
00

. §/x2 0 .
20 DB 3 £ g Lo (1, 2) 2P 5P (2, y/x)dzdt
— 20+ 1)+|ﬁ!i—3Li:/'x12’ﬂ(l,y/x) 4.4

hence (4.2) follows from the previous estimate. The proof of (4.3) is similar to the
proof of (4.4). O .

We will also need a slightly more general class of functions. Let
(c:enCC*(R ;) be a sequence of functions satisfying c,(x)=0(x#) as x— oo for

B;=0. We put ) B
Lo(x,y):=1(x,y),
: w( .y) ( (y; 45)
L5e(x,y):= ) [ Lty (x,2) T2 I (2, y) dade.
00

It is obvious from the proof of Lemma 4.1 that I;° is well defined and satisfies (4.2).
With ¢(x): =cax), a, x>0, ie N, (4.3) generalizes to

LS (ax, ap) =o' "2 5 (x, p) . (4.6)

Our next goal is an asymptotic expansion of the functions I:f(x,y) in a
neighborhood of (1/2,1/2). We start with the following observation. If
ue C((1/4, 3/4)) and if we write

P u(x): = I LA (x, y)u(y)dy

then
_ . 0 i=1
l,ﬂ — b . b
(T+0) L u(x) {xﬁi‘llﬁs_l’”u(x), i1, 4.7
and
g _ u(x), i=1,
e

Now for i=1 we obtain an asymptotic expansion by the method of
Minakshisundaram and Pleijel [10]. We make the ansatz
x—y)?

L(x, y)~(@4ns)" e % sul(x,y). (4.8)
jzo0
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Applying 7, + 8, to the right hand side and putting the coefficient of s'~* equal to
zero we obtain the recursion formulas

(x—y)axu}(x, y) +]u} (X, y) = _‘Exu}—l(xa y) s

j=0, where u_, =0. Requiring uj (x, y) to be smooth at x=y and ug =1 we obtain
the explicit formulas

Ul (%, y)= —(x— )i ’f(t~y)f(fxu}) ) dt

1 »
=—gtl(fxu})(yﬂ(x—y),y)dt, j=0.

Thus the 4} are smooth implying the estimate
sup ]a;a;"u]l (x7 y)l é Cn,m,j,K
x,yeK

for any compact subset K of R,,. Now pick ¢, pe C{((1/4,3/4)) with p=1ina
neighborhood of 1/2 and ¢ =1 in a neighborhood of suppy and put
_E=? N
Hi(x,y):=(ns) e % 3 Jo(x)uj(x,y)p(), NeN,
j=0
" _ 4.9
H{u(x):= (5) Hi(x,p)u(y)dy, ueCg((1/4,3/4)).

Then we find for x>0
(T+0)HYu(o < Cys™ 2 Jule,  ImHYuG)=pu(x),  (4.10)

hence from Duhamel
HYu(x)—e *Typu(x)= [ e 9T (T+ 0y H¥udt(x),
0

therefore from (4.10) and Lemma 3.1
IHY u(x)—e ™ Typu(x)| < Cys"llull:, 1/4=x<3/4.
Thus

==y N

sup )Ii(x,y)—(‘*ﬂs)_”ze s ,Zosju}(x,y) <Cys", @.11)
i

x,yep~ 11
i.e. (4.8) gives an asymptotic expansion near (1/2, 1/2). Now assume that we have an
asymptotic expansion

(x—y)?

LA (x,y)~(4ns)~2e % T ST y)
jz

near (1/2,1/2) for some i=1 ie.
_&=»* N

sup )E;ﬂ(x,y)—(47rs)“1/2e 4 3 I (x, ) S CysY (4.12)

x,yep~ H1 ji=0

for N e N. Then we make the corresponding ansatz for I} 14(x, y).
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Applying %,+0, to the series and equating the coefficient of s'**~! in this
expression with the one in the series for x# I4? [in view of (4.7)] we now obtain the
recursion formulas

(6= 1)0.t" 2 0x, )+ G+ )0 (x, )
= — Tt ) F P (), 20,

where u'*1*# =0. Requiring u}* ""#(x, y) to be smooth at x=y we obtain

uit b, y) = It”’( TPy +t(x—y), )

+(Y+t(x—y))”" i (y+t(x—y), y))dt . (4.13)

Thus all u}* !+ are smooth in R, xR,.. With ¢ and pe CP((1/4, 3/4)) satisfying
Gp =1, p@d=@¢, p=1near 1/2, and w1th HY-%8 the obvious generalization of (4.9)
we now obtain for ue CF((1/4, 3/4)), x>0, i=1

(T+0)HY ™ Pu(x) —xPHY P u(x)| < Cys™ ull 1

iy Y490,

hence from Duhamel as before

HY PG — | | I (e, 2) 2B PP u(z) dz df) < Cys .
00 .

Using the induction hypothesis (4.12) we derive for x, yeyp Y1), 0<s<s,
|
0

Using the estimates of Lemmas 4.1, 3.5, 3.7 we arrive at (4.12) with i replaced
by i+1. Summing up we have proved the following result.

Theorem 4.2. There are functions uz* € C*(R, xR,) such that for i=1

_x=»?
L (x,y) v, (4ns)™ e & 3 ST U (x, y)

jzo0

L5 2) 2P G(2) BF (2, y) dz dt =HY 1P (x, y) + On(sY).

S8

uniformly in a neighborhood of (1/2, 1/2).
More precisely, there is 6>0, so>0 such that for 0<s<s, and |x— 1/2]
+|y—1/2| £ 6 the estimate (4.12) holds.

We conclude this section with a p01ntw1se asymptotic expansion for I}(x, y)
away from 0. This is obtained by the same method the only difference being that we
need more detailed information on the coefficients.

Theorem 4.3. There are functions u;e C*(I x I) such that

(x—»?

~ 12,7 4s 114
[e)) 5 (r9) e S % shux,y)
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uniformly in compact subsets of I x I. We have
uo = 1

and in general
w j(x)

x?(1—x)%’

ui(x, x)= j=0, «xel, 4.14)

where w; is a polynomial in the variables a®, 120, with coefficients in C*(I) and
independent of a. Finally, if 0<e<x,y<1/2 we have the remainder estimate
x=y? N

I(x,))—(4ns) e * ¥ su(x,y)| SCys¥e N2 (4.15)
ji=0

Proof. As before we derive the recursion formulas
uO(x >y ) = 1 >

) (4.16)
uj+19(x:y)=_ itj(rxuj)(y+t(x_y):y)dta J%O,

and a remainder estimate analogous to (4.11) in compact subsets of I x I. If we
restrict to 0<e=<x, y<1/2 then it follows inductively from (4.16) that for k=0

Cix
|ak ](x y)l_ 21+k

Together with a suitable choice of ¢ and v this leads to the estimate (4.15).
Finally, it follows again by induction from (4.16) that

W 1(x)
[ox(1—x)]>**

with w; , a polynomial in a® with coefficients in C*(I) and independent of a. This
implies (4.14) for k=0. O

(O%uy) (x, %)=

5. Asymptotic Representation of I,

We are now going to derive an asymptotic series for I in terms of I near 0. To do

so we choose functions @, y,pe CP((—1, 1)) with p=1 in a neighborhood of

suppy, x =1 in a neighborhood of suppy, and =1 in a neighborhood of 0. For
ue IZ(I) and s>0 we have pe T yu e@(T) by Lemma 2.3 and as in the proof of
Lemma 3.4 we have

(T+8)pe™ T yu=o(T+08,) e T yu
+5(pe_STxu 0" e T yu—2¢'8 e yu
=bpe Tyu+o"e T yu—20.0"¢ T yu.
Let us write
Au'=—b~e‘STxu,

sT

Bu:=20,0"¢ T yu—q¢"e Tyu,
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and note that 4, and B, are bounded in IZ(I) in view of (2.1) and Lemma 3.1. We get

from Duhamel’s principle

pe Tyu=e T yu— (js)e_(s_‘)T((pAtu—}-Btu) dt.
Multiplying with y we obtain the operator equality
pe Ty=pe Ty+ Swe’(s_’)TxA,dt
+ itpe“s"”((l —0)@A+B)dt
=:pe Ty 4 Z‘lpe"(s',')TxA,dt—i- C..

We define for s>0
A=A, AltV:=[Al,Alde.
0]

We know that A? is an integral operator with kernel

_ )

Al(x, )=
s (%, ¥) .

L0, y) 1) -

We get from Corollary 3.3 for 0<x,y,s<1
]A; (X, y)l é CS_ 1/2(1 +v)xv/2— 1yv/2

where O<v<1.
It follows inductively from (5.2) that for 0<x, y,s=<1

I—v 1+4v

T T i1 2

; (0]
|[4i(x, I=C;s y

We now get the following series representation.
Lemma 5.1. For every N € N we have
_ N—1s _ i
we Ty=peTy+ ¥ [we ¢ yAldt

j=10
N—~1s

+£1pe_(s_‘)TxAﬁvdt+Cs + -21 (j)cs_,A{dz
P

_ N—1s _ .
=:pe x4+ ¥ Jwe ¢y Ajdi+ DY,

j=10

where the sums are defined to be 0 for N=1.
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(5.1)
(5.2)
(5.3)
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Proof. Suppose the formula is true for some N =1 [which is the case for N=1 by
(5.1)]. By (5.1) we obtain

[we 0Ty AN dr= [pe 60Ty 4N gy
0 0

s s s—t
+JC AV dt+ | | pe Ty 42 AV ay dr .
0 00

Substituting £:=¢+¢ and inverting the order of integration in the last integral the
assertion follows. [0

To get asymptotic results we have to show that DY has a small kernel as s—0 for
N large.

Lemma 5.2. For 0<x,y,s<1 we have with 0<v<1
1-v 1+vy

IDY(x, IS Cys' 2 2 (xy)2. (5.4)
Proof. Writing .
DY (x,y): = (I) (I) v I (x, 2) y(2) AV (z, y) dz dt

it follows easily from Lemma 3.4 und (5.3) that DY (x, y) satisfies the estimate
(5.4). Similarily, using Lemma 3.6 and (5.3) we obtain the same estimate for

Ci(x,y):= (fs) iw(X)Fs—t(x, 2)(1=0) (D) (2) Ai(z, y) dz dt .

In the terminology of Lemma 3.5 we have
Bs(x: y) ZZK?”X(X, y)_H.?"’X(xa y)

for the kernel of B,. Thus in view of Lemmas 3.4 and 3.5

s 1

Ci(x,y):= (f) J(; () L%, 2) Bz, y) dz dt

also satisfies (5.5), hence also C(x, y) = Ci(x, y) + C2(x, y). But then by (5.3) it also

follows for N

>

j=1

1

s 1 .
[ Cooix,2)Ai(z,y) dzdt
00

completing the proof of the lemma. [
The following result is now immediate.

Theorem 5.3. For 0<8=<1 we have as s—0

Fo e ) dx~ WG e 910 dx

O S
(=1
O

+ W) I3 (%, 2) 1(2) Az, x) dz dt dx

iz1

where the remainder estimate is uniform in 5.
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Using the terminology introduced in (4.5) we put c;:=by, i=1, and find
inductively for 0<x,y,s=1

A6 )= " B ), 21,
hence
I 4
foeone a3 ()7 W B0, 69

6. Proof of the Main Theorem

Using the asymptotic representation of Theorem 5.3 we will now derive the
asymptotic expansion of

1
tre™sT= | I(x,x)dx
0

as s—0. To do so we choose 0 <¢=<1/2 and put ¢:=s&~ 2. Then we want to start
with an asymptotic expansion of

1/2
I(e,0):=¢%c § I:,(x,x)dx
0

as 2+02—0. This will allow us the use Taylor expansions at x=0,1 and to
separate the contributions from the singular points. We write

& 1/2
I(e,0)= (f + § >3ZGI;2,,(x, x)dx
0 &
=:1,(s,0)+1,(s,0).
Choosing 1 and x to be 1 on [0,1/2] we obtain from (5.5)

I,(e,0)= .]Zvjl (1! i 20 I:5,(x, x) dx+ Oy((e*0)*™) 6.1)

where py— o0 as N—oo ie. the expansion (6.1) is ¢ o-asymptotic. To treat the
individual terms in the sum we note that it follows from (4.6) that

L5 (ex, ey)=¢ 2L (x, ),

where c¢i(x):=c;(ex). Thus we get
€ 1
%0 | It (x, x) dx=¢30 § [:5,(ex, €x) dx
0 0

1
=&/ g [ B(x, x)dx.
0
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Now we plug in the Taylor expansion up to order N for each ¢;=(yb)* around
x=0. In view of the estimate (4.2) it follows that

&0 | 5 (x, x) dx
0
. pe(0).. pBi-0Q) L .
— 8’+k+10' ( ') b '( )_fﬂ;,ﬂhl(x,x)dx
ﬂezoiéllc%/ﬁl:k Bil...Bioyt o
+ ON(8i+N+2) (6.2)

where we have written f—1:=(f,—1, ..., B;—1—1). Therefore, we only have to
study the asymptotic expansion of the integrals on the right as ¢—0. Using (4.3)

) 1 .
with o= — we obtain
2x

1 5 1 - .
B x %) dx= L@ VI L0 (1/2,1/2) dx

and substituting ¢: = g/4x2

}E;,B—l(x, x)dx = %a(jﬂﬂl—l)lz f t—(j+lﬂl+1)/2[jt,ﬁ—1(1/2, 1/2)dt.
0 af4

Now we deduce from Theorem 4.2 with M sufficiently large

T emovenzge-101 1) 4t

cl4
_ T—qft p=UHIB1+1)2 Et,ﬁ—l(l/z, 1/2)— AE'[: A+i=3]2 u{’ﬁ—l(l/lzz, 1/2) it
0 0 =0 (4m)Y/

Tk, TR, 1) () 2 e
14 1/2(8]~j+2) .

+(4m)~ 112 whhan-i+ 2(1/2,1/2) (log4s, ~logo).

The second integral has an asymptotic expansion in positive powers of '/ and the
third has a (finite) asymptotic expansion involving only powers ¢™? with
m=j—|B|—2. Denoting the constant term in the expansion of

o0

7"4 t—(i+|ﬂl+1)/2Et,ﬂ—1(1/2, 1/2)ds

by
pL e OB DR =110 1 ) gy
0

(the “partie fini” of the integral) we arrive at the representation

1
4o [ B;F~ 1 (x, x) dx
0
= gUIBI+ 12 l:p‘f' Z £ USRI p =1 (112 1 /2) gt

—@4m) " Pulhah s (1/2,1/2) loga] +R; (0), (6.3)
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where we have the asymptotic expansion
mz1
m*+j+|p|+1

Lemma 6.1. As ¢*+ 6*—0 we have the asymptotic expansion

Lo~ y  (—1y-1gnn 200870

j;1,k|g]0 4. B!
BeZi™1,|Bl=k
. I:G(j+k+1)/2 (p.f. j(; ¢ UHERD2 B (/2 1/2) dt

_(4n)~1/2u{’/925c1_j+2)(1/2,1/2)loga>+ mgl R;!:ﬂgm/z].

mEjrk+1

The logarithmic terms occur only if k—j is even and the term of lowest order is

e363?logo (—m————ggg)l)ﬂ) }

Moreover, if bisodd at 0 i.e. B'*™ =0, m=0, then all logarithmic terms do vanish.

Proof. The expansion follows from (6.1), (6.2), and (6.3). Certainly, logarithmic
terms occur only if k—j is even and the lowest order term occurs if j=2, k=0. It is
easily calculated from (6.3) and (4.13). Now from k=f, +... + f;_, we see that at
least one f,, must be even if k—j is even hence no logarithmic terms occur if b is odd
at0. O

We turn to the expansion of I,,. Since x = ¢ in the domain of integration we have
s/x* <. Consequently, from the pointwise expansion of I, given in Theorem 4.3
for e<x,y=<1/2 we conclude

1 ¥ R UF 9]
I , — 4 1/2 2 0\j+1/2 : J § d
2(8 O-) ( TC) ]10(8 0-) { x2](1_x)21 X
+ ON( O'N + 1) X
Since w;e C*(I) it is easy to see that the integrals on the right have asymptotic
expansions involving only the powers ¢”, m= —2j+1, and loge. We write

12
g2it1 f wj(x) dx

e xH(1—x)%

; V2 owdx
=:82’+1<p-f- {) xz,-(l’%x)z;dX+Sjloga) +Tj(e),

where we have an expansion

T~ Y Tue.
k=1

k+2j+1
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Lemma 6.2. As £ +0°—0 we have an asymptotic expansion
I 2(83 O-)

~ Y oIt ()12 [82j+1<p'f' lfz wj(x) dx

jzo o x¥(1—x)¥

+Sjlogs>+ > Y}ka"].

Here w; is a universal polynomial in the variables a®, 1>0.

From these lemmas we deduce our principal result formulated in the
introduction.

Proof of the Main Theorem. From the above lemmas we obtain an expansion of the
following type:

- 1/2
g0 | I,(x,x)dx
0

jz1

~ 3 (aal/z)j[A}+Af+leogs+ C;logo

+ X (Djk£k+Ejkok/2):l
k2 31
k0

where
A= 3 (-
121,m20,l+m+1=j
BeZl~ L, |Bl=m
(B1) B1-1) ©
b 420)""2 '(O)p.f. B (12, 1/t
b By
B 112 w(x)
A§j+1=(47'c) 1/2p_£ g mdx., (64)
A§j=0,
and
3G 0)... bB- 1)y B B '
Cj:lz1 mzozz+m+1;j(_l)l 4,531!...&_1!( )(47t) i (12, 1/2)T

Bezi~ ', 1pl=m

Substituting ¢?: =52, o:=5'/2, we get an expansion
172 -
s | Lo, x)dx~: 3 s'*(4;+ B,logs).
0 izt

Resubstituting s=¢6 and comparing the coefficients we see that
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Hence the expansion takes the form

12 Y
s | I(x,x)dx~ 3. s"*(4;+B;logs),
0 izt
where
A;=A4}+42, B;=C;=1/2B;.
Thus it follows for the logarithmic terms
Ezjzoa §2j+1=C2j+1- (6-5)

1
It remains to expand | I(x,x)dx. The map Isx—(1—x)el induces a uni-
1/2

tary map U in I?(I). The operator

T.=U*TU
is the Friedrichs extension of
e . _ 2 a/(x) 7, — .
7= d"+———x2(1-x)2 ,  d(x):=a(l—x).

Hence if I} denotes the kernel of e™*"" we have I)(x,y)=I,(1—x,1—y) and
therefore
1/2 1
§ L(x,x)dx= | I(x,x)dx.
0 1/2
Noting the symmetry w(x)=w(1—x) the proof is completed. O _
To conclude this section we want to point out a degenerate elliptic operator
which is covered by our result. Consider the differential expression

O-:z—dx(xadx)’ 0§a<27

and denote by S the Friedrichs extension of Ty(c) in I?(I). Then we can apply the
Main Theorem to compute tre™* in view of the following fact [note that A(a)
below is =2 —1/4if 0<a<2].

—4
Lemma 6.3. Let A(a):= %. Then S is unitarily equivalent to the Friedrichs
extension of Ty(o”) in I2([0, 2/(2—a)]) where
o'=—d2+ A(f) .
X

Proof. Under the unitary transformation
@, : (D sursx*ue IX(1,x~%?).
S is equivalent to the Friedrichs extension § of

a(3a—4) a2

Gr= — a/2d aj2
Gr= =X, ) + =
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with domain CQ(I) in I?(I, x~*?). Since the principal part of & is the negative
Laplacian of the metric x "*dx* on IR we have a unitary transformation

@y (I, x" ) su—uoy ™ e ([0, B(@))),

where p(x): = [ t~%? dt and B(a) =y(1)= 2La' An easy calculation completes the
° —
proof. [J
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