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1. Introduction

Let M be a compact Riemannian manifold and A its La-
place-Beltrami operator. For a potential q € C®(M) the
Schrédinger operator Hq 1= -~ A 4+ g is essentially self-
adjoint in LZ(M) and its spectrum consists of a se-
quence A1 < ... < Aj > o of eigenvalues with finite
multiplicity. Thus we may call (AJ.)J.CIN the spectrum of
g. It is natural to ask to what extent the spectrum de-
termines q. This question has attracted much interest

in recent years but it does not seem to have a simple
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answer. First of all, if ¥ is an isometry of M then g
and go¥ are isospectral. If the set Is(q) of potentials

isospectral with q contains only functions of this form

q is called spectrally rigid. Then it is known that
certain potentials on certain manifolds are spectrally
rigid (cf. [2]) whereas the periodic solutions of the
Korteweg - de Vries equation provide nontrivial iso-

spectral deformations for potentials on 51 {cf. [31).

It is therefore interesting to investigate general
structural properties of the set Is(q) for example
compactness in various function spaces. If M = S1 it
is well known that Is(g) is compact in Cm(S1).'In ge-
neral dimensions, Gilkey has proved that compactness
in Cw(M) reduces to boundedneés in certain Sobolev
spaces ([1] Theorem 2.4). In this note we improve
Gilkey's result which enables us to show that Is(q)
is compact in C%(M) if dim M < 3. The proof is based

on the asymptotic expansion of the trace of the heat

kernel of Hq

-SH .
tre 9 o~ (ans)™™2 3 s3I a(q) ., no:= dimm .
s=»0 jz0 J.
With respect to the Riemannian measure on M the aj(q)

are integrals of certain functions uj(q) over M which
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are universal polynomials in the covariant derivatives
of q and of the curvature tensor of M. It can be shown
([1]) that for j 2 2 aj(q) equals the square of the
Sobolev norm of q of order j - 2 plus integrals of
products involving only lower order derivatives. This
suggests the possibility of estimating the Sobolev
norms of q in terms of the aj(q) hence in terms of the
spectrum. In fact, using the Sobolev and Gagliardo-
Nirenberg inequalities we show that Is(q) is bounded
in every Sobolev space if it is bounded in the Sobolev
space of order 3nO - 2 where

n, t= inf {memW | m=z n/2} (1)

To verify the latter condition, however, and thus to
prove compactness we have to introduce a restriction

on the dimension.

I wish to thank Victor Guillemin and Marty Schwarz for
several stimulating discussions on this subject.

2. Heat invariants and Sobolev norms

We will use Gilkey's result in the following form.
Theorem 1 a) There are functions Wys Wy € C*(M) depen-

ding only on the curvatuxne of M such that
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3 we have

] . .
aj(a) = NG00 pI-2 q)?
(2j-1)! M

_ k M
k=1 oc€22+
o £2(k)

. s . k .
whene D denotes covandlant denivative and (P@i)1§i§k is
a family of diffenential openatons with c” coefficients
depending only on the metnic of M. Moneoven, the oadexns

satisfy Fhe inequaliiies

k
z

K <

ord P§, < 3 - 3, ord P§i < 2(3-3)

i=1
Proof a) This is proved in [1] Theorem 4.3.

b) This is contained in the proof of [1] Theorem 2.4. o

For 1 £ p £ » and s € IR we denote by ws p(JRn) the
Sobolev space of dis}fibutions u € S'GR") such that u

is a function with ksa € LpﬁRn) where ks(g):=(1+E|2)s/2;

ws ptRn) is a Banach space with the norm
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AN

A

Il ™ = kUl

(M) consists of all distributions u on

S,Pp
1

M such that (fu) oy~ " € W p(]Rn) for every coordinate

system (U,y) and every f € C?(U). Choosing a finite

atlas (Ui,wi)1§i§m and a subordinate partition of unity

The space W

(fi)1§j§m we define a norm on W

m
._ -1
H“HWS,D(M) SRS I (Fu) 0wl ] TR (2)

This norm depends on the choices made but any two such
norms are equivalent, and W (M) is a Banach space

S,P
with the norm (2). With Ny defined in (1) we have the
following consequences of the Gagliardd—Nirenberg in-
equalities (see [4] pp. 124).

Lemma 1 Fon 1

IA

P < Wn o(M) 4mbeds continuously
O,

into LP(M) L. e.

HUHLD(M) S C My, o0 o UE My 0. (3)

O’

whene C depends on p and M. I4 n

0> n/2 then (3) afso

holds fon p = .

Lemma 2 Letn >2, 0 2 o £1, and put
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1-0
b=

]
S |—

Then W1 2(M) - Lp(M) and

A

1_
c lully I ou | L u€ W, o(M),
w1’2(M) 2 1,2

Hull
LP (M) LE(M) ’

wherne C depends on M and a. If§ n = 2 then the rnesult

is true foxn 0 S a < 1.

We are now able to reduce the compactness of Is(qg) in
¢ (M) to boundedness in w3n0_2,2(M). Gilkey ([1] Theo-
rem 2.4) gives a reduction to boundedness in wn,#JM)

where n' :=n if n is even, n' := n-1 if n is odd. To
get this in terms of ws,Z(M) norms one needs at least

boundedness in w3n 2(M) which is a stronger condition.
0’ .

Theorem 2 I4 Is(q) 4is bounded in W (M) then it is
—_— 3no-2,2

compact in c®(M).

Proof It is sufficient to show that Is(q) 1is bounded
in wj-2,2(M) for every Jj 2 3n0. This is true for

j-= 3nO by assumption so assume that Is(q) is bounded
in wj_3 2(M) for some j > 3n . For d € Is(q) we obtain

from Theorem 1 the estimate

EA
o
—_
—
4

q |l 5
Wi_p,2(M) 15ks
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|af<e (k)

where C depends only on M and the spectrum of g and

ord PX = -3, ord Pz_ < 2(j-3) . (4)

i i=1 1

k
z

We estimate the terms in the sum.

1st case We have ord Pé < j-3-no for all i. Then we
i

IA
=~

deduce from Lemma 1 for 1 £ p < w, 1 £ i

K ~
ui(Q)Ilwno,z(M)

A

k ,~
1P, (O] ron ol

s C T
p wj_3,2(M),

hence the generalized HGlder inequality shows that the

term considered is uniformly bounded on Is(q).

2nd case We have ord PE. > j—2—no for some i. But this

i
can happen at most for two different values of i since
otherwise by (4)

k

. k
3(j-2-n_) ¢ 1 ord P
R %j

IN
IA

2(j-3)

and j g 3no, a contradiction. If there is only one

such value, say i = 1, then we apply the generalized
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k

Hélder inequality with Py = 2, and since ord P < j-3
[0
1
the term is bounded as before.
Now assume ord R: z j-2—no for i = 1,2. We have to
i
estimate
F1eK @) Pk (@) Fa | (5)
M 1 2

where by the argument of case 1 any LP norm of F(T),
1< p < o, is uniformly bounded on Ié(q). Now choose

€ > 0 such that

R R P
2 n 2+€ 2
and 0 < a < 1 such that
1 11 1-a
24 o 2 N )+ 2

We apply Lemma 2 and recall that ord P§~ < j-3 to

i
obtain the estimate

kK [~ K /1~y 11« k o~ 1-0
p < Cl|P ) [P™ (q)
I a1(Q)I|L2+€(M) Il 0L1(Cl []w1’2(M)|- oy q ||L2(M)
< clls 0 ¥ 1-a
G o0 I3 m
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hence by assumption

<sc g 6

with C depending only on M and the spectrum of q.

Applying the generalized Holder inequality with
L
2 2+€
that the integral (5) can be estimated by the right

-1
Py := 24+ ¢, Py := 2, and Py := ( ) we see

hand side of (6), possibly with a different constant.

Summing up we arrive at the inequality

ot 2 ~ o
q < C (1 + |9 )
100, o I, 0

for @ € Is(q) where 0 < o < 1 and C depends only on M
and the spectrum of q. But this implies that Is(q) is

bounded in wj~2,2(M)' o

3. Compactness of Is(q)

To prove compactness of Is(q) in C*(M) we have to
verify the condition of Theorem 2. The difficulty of
doing this increases with the dimension of M. Our
argument breaks down in dimensions greater 3 since

then we do not control the LP norms on Is(q) for p > 4.
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IA

Theorem 3 Is(q) 44 compact in CT(M) if dim M < 3.
Proof Suppose first that dim M £ 2 such that n_ = 1.
By Theorem 2 we have to prove the boundedness of Is(q)

in w1 2(M). It is clear from Theorem 1, a) that Is(q)

is bounded in LZ(M). From Lemma 2 we find 0 < a £ 1/3
such that
~ ~ ~1-0
1kl < C |la]ly 191 (7)
L3 ) Wy o (M) L2 (M)

and from Theorem 1, b) with j = 3 we derive

FLTAN

~n 2 ~ 03
all c (1 + |Iadlf ) (8)
Wy (M) L3 (m)
where C depends only on M and the spectrum of q. Com~
bining (7) and (8) we see that Is{q) is bounded in

W M).

1,2(
Now let dim M = 3 implying ng = 2. Thus we have to
prove boundedness in w4 2(M.). Arguing as before (with

1/2 in (7)) we obtain the boundedness of Is(qg) in

¢4
W1 2(M). Using the full range of p in Lemma 2 with

n

3 we have for 2 £ p £ 6 with ap i= 3/2 - 3/p

1-a

~ e ~ P
1Kl s CM,pllqllw1’2(M)quILz(M) :

LP (M)
(9)
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saying that Is(q) is bounded in Lp(M) for 2 < p g 6,

too. Consider now a term in a4(6) (Theorem 1,b)) which

can be bounded by an integral

Applying the generalized Holder inequality with

Py =P, =Py = 3 and using the inequalities (7) (with
G replaced by P.(T) and & = 1/2) and (9) it follows
that J is bounded on Is(qg). The remaining terms can

be bounded by integrals

or

174N
~

kAT
M

with obvious bounds in view of (9). Thus Is(q) is

bounded in WZ,Z(M)' Moreover, since 2 > 3/2 Ilq]le(M)

is bounded on Is(q), and by (9) the same is true for

HP@IL e 2

operator of order =1 with smooth coefficients.

ps 6 and P is any differential

A

Examining the terms in as(ﬁ) it is then easy to show
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that Is(q) is bounded in w3 2(M). Observing that this
implies the boundedness of |]P(E)|[Lw(M) and

I P(T)]] , 25 p <6, for differential operators
LP (M)

of order 1 and 2, respectively, on Is(g), a similar
study of aG(H) leads to the conclusion that Is(q) is
bounded in w4 2(M). The theorem is proved. o

k)
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