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THE ASYMPTOTIC EXPANSION
OF MINAKSHISUNDARAM-PLEIJEL
IN THE EQUIVARIANT CASE

JOCHEN BRUNING anp ERNST HEINTZE

1. Introduction. In 1912 H. Weyl [24] determined the asymptotic behavior of
the eigenvalues of the Laplacian for a compact domain in R3. Almost forty years
later Minakshisundaram and Pleijel generalized this to a full asymptotic
expansion for the corresponding Dirichlet series for a compact Riemannian
manifold [20], giving rise to an extremely fruitful new development based on the
identification of the coefficients in the expansion (see e.g. [16], [18}, (4], [12], [2]).
One should expect interesting information from an extension of these methods to
singular spaces. In this paper we extend the Minakshisundaram-Pleijel
expansion to the equivariant case. Even in the simplest nontrivial cases the
structure of the coefficients becomes very complicated so we concentrate here on
the existence of an expansion and the functions involved.

To describe the results let M be a compact n-dimensional Riemannian
manifold, G a compact group of isometries, and p a finite dimensional
irreducible representation of G in a complex vector space V. Denote by E, the
complexified eigenspace of the negative Laplacian ~ A with eigenvalue AAZO.
Then E, is G-invariant and we can consider the function

L(n= 2, e~ Mdim Homg(V, Ey), t>0.
x50

Note that dimHom (¥, E,) is the multiplicity of p in E, which is equal to
dim EZ in case p is the trivial representation. Our main result (Theorem 4 below)
states that L, has an asymptotic expansion as t—0 of the form

L(ty~(4mt)~""? go a, 7/ *(log t)*
0<ie Ko—1

where m:=dim"/; and K, is bounded by the number of different dimensions
of G-orbits in M. Recall that the union of principal orbits, My, is open and dense
in M and that 0/ ; is 2 manifold whose dimension is dim™ / ; by definition. If G
is trivial Theorem 4 gives the classical result of Minakshisundaram and Pleijel
mentioned above. If G has no singular orbits (and hence K, = 1} it is contained
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in-Donnelly [11]. The first order asymptotics have been obtained in [9] and [11]
implying that ag, = vol" / ;dim V¥, H a principal isotropy group, and ay, = 0,
k > 0. Our result has been announced in [7]. It generalizes to transversally elliptic
pseudodifferential operators acting on sections of bundles as will be shown in a
subsequent paper.

We now sketch the main ideas leading to the proof of Theorem 4. For t > 0,
the heat operator e’* has a smooth kernel T, and it is well known that

—Ar 3 A
e Mdim E, = tracee'® = | T'(p, p)dp. 1
2 A J. TP p)ap 1
The fundamental result of Minakshisundaram and Pleijel states that in a
neighborhood of the diagonal T, has an asymptotic expansion

TP )~(m)™" 2PV 3 w(pigyt 10, @

This yields the asymptotic expansion of (1) immediately. In the equivariant cas
(1) generalizes to ’

-1 . -
L) = 501G Jouf T AP 8)R(8) g dp

where x, denotes the character of p. Using the expansion (2) it is therefore
enough to determine the asymptotic behavior of the integrals

~o(gp)/, d;
Jor? (g p)dgdp ©)

with ¢(g, p):= d*(p, gp) and f(g, p):= u(p, &)X, &)-

A very instructive special case arises if we consider an isometric action of the
k-torus T* on EBuclidean space R* (without trivial part). Splitting the
representation of T* into irreducibles the integral (3) becomes

fT . fR e /SO (g xyaxdd,  feCPTFXRM,  (4)

where each «; is a character of T*. It is clear from the Weyl integration formula
that the treatment of these integrals is decisive in understanding the general case.
But it turns out that it is already a very difficult problem to determine the explicit
asymptotic expansion of (4) in general. Leaving this open we attack the problem
using the following more qualitative argument.

Obviously (3) depends only on the behavior of ¢ and f in an arbitrary
neighborhood of the set

£ =97 (0)={(g P)EGX M|gp=p).

If .# is a submanifold it is necessarily a nondegenerate critical submanifold of ¢.
Thus @ can be replaced locally by x? in appropriate coordinates (x,, ..., X,)
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and the asymptotic expansion follows readily. Unfortunately this happens only if
the G action has no singular orbits. More generally, if ¢ is real analytic (locally in
appropriate coordinates) we can apply Hironaka’s theorem on the resolution of
singularities (cf. Atiyah [1] and Bernshtein-Gelfand [5]) to replace ¢ by a
monomial. Thus we only have to deal with integrals of the type

f e pxydx, o €N, heCP(RL), where
R

©)
R, ={x€R"|x,>20,1<ign}
These have asymptotic expansions of the form
j k
> au(N)P/N (logr)
>0
o<k<i-1

where N :=Le.mu(ey, - . - , @) and the a;, are distributions with support in the set
{x eR"|x{ ... x%=0}. Thus we would get an asymptotic expansion of L, in

case of an analytic action on an analytic manifold without information on N and
1, however. This has also been observed by Shafii-Dehabad [22]. To handle the
general case we construct inductively and quite explicitly what we call a “weak
resolution” of o(p, g):=d*(p, g(p))- A weak resolution is more general than a
resolution but its definition (given in section 2) is somewhat technical. However,
it is excellently suited for the present purpose and might be useful in other
situations, too. Our explicit construction leads again to integrals of the type (5)
without any analyticity assumptions. It also has the advantage of giving very
precise information on N and / which can hardly be deduced from the general
Hironaka theorem.

Thus, we have to expect logarithmic terms if k, > 1. Our first results in this
direction were negative: there are no logarithmic terms for S' actions or more
generally for actions of rank 1 groups (Theorem 7) and also not for arbitrary
isometric group actions on the standard sphere (Theorem 5). This is surprising
since for these actions the local structure of .#" can be as complicated as in the
general case. However, since this paper has been written the first named author
has obtained an example of a T2-action on a (nonstandard) S® producing
logarithmic terms. The example is based on the analysis of certain integrals of
type (4), underlining their importance. Thus, our result is precise concerning the
functions of ¢ involved in the expansion whereas-the nature of the coefficients
needs further clarification.

2. Weak resolutions and asymptotic expansions. We begin with the notion of
resolution (cf. [1]). In the following a manifold is always assumed to be C* and
paracompact.

Definition 1. Let M and M be manifolds of dimension » and ¢: M—> M a
C* map.
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(1) ¢ is called a resolution if ¢ is proper and there is a closed subset X C M of
measure 0 such that ¢~ (X) has measure 0 and ¢ restricts to a diffeomorphism
M\¢~U(X)—> M\X.

(2) ¢ is called a resolution of ¢ € C (M) (more precisely: of the set of zeros of

@) if

(@) ¢isa resolutlon with X 1= @~ 1(0),

(b) for each p e M there is a coordinate system (x,, ..., x,) centered at ?
such that

pod(x)=k(x)[[x* nearpwhere o, E€Z,
i=1

and k is smooth and nowhere zero.

A typical example of a resolution is the following. Put
B = {(w,x) eRP™!'XR"|x Ew}

and define ¢:R"—>R" as restriction of the natural projection. R” results from
“blowing up the origin” in:R" and coincides with the total space of the canonical
line bundle on RP"~ ',

As pointed out by Atiyah [1] the existence of resolutions has important
applications in analysis. Our interest stems from the following essentially well
known theorem on asymptotic expansions {cf. [6], [15]).

THEOREM 1. Let M be a manifold of dimension n and ¢ € C*(M), ¢ > 0 If
there is a resolution ¢: M—> M of @ then the integral

1(foyi= [ ef ©)

which is well defined for any smooth density f with compact support has an
asymptotic expansion as t—>0+ of the form

I(fn~ 3 au(f)Hlog [
olidk

forlsome integers J > 1 and K > 0. The ay, are distributions on M with support in
O

. Proof. Denote by (K);c; and (K );e; the components of M\~ (0) and
M\é ™ (¢~ '(0)) respectively. Then we have

fe ‘P/f_ zfie—w/ff=i§!fkie—ww/l¢*f_

iel

By conditio_n_ (2)(b) we see that each point in 12_, has a neighborhood Uin M such

that U N If is diffeomorphic to a (relatively) open subset of R, := {x €R"| X

> 0, 1 < j < n}. Since ¢ is proper the same condition shows that supp ¢* fK #* 0
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only for finitely many i. Thus we see that I(§,£) can be written as a finite sum of
integrals of the form

Jog & 7HO T T ()i ®

where k€ C®(R%), g€ CP(RY), and k(x)#0 for x €supp g. But the
asymptotic expansion of the integrals (8) is known to ex1st and to be of the form
(7) ({15] [8]). In particular, we can choose

Ji=lem {¢|ey0} and K:=#{jle#0}. []

The existence of resolutions follows from the celebrated theorem of Hironaka
in the analytic case. To get a result analogous to Theorem 1 in the C* case we
will propose the notion of “weak resolution” which is still sufficient to yield the
asymptotic expansion. In addition, it turns out to be explicitly constructable for
the functions we are interested in. In particular, we will have good control on the
integers J and K above.

We start with weakening Definition 1(1).

Definition 2. Let M and N be manifolds. A differentiable map ¢: M —> N is
called an almost diffeomorphism (more precisely: an almost diffeomorphism onto
$(M)) if there is a closed subset X C M of measure 0 such that ¢ restricts to a
diffeomorphism M\X —>¢(M\X).

Certainly, every resolution is an almost diffeomorphism. Another typical

- example is

¢:Rx Si_' S (rwyrre€R”

where §77'= ((x}, ..., x,) € S""!|x,>0}. Note that ¢ is not proper. We
collect some obvious properties of almost diffeomorphisms.

LemMma 1. Let ¢: M —> N be an almost diffeomorphism.

(1) If K C N has measure 0 so has ¢~ '(K).

(2) The resiriction of ¢ to any open subset of M is again an almost
diffeomorphism.

(3) If ¢': N—> N’ is an almost diffeomorphism then also ¢’ cp: M—>N'.

@ If¢: M—> Nand &: M—> N are almost diffeomorphism so is ¢ X $:MxXM
—> N XN.

The weak analogue of Definition 1 now reads as follows.

Definition 3. Let M be a manifold of dimension 2.

(1) A family (V;,¢;);e, of almost diffeomorphisms ¢;: ¥;—> M is called a weak
resolution of M if for each p € M there are a finite subset I’ C I and functions
[ € Cg°(V), i € I', such that

> fee =1

ier
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a.e. in a neighborhood of p. Here the functions f; ¢ (which are defined a.e. in
¢,(V;)) are extended by 0 to all of M.

(2) A family (V;,;);; of almost diffeomorphisms ¢;: ¥;—> M is called a weak
resolution of p € C (M) (more precisely: of the set of zeros of ) if

(a) (Vi»$1);e, is @ weak resolution with ¥; open in R”,

(®) @ o ¢;(x) = ki(x) I-I;I, xjw/

where a; €Z, and k is smooth and nowhere zero in ¥;. We say that this weak
resolution has order at most L and degrees contained in A CZ, if

#{jlay#0) <L forall i€]
and
o; €4 forall i€l and 1< j<n

Before discussing this notion in more detail we want to show how a weak
resolution of ¢ leads to an asymptotic expansion of the integrals (6). All we need
is the following simple fact the proof of which we omit.

Lemma 2. Let (V,,¢);c; be a weak resolution of M. Then for any compact
subset K of M there are a finite subset I' C I and functions fECyV), ier,
such that )

> foe =1
ier
a.e. in a neighborhood of K.

Using property (1) of Definition 3 we can now repeat the proof of Theorem 1
to obtain the following result.

TueoreMm 2.. Let M be a manifold of dimension n and @ € C™(M), ¢ > 0. If
there is a weak resolution (V;, &), ; for @ then we have for any smooth density with
compact support the following asymptotic expansion as t—>0+

- ’ T
fMe o/ ifms 2 ajk(f)ﬂ/ loght
j»0
) 0<k<K
for some integers J > 1 and K > 0. The ay, are distributions on M with support in
-1
9 (0) v
If in addition the weak resolution has order at most L and degrees contained in
A, A finite, then we can choose

K=L-1 and J=lcm{a|a€ A\(0}}.
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Thus the problem of expanding /(f, t) has been reduced to the construction of
a weak resolution of ¢. We now collect some facts which are useful for this
purpose and enable us to carry out the construction for d%(p, g(p)) on M X G.
Note first of all that every family (Vi,¢);c; of diffeomorphisms ¢;: VioM
satisfying M = | J;¢, $,(V;) is a weak resolution of M. Secondly, every resolution

a

¢: M—> M is a weak resolution. More generally, we have the following fact.

LEMMA 3. An almost diffeomorphism ¢: M—>N is a weak resolution of N if
and only if ¢ is proper and sutjective.

Proof. 1. If ¢ is proper and surjective we chopse for pEN a relatively
compact neighborhood U and f € Cg°(M) such thatf|¢“(l_1) =1

2. Let ¢ be a weak resolution of N and p € N. By the definition we can find
functions f;, - . . , f € C¢°(M) such that

Zfio(p”l:]

a.e. in a relatively compact neighborhood U of p ie. we have for some measure
zero subset X of N

k
vcxu _L_Jl4>(supp )

Since U is open we must have U N X CU\X hence
k
U c | o(supp fi)
i=1
i.e. ¢ is surjective. We also have
k
o~ '(UYC X U Usupp fi
i=1
for some measure zero subset X’ of M. Reasoning as before we get

k
¢~ '(Uyc Usupp fi-
i=1
Thus every point p & N has a compact neighborhood ¥ such that e~ (V) is
compact i.e. ¢ is proper. [

The proof of the lemma shows that a weak resolution (¥}, ¢,);e; of M satisfies
User&i(V) = M.

LemMa 4. (1) If (V3,8)e; is a weak resolution of M and M' C M an open
subset then (V!,&l);e; is a weak resolution of M ! where

vi=vine (M),  ¢i=qlV, Q€L
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(2) If (Vi ¢,);ic; is a weak resolution of M and for each i Vi by)iey, is a weak
resolution of V,; then (V,j,q:i ° ¢y)ics, jey, i a weak resolution of M, too.

3) If (V,.‘,vcpi),.,s 7 :znd (Vj,[i;j)jE 7 are weak resolutions of M and M respectively
then (V; X V;, ¢ X ;)i erxs is @ weak resolution of M X M.

Proof. (1) and (3) are straightforward in view of Lemma 1. For the proof of
(2? we note that ¢; o ¢, : ¥;—> M is an almost diffeomorphism by Lemma 1.
Given p € M we find f; € C*(V}), i € I, such that

> fie¢'=1  ae ina neighborhood of p.
ier
According to Lemma 2 we can also find f3 € C3°(Vy for j € J/, a finite subset
i i
of J;, such that

2, fie oy '=1 a.e. in a neighborhood of the compact set supp f, C ¥;.
jeJi

Put f;:= f,f; o ¢; € C°(¥}) then

..'.o . 0 .._‘= o b ! o d—Nop-l=
'_EZIIf., (% ° &) EZI(f & )J_gﬂ(f,, o) a =1

jeJ;
a.e. on a neighborhood of p. []

We now turn to the weak resolution of functions. What we have done so far
leads immediately to the following consequences which will be used below.

(1) A resolution of ¢ gives rise to a weak resolution of ¢: if ¢: M->Misa
resolution of @ € C®(M) then every atlas (V;,¢);e, for M consisting of
coordinate systems with property (2)(b) of Definition 1 defines a weak resolution
of g, namely (V;,¢ ° ¢);c;-

(2) If ¢: M—> M is a resolution and (V},¢,),e; a weak resolution of ¢ o ¢ for
some ¢ € C°(M) then (¥, ¢ © ¢;);, is a weak resolution of ¢. More generally,
if (V;,¢1);e; is a weak resolution of M and (¥}, ¢;);c, is a weak resolution of
que #; for some @ € C™(M) and each i then (Vj,¢; ° ¢));e;, jes is 2 resolution
of . k

(3) If #: M—> M is a covering, (V;,¢;);c; 2 weak resolution of ¢ o 7 for some
¢ € C*(M), and if (U),, is an open cover of M with 7| U injective for all j
then (¢, (U, 7 © (8|8, (Ui, jes s 2 weak resolution of @. In fact for j
fixed (¢, '( U)me (¢,-[¢,-_‘(l/}))),»e ; is a weak resolution of ¢|7(U;) by Lemma
4(1) and the previous remark. !

@ HeeC*M)andpeEC (M) have weak resolutions of order at most L
and I and with degrees contained in 4 and 4 respectively then ¢ - §: M X M
:4—) R has a weak resolution of order at most L + L and with degrees contained in

U 4.

The following lemmas will be our main tools in constructing weak resolutions.
The first allows to introduce polar coordinates.
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LemMa 5. Let M be a manifold and let 9 € C*(R" X M) be homogeneous of
degree k in the space variable. If § 1= o| S$""' X M has'a weak resolution of order
at most L with degrees contained in A then @ has a weak resolution of order at most
L + 1 and with degrees contained in A U {k}. '

Proof. Put ¢:RX S""'X M 2 (r,0, p)—>(rw, p) ER" X M. Then ¢ © ¢ has
a weak resolution of order at most L + 1 and with degrees contained in 4 U {k}
by remark 4 above. But ¢ is invariant under the natural Z, action
(r,©, p)=>(—r, —w, p). This action is free and the quotient is diffeomorphic to
A" x M with B" described above. Hence we have a factorization ¢ = <§ o o where
¢ is a resolution and 7 a covering. Thus the lemma follows from remarks (2) and

@ O
Though simple the next lemma is a powerful tool for our constructions. Note
that—somewhat unexpectedly—we don’t require ¢/ § below to be smooth.

LEMMA 6. Let ¢,§ € C (M) be nonnegative and satisfy the inequality
£F<p<CH ©)
or some positive constant C. If § has a weak resolution of order at most L and
P

with degrees contained in A so has ¢.

Proof. Let (V,,¢;);c; be a weak resolution for ¢ and let
n
goa()=kx 5% x€V,
j=1

with £, smooth and £ (x) 5 0. The right hand inequality in (9) implies that ¢ © ¢;
is C*-divisible by I}, x/%. In fact this is obvious if §;:=3_,a; is equal to
zero or one and follows in general by induction on f8;. Hence

pod(x)=k(x) Il %%, xE€Vi
j=1

for some k; € C®(V;). But the left hand inequality in (9) implies that k; is
nonzero. [ ]

Finally we can “sum” weak resolutions under special circumstances.

LemMmA 7. Suppose that the nonnegative functions @ € C®(M) and §
€ C®(M) have weak resolutions of order at most L and L respectively but both
with degrees contained in {0,d} for some d EN. Then ¢ + ¢ € C®(M X M) has
a weak resolution of order at most L + L — | and with degrees contained in {0,d}.

Proof. By the functional properties of weak resolutions described above it is
sufficient to construct a weak resolution of the functions

o(xy) = [lxt+ TLof, (m2) R
g
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where ;, B; € {0,d} hence 3, a; = kd, 3, ;= Id for some k,/ €Z, . To do so
we use induction on k + L. If k+7< 1 (or k=0 or /=0) there is nothing to
prove. Now suppose &, = ﬁjo = d and consider the resolution ¢: R2 x R*m~2
- R"*" obtained by blowing up the origin in the (x;,, y;) plane while leaving all
other coordinates unchanged. On R? we can locally introduce coordinates X5 %,
with y, =X, %, or y,, 5, with x; =3, y,. Thus we can use the induction
hypothesis to get a weak resolution of ¢ o ¢ which gives a weak resolution of ¢,
too. Obviously this resolution has order at most L+ L —1 and degrees
contained in {0,d}. []

3. Weak resolution of the square of the Riemannian distance. We will now
apply the techniques of the previous section to construct a weak resolution of the
function ¢, € C(M X G) given by ¢up, g):=4d%p, g(p)) where d denotes
Riemannian distance. More precisely we are going to show that every point
(s go) € £ = g (0) has a neighborhood U in M X G such that @,| U is C*®
and has a weak resolution thus defining a weak resolution of ¢, in some
neighborhood of 2.

To do so we equip G with a biinvariant metric by choosing an Ad G-invariant
scalar product on the Lie algebra g of G. For p € M we denote by G, the
isotropy group and by m, an orthogonal complement to its Lie algebra in g. Gp
denotes the G-orbit of p and N, the orthogonal complement of its tangent space
in T,M. Finally, let exp and exp, be the exponential maps on g and T,M
respectively. With these notations we define a map ¢: N, Xm, Xm, X G,
- M X G by

(%, y,2, g) 1= (expz €XP, X, €XP Z EXp yg(expz)")
and a function f: N, X m, Xm, X G,> R, by
F(t 3,2, ) 1= x = dg, () + |y~

Lemma 8. For every g, € G, there is a neighborhood W of (0,0,0, go) in
N, Xm, Xm, X G, such that
| W is a diffeomorphism

and

Po°9 < Cf (10)

A=
~,
N

on W for some C > 0.

Proof. The image of d¢(0,0,0, gy) clearly contains Np,ngn(g) where R,
denotes right translation by g,, and the tangent space of G, in M. Thus d¢ 18
surjective hence also injective since the dimensions are equal. Hence ¢ is a local
diffeomorphism.
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Since G acts by isometries we have
P00 O(X, 1,2, 8) = dz(exppx,exp yexppdgp(x))
=:d%($1(x,0), 6:(dg,(x). »))

where ¢ : N, Xm,—>M is given by ¢(x,y) = exp yexp,x. No;v ¢ is a
diffeomorphism in a neighborhood of (0,0) hence the pull bgck (_>f d gnder ois
equivalent to the Euclidean metric on N, X m,, near (0,0) which is the inequality
(10). [ .

It is now easy to see that . is a submanifold of M X G if and only if the G
action has no singular orbits. In fact, in the local coordinat_es above we hav.e
o (L) ={(x y,2, ) EWldgx=x} ie, L 52 submamff)ld of MX G if
and only if Z:={(x, g) EN, X G,|dg,(x)=x} is a submanifold of N, X G,.
But then the components of .27 and N, X G, containing (0, e) m}\st .be equ:.il
meaning that the identity component of G, acts trivially on N, \thh in turn is
equivalent to the nonexistence of singular orbits in view of the slice theorem.

We need one more definition. For a G-invariant open set U C M we put

K(U,G) = #{dimGg|q € U}
and forp € M
K(p,G):=inf{K(U,G)| U G-invariant, p € U}
Finally, let
K(M,G):= sup K(p,G). (1)
PEM

We can now construct the desired weak resolution of ¢g.

TaeoreM 3. There is a neighborhood U of £ such that @q| U is C* and has a
weak resolution of order at most K(M, G) and with degrees contained in {0,2}.

Proof. 1t is sufficient to prove existence of such a weak resglution in a
neighborhood ¥ of any given point (p, go) € L. Choom'ng W as in Lemm? 8
and using Lemma 6 we need only construct a weak resolution for lx - dgp(x)| +
|y in W. Picking a product neighborhood V C w apd applying Lemma.7
repeatedly we can further reduce to |x — dg‘,,(x)l2 in a neighborhood of (0, go) in
N, X G,. Now denote by G° the identity component of G, and put

Ni= {x e Npldgp(x) =xforg€ Go},
Nyi={x€ N~|dg0’],(x) =x}.

We decompose orthogonally
N:=N,®N,, N:=N®&N,ON,
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and note that N is G,-invariant. Writing x = x, + x, + x, accordingly we find in
a connected neighborhood of (0, g)

|x — dgl,()c)|2 = [(3, + x3) — dgo, (%, + X))+ [x5 — dgp(x3)[2

= |(id = dgo,,)(x2) + 3 — dg, (x5)P

Since id — dg,,, is nonsingular on N, we can use Lemma 7 again and are left with
f(xs, g):=x; — dg,(x;)|* in a neighborhood of (0, gp) in Ny X G,.

We now use induction on K(M, G). If K(M,G) =1 we have nopsingular orbits
hence N; =0 and the proof is complete in this case. Assume then that the
theorem is true for all compact manifolds M’ with isometric G’ actions such that
K(M’, G’) < K(M, G). Denoting by S the unit sphere in N, we have a G, action
on § with K(S,G,) < K(M, G) since G, has no orbits of dimension 0 onpS. The
induction hypothesis gives a weak resolution of f =f]Sx G, of order at most
K(Iy,]G) — 1 and with degrees contained in {0,2}: namely, in a neighborhood
of f710) = {(w, pp ES X G, | dg,(w) = w} f is equivalent to dXHw,dg,(w)) with d,
the standard distance on the sphere, hence the assertion follows fro:n Lemma 6x.
Now introducing polar coordinates by

$RX S X G,3 (v, g)= (e, g) € Ny X G,
we have fo ¢(r,0, g) = r2f~(w, g)- Applying Lemma 5 the proof is completed. []
4. The asymptotic expansion. We now derive the asymptotic expansion of
L= % e Mdim Homg(V, Ey).

With an o_rthonormal basis (¢}) for E, we have for the character x, of the
representation of G in E,

x(8) =2 [ oNnF(s(P) 4

Denoting by x, the character of p we obtain from the orthogonality relations
([25], p. 189).

i -1 . = =
dimHomo(V, ) = or= 5[ X(0)9 (13 (8() B

;)Or; )the other hand, the kernel T, of ™ is given by the convergent series ([4], p.

Lpg) =2 Sol(pF (@)  paeM, >0

The Cauchy~-Schwarz inequality gives for every N €N

> e‘“g AEAC) "< T(p, )T{9.9)

AN
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hence the Lebesgue—Fatou Lemma implies the identity
1 —
L(1) = 551G )., o O 8(P)) dp -

Now we have the estimate ([18], p. 50)
[T(p.q)l < Cyt~"%e=Cl& /o, pgeM, t>0,

with some positive constants C,, C,. Thus for any f € C®(M X G)withf=1in
a neighborhood of -# we obtain as t—>0 )

L~ V—ollg fMX K& g(P)f(P)dp g

Now we choose a neighborhood U of .7 in M X G such that Theorem 3 holds in
U and the map (p, g)—(p, g(p)) maps U inio a neighborhood of the diagonal
in MXM where the Minakshisundaram—Pleijel expansion (2) is valid.
Combining these facts with Theorem 2 and Theorem 3.1 in {9] we have proved
the main result of this paper.

THEOREM 4. We have the following asymptotic expansion as 1—0
L(ty~(4uty~ "/ > a1 oght
i>0
0<k<K?M,G)—~I
where m:= dim™/; and K(M,G) was defined in (11). Moreover
agy = vol" / ;dim V7,
H a principal isotropy group, and
ag, =0, k> 0.

Remark. Tf G is connected we may reduce the integral over G in the formula
for L, to an integral over T, T a maximal torus, by Weyl’s integration formula.
In particular, we may replace K(M, G) by K(M,T) in Theorem 4 showing that
the exponent of the logarithmic factor is at most dim7 = rank G.  But

K(M,T) > K(M,G) is possible, e.g., if G =SO(3) acts on S? in the standard
way.

5. The case of the sphere. As mentioned in the introduction, the logarithmic
terms do occur, but so far their dependence on the geometry is not clear. In the
remainder of this paper we present some nonexistence results.

1t is clear from the proof of Theorem 4 that the log terms are somehow related
to the singularities of .. By Lemma 8 .7 is locally (up to Euclidean factors)
diffeomorphic to

{(x. g) ER"X Glg(x) = x}
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where G C O(n) is an isotropy group of G. Thus the local singularities of #” can
be realized already by isometric actions on the standard sphere S” (by imbedding
G in O(n+ 1) in the usual way). Somewhat surprisingly we have the following
result which seems to indicate a strong dependence of the log terms on the
Riemannian metric.

THEOREM 5. For M =S" the standard sphere, G a closed subgroup of
O(n+1), and any finite dimensional representation p of G on a complex vector
space V we have an asymptotic expansion of the form

o0
L(t)y~1"" zoajtf/z, 0.
=

The proof is independent of Theorem 4 and will follow from the next two
propositions recalling that A, (S") = k(k + n — 1).

PROPOSITION 1. There exist an integer m > 1 and polynomials Py, . .., P,,_,
€ Q[x] of degree at most n — 1 such that

dim Homg(V, E, (S")) = P,(k)
if k=r modm and k is sufficiently "Iarge.

ProposiTiON 2. For m,r,s €ER and v € Z with m > 0 and v,r,s > 0 we have
with certain a, €R

ad 0
2 e—(kl)x+r)(kn+:)ku~t—(v+])/2 2 aktk/z
k=0 k=0

as t—=>0.

We begin with the proof of Proposition 1. Denote by & the polynomial ring
Clx, ..., x,,;]and by &, the homogeneous polynomials of degree k > 0 in Z.
Put P_,:=%_,:=0. The Laplace operator A in R"*! maps Z to itself. We
denote by A, : % —%P,_, the restriction to %,. It is well known that
E (8=, = kerA, the isomorphism being- given by restriction to the
sphere. A direct computation shows the following.’

LemMa 9. A, : P > Py, is surjective, k > 0.

Now let G C O(n+1) be a closed subgroup and p: G—>GL(V) a finite
dimensional representation of G. Then G acts naturally on & leaving %, and
2, invariant and the isomorphism ¢, ~ E, (8") is G-equivariant. Since G is
compact the exact sequence

0~>Hom(V,5¢, )~ Hom(¥V, %) > Hom(V, %, _,)—>0
implies the exact sequences

0> Homy( ¥, 2, ) > Homg(¥, @, )= Hom (¥, P _5) 0.

THE ASYMPTOTIC EXPANSION OF MINAKSHISUNDARAM—PLEIIEL 973

Thus we have
Lemma 10.
dim Hom,(V, E,, (S")) = dim Homg(V, %) — dim Homg(V, % —2), k>0.

Now we come to the crucial point.

LemMa 11. The Poincaré series of @ .oHomg(V, E, (S™)) has the form

E“’ 1(2)
i n k=
k=odlmH°mG(V’EM(S )z (1=z%...(1—2%
where f € Z[z}and d,, . . ., d, are certain positive integers (namely the degrees of a

set of generators for @ .o Homg(V, %))
Proof. Since by Lemma 5

> dimHomg( ¥, By (s"))z = (1 - 2°) Zodim Homg(V,%;)z"
k=0 P

it is enough to consider the Poincaré series of €)7o Homg(V,%;) for which the
corresponding statement is essentially known. In fact by a classical result. of Weyl
[25] (cf. also [14], Ch. 10, Theorem 5) #%, the subspace of Q-mvanant
polynomials, is a finitely generated algebra over C= #§. Since 4 =
@ Hom(V,%#,) is a finitely generated graded # = @I‘:;O.'?k -module it
follows from [23], 2.4.14 that A¢ =@ L., Homg(V, %) is a finitely generated
- graded & ¢-module. :

But then by a result of Hilbert-Serre ([23], Proposition 2.5.4 or [3], Theo.rem
11.1) the Poincaré series of Homg (¥, %) is a rational function of the desired

form. []

LemMa 12, Let (@ )0 be a sequence of integers and assume

Sk f(2)
azf= ——————
k=0 (I-z%...(1—2%)
for some f € Z[z) and some integers dy, . .., d, > 0. Put m:= lemddy, ..., d).
Then there exist Py, . . ., P,,_, € Q[z] such.that a, = P,(k) if k = r modm and k
is sufficiently large.
Proof. Since (1 = z%)~! = g/(z)(1 — z™)™" for some g; € Z[z] we may assume
thatd, = -+ - =d,=m. If

N-
f(z)=: vauz"
p=0
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it follows from

(5—1)i=( 1 )<"”= S (v+s—1)zu

that

o N
S gzi= 3 S bﬂ(v-&-s- l)zpﬁ-mu

s—1

I
Ms
N
x>

b ((k—p.)/m+s—1).
k=0 O<p<min{kN)} * s—1
p=k modm

Henceif k > N and k = r modm

- (k=m/m+s—1)_.
* 0< pa N b“( s—1 ) F )

p=rmodm
and the lemma follows. []

The proof of Proposition 1 now follows from Lemma 11 and Lemma 12 noting
that dim Homg(V, E, (§")) < dim Vdim E, (S™) < Ck"~! hence degP, < n—
Lo<r<m-1L

For the proof of Proposition 2 we need the following result which follows
easily from [10], Lemmas 8.1 and 8.5.

LeMMa 13.  We have the following asymptotic expansions as t—>0.

oo
I e (w2, 1
Q) P () +2-
«0
_ (20! _
o) kgoe kzlkzuN(_l)uulzzoﬂwl/zl @bz e,

3) ie—kztk29+l~ o! + §: (—l)kBZ(k+u+l) ¥
k=0 2t S RRI(k+o+ 1)

v €Z, , where B, denotes the nth Bernoulli number.

Proof of Proposition 2. We have
00 (=3
2 o= kmE ) (km+syip0 . o= rst 2 e—k(k+zx)m2zku
k=0 k=0

where o= (r+s)/m. Thus it suffices to prove such an expansion for
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Fan)=:5%_oe Mk %, o > 0. Since
' oF,

(@)= (~ Y Fyuy (@)

_ and hence for N €N

N . N+1
Fy(a,ty= 2, 3‘{ —1)7F,,;(0,2) + "‘N: (—t)NHJ:FMNH(sa,t)(l —s)y"ds,

the result follows from F,, . (521 < Fpy y41(0,7) and Lemma 8. M

Theorem 5 generalizes easily to spaces which are the image of a sphere under 2
Riemannian submersion with minimal fibres and with decktransformations
acting transitively on each fibre. Thus we get the following generalization.

. Tueorem 6. Let M be a spherical space form, CP", or HP". Then for any
closed subgroup G of I(M) and any finite di jonal complex repr tion p of
G we have an asympotic expansion of the form

oo
L(ty~t="" zoajtj/z, 1—0.
=

We conjecture that Theorem 5 generalizes to all compact symmetric spaces.

6. S! actions. We are going to show that the asymptotic expansion of L,
does not contain logarithmic terms when G = S !. The basic observation leading
to the proof of this fact is the following.

Lemma 14, Let f € C(R) satisfy
f

ey 0= 17 0. (12)

Then the asymptotic expansion of
1ty = [ e f(x ) dsy

for t~>0 does not contain logarithmic terms.
Proof. 1t is known (cf. e.g., [8], Theorem 1) that there is an asymptotic
expansion
()~ 3 autlogh
j>0

J
0<k<1




J
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We put o :=¢/¢?; then upon substituting this in the above expansion we get an
asymptotic expansion w1th respect to the functions (e/o’/’log"o);,, ;—o, and

(o//Mloghe?);5,1 2o 88 €+ 0°—0, and in this expansion the coefticients of
ela’/Mlogo and &o//*loge? must be equal. Now write

1= [P [+ [*)dy e f(x, y)=1 Lo + o).

An easy calculation gives as €2 + 6> —>0

I~ 3 L [ ey

which has no terms of the form e/s*/?loge®. On the other hand, since 1/y*< ¢
we get from Taylor’s formula

(x 0)dxdy

; o _ PR 0 ajf :
Lo~ 3 1+ 0/2 i fjrax [© 2L (0, py /it ay.
20:€) Eo J e [ 70,5y

By Taylor’s formula again we find

I evf(oy)/y,+,dy G+ Za,afk( 0)/k

i i
[+ R

where

= “ﬂ J+1
Cj‘“fl 2 Oy

and R,(e) has an asymptotic expansion in nonnegative powers of e. The
assumptlon (12) shows that I,(a,€) contains no term e/o*/?loge?, too, and the
Lemma is proved. [] :

THEOREM 7. Let M be a compact Riemannian manifold of dimension n with an
effective isometric G-action, where G is connected of rank one. Then we have the
asymptotic expansion

Loy~ (4mt) " S g
j®

as t >0, where a;, = vol™ / 1.

Proof. We only need to show that there are no logarithmic terms. The remark
after Theorem 4 shows that we may assume G=§ . Fix (p, g € £ and
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_assume that we can find a diffeomorphism ¢ : W— U where U is a neighborhood
of(p, goy in M X S' and W an open subset of R™ X R™: X R* X R such that

9o ° $(15 22,2,0) = |yof + |22 13)

Here go(p,1) = d%(p, g(p)) as before. As in the proof of Theorem 4 we have to
_ determine the asymptotic expansion of the integrals

I(f,t):=f

s R Re =(lyaf+ Iz|292)/41f(y2 ,2,0)d0 dz dy,

as 10 where f € C&°(R™ X R* x R). Introducing polar coordinates (7,) in
R”: and expanding the r-integral we do not encounter logarithmic terms. Hence
we are left with the integrals

n(fa):=

€T Nf (2,0 dB d.
R¥* xR

Here fECPR* X R) and we can assume that f is invariant under the
ransformatxons z+> —z and #~> — 4. Introducing polar coordinates (p, o) in R*

LUt = [ e /0% (p,0) s dp

where f € Cg°(R% ) and its Taylor series around 0 contains only even powers of p
and @ by the above invariance property. But then

2/ i A
W(PZ" Hoo=0 j>0

and the proof is complete in view of Lemma 14.

For the proof of (13) we consider first the case that S, ! is finite. Using Lemma
8 we get a coordinate system ¢: W— U, where Uis a nelghborhood of (p, go) in
M X S' and W open in R™ X R™, such that

’1“‘)’2|2 < @p° ()1 ya) < Clyf
C

_ which corresponds to the case k = 0 in (13). But then the critical set of g ° ¢ is
_ given by y, =0 and @, 0 ¢ is nongenerate with Hess g o ¢(y,,0)| {0} X R™
positive definite. The generahzed Morse Lemma (cf. [19]) proves (13) in this case,
Now assume S, ! = §'!. We decompose N,=T,M orthogonally asT, M=V ® 14
 where Vi= {x € T,M|dgy,(x) = x} and 12 orthogonally as Vi= V2 @ V, where
V, is the subspace that carries the trivial part of the orthogonal
_ representation of S on.¥. In particular, dim V3 =2k for some k €Z_ . Using
Lemma 8 again and the explicit form of orthogonal S' actions we can find a
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coordinate system ¢, : % ~> U, W open in R™ X R™ X R* X R, such that g © ¢,
satisfies

%(l)’z‘z + lzlzyz) < @po iy, p2,2,0) < C(l)’zlz + lzl202)' (14)

Since S! can be covered by two coordinate systems centered at 1 and —1 we
may assume g, = *1 and consequently that g, © ¢, is even in 6. Also, by our
previous considerations it is clear that we have to prove (13) for @, © ¢, in a
neighborhood of the points (y,,0,0,0) only. We fix a point ( ¥9,0,0,0) and write

B0 P1( Y15 r2:50)= @1, y2,2) + %0 p1, 2,2,8)
since g © ¢, is even in 0, From (14) we get
Lyl <lornrn2)l < Clials (15)
Using Taylor’s formula we obtain
P15 P2, 2:8)=1 93(31,0,2,8) + 22, (11,0)(y2) | 2
+{Dy(p15 ¥2:2.8)(2) | 20 + 03(15 ¥252,8)

since grad, 9,(y1,0, 0,8) =0 by (14). Here ®,, ®, are smooth matrix functions,
1@:(y1, ¥2, 2. = O( y4l), and @5 = O(| y5|»). From (14) again we have

L1l < l@a(1,0.2,0)] < Claf? (16)

hence
Pa(11,0,2,8) =< By(y1,2.0)(2)| )
with @, smooth and positive definite. Thus we find
(V15 92,50)=: {115 y2,2.9)(2 + @a( 11 Sy L8| 2+ 9y p1s ¥2,2,0)
+os(y1, y228)

with ® again smooth and positive definite, g, linear in y,, and ¢; = O(| y,|»). This
gives

P00 Si( P15 P25 0) = @s( V15 ¥2:2:0) + 0XB(z + @) | 2 + @( V15 Y21 2,6)

where ¢ also satisfies (15). Now changing coordinates yi =y, y3=J)2
"=z + @4, 8" = § we find a local diffeomorphism ¢ , such that

B0 bx(V1 ¥2:2:0)=1 9115 y2,%,0) + Ops(y1, 32,2,8)
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hére @, and @, satisfy (15) and (16), respectively. Applying the generalized
Morse Lemma we may assume @;(y;, ¥2,2,8) = | p,|* while g still satisfies (16).
plying this argument to g we obtain (13) since the required change of
rdinates leaves y, and # unchanged.

Concluding remarks. It is clear from the proof of Theorem 7 that the
ymptotic expansion of the integral

fo TP s(pDf(P) P g

es not contain logarithmic terms if G, C S'! for p €supp f. We can use the
rguments also to prove nonexistence in several other special situations, for
mple if dim*/; < 1.
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