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I. Motivating examples 

a) Consider a surface of revolution M in ~3 homeomorphic to S 2, gene- 

rated by a smooth curve 

c(t) = (c1(t),0,c3(t)) , t 6 [0,L~, 

parametrized by arc length. In the natural coordinate system 

(0,L) × (0,2~) 9 (t,~) ~ (c1(t)cos~,c1(t)sin~,c3(t)) 6 M 

the metric of M takes the form 

l 

g(t,~) = / I 

\ 0 
and the Laplacian 

0 

2 
c1(t) 

(which we define to be positive) 

2 

becomes 

_ I ~ (c1(t) !_) I 
cl(t) ~t ~t ci(t)2 ~ 2 " 

The isometric S I action on M induces a unitary S I action on all eigen- 

spaces of A and hence subdivides the spectrum according to the irre- 

ducible unitary representations of S I. Let us denote the spectrum by 
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and by o R the subset belonging to the representation <. It turns out 

that the invariant spectrum °I is determined by o and contains already 

interesting geometric information on M (see [4]). Moreover, the in- 

variant spectrum is precisely the spectrum of the Friedrichs extension 

T of the operator 

2 
2 2c 1(t)e~(t) - c~(t) 2 

-d t + 4ci(t) 2 :: -d t + q(t) 

in L2([0,L]) with domain C~((0,L)) (see 114]). By construction we must 

have 

ci(0) = c1(L) = 0, c~(0) = -c~(L) = I. 

Thus the potential q can be written 

a{t) 
q(t) 

t 2 (L-t) 2 

where a 6 C~([0,L]) and a(0),a(L) = -I/4 i.e. the analysis of the in- 

variant spectrum reduces to the spectral analysis of a singular Sturm- 

Liouville problem. One may ask whether the method of heat invariants 

also generalizes to the spectra o , i.e. whether there is an asympto- < 

tic expansion of 

-is 
Z e 

16o 
K 

as s ~ 0 

This is in fact so (see [3]) and we have an asymptotic expansion of 

the form 

e -Is ~ (4~s) -I/2 [ a~ s j/2 
3 

16o j~o 
K 

where a < = L. For K = I this implies the existence of an asymptotic 
o 

expansion for tr e -sT as s ~ 0 and we are lead to ask whether this re- 

mains true for more general singular Sturm-Liouville operators, which 

cannot be handled by the group action approach. 

b) It seems desirable to extend the spectral theory of the Laplacian 
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on compact smooth manifolds to more general spaces allowing singula- 

rities. The most simple type of singularity is a cone over a smooth 

compact manifold N: we put 

C (N) :: (0,r) × N 
r 

equipped with the metric 

2 
dx ~ dx + x g, g a smooth Riemannian metric on N, 

and call it a metric cone over N. As a special case we obtain C (S), 
r 

the n+1-ball of radius r. Cheeger ([7]) has developed a precise func- 

tional calculus for the Laplacian on Cr(N) in terms of functions of 

the Laplacian on N, based on separation of variables and the Hankel 

transform. It is, however, possible to attack this problem without 

using separation of variables. Let us denote by AP(M) the smooth 

p-forms on a differentiable manifold M and by L2(M) the square inte- 
P 

grable p-forms. Then we have a bijective linear map 

~p : C~((0,r) ,AP(N)) x C~((0,r) ,A p-I (N) ~ C~(Cr(N)) 

given by 

~p(~I'%2 ) = z*%1 + ~*%2 ^ dx 

where ~ : Cr(N) ~ N is the natural projection. By a cumbersome but 

straightforward computation one finds that 

~; loAo~p 1{1,~2 ) 11) 

= (_x2p-n ~ (xn-2p ~{1) + x-2AN~I + (_1) p 2 
~ ~x x dN{2 ' 

3 (x2p-n-2 ~ (xn+2-2p x-2AN~2 __ ~x ~ ~2 )) + + (_i) p 2 ~N~I ) , 
x 3 

where dN,~N,A N denote the intrinsic operations on N. Regarding A as a 

symmetric operator in L;(Cr(N)) with domain the smooth functions with 

compact support we see that A is unitarily equivalent to the operator 
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(I) with domain Co((0,r) ,AP(N)) × Co((0,r),AP-I(N) in the Hilbert 

space L2((0,r) ,L2(N) ,xn-2Pdx) e L2((0,r) ,L2p_I(N) ,xn-2p+2dx) . The ob- 

vious transformation brings us to the operator 

-__ 2 ~x 222 ~I + C~-p)(-~-p-1) x-2~ I ÷ x-2AN~ I ÷ (-I)P~ dN~ 2 , 

2 

in the Hilbert space L2((0,r),L2(N) 

--~ L2((0,r) ,L2(N) • L 2 p-1 (N) ,dx) with domain Co((0,r) ,AP(N) 

Setting 

n --- 

+ n (~-p-1 
A N (~-P) ) 

(-I) p 2~ N 

,dx) • L2((0,r) ,L 2 (N),dx) 
p-1 

× A p-I (N) 

we see that A is an elliptic formally selfadjoint operator on 

AP(N) x AP-I(N) hence is essentially selfadjoint in L~(N) e L 2 p-1 (N) 

and the unique selfadjoint extension has a pure point spectrum. It is 

also not hard to see that A ~ -I/4, and that -I/4 is in fact an eigen- 

value if there are harmonic (n+I)/2 forms on N. Therefore, the self- 

adjoint extension of A on forms with compact support on C (N) are uni- 
r 

tarily equivalent to selfadjoint extensions of 

_d 2 + A__ (2) 
x 2 

x 

in L2((0,r) L~(N) • L 2 ' p-I(N) ,dx) with domain C~((0,r) ,AP(N) × A p-1 (N)) . 

We will see that the operator (2) is bounded below so its Friedrichs 

extension T exists. As pointed out by Cheeger there is a choice of 

boundary conditions if the middle eohomology H(n+I)/2(N) does not 

vanish but we will restrict attention to T in what follows. Our pro- 

blem is now to express spectral invariants of T by spectral invariants 

of A. Away from the singular point the analysis of A is classical so 

this will amount to expressing spectral invariants of A by spectral 

invariants of A. In particular, we are interested in the asymptotic 

(-1) p 2d N 
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expansion of tr e -sT as s ~ 0. A general calculus would also allow us 

to replace A by a more general operator, assuming for example that N 

already has cone-like singularities i.e. we could attack the analysis 

of iterated cone singularities as done in [8]. 

c) The calculus developed by Cheeger is special in the sense that it 

does not allow pertubations of the metric. A very natural extension 

of the metric cone would be a metric on (0,r) x N of the form 

dx ~ dx + x2g x (3) 

where gx is a smooth family of metrics on [0,r] (this includes for 

example all normal geodesic balls); a metric of this type is called 

asymptotically cone-like. In the approach described above this leads 

to a singular operator Sturm-Liouville problem of the form 

_d 2 + A(x) (4) 
x 2 

x 

where A(x) is a smooth family of selfadjoint elliptic operators with 

A(0) > -I/4. If A(x) is scalar this is essentially the problem dis- 

cussed in a) . 

2. The heat equation: scalar case 

We start with the problem discussed in la) : consider an intervall 

I = (0,L) , a 6 C~(~) with a(0) ,a(L) ~ -I/4, and the singular Sturm- 

Liouville operator 

_d 2 + a(x) 2 ' x 6 I. (5) 
x x 2 (L-x) 

This operator is symmetric in L2(I) with domain C~(I) , and by Hardy's 

inequality it is bounded below (here we need the -I/4 condition). 

Hence the Friedrichs extension T does exist and we want to determine 

the asymptotic expansion of tr e -sT as s ~ 0 (if it exists). This has 

been done in [6], [5], and [I] with three different methods. We give 
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a short description of the approach in [I]. If a(0),a(L) > -I/4 then 

the domain D(T) of T is contained in HI(I) so the Sobolev inequality 

implies the existence of the heat kernel, 

-sT f e u(x) : £s(X,y) u(y) dy, u 6 L2 I)( 

I 

Using the fact that (5) is a differential equation with regular singu- 

larities this follows in general and we also obtain good estimates of 

-sT 
rs(x,y) near the singular points. In partLcular, e is trace class 

and 

tr e -sT : I rs(X'X) dx I 

I 

By a simple reflection argument one may restrict attention to the left 

endpoint i.e. it suffices to expand 

L/2 

:= I rs(X'X) i(s) dx . 

o 

Now choose 0 < s < L/2 and split the integral at x = s, 

L/2 

I(s) = j + I rs(X,X) dx =: I<(s,e) + I>(s,£) 

o s 

Away from 0 we obtain an expansion of rs(X,x) by the classical method 

of Minakshisundaram-Pleijel, 

rs(X,X ) N (4~s) -I/2 ~ s j wj(x) 
j~o x2J(L-x) 2J ' 

where w. is a universal polynomial in the variables a (k) , 0 = < k = < 2j, 
3 

and with coefficients in C~(~) . This gives an expansion for I>(s,£) as 

s ~ 0 but we are not allowed to let ~ ~ 0 because the resulting inte- 

grals are divergent beyond the first one. The arbitrariness of ~ sug- 

gests that we treat e as an additional variable and the homogeneity 

of the equation forces us to introduce o := s/s 2 as second variable. 

Then it is easy to see that I>(e2o,E) has an asymptotic expansion with 
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respect to the system of functions (oi/2eJlogks)i~_1 as 62 + 02 0. 

j~o 
o~k~l 

To achieve a similar expansion for I< near 0 we compare F s with the 

heat kernel ~ of the Friedrichs extension of 
s 

_d 2 + a(0) (6) 
x 2 

x 

in L2~R+), using Duhamel's principle. Thus we obtain an asymptotic 

of Fs(X,X) near 0 by a Neumann series built from ~s" representation 

Since ~ is now a variable we can use Taylor expansion on the coeffi- 

cients rendering the terms in the series universal expressions in the 

variables a (k) (0), k ~ I. It remains to expand certain convolution in- 

tegrals in ~s the simplest one being 

E 

f ~s(X,X) dx . 

o 

Now the homogeneity of (6) causes the following homogeneity of ~s: 

~s(X,y ) = ~ F 2s(~X,~y) , ~,s,x,y > 0 (7) 

Substituting x = su and using (7) with e = ~ we find 

1 I 

f ~s(X,X) dx = f ~ ~E2o(cu,cu) du = f ~(u,u) du • 

0 o o 
Again with (7) and ~ = I/u and with the substitution x = o/u we obtain 

I I 

~ (u,u) du = ~ ~c/u211,1) du : 2 ~ 

o o 0 

So all we need is the asymptotic expansion of ~s at (1,1) as s ~ 0 

which is classical. The other terms in the Neumann series can be trea- 

ted in a similar way leading to an expansion of I< in terms of the 

functions (oi/2sJlogko) i~_1 (the appearance of logarithmic terms is no 

j~o 
o$k$I 

surprise in view of the ~ factor in (8)). 
x 
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Summing the two expansions leads to an expansion of I(s) of the fol- 

lowing form: 

I(s) ~ (4~s)-I/2 [ sJ/2 • + C~ log s) (Aj + B 3 J 
j_>o 

Here A. is the "interior term", 
3 

(9) 

A2j = constant term in the expansion of 

L-E 

i wj Ix) 
X 2j (L-x)2j dx as ~ ~ 0 , 

(i0) 

A2j+I = 0, j ~ 0 . 

B. and C. are "boundary terms" i.e. universal expressions in a(k) (0), 
3 3 

k ~ 0. In particular, 

C O = C 1 = 0, C 2 =- 

b0(0) + bL(0) 

8/{ 
a. b. (i-x) 

where we have written a(x) _ l + i 
2 2 2 x (L-x) (i-x) (i-x) 

as x ~ i, i = 0,L . 

It is interesting to note that all Cj vanish if b 0 and b L are odd at 0 

which is the case in example la) above. 

3. The heat equation: operator coefficients 

We now consider the following situation. Let H be a Hilbertspace, H I 

a dense subspace, and A(x) a family of semibounded selfadjoint opera- 

tors with common domain H 1 , x 6 i. We assume that each A(x) has pure 

point spectrum and that A(0) h -I/4. Moreover, we require that the map 

9 x ~ A(x) 6 i(HI,H), the space of bounded linear operators from H 1 

with the graph norm of A(0) to H, is smooth. Then 

_d 2 + A(x) 
x 2 (11) 

x 

is a symmetric operator in L2(I,H) with (dense) domain C~(I'HI ) o  , and 
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Hardy's inequality shows again that this operator is bounded from be- 

low. So the Friedrichs extension T exists and we ask for an asymptotic 

-sT 
expansion of tr e as s ~ 0 if it exists. A natural condition for 

this to hold is that e -sA(x) is trace class for each x £ ~ and that 

expansions 

tr e -sA(x) ~ s -~ [ s ~j logks ajk(X) 

jao 
o~k~k 

o 

do exist for some a > 0 and with Uj ~ ~- In fact, we pose the stronger 

condition that expansions of the form 

tr p(A,A', .... A (k)) (x) 

do exist for x 6 ~ and any 

derivatives. 

e -sA(x) ~ s -~ [ s Uj logks ajk(P,X) (12) 

j~o 
0~k~k 

o 

(noncommutative) polynomial p in A and its 

In this general setting one can prove the existence of an 

expansion 

tr e -sT s -~-1/2 [ sYJ(Aj + B. + logks) (13) 
3 CJ k 

j~o 
o~k~k +I 

o 

Here A. is again an "interior contribution" built similar to (I0) from 
] 

the functions ajk(P,X) in (12) for suitable p. Bj and Cjk are "boun- 

dary terms" depending only on the derivatives of A at 0 and L. 

The proof of (13) can be done following essentially the pattern of the 

scalar case. The technical difficulties are, however, considerable. 

The first step is to prove the existence of an operator valued heat 

kernel for T i.e. 

sT I e u(x) = Fs(X,y) (u(y)) dy 

I 

for x,y 6 I, s > 0, and u 6 L2(I,H). Thus Fs(X,y) is a bounded linear 

operator in H and the arguments for the scalar case can be generalized 

to yield good estimates for the operator norm. If F s were trace class 
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in H we would get 

tr e -sT = I trH Fs(X'X) dx 

I 

as expected. The crucial step to prove this is a modification of the 

Minakshisundaram-Pleijel expansion: 

_ (x-y) 2 _sA(Y) 
y2 Fs(X,y) ~ (4~s) -I/2 e 4s ~ s j Uj(x,y) e (14) 

92o 

Here the u. are polynomials in A(x), A(y), and their derivatives, and 
3 

the expansion is uniform with respect to the trace norm in compact 

subsets of I x I. In a neighborhood of 0 we compare with the heat 

kernel ~ of the Friedrichs extension of 
S 

_d 2 + A(0) 
x 2 

x 

which again enjoys the scaling property (7). The treatment of the Neu- 

mann series is more complicated due to the unboundedness of the opera- 

tors A(x) ; here we need regularity theorems for weak solutions of (11). 

The situation is much simpler if A is a constant function as in example 

Ib). Then it is enough to derive the expansion for 

L/2 

I Fs(X,X ) . tr dx 

o 

Using (7) and the analogous properties of ~s we find as in the scalar 

case 

L/2 L/2 L/2 

I I I I tr ~ (I I) dx tr Fs(X,X) dx ~ ] tr ~s(X,X) dx = x s/x 2 ' 

o o o 

co 

= 2 u tr ~u(1,1) du . 

4s/L 2 

Thus the expansion follows from (14) and the expansions for 
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whose coefficients are linear combinations of the coefficients in the 

expansion with k = 0. The contributions to the constant term in the 

expansion are (nonlocal) spectral invariants of A leading to Cheeger's 

formulas in the case of cone-like singularities. 

4. The resolvent 

For a semibounded selfadjoint operator T we can also study the resol- 

vent (T + z) -I, Im z # 0. If y is a suitably chosen path around the 

spectrum of T and if the resolvent has modest growth at infinity we 

have 

-sT I I e2z -I e = 2~----i (T + z) dz . 

Y 
-I 

Thus an asymptotic expansion of tr (T + z) for large z implies an 

-sT 
asymptotic expansion of tr e for small s. For nonsingular elliptic 

operators this expansion is well known ([9]). In the simplest singular 

case, the Friedriehs extension T in L2aR+) of the operator 

-d 2 + ~ , a > -I/4 , 
x 

x 

the kernel of the resolvent (T + Z2) -I can be determined explicitly, 

(~ + z2)-I 1/2 (x,y) = (xy) I (XZ) K (yz) , 

where 0 < x =< y, ~ := (a + 1/4) 1"2 ! , Im z ~ 0, and I , K~ are modified 

Bessel functions (cf. [6]). This operator is not trace class but we 

can define a "distributional trace" by 

I ~x) x I ~xz) K ~xz) dx, ~ C C~) 

O 

The well known asymptotic expansion of Bessel functions for large ar- 

guments suggests the following generalization. Consider a "symbol" 
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a(x,~) where x 6 ~ and ~ 6 C := {z 6 ~llarg zl < z-a} for some £ > 0. 

We require ~ to be smooth in x and rapidly decreasing and to have an 

asymptotic expansion as ~ ~ ~ in C, 

a(x,~) N [ ~ m(X) ~ log m ~ , 

d,m 

where e runs through a discrete set of complex numbers, Re ~ ~ -~, 

each m is a nonnegative integer, and there are only finitely many 

O~m # 0 for fixed e. Then we may ask whether there is an asymptotic 

expansion of 

I o(x,xz) dx (15) 

o 

as z ~ ~ in C. This expansion has been determined in [5] and has the 

following form: 

foxxz dx z klf k 
k_>-o 

o o 

co 

e,m 
o 

(k) (0,~) d~ (16) 

~ m(X) (xz) ~ log m (xz) dx 

+ [ z ~ log m+l z a (-e-l) (0)/(re+l) (-~--I) ' ~m 
I 

~tm 
-~6~ 

The first and third sum contains "boundary" terms and the middle sum 

"interior" terms all of which can be viewed as "moments" of o. The 

integrals, however, may be divergent and have to be defined suitably. 

For example, the integral 

I ~(x) x dx =: I(~) x ~ log m 

o 

with ~ 6 C~(P) is analytic in ~ if Re ~ > -I. Integrating by parts we 

see that I(~) extends meromorphically to the whole complex plane. At 
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a pole, we substract the singular part and call the resulting value 

the "regular analytic extension". In this way all the integrals in 

(16) are defined. 

The more general case of the operator 

_d 2 + a(x) 
x 2 

x 

can also be handled by this approach. To do so we use the resolvent of 

as parametrix and obtain a convergent Neumann series. Each term in 

the series turns out ot be of the form (15) and the expansion follows 

from (16). 

The method can also be extended to handle (constant) operator coeffi- 

cients. We choose m 6 ~ such that for a given selfadjoint operator 

A ~ -1/4 with discrete spectrum 

-2m 

~2-I/4 6 spec A 

< oo . 

Denoting by km(x,y,z) the kernel of 

(_d2x + I + z2)-m, ~ = /~T~7~ ' 

X 

we find that the distributional trace of 

(_d 2 + ~ + z 2)-m is given by 
X 

x 
co 

f  (xl x 2m-I k i11xz, dx . 

o 

To a p p l y  116) we h a v e  t o  s h o w  t h a t  

O(X,~) := x 2m-1 [ k~(I,1,~) 

has an asymptotic expansion as ~ ~ ~. This is done by means of an ex- 

pansion for (-d~ + ~ + z2) -m in terms of (A + ~)-l. This argument 
X 

parallels the expansion (14) and uses the calculus of pseudodifferen- 

tial operators with operator coefficients. 
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