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INTRODUCTION

Various asymptotic expansions reduce to an integral of the form

P

Jw o(x, xz)dx, z—w » 0.1)
. _

where o(x,{) has an expansion as {—co in terms of the functions
(n )™, o co_rnplex,' m.integer >0. For instance, the singular differential
operator which is the Friedrichs extension in L*(0, o) of

A= —02+x"a, , (0.2)

I4
where a is constant > —3, has resolvent with a symmetric kernel involving
Bessel functions, . .

)L (x2) K (yz),  x<y, v=(a+4)"

Callias [3] treats this for a=3, in which case 4 is essentially self-adjoint.
The resolvent does not have finite trace, but it does have a “distributional
trace” given by the integral '

ro ¢(x) xI(xz) K, (xz) dx
0

for ¢ in the Schwartz space £(R'). This is an example of (0.1), and the
function a(x, {)= x¢(x) I,({) K,(¢) has an expansion in terms of { ™', { 72,...
as { - oo il any open sector |arg {| < /2 — . This example is developed in
Section 3 below, and Section 4 generalizes it to the case where the term « in
(0.2) is a C* function with a(0)> —% and |a(x)| < C(1 +x). This is an
e ‘ 133 “
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. 134 BRUNING AND SEELEY

alternate approach to recent results of Briining [1], who constructs the
heat kernel for an operator like (0.2), but on L*(0, 1) rather than L*0, o).

Section 5 outlines another application of (0.1), rederiving Uhlmann’s

expansion for conical refraction [8].

A significant but difficult generalization would be to the case where a(x)
is an appropriate unbounded operator on a Hilbert space. If this operator
is independent of x, the generallzatlon does not seem too hard, and it
allows a derivation of the expansions obtained by Cheeger at conical
singularities of “product” type. ‘

A very similar general expansion has been given by Callias, Markenscoff,
and Uhlmann in [3-5], and of course the basic idea occurs in [8,3];
similar phenomena are found in the work of Briining and Heintze [2].
These papers consider

J.oof(s/x, x) x " "dx, Re(w)<0, s—-0+
0 -

which corresponds essentially to (0.1) with
o(x, )=,/ x){7",  s=1/z

The proof in [57] uses the Mellin transform, Wthh is similar to the analytic
continuation method given here. :

The expansions in [1, 3] are for the heat kernel; allowing z to. be com-
plex in our expansion of the resolvent permits a passage to the heat kernel
by contour integration.

Earlier treatments of (0.1) in the case where- a(x, {) has the form

f(x) A(x{), and with more general conditions on A(x) at x =0, are ‘found in

[10, 111.

The operator (0.2) has a “regular singular” point at x=0. It seems
natural to expect this kind of singularity to lead to a resolvent with an
expansion in terms of xz; hence the name “regular singular asymptotics.”

Thanks are due to Callias, Uhlmann, and Richard Melrose for useful dis-
cussions related to this topic.

1. THE EXPANSION

Suppose that o(x, {) is defined on R! x C, where C is an open wedge
’ » C={larg{|<n—e} '

in the complex { plane, ¢ > 0. Suppose that ¢.is C* in x, with derivatives
analytic in { for { in"C, and that ¢ has an expansion

o5 O~ Lo L, (o (1)

\
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where each g, is in #(R!), « runs through a discrete set of complex num-
bers, Re(a) = —co, each m is an integer >0, and there are at most finitely
many m for each a. The relation (1.1) is taken to mean that for all x>0,
{ in C, and non-negative integers J, K, M,

xJ@f[G(x,C)— Y, am(X)C“ln”’C]i

Re(a)= —M

SCouxll] ™, 121, 0<x< /e (1.2a)

for some constant c,. (We are really interested in o(x, xz), which may be
defined only for |z| = ¢q, or |{|/x = ¢,.) For small { we assume that

1,1
j j sK|la " Bst, s&)| ds dit < Cx (1.2b)
0 Y0 .

where ¢%(x, &) = 0%a(x, £), and C is independent of 8 for 0<6< 1, and
of £ e Cfor [{] = co, a constant. (By rescaling z, we can assume that co=1.)
Condition (1.2b) would follow if for x<s, |6®(x, sé)l < gils)s—% with
fo gx(s) ds < 0, a condition given in [5].

THEOREM. Assuming (1.2a)-(1.2b), then the expansion of
z— winC

J.-w o(x, xz) dx,
0

has three kinds of terms. There are “boundary terms”

k>0

2t [T C g0, ar (1a)

where 6*)(x, ()= 0%a(x, {). Further, each term aam(x) {*In™{ in the given
expansion (1.1) contributes an “interior term”

Jo O am(X)(x2)* In"(x2) dx. (Ib)
Finally, if o« is a negative integer, there is a further contribution

(lnz)"‘*‘(m+1) lo(~ ““)(0)/(——05—1)!. | (Ie)

The integrals in (Ia) and (Ib), mvolvmg certain “mobments,” of a(x,{)
and of the terms in its expansion (1.1), may be divergent, and must be
appropriately defined. The intent in (Ib) is to expand the integral as a com-

_ bination of terms

0<k<sm.

J O am(X) x* In* x dx,
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Since o,, is in &, these latter integrals can be (and are) defined by the
standard identification of the functions

Cx " x=x*(lnx)", x>0
=0, x<0

as distributions on ¥(R!), by analytlc continuation, as follows. For ¢ in
F(R"), the integral i

[T o) xmmxax (13)
0 -

is analytic for Re(a)> —1. Extend this meromorphically to all «; for

instance, integrate by parts, using the primitives of x* In™ x which vanish at
x=0. Define the integral (1.3) for Re(x)< —1 by means of this
meromorphic extension; if o is a pole, subtract the singular part and
evaluate just the regular part. We call this the “regular analytlc extension.”
For ~example,

a+l

N He)widv=— [ " 90

- #'(0)
”J ¢() a+1 dx+a+1’

The first equation defines the integral for Re(x) > —2, o # —1. The second
equation defines it for a = —1: drop the singular part ¢'(0)/(x+ 1) and take
the limit as « — —1 in the other term, finding

[Tawaia= - [T pomrax

This agrees with Hadamard’s “partie ﬁm” 1nterpretat10n Incidentally, the
terms (Ic) above can be scen as the result of this “regularizing” process at
the poles—see the discussion after (1.7).
The integral in (Ia) can likewise be defined by regular analytlc con-
_ tinuation. The 1ntegra1 for 0<{<1 converges by (1.2b) with §=0; the
integral for 1 <{ < oo can be written as a finite sum of terms of the form

cf°° e I ¢ de o (14)

plus a convergent remainder, in view of (1.2a). As for (1 4) we have for
Re(ﬁ)< -1

["emm g ar=ap-er+ 18+ 1)) (1.52)
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and this continues analytically to all ﬁ;é —1. For f= —1, the Taylor
expansion of ¢#*! in powers-of f+1 gives the regular analytic con-
tinuation

j°° U Inm {d = —(Ine)™* Y(m + 1), C (Lsb)

Similarly, the integral {§ {# In™ { d{ converges for Re(f)> —1, and regular
analytic continuation gives

L Pl d =7 /(B+1)], B —1 (1.6a)
=" ey (m+1), f=—1. (1.6b)

In particular, for all § and m
fw P In™ {df =0. (1.7)

For future reference we need a formula for change of scale. By the same
understanding as for (Ib),

[ (/) tam(fe) de =2 5. (m é) [7 x# 0 xax

&

1\ (o o
=8‘BZC}"<lnz)J- x*In" " xdx|,., (18)

&

where the evaluation symbol indicates regular analytic extension from
Re(a) < —1 to a= . For Re(a) < —1, setting x=¢ in (1.8) gives

g~ ﬂ“f oy <ln ) In" /() d{ = & f’“j I L dL. (19)
If’ B# —1, the analytic continuation to a = P gives the expected:

jw (x/e) In™(x/e) dx = ¢ jlw ™ Cde), . -~ (1.10a)

But if = —1 the regular analytic continuation of (1.9) is, by (1.5a),
el = e 1) s == In ) Y m 1),

Since [ (~'In" { d{ =0, we get in this case

v Jjo (x/e)~"In"(x/e) dx=¢ I: le (TUn™Cdl + (~1In ey (m+ 1)] (1.10b) |

The last term in (1.10b) is the source of the terms in (Ic).
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Remark. 1f (1.2) holds only for { >0, then (Ia)-(Ic) is valid for z>0,
z-> +00. In this case “analyticity in {” can be replaced by measurability.

2. THE PrROOF

The proof will be given for the case z>0; the general case follows by
letting z — oo along a ray, as indicated below.
~ Suppose at first that each « in (1.1) has Re(a) < —J — 1. Then we obtain
(I) up to terms in z 7 from the Taylor expansion
J-

o(x, ()= 22 a®(0, {) x*/k! + 0 (x"l Jl lo¥ = V(x, {)| dt).
o

» 0
This gives

(=] fe o] J=2 -
J' a(x, xz) dx = J Y. a0, xz) x*dx/k!
Y 6 o

1/z © o i .
+0<< L + L/Z)x fo ia‘ (tx, xrz)lvdtdx

s N o
= Y @R [ o0, xz)(xz)d(xz) + O )
0 ) o
by (1.2b) and (1.2a). This gives the terms in (Ia) up to O(z~’). The
corresponding terms in {Ib) and (Ic) are zero since, in the present case,
" O0um=0for Re(a)=> —J— L _ .
In the general case, write o(x, {) as a finite sum of terms ‘having the form

W) 0um(x) (X0 L)™,  Re(a)> —J—1

plus a remainder, where y is C* with y(r)=1 for r=1, (r)=0 for
r<1/2. We have just seen that the remainder has the desired expansion (I),
up to O(z~’); so we need only check the terms in the finite sum, up to this
order. Thus, consider a furction ¢ such that :

/6 S (x, ()| < Cpe for <t
and , : ‘ _
o(x, () =¢(x) (*(In¢y", (=21, ¢in P(R'): (2.1)

Split our integral at x=e<1l:

j alx, xz)dx=1,,+1_,
0 : :
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and assume ¢z > 1. We find,

I ,= foo o(x, fcz)‘ dx = J.oobqﬁ(x)(xz)“(ln xz)"dx.

£

This will give the (Ib) term. Add and subtract the divergent integral
{8 #(x)(xz)*(In xz)"dx and expand the integral in the subtracted term to
get

foo o(x, xz) dx = J‘oo ¢(x)(xz)*(In xz)"dx
€ L 4] ) .
- r ZJ: ‘1; ¢(0) x/(xz)*(In xz)™dx
o ! |

1 O(e7* ?ez] e+ 1), (22)

The_ divergent integrals are interpreted as combinations of
[ #Y(0) x* In* x dx, and we take J> —Re(a)— 2. Next, by (2.1)

leD(x, ) = O((1 + {)Re=(1 +‘1n"'C))
so
I_. = r a(x, xz) dx= ré a¥(0, xz) iC—{abc |
' 0 ' 0% 7!
+0(8"+2(8Z)]Re(a)l+l).

Add and subtract the ‘appropriate integral from ¢ to o0, and use (2.1) in the

_subtracted term, where xz>¢ez > 1:

wd x/ o X
L £490) 5 ()" In” xz d
0 . £ 0 :

+ O(e7ez| IReel +1), ~ 2.3)

Since by (1.7) (¢ (P In* { d{ =0, (2.2) and (2;3) combine to-
. e . :

' o J opoo x’
I +1_, = f P(x)(xz)* In™ xz dx + ZJ (0, xz) = dx
, o - oo !
+ 0(8.I+ 2|82||Rea|+1)_ ‘ v ) (24)

Now choose e=z"2, 0< <1, & close to 1. Then ez=2z'~*> 1 and

_8J+2ISZ||Re(a)|+1 =Z—‘6(J+2)+(1—6).(|Real+ 1)‘
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When 4§ is close enough to 1, this is O(z~7~'). Hence the terms in (2.4) are
valid up to that order. The first integral in (2.4) is precisely (Ib), since here

=¢. And each term in the sum 37 in (2.4) is converted by a change of
vanable into the corresponding term of (Ia), plus (Ic) if a + ] = —1. In fact,
if a4+ j# —1 we have, using (1. 10a) ,

) 1/z .
f— a)(0, xz)x.—dx= j. GU)(O, XZ)x.—dx
o yi 0 i

(xz)j I

e j  $U(0)(xz2)* In"(xz)
=z IJ' 0.(1)(0 C)C_dc+z—1 IJ ¢(1)(0) Caﬂ]n CdC

=z [7 g0, C)-d§
0
If x+j= —1 we use (1.10b) instead, which gives

© 4 ‘ ) mt 1
J' J(j)(O, XZ))f—'dxzz—i—l [J O-(J)(O C) dC+¢ 1(0) In Z:l.
o J: o~ LYo

(m+1) j!

The additional term here is precisely (Ic), since g =0, and j= —a—1.-
This completes the proof for z > 0. The general case follows by cons1der-
ing the limit along a ray z=1tz,, |zo| = 1. Then

J. o(x, xz) dx ——-J 0%, xt) dx

where o, (x, {)=0(x, z,{). This has an expansion as ¢— +oo, and the
terms (Ib) and (Ic) for o, as r — co reduce directly to those for ¢ as z — co.
The terms (Ia) are : ‘

=+ [ (@K 000, 1)
]
. [ emyoo0na
[

[ @m0 0]

The integral with {* converges for Re(w) <0, and the contour can be defor-
med into a contour I, from z, to 1 and thence to + co. The continuation

to w=k gives-{ - ((*/k!) a¥)(0, {) d{, and this plus the mtegral from 0 to z, .

glves (Ia), by a ﬁnal contour deformation.
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3. THE MOTIVATING EXAMPLE

We return to the example in the Introduction, the Friedrichs extension of
the singular operator

A= -0*+x"%a on L*0, ©).

Here a is a constant > —i. (In the next section, a is a function with

a(0)> —3.) Callias [3] treats a >3, which makes A essentially self-adjoint;

however, that case is very similar to the Friedrichs extension when a > —

and the case a= —} arises naturally in treating the Laplace operator on

L*(R?) in polar.coordinates. ‘
The resolvent (4 +2z?)~! has kernel [3]

(x»)L(x2) K(yz),  x<y, v=(a+H)"
The distributional tace is [ o(x, xz) dx where - v
o(x,0)=(x) L) K(0),  ¢in F(R').
The asymptotic expansion as { — oo is [9, pp.202-203]

2

a(x,C)~x¢(;c)[%("—i‘il—6——lc—3+---), Vv larg ] <n/2  (3.1)

and this gives the “interior terms” in (Ib):

1 0 v ©
-1 (5> L #(x) dx + 273 (—aj4) L x“2p(x) dx+ - (62)
where & x‘zqﬁ(x) dx means —{ ¢"(x)In x dx. The terms (Ic) give

In z(z‘3¢'(0)(——9) + higher odd powers of z7!). (33

For the “boundary terms” in (Ia) we need the analytic continuation of the
integral

1)=["CLOKOE  ~1<Re(w)<0

From [6, pp. 96,91, 6]

(34)

)
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" Hence the terms in (Ia) are

z_2¢(0)(—§)+ i 2R (k) g% D0/ (k— 1) (3.5)
k=2 _

where I(k) denotes the regular analytic contlnuatlon of (3.4), lf kis an even

integer.
The trace of the resolvent glves the trace of the heat operator

e—Af=2_'_7;f (A +4)""d
r

where I is the arc {|A]=1, |argA|<m/2+¢} together with thé rays
{lAl=1, argd= +(n/2+¢)} run “upwards.” The distributional trace of
this operator on a test function ¢ in &#(R')is

T(t) 25_7?1 fr e j (x) k(x, x, /) dx d.

| Integratlng the above expansmns (3.2), (3.3), (3 5) with f =z gtves an -

expansion in terms of /2'and t”In ¢, j> —1. This was obtained in a dif-
ferent way by Callais [3]. .

4.  VARIABLE COEFFICIENTS

* Consider now the operator

A= —8%+x"2a(x) on L*0,0) 4.1)
B L.

where a is a real-valued C* function with a(0) > —1. We derive the expan- .
- sion for the trace of the resolvent of the Friedrichs reallzatlon of (4.1). Let

v=(a(0)+})"? and denote by k, the kernel of (—a2 +x‘2a(0)+22)*
. ko(x, »,2)=(xy)"?L(xz) K (yz), x<y. (4.2)

For x> y let ko(x, y, z) =ko(y, x, 2). .

LEMMA 1. Acting on LP(R'), 1<p< oo, the operator with kernel
(xp)~Y2ko(x, y, z) has norm O(|z|~1). In any sector |argz| <m/2—e, the

operators with kernels x ="k and ko y~** have norm O(|z| ~>?2). For p=2
~and ¢ in F(R"), the Hilbert-Schmidt norms of x=k ¢(y) and

#(x) koy™'" are O(lz| =" In|z]).
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Proof. The norm of an integral operator on L? with kernel k(x, y) is
bounded by the larger of

Caup [ Ikt ) dx and  sup [ k(x )l dy

Consider the kernel, with |arg z| <7/2 —&:

k(x, y)=y~ "ko(x, y, z) = x'?I (xz) K(yz), x<y
=x"K(xz) I(yz), y<x

The standard estimates for K,({) and I,({) as C—»O and C—»oo give
estimates for k(x y) .

_ apltinyzl) _
y lzzlko('xg’ )’,Z)[<C[Z| 1/2~(1+}’]Z|)1/ze ~ )I‘l’ XS)’ V
ap izl :
< Clz| ‘/2-(—1-We = pgx

Integrating separately for 0<x< y and y<x;

1+ |In|yz|| 1 —e= >
(I+ylz)2 |z

Jw k(x, y) dx < Clz| 712
0

eylzi

e

Wf (1+]In ] eaL.

+Clz| 2

Setting y|z| =17, the last line is

ap (® A |Ing
el 3/2[ en CWdKClzI 72

n
since 1+ [In | < C(1+7)"(1 + |In({ —7)|) for { =n.
Similar estimates establish the rest of the lemma.
Now return to the operator 4 in (4.1), and let K, be the integral
operator with kernel &, in (4.2). Since ko, is the kernel of
(=0%+a(0)x~*+2%)"", we have as an identity on C%(0, c0)

Ko(A + 22) = I+ Kox_lb(x)

where

b(X)¥X“[a(X)_—a(0)]-
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Assume that b is bounded. Then by Lemma 1, for n> 1
I(Kox™10)"Koll = |1 Kox ™ 2(bx ™ 2K~ 2y~ bx 12K |

<Clz| =72

Hence for z sufficiently large, the Neumann series
K=Y (—Kyx~'b)"K,
5 v

converges, and
K(A+2)=I on CX0, o). (4.3)

For z real, K is self-adjoint; from (4.3) it has dense range, so it is 1-1.
Hence the self-adjoint operator K='—z? can be defined (by the spectral
theorem) and on C? ' :

(K™ =2") ¢p=(K~"'~2") K(A+22) p = A¢

by (4.3); so we have a self-adjoint extension of A, with K as its resolvent.
(A further argument shows that this is in fact the Friedrichs extension. )
Finally, since K is analytic in z, it agrees with the resolvent of the
Friedrichs extension for Re(z)>0. Lemma 1 shows further that the trace
norm of :

$(x) Ko(x~'bKo)"Y(y), .Y e F(R")

is O((Jz1 7' In|z{)?z|*~"). Hence the Neumann series gives an expansion of
the trace of ¢(A+2z2)""y. If Yy=1 on the support of ¢, this is the
“distribution trace” of (44 z2)~! on the test function ¢. Letting k(x, y, z)
-be the kernel of the resolvent, this distributional trace is

[ 000 ke, x, 2) de = [ 60) ol 3, 2) e
0 ] ]

_ jooo J-0oo #(x) ko(x, y, z) y~'b(y) kO(.y’ x,z)dy dx

o _ (44)

The asymptotics of the first term, as z — oo, are discussed in Section 3

above. The second term can be written in polar coordinates as

_ .j{;" 0,(r, rz) dr; where

o,(r, ()= —r? '[:/4 cos 812({ sin ) K2(¢ cos 6)[é(r cos 0) b(r sin 0)

~ +4(r sin 8) b(r cos )] 46, X (4.5)
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For simplicity, suppose that ¢ = 1 in a neighborhood of x =0. [ Typically, ¢
will be part of a partition of unity isolating the trace of (4+ z2)~! near
x=0.] With such a ¢, we find the following derivatives at x = 0: '

05(0, {)=0$"(0,{) =0

o$(0, {) = —4b(0) j:“ cos B(C sin 6) K2({ cos 6) df

n/4 .
0§20, {) = ~65'(0) L I({ sin 8) K3(C cos 6) P(sin 6, cos 0) db
for some _polynoniial P. This generates a term of type.(Ia)
~2:7(0) [~ [ {cos 0F({ sin 0) K3({ cos 6) df
N 1.0 0 .

plus others in z~*,... which combine with terms from later integrals in the
Neumann series (4.4).

The asymptotic expansion of o, as { - co can be derived from the
expansions of I, and K,. The part of the integral in (4.5) for 0<0<n/8is
O(e™ <y, since for |arg {| <n/2 —¢

P(C sin 8) K3({ cos §) = O ~Ilesd s

Soas{—>

‘ : /4 ' T 1
~ —p2 —2{(cosh — sinf) - 4ooeee
aa(r, {)~ =1 L/s cos 0 e o |:4C200s fsin @ - ]

e

x [¢(r cos 8) b(r sin 8) + ¢(r sin 8) b(r cos 0)] db.

. Integrate by parts, integrating e ~%(°°¢ =589 (cos f + sin 6):

ox(r, )~ —r? [% 4 (11/2) b(r/\/i)]# 0(r/%). (46)

_ This generates a term of type (Ib)

—z_3f0w%¢(r/\/§) b(r/\/2) r=>dr

=z-3j°°1(¢b)'(x)1nxdx [x=r//2]
. o 477 ,

and another of type (Ic)
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The other terms in (4.4) can be similarly analyied, thus showing that the
trace of ¢(4 +z°)~" has the form ‘

@ .
f o(x, xz) dx
0

for a symbol ¢ as in Section 1 above. The terms analyzed above in Sec-
tions 3 and 4 give the expansion '

tr(f(A +27) ")~z j:’ % #(x) dx + 2-24(0) (-%) +273¢'(0) ¢, + -+
~227%0) j:’ jo"” {2cos OP(( sin 0) K2({ cos 0) df dl
423 j:’ {—E%qus(x)—%fb(x) ¢(x)] x
, +zf3 Inz <—% b(O)) +0(z"*1nz)
=z Loo—;-qﬁ(x) dx+2z72 f:v(—%>¢(x) a(x) x~2dx
2D +2 (=20 0) [ [ 513() Ki(x) dy dx

+(z 7 In z)(—a'(0)/4) + O(z*n z) (4.8)

assuming that ¢(x) =1 for x near 0. In particular, there is a z > In z term if
a’(0)#0, as noted by Briining [1].

Remark. The expansion (4.4) gives the kernel k(x, y) of (A+2z%)7!as
z— 0. For x=y#0, this kernel can be expanded by the standard (and
simpler) method in [7]. Hence the terms of types (Ib) and (Ic) might be
determined more easily using the simpler expansion. However, those in (1a)
cannot be obtained this way—the successive terms in the classical expan-
sion can all be written in the form o(x, xz), but each such o(x, {) has a sim-
ple zeéro at x =0, so each contributes to the z~2 term in (Ia).

5. UHLMANN’S EXPANSION

Uhlmann [8] gives an asymptotic expansion for an integral

I(s)= fw j [ emmrg(y) dyg(RO) db dR (5.1)
» Q 18] =1vYR .
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where ae C*(R"), ge C®(R*), and .
9(») =<0y, »>
is a non-degenerate quadratic form. In this case
#(R)= [ g(RO) df e C2(R")

is an even function, and we can write (5.1) as

1)= [ $(R) p(/5R) dR=[ $(x*) plx /5) 2x dx (52)

where

p(&)= [ e %a(y) dy (53)

The exponential series give an expansion as ¢ — oo, and p is bounded. So p
is a symbol, and from (5.3) and (Ia)-(Ic), I(s) has an expansion

. o £k _ o o
Y s, [Ty ds+ ¥ s [T 2 igt)p e
‘ jz0 .

k=0

— Y sk 2in Ssyp [k

k=0
where p({)~2& p_;¢ 77 and
' Ve = (0, 2x(x))] 1 —o.

Since ¢ is even, it follows that y, =0 unless k=1 mod 4. And from (5.3),
p_;=0 unless j is even. So the expansion involves only integer powers s™
and 5™ In s. o '
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1. INTRODUCTION

In attempting to apply the techniques of Schur functors and complexes
as developed in [3] to extend the results on resolutions of determinantal

ideals described in [2], we became increasingly aware of the need to study .-

systematically Z-forms of rational representations of the general linear -
group. These Z-forms arise in a number of different contexts and, to make
clear the kinds of things we are talking about, we shall first illustrate with
some simple examples.

If Fis a free module over a commutative ring R, and p is a positive
integer, we have the GL(F)-module A?F® F. Now for any integer k, con-
sider the map of A7*'F into APF® F@® A”*'F which sends A”*'F into
APF® F by diagonalization and 47*'F into A7 *'F by multiplication by k.
We will denote the cokernel of this map by H,(p, 1). Clearly, when R = Q,
H(p, 1) is isomorphic to A’?F® F as a-GL(F)-module, but this is not true
in general when R=Z. In fact, if we consider the exact sequence

0—>AP+IF—+A”F®F—>L(,,_1)F—>O, ' (1)
then the mép AP+ 'F ¥ A7+ 'F induces the exact sequence | |

0 A7 F > Hy(p, 1) L, ,F>0 _ (2)
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