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1. This is a report on joint work with R. Seeley. In dealing with singular elliptic 

problems which admit separation of variables one frequently encounters regular singu- 

larities in the classical sense i.e. one has to solve ordinary differential equations of the 

type 

o r  

(0~ + ~- 'a(x))~(~)  = f(~) 

(-02x -t- x -2a(x ) )u (x )  -~ f ( x ) ,  x 7> O, 

where a is smooth in x > 0. Cheeger [Ch] used this approach systematically to study 

the geometric operators on manifolds with cone-like singularities. In a series of papers 

[B+S1,2,3] we have developed the notion of first and second order regular singular 

operators abstractly, derived the asymptotic expansion of the trace of the resolvent in 

the second order case, and applied this to prove an index theorem for first order regular 

singular operators. In the following we will describe how these techniques can be used 

to calculate the L 2 index of the geometric operators on complete manifolds with finitely 

many ends all of which are warped products; the full details will appear elsewhere. The 

resulting index theorem will then be applied to the Gaul,-Bonnet operator. 

Let us recall first the notion of a regular singular first order differential operator on 

a Riemannian manifold M (cf. [B+S,3] §1) which we present here in a slightly more 

general form. So let D : C°°(E)  --~ Coo(F) be a first order elliptic differential op- 

erator between the smooth sections of two hermitian vector bundles E and F over 

M. We think of M as a singular Riemannian manifold with singularities in an open 

subset U such that M \ U is a smooth compact manifold with boundary. The na- 

ture of the singularities of course influences the structure of the geometric operators 

on U. From this fact we abstract certMn axioms concerning D; it will be called a 

regular singular differential operator if the following is true. 
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(RS 1) There is a compact  Riemannian manifold N,  with dim N + 1 -- dim M, and 

a hermitian vector bundle G over N such that  there are bijective linear maps 

'I~E : C~°(E [ U) --~ C~(I ,  COO(G)), 

@F: C~°(F t U) --~ C~'(I, COO(G)), 

where [ :=  (0,¢) for some e, 0 < e _< I. 

(RS 2) CE and C r  extend to unitary maps L2(E t U) ---* L2(I; L~(G)) and 

L2(F [ U) --~ L2(I, L2(G)), respectively. 

(RS 3) For ~ E Coo(I) with ~o constant near 0 and e let M~, be the multiplication 

operator on L2(I, L2(G)). Then @ ~ M ~ E  : ¢~.M~@F = M~- for some ~ E Coo(M), 

and ~ E C8 ° (M) if ~ vanishes in a neighborhood of 0. 

( R S 4 )  O n C ~ ° ( E [ U )  we have 

CFD@~ = a~ + z-l(So + Sl(Z)) 

where 

a) So is a self-adjoint first order elliptic differential operator  on Coo(G), and 

spec So N {-1/2, i/2} = @; 

b) SI(X) is a first order differential operator depending smoothly on x E (0, ~); 

c) IlSlC~)ClSol + 1)-'11 + II(IS01 + 1)- ' s , (~) l l  = o(1) as x -* 0. 

The main example for this situation is a manifold with asymptotically cone-like singu- 

laritites. In this case we assume that  U above is isometric to (0, e) x N with metric 

dx 2 + x2dsN(X) 2 where e > 0, x is the s tandard coordinate on (0, e), N is a compact  

(not necessarily connected) Riemannian manifold, and dSN(X) 2 is a family of metrics 

on N variing smoothly in [0, e). It is then readily verified that  the geometric operators 

on M are regular singular in the above sense. 

2. Now let M be a complete Riemannian manifold with finitely many ends. We 

assume that  there is an open U C M such that  M \ U is a smooth compact  mani- 
k 

fold with boundary and U = U Ui where each Ui is isometric to a warped product  
i----1 

(Yoi, oo) x f, N~, 1 < i < k. To simplify the exposition we will assume that  k = 1 

so U is (Y0, oo) x N, for some Y0 > 0 and some compact Riemannian manifold N, 

equipped with the metric dy 2 + f(y)~dS2N, where dS2N is the metric on N and f is some 

positive function in C °o [Yo, co). A lengthy but straightforward calculation shows that  

the geometric operators on U are unitarily equivalent to 
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if(Y) S, 
Ov + f~So + f(y) 

in the sense of RS4) where So is a suitable self-adjoint first order differential operator 

on Coo(G), G a bundle over N, and $1 is a zero order differential operator on C°°(G) 

(cf. Section 5 below for the example of the Gau6-Bonnet operator). 

We therefore consider a first order elliptic differential operator D : C°°(E) ---* Coo(F) 

between the smooth sections of two hermitian bundles E, F over M which are unitarily 

equivalent to an operator of the form (1) over U in the above sense. It is natural to 

investigate the L2-index of D i.e. the quantity 

(2) L2-ind D := dim ker D n L2(E) - dim ker D' n L2(F) 

where D'  : Coo(F) --~ Coo(E) is the formal adjoint of D, defined by (Du, v) = (u, D'v) 

for all u C C~'(E),  v E C~(F) .  Note that D'  has automatically similar properties as 

D, in particular 

(3) f'(v) s '  D' ~- -0~ + So + f (y)  1" 

There are various L2-index theorems applying to this situation, dealing e.g. with 

cylinders [A+P+S], asymptotically Euclidean spaces (IS] Theorem 1), or Riemannian 

manifolds with cusps ([S l Theorem 2). We wilt present an L2-index theorem unifying 

and extending these results; the main point is to link the L2-index with the index of 

a regular singular operator in the sense of RS1) - RS4). To do so we need of course 

a condition on f since in general the L2-index will not be finite; a counterexample is 

provided by the Gau6-Bonnet operator on R '~ = [0, oo) x S n-1 with a rotationally 

invariant metric dy 2 + f(y)2ds2s,_, such that f ~  ~ < oo (cf. [D]). The condition 

we impose is 

(4) lim if(V) = 0. 
y--*oo 

implying 



39 

(5) f (v)  = o(v),  

I t  is well known tha t  all warped products  are conformally equivalent to Riemannian 

products  i.e. cylinders; elaborating on this idea we show that  a weighted version of D, 

i.e. gDg for a suitable positive function g E Coo(M), is regular singular if (4) holds. 

To do so, define 

~y Y du 
(6) F(y) := o f(u) 

such tha t  F E C ~ ( y o , o o ) ;  in view of (5) we have the est imate 

(7) F(y) > log yN _ CN 

for all N > 0. Next pick a positive function g E C°°(M) such that  g t U depends on y 

only and 

(8) g2(y) = f(y)eF(v) for y sufficiently large. 

Then the function 

~v  du 
(9) s(Y) := o g2(u) 

equals e-F(v) for large y and defines a diffeomorphism from (y0,oo) to (0, xl)  for 

some Xl > 0. Thus we obtain a linear t ransformation (I) : C~°((O, xl),C°°(G)) 
C ~  ((yo, cw), C°°(G)) given by 

1 
(10) OuCy) := g~U(sCy)). 

Clearly, ~ extends to a uni tary map  L2((O, xl), L2(G)) --* L2((Xo, oo), L2(G)),  and it 

is easily calculated that  Dg := gDg t ransforms as 
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(11) 
g2 

~*Da¢~ = -Oz + - f  o s - ' ( z ) (So  + f '  o s - ' ( x ) S 1 ) .  

The  definit ion of g and s and (4) then imply 

L E M M A  1 Dg is a regular singutar differential operator. 

The  discussion of the  closed extensions of Da and thei r  Fredholm proper t ies  can now 

be  carr ied out  essentially along the lines of [B+S,3] §§2 and 3. The  only difference lies 

in the fact tha t  we have relaxed condit ion RS4,c) above where in [B+S,3] we required 

ins tead 

(12) 
IlSl(X)(ISol + 1)-111 + II(ISol + 1)-lSx(x)ll = O(x")  

as x --* 0 for some a > 1/2, 

whereas the  el iminat ion of the  : k l / 2  eigenvalues in RS4,a) was not necessary. In the  

case at hand we may assume tha t  the restr ict ion on spec So is satisfied; otherwise we 

replace So by #So and f by # f  for a sui table  # > 0 which will not affect condit ion (4). 

Then we obta in  the following result .  

T H E O R E M  1 The dosed extensions of Dg in L2( E) are classified by the subspaces 

of  the finite dimensional space Wo :=  P(Da,max)/ p(Dg,min). All closed extensions 

are  Fredholm operators, and if Da,w denotes the dosed extension corresponding to 

W C Wo we have 

ind Da,w = lad Da,min + dim W .  

3. The  next  task  is to  compare  ind Dg,w with L2-ind D for a sui tably  chosen W.  If 

u E ker D n L2(E) then clearly 0 = Du = ~ ~ Da~.l  u It is easy to  see from (8) and (4) 

t ha t  ~1 E L°°(M) so we obta in  an injection 

1 
(13) ker D A L2(E) ~ u H - u  E ker Dg,max • 

g 

1 L2(E) This m a p  is bi ject ive onto ker Da,ma x M ~ . . so we would like to define 
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P(Dg,w) := P(Dg,max) n ~L2(E), 

Dg,w := Da,m~ ] p(Dg,w). 

With the modifications of [B+S,3] §2 mentioned above and the crucial condition (4) it 

then follows that  

1 
(14) P(Da,mi= ) C P(Dg,max) n gL2(E). 

This implies that Da,w is a closed extension of Dg hence a Fredholm operator in view 

of Theorem 1. It is also not difficult to see that under the map analogous to (13) we 

obtain an injection 

(1~) 

We define 

ker D' n L2(F) ~ ker D~, W . 

(16) h0 := dim W,  hi := dim ker D~, W - dim ker D' n L~(F). 

Using Theorem 1 we arrive at the following L2-index theorem. 

T H E O R E M  2 

(17) 
L2-ind D = ind Dg,w + hi 

= ind Da,min + ho + hi • 

It  is now necessary to describe the terms on the right hand side of (17) more explicitly. 

The calculation of ind Dg,min is largely parallel to the index calculation in [B+S,3] and 

will be carried out in the next section. To clarify the role of ho and hi we need an 

additional assumption which is also satisfied by the geometric operators (cf. Section 

5), namely: if Q denotes the erthogonal projection in H := L2(G) onto ker So we have 

(18) $1 is symmetric in H and ( I -  Q)SIQ = o. 
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If u C Cl((yo,  oo), H) solves Du = 0 we obtain from (1) and (18) 

f ' (Y )  ^ s  ^ ~ "  " (19) (Qu)'(y) + ~ L ¢  1~4 (y) = O, y c (yo,oO). 

We now write the spectral decomposition of QS1Q in the form 

QSIQ = ( ~  tQt (20) 
tER 

where of course only finitely many Qt are nonzero. Then the general solution of (19) 

is 

(21) Qu(y) : Z ( f ( y )  '~-tQtu(yo) 
e~]~ \f(Yo)] 

and since we are only interested in L2-solutions of D and D ~ it is natural to decompose 

further 

w here 

Q -- Qo $ Q~) • Q1 

(22) 

qo := ( ~  q~, 
I - ~ E L  2 

O Qt, 
f t E L 2  

f - t , f t f f L 2  

The analysis of h0 requires a good description of P(Dg,min) which is provided by a 

result analogous to [B+S,3] Lemma 3.2 namely 

DCDg,min) = (u E P(Dg,max) I I1~*~(~)11 = O(~ 1/2) as ~ -* 0}. 
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Analyzing the solutions of the transformed equation along the lines of [B+S,3] Lemma 

3.2 then proves 

L E M M A  2 

ho = dim Qo- 

In dealing with hi it seems advantageous to study the original equation directly. In 

fact, under the isomorphism v H ~ := gv we have 

ker Dg,w (~ e C°°(F) [ D'9 = 0, 19 * = • L2(F), 
g 

(DS, 9) = 0 for all ~ • L2(E) with gD~ • L2(F)} 

=: ~ . 

The homogeneous equation D*9(y) = 0 is conveniently transformed by the change of 

variables 

leading to 

v(z) := F - ~ ( z ) ,  ~(z)  := ~(v(z)),  ~ e  (0,oo),  

(2~)  [ 0 ,  - So - f ( F - l ( z ) ) s , ] ~ ( z )  = 0 .  

The L2-solutions of this equation can be studied by standard methods. Then it follows 

that  

L2-ker D'  = {9 E ~/6,, I Qlv(y) = 0, y > yo}. 

Introducing the map 

*v : ~t~, ~ 9 ~-* QIg(y) E Q1H,  

defined for y > Yo, we therefore find 

L E M M A  3 For all y > Yo 

hi = dim im 1" u = dim {QlvCv) ] ~ E ~/~) 

_< dim Q1. 
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In particular, hi = 0 if Q1 = 0 which is the case e.g. if f(y) = e-u, that  is if M is a 

manifold with a cusp. It seems, however, very difficult to compute hi in general. We 

will give an example below with hi > 0, cf. Theorem 5. 

4. It remains to compute ind Dg,mln. This is parallel to the work in [B+S,3] §4 

though now the manifold may have infinite volume. The above discussion shows that  

ind Dg,mi n is the same for all g satisfying (8) for x sufficiently large. Thus it is natural 

that  we define g to be constant on the part  of M where y < R for some large R in order 

to obtain the regularized interior contribution to the index independent of g. Taking 

the limit R --~ co in this approach is, however, technically somewhat delicate, and we 

are lead to impose a further condition on the growth of f ,  namely 

(24) 

if Qaf  := f •o( f , ) • , . . .  (/(k))<~k, czi > O, is any 

monomial such that  ao < ~ (j  - 1)c U then 
s_>2 

lim Q . f ( y )  = O. 
y---~ O0  

Note that  this condition contains (4) and that  it is satisfied if f(y) = e -u  or f (y)  = y#, 

fl < 1, for large y. Also, (24) can be viewed as the analogue of condition (4.31) in 

[B+S,3] for the case under consideration. Then ga will be a positive function in 

C °o (M) satisfying 

(25) 

and we define 

g2R(y ) = f (R)  if y <  R + ~ f ( R ) ,  

g2R(y ) = f(y)e F(y) if y is sufficiently large, 

gR(U) ~ - -  1, 

fy 
oo du 

sR(y) :=  gR(u)~ . 

Then an isometry ~R is defined as in (11) which transforms Dg R I C~( (R ,  co), H) to 

-0:~ + aR(x)So + bR(X)S1 
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on C~°((O, 1), H) where aR(x) = 1/x  near  x = 0 and lim bR(X) = 0. The  condit ion 
2---*0 

(24) ensures tha t  uniformly on [1/2, 1] 

(26) 

l im an(z) = 1, 
R - - *  oo  

lira a(~'+')(x) = lira b~)(x) = O, j > O. 
R - - *  oo  R - - * o o  

We can then modify DgR,mi n to an opera tor  DR : P(DaR,min ) ~ L2(F) in such a way 

tha t  bR(X) = 0 if x E [0, 1/2] and aR(x) = 1 near  x = 1/2, and ind DR = ind DgR,min. 

Using sui table  cut-off  functions and comput ing separa te ly  the contr ibut ions  to the  

constant  te rm in the asymptot ic  expansion of 

t r (  e--tD~ DR _ e--tD~ D~ ) 

coming from y < R, R < y < R + ½f(R), and y > R + ½f(R), we obtain three  terms.  

Since the  sum gives the index of DaR,min and hence does not depend on R we can take  

the  l imit  R --* co. The  first contr ibut ion involves only the "index form" WD of D and 

equals 

(27) [ 
R oo Jv<R 

proving in par t icu la r  the existence of the limit.  The  index form is obta ined  as follows: 

the  opera to rs  e - tD°D and e -tDD° have kernels with respect  to the given Riemannian 

measure  which when restr ic ted to the  diagonal  in M × M yield smooth  sections of 

the  bundles  Hom(E,  E)  and Horn(F, F ) ,  respectively.  These kernels have pointwise 

asympto t ic  expansions as t --* 0 and WD denotes  the  difference of the fiber t races of 

the cons tant  terms in this  expansion.  The  second contr ibut ion turns  out to be o(1) as 

R ---* oo in view of (26) since ( - 0 2  + So)(O:~ + So) = (0~ + So)(-Ox + So). The  thi rd  

contr ibut ion  is computed  in [B+S,4]; it is independent  of R and equals 

(28) 

where 

1 S ~ ( r / ( o )  - dim ker So) 

rlso(z) :=  ~ sgn s Ist - z  
sespec so\{o} 
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is the r/-function introduced in [A+P+S]. For general elliptic operators r/so is known 

to be meromorphic in C with only simple poles~ and 0 is a regular value. Then 

. (So) := .so(O). 

Combining Theorem 2 with (27) and (28) we obtain 

T H E O R E M  3 (L2-index theorem) Let M be a complete Riemannian manifold as 

in Section 2, such that the warping factor f satisfies condition (24). Let D : C°°(E) 

C°°(F) be a first order elliptic differential operator on M satisfying (I) and (18). Then 

(29) L2-ind D = / M  WD + l ( r / (So) -  dim ker So)+ ho + h , .  

Theorem 3 generalizes in a straightforward way to manifolds with k ends 

Ui = (Xoi, oo) xf~ Ni all of whose warping factors satify (24). Then on each end we 

have the representation 

1 ]-~*~" Sxi D ~_ 0~ + ~So~ + f~ 

where (18) is required now for all i. Then we put 

and 

h 

Sj := O S j i ,  j = 0,1, 
i = l  

k k 
(30) ho = ho, -- dim Qo, .  

i=1  i : 1  

hi is again defined by (16) and satisfies the estimate analogous to Lemma 3, 

k 
(31) h, < Z d i m  Q,i .  

i= 1 
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5. We want to explain the various ingredients of Theorem 3 in the case of the Gaut~-- 

Bonnet operator DcB. So we assume again that M is a complete Riemannian manifold 

with finitely many ends Ui = (Yoi, oo) x l ,  Ni such that all warping factors satisfy (24). 

Denoting by It(M) = (~ l]J(M) the smooth forms on M, by 12eV(M) and It°dd(M) 
j_>0 

those of even and odd degree, respectively, and by d and d* the exterior derivative and 

its adjoint with respect to the natural L2-structure on 12(M), DaB is defined by 

DGB := d + d* : tier(M) ~ It°rid(M). 

It is well known that DcB is a first order elliptic differential operator. If M is compact 

then it is easily seen that with H i ( M )  := {w E 12J(M) t ( d ' d +  dd*)w = 0}, the space 

of harmonic j-forms, 

L2-ind DCB = ~-~(-1)Jdim H i ( M ) .  
3_>0 

By de Rham's theorem H i ( M )  is isomorphic to the jth singular cohomology group of 

M with real coefficients so 

L2-ind D~B = x (M) ,  

the Euler characteristic of M. In the noncompact complete case the harmonic forms 

have to be replaced by the L2-harmonic forms i.e. we introduce 

~J(M) := {w e 12i(M) I (dd* + d*d)w -- O, 

fM co A *oJ < 0 0 ) .  

It follows from a well known theorem of Andreotti and Vesentini that w E ~4i(M) iff 

dw = d*w = O. Hence we obtain 

L2-ind DcB = ~-~(-1)Jdim ~J(M) =: XI2}(M), 
3">o 

the L2-Euler characteristic of M. It is natural to ask whether X(2)(M) is a topological 

invariant. That this is not the case can be seen already from the fact that the finiteness 

of X(2) (M) depends on the metric and not on the topology alone, cf. [D]. The L2-index 

theorem above will give a formula for X(2)(M) if we can show that DCB satisfies our 

assumptions. For this purpose we note that any w E fli(Ui) can be written as 
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= ~AV) + ~j - , (V)  ^ dv 

where w, C C°~((yoi,Oo),12*(Ni)), £ = j - 1,j. 

A lengthy bu t  s t ra ightforward calculat ion then gives the  following result .  

L E M M A  4 On 12ev(Ui) we have 

1 L'(v) ~ 
DGB ~-- 0 v + ~ S o i  + 

acti .g on C°°((Vo;, oo), n(N~)). Here 

(32) Soi I in ) : dN~ ". ". 
• . .  . . .  d ' n ,  • , 

w ~ dlv, 0 

where w i denotes the component in f~J ( Ni) and dN, d* denote the intrinsic operations 

on Ni. Moreover, 

(33) S l i  : ~ " . .  

Wr~ i Cr~ i W i 

where cy = ( - 1 ) J ( j  - "~). 

Note tha t  ni =: n = dim M - 1 for all i; as in the  compact  case we assume from now 

on tha t  d im M is even i.e. 

d i m M = 2 k = n + l ,  k_> 1. 

So DGB satisfies condi t ion (1). Now it is easily checked tha t  

(34) ker Soi= ~ )  HJ(Ni) 
j_>o 
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and consequently DGB also satisfies (18) for all i. Hence the L2-index theorem applies 

and we obtain 

(35) X(2}(M) = /MW~B-F ~(~l (So) -d imker  So) +ho-Fhl  , 

where So, ho, hi are defined at the end of §4. We have to investigate the terms on the 

right hand side of (35) more closely. Clearly, (34) implies that 

(36) dim ker So = >-~dim HY(Ni) = >-~ bi(::,  ) 
i,i i,j 

where b i is the jth Betti number. Next, the calculations in [B+S,3] Lemma 5.1 prove 

L E M M A  5 If  So denotes the operator in (32) on an arbitrary compact Riemannian 
manifold N then 

~(So) = 0 .  

Using (30) and (33) we also arrive at 

(37) ho= ~ hi(N,). 
i,y 

:[°i e: 

Now consider fM weB, the integral of the Gaui3-Bonnet integrand. If M is compact 

then the Chern-Gaufl-Bonnet Theorem asserts that 

(38) /M WGB = x(M)  . 

For a general complete manifold M with finitely many ends we say that the Chern- 

Gaui3-Bonnet theorem holds if (38) is true. This is not true in general as the example 

M -- R n shows. On the other hand, the surface case has been studied thoroughly in 

a classical paper by Cohn-Vossen [CV]; he gives various sufficient conditions for (38) 

and shows that in great generality the inequality 
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fM W~B <_ x (M)  

is true. Further work concerns the case of locally symmetric spaces [HI and the case 

of bounded geometry [Ch-G]. In our situation there seems to apply only the result of 

Rosenberg [R] Theorem 1.9 which says that (38) holds if 

lim f i ( z ) =  lim f / ( z ) = 0  for a l l i .  
X ----400 X ~ O O  

We will show that the Chern-GauB-Bonnet theorem also holds under our assumptions. 

L E M M A  6 If all warping factors satisfy the condition (24) then the Chern-GauB- 

Bonnet theorem holds for M. 

P R O O F  The function fo(Y) - i satisfies (24). Then we pick ~o E C~°(R) with ~o = 1 

in a sufficiently large neigborhood of 0 and try to deform all warping factors fi  to fo 

near infinity i.e. we put 

f~,o : =  ~of~ + (1 - ~ ) ( o f o  + (1 - o)f;) ,  o c [o, :]. 

It is easily checked that fi,0 satisfies (24), too. In this way we obtain a family DGB,O of 

elliptic first order differential operators. Now we construct a smooth family of functions 

go satisfying 

~ ( y ) = l ,  vo ~ y ~ u o + l / 3 ,  

g~(u) : f 0 ( u ) e  r~(~) ife-r~I ~) ~ 1/3,  

f ~ du 
, go(~) 2 = 1 ,  

where Fe(y) = f~Y du Transforming the square fs-T~,>' and we define se(y) := f~o du 

integrable forms on the Riemannian manifold with warping function .to using the trans- 

formation (10) generated by go and sa maps the closure Do of the operators goDGBgo 

to a family of Fredholm operators with domain independent of ~, variing continuously 

with 0. Using (27) and (28) we thus conclude that 
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where w~) is the index form of DGB, i  , j = 0, 1. Moreover, it follows easily from the 

Gauf~-Bonnet theorem for manifolds with boundary that 

(38) /M W~ = x ( M ) .  

The Lemma follows from (37) and (38). 

D 

Since (24) holds e.g. for f ( y )  = y~ with fl < 1, Lemma 6 applies to warping factors 

which are not covered in JR]. As pointed out in this paper it is not necessary to control 

the derivatives of f of order greater than 1; thus it seems likely that the Chern-GauB-- 

Bonnet theorem will hold if only (4) is satisfied for all i. 

Summing up we have proved 

T H E O R E M  4, Let M be a complete connected Riemannian manifold with finitely 

many  ends U~, 1 < i < k, and assume that each end is a warped product with warping 

factor fi  satisfying (24). Then 

X(2](M) = x ( M )  + 

f7 L~ 

where hi is an integer satisfying 

Z b(N,)/ + h, 
] f,-ci EL ' 

0<hi_< bAN,). 
f7 ej,fci EL 

We conclude this section with the surface case which allows the explicit calculation of 

ha under much weaker conditions than stated in Theorem 4. In particular, it shows 

that hi > 0 in general. 

T H E O R E M  5 Let M be a complete connected surface with finitely many ends Ui, 

1 < i ( k, and assume that each end is a warped product with warping factor f i  

satisfying 

fy 
oo du 

o, f ,  Cu) 
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Th en 

S X ( M )  + k if vol M < co,  
(40) (M) X(2) t x ( M )  + k - 2 if vol M = oo.  

This implies tha$ 

hi = ~ 0 i fvol  M < oo,  (41) 
2[~{i t f~ ~ L*} - 1] i fvol  M = oo.  t 

P R O O F  Assume first that  vol M < oo which is equivalent to fi  E L 1 for 1 < i < k; 

in view of Theorem 4 this yields hi = 0. By (33) we have cj = - 1 / 2  f o r ]  = 0,1, 

hence we see from (30) that h0 = 2k. Also, dim ker So = 2k. On each [/-,. the circles 

const have constant geodesic curvature equal to ~ so it follows from (4) and Y 
the GauB-Bonnet  theorem for surfaces with boundary  that  

MWGB = x ( M ) .  

Plugging this into (35) and observing Lemma 5 we obtain 

(42) X(2)(M) = x ( M )  - k + 2k --- x ( M )  + k .  

Next, if vol M = oo h, may be nonzero since 

fy 
oo du 

o~ f~('~) 

for all i, by f i(Y) = o(y) as ~. consequence of (4). Now 

X(2)(M) = dim ~ ° ( M )  - dim g1 (M)  + dim h '2(M),  

and we have 

{~  if vol M < ¢x~, 
(43) dim ~° (M)  = dim ~¢2(M) = if vol M = oo,  
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since M is connected and the Hodge * operator induces an isomorphism 

g0(M ) __~ gs (M). It is also easily checked that dim ~I (M) is a conformal invariant of 

M (cf. [D] for these facts). So (40) follows from (42) and (43) if we can show that under 

our assumptions M is conformally equivalent to a finite volume surface M with all ends 

warped products with warping factors fi satisfying (4). To achieve this we first choose 

a positive C °o function f on M such that on Ui ] (y)  = fi(y) -2 if y is sufficiently 

large. Next we construct a diffeomorphism ¢ : M ~ M such that ¢ = id on y _< R 

for R sufficiently large and ¢(y, n) = (f~Y, ~ ,  n) if y is sufficiently large and n • Ni. 

Denoting by g the original metric on M we obtain a conformally equivalent metric 

setting ~ := (¢ -1 ) , ] g .  Clearly, this construction can always be carried out if we have 

(39), and it gives a conformal equivalence to a manifold with cylindrical ends. But 

then we can also obtain a conformal equivalence to a manifold all of whose warping 

factors equal e-y for y sufficiently large which completes the argument. 

Finally, (41) follows from (40) and (35) by comparison. 

D 
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