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1. This is a report on joint work with R. Seeley. In dealing with singular elliptic
problems which admit separation of variables one frequently encounters regular singu-

larities in the classical sense i.e. one has to solve ordinary differential equations of the

type

(82 + 27" a(z))u(z) = f(z)

or

(=0% + 27 %a(z))u(z) = f(z), 2 > 0,

where a is smooth in £ > 0. Cheeger [Ch] used this approach systematically to study
the geometric operators on manifolds with cone-like singularities. In a series of papers
[B+851,2,3] we have developed the notion of first and second order regular singular
operators abstractly, derived the asymptotic expansion of the trace of the resolvent in
the second order case, and applied this to prove an index theorem for first order regular
singular operators. In the following we will describe how these techniques can be used
to calculate the L? index of the geometric operators on complete manifolds with finitely
many ends all of which are warped products; the full details will appear elsewhere. The
resulting index theorem will then be applied to the Gaufi-Bonnet operator.

Let us recall first the notion of a regular singular first order differential operator on
a Riemannian manifold M (cf. [B+8,3] §1) which we present here in a slightly more
general form. So let D : C®(E) — C®(F) be a first order elliptic differential op-
erator between the smooth sections of two hermitian vector bundles E and F over
M. We think of M as a singular Riemannian manifold with singularities in an open
subset U such that M \ U is a smooth compact manifold with boundary. The na-
ture of the singularities of course influences the structure of the geometric operators
on U. From this fact we abstract certain axioms concerning D; it will be called a
regular singular differential operator if the following is true.
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(RS 1) There is a compact Riemannian manifold N, with dim N 4 1 = dim M, and
a hermitian vector bundle G over N such that there are bijective linear maps

g :CP(E|U) — CP(I,C™(G)),
®r: CP(F | U) - C(1,C%(G)),

where I := (0,¢) for some 6,0 < e < 1.

(RS 2) &g and ®f extend to unitary maps L?(E | U) — L%(I; L*(G)) and
L2(F | U) — L2(1, L?(G)), respectively.

(RS 3) For p € C®(I) with ¢ constant near 0 and ¢ let M, be the multiplication
operator on L?(I, L*(G)). Then ®4M,®r = ®:M,®r = My for some § € C®(M),
and p € C° (M) if ¢ vanishes in a neighborhood of 0.

(RS 4) On C(E | U) we have

& DL =3, + 27 (So + 81 (z))

where

a) 8y is a self-adjoint first order elliptic differential operator on C* (@), and
spec So N {—1/2,1/2} = {;

b) S1(z) is a first order differential operator depending smoothly on z € (0, ¢);
<) 181 (=) (IS0} + 1)~ + l(ISo] + 1) 7Sy ()| = o(1) as z — 0.

The main example for this situation is a manifold with asymptotically cone-like singu-
laritites. In this case we assume that U above is isometric to (0,£) x N with metric
dz? + z2dsy(z)? where € > 0, z is the standard coordinate on (0,¢), N is a compact
(not necessarily connected) Riemannian manifold, and dsy(z)? is a family of metrics
on N variing smoothly in [0, £). It is then readily verified that the geometric operators
on M are regular singular in the above sense.

2. Now let M be a complete Riemannian manifold with finitely many ends. We

assume that there is an open U C M such that M \ U is a smooth compact mani-
k

fold with boundary and U = {J U; where each U; is isometric to a warped product
LESD

(yoi,00) X5, Niy 1 < ¢ < k. To simplify the exposition we will assume that k =1

so U is (yo,0) x N, for some yo > 0 and some compact Riemannian manifold N,

equipped with the metric dy? + f(y)?ds% , where ds% is the metric on N and f is some

positive function in C®{yp,00). A lengthy but straightforward calculation shows that

the geometric operators on U are unitarily equivalent to
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1 ')
(1) Oy + mso + (%) 5y

in the sense of RS4) where 5 is a suitable self-adjoint first order differential operator
on C*(G), G a bundle over N, and S; is a zero order differential operator on C®(G)

{cf. Section 5 below for the example of the Gauf-Bonnet operator).

We therefore consider a first order elliptic differential operator D : C®(E) — C*®(F)
between the smooth sections of two hermitian bundles E| F' over M which are unitarily
equivalent to an operator of the form (1) over U in the above sense. It is natural to

investigate the L%-index of D i.e. the quantity

() L*-ind D := dim ker D1 L%(E) — dim ker D' N L%(F)

where D' : C®°(F} — C*(E) is the formal adjoint of D, defined by (Du, v} = {u, D'v)
for all u € CL(E), v € CL(F). Note that D' has automatically similar properties as
D, in particular

'l _.'E_, Y o
) D= =0t gy 5ot Ty S

There are various L2-index theorems applying to this situation, dealing e.g. with
cylinders [A+P+8}, asymptotically Euclidean spaces {[S] Theorem 1), or Riemannian
manifolds with cusps ([S] Theorem 2). We will present an L?-index theorem unifying
and extending these results; the main point is to link the L?-index with the index of
a regular singular operator in the sense of RS81) - RS4). To do so we need of course
a condition on f since in general the L2-index will not be finite; a counterexample is
provided by the GauS-Bonnet operator on R® = [0,00) x §"~! with a rotationally
invariant metric dy? + f(y)?ds%._, such that [ ﬂd%)' < oo (cf. [D]). The condition
we impose is

(4) lim f'(y)=0.

y—co

implying
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(5) fy)=oly), y - .

It is well known that all warped products are conformally equivalent fo Riemannian
products i.e. cylinders; elaborating on this idea we show that a weighted version of D,
i.e. gDg for a suitable positive function g € C*°(M), is regular singular if (4) holds.
To do so, define

(6) F)= [ %

such that F € C®(yg, 00); in view of (5) we have the estimate

(7) F(y) > logyV —cn

for all N > 0. Next pick a positive function g € C°°(M) such that g| U depends on y
only and

(8) *(y) = f(y)e" @) for y sufficiently large.

Then the function

(9) o(y) = f Y _du

o (1)

equals e=F(¥) for large y and defines a diffeomorphism from (yo,00) to (0,z,) for
some z; > 0. Thus we obtain a linear transformation ® : C§°((0,z,), C*(G)) —
C§°((yo, 0), C*(G)) given by

(10) Bu(y) = g—é—)a(s(yn.

Clearly, ® extends to a unitary map L?((0, z,), L?(G)) — L%((z0, ), L*(G)), and it
is easily calculated that D, := ¢Dg transforms as
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(11) *Dy® = 3, + ?os“(m)(&)+f’os"’(x)31).

The definition of ¢ and s and (4) then imply

LEMMA 1 D, is a regular singular differential operator.

The discussion of the closed extensions of D, and their Fredholm properiies can now
be carried out essentially along the lines of [B-+8,3] §§2 and 3. The only difference lies
in the fact that we have relaxed condition RS4,c) above where in [B+8,3] we required

instead

1S1(2)(1So] + 1)~H | + [[(|50] + 1)~ Sy(a)l| = O(z%)
as z — 0 for some a > 1/2,

(12)

whereas the elimination of the +1/2 eigenvalues in RS4,a) was not necessary. In the
case at hand we may assume that the restriction on spec Sy is satisfied; otherwise we
replace Sy by uSp and f by uf for a suitable u > 0 which will not affect condition (4).
Then we obtain the following result.

THEOREM 1 The closed extensions of Dy in L*( E) are classified by the subspaces
of the finite dimensional space Wy = D(Dy max)/ D(Dgmin). All closed extensions
are Fredholm operators, and if D,y denotes the closed extension corresponding to
W Cc W, we have

ind D, w = ind Dy.in + dim W .

3. The next task is to compare ind Dy w with L?-ind D for a suitably chosen W. If
u € ker D N L?(E) then clearly 0 = Du = é»Dgéu. It is easy to see from (8) and (4)
that 1 € L®(M) so we obtain an injection

(13) ker DN L*(E) > uws Zl]-u € ker Dy max -

This map is bijective onto ker Dy max N %IP(E) so we would like to define
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1
D(Dyw) = D(Dg,ma-x) N §L2(E) s
Dyw = Dy max | D(Dgw) -

With the modifications of {B+8,3] §2 mentioned above and the crucial condition (4) it
then follows that

(14) D(D ,min) C D(Dg,max) N “;‘Lz(E) .

This implies that D is a closed extension of D, hence a Fredholm operator in view
of Theorem 1. If is also not difficult to see that under the map analogous to (13) we
obtain an injection

(15) ker D' N L*(F) < ker Dy y .
We define
(16) ho :=dim W, hy := dim ker D}y — dim ker D' n L?(F).

Using Theorem 1 we arrive at the following L2-index theorem.

THEOREM 2

L*ind D =ind Dgw + hy
= ind Dg,min + hg + hl .

(a7

It is now necessary to describe the terms on the right hand side of (17) more explicitly.
The calculation of ind Dy pn is largely parallel to the index calculation in [B+8,3] and
will be carried out in the next section. To clarify the role of hy and h; we need an
additional assumption which is also satisfied by the geometric operators {cf. Section
5), namely: if @ denotes the orthogonal projection in H := L%(G) onto ker S, we have

(18) S, is symmetric in H and (] — Q)S:1Q =0.
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If u € C'((yo, 00), H) solves Du = 0 we obtain from (1) and (18)

(19) (Qu)(y) + %Qslczu(y) =0, y€ (0,00).

We now write the spectral decomposition of @S;Q in the form

(20) Q5:Q = P e
teR

where of course only finitely many @Q: are nonzero. Then the general solution of (19)

is

f\™"
(21) Qu(y) = =1 Q:u(y),
c%:R <f(y0))

and since we are only interested in L2?-solutions of D and D’ it is natural to decompose
further

RQ=QoQ o

where
QO = @ Qt;
f—lELZ
(22) b= P e,
fteLz
u= P
S JEL?

The analysis of ho requires a good description of D(Dg min) which is provided by a

result analogous to [B+8S,3] Lemma 3.2 namely

D(Dg min) = {u € D(Dyg.max) | [|®*u(z)]| = O(z*/?) as z — 0}.
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Analyzing the solutions of the transformed equation along the lines of [B+8,3] Lemma
3.2 then proves

LEMMA 2
ho = dim QO .

In dealing with h; it seems advantageous to study the original equation directly. In
fact, under the isomorphism v ~+ ¥ := gv we have

ker D%y = {§ € C™(F) | D's = 0, 35 e I*(F),

(D, ) =0 for all & € L2(E) with gDii € L*(F)}

=: ¥y -

The homogeneous equation D'H(y) = 0 is conveniently transformed by the change of

variables

y(z) == F7H(2), d(z):=i(y(2)), 2€(0,00),
leading to
(23) (82 — So — f{(F~1(2))S]w(z) =0.

The L2-solutions of this equation can be studied by standard methods. Then it follows
that

LPker D' = {3 € ¥y | Q19(y) =0, y > wo} -

Introducing the map

Ty Hw DU Qio(y) € Q1 H,
defined for y > yo, we therefore find
LEMMA 3 Forally > yo

hy = dim im 7y, = dim {Q,9(y) | ¥ € M }
<dim @, .
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In particular, by = 0 if @, = 0 which is the case e.g. if f(y) = e~ ¥, that is if M is a
manifold with a cusp. It seems, however, very difficult to compute h, in general. We

will give an example below with h; > 0, ¢f. Theorem 5.

4. It remains to compute ind Dy pin. This is parallel to the work in [B+8,3] §4
though now the manifold may have infinite volume. The above discussion shows that
ind Dy iy is the same for all ¢ satisfying (8) for z sufficiently large. Thus it is natural
that we define g to be constant on the part of M where y < R for some large R in order
to obtain the regularized interior contribution to the index independent of g. Taking
the limit R — oo in this approach is, however, technically somewhat delicate, and we

are lead to impose a further condition on the growth of f, namely

if Quof = fao(fl)al . (f(k))ak, a; > 0, is any

monomial such that oy < 7 (5 — 1)ay then
(24) 7>2

lim Qqf(y) =0.

y—+00o
Note that this condition contains (4) and that it is satisfied if f(y) = ¢~¥ or f(y) = ¢%,
B < 1, for large y. Also, (24} can be viewed as the analogue of condition (4.31) in

[B+8,3] for the case under consideration. Then gr will be a positive function in
C>®(M) satisfying

h(v) = f(B) iy <R+ f(R),

(25) 9 (y) = f(y)eF @) if y is sufficiently large,
/'°° du .
r gr(u)? ’

and we define
*  du
s = —_—.
R(y) -/y gR(u)z
Then an isometry @ is defined as in (11) which transforms D,, | C§°((R, o0), H) to

=08z + ar(z)So + br(z)S:
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on C§°((0,1), H) where ag(z) = 1/z near z = 0 and lin%) br(z) = 0. The condition
r—

{24) ensures that uniformly on [1/2,1]

lim ag(z) =1,
(26) R- o0
Jim o () = Jim () =0, ;5>0.

We can then modify Dy, min to an operator Dg : P(Dyp, min) — LZ(F) in such a way
that br(z) =0 if z € [0,1/2] and ag(z) = 1 near z = 1/2, and ind Dg = ind Dy min.
Using suitable cut-off functions and computing separately the contributions to the

constant term in the asymptotic expansion of

tr(€~tD‘.RDR _ e—tDRD;'{)

coming from y < R, R<y < R+ Lf(R), and y > R+ L f(R), we obtain three terms.
Since the sum gives the index of Dy, min and hence does not depend on R we can take
the limit B — oo. The first contribution involves only the “index form” wp of D and
equals

27 lim / wp
R—+00 y<R

proving in particular the existence of the limit. The index form is obtained as follows:
the operators e *P" D and e tPL” have kernels with respect to the given Riemannian
measure which when restricted to the diagonal in M x M yield smooth sections of
the bundles Hom(FE, F) and Hom(F, F), respectively. These kernels have pointwise
asymptotic expansions as { — 0 and wp denotes the difference of the fiber traces of
the constant terms in this expansion. The second contribution turns out to be o(1) as
R — oo in view of (26) since (—8, + So}{(d; + So) = (8 + So){(—8z + Sp). The third
contribution is computed in [B+8,4]; it is independent of R and equals

(77(30) — dim ker S())

—_
™~
Q0
=
B o=

s, {(2) 1= Z sgn s |s|7?

s€spec S\ {0}
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is the n-function introduced in [A+P+S8]. For general elliptic operators 55, is known
to be meromorphic in C with only simple poles, and 0 is a regular value. Then

7)(50) = nSo(O) .
Combining Theorem 2 with (27) and (28) we obtain

THEOREM 3 (L?-index theorem) Let M be a complete Riemannian manifold as
in Section 2, such that the warping factor f satisfies condition (24). Let D : C=(E) —
C>(F) be a first order elliptic differential operator on M satisfying (1) and (18). Then

(29) L?ind D = / wp + %(f[(SO) ~ dim ker So) +ho+hy.
M

Theorem 3 generalizes in a straightforward way to manifolds with k ends
Ui = (zgi,00) Xy, N; all of whose warping factors satify {24). Then on each end we

have the representation

1 4
D~ By + }:S(),‘ -+ ﬁSI;

where (18) is required now for all 2. Then we put

k
S; =P s, i=01,
i=1

and

k k
(30) ho =Y hoi = »_ dim Qo;.
=1 FE3

h; is again defined by (16} and satisfies the estimate analogous to Lemma 3,

k
(31) hy < Zdim Qui-

=1
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5. We want to explain the various ingredients of Theorem 3 in the case of the Gauf-
Bonnet operator Dgp. So we assume again that M is a complete Riemannian manifold
with finitely many ends U; = (yoi, 00) Xy, N; such that all warping factors satisfy (24).

Denoting by (M) = € 07(M) the smooth forms on M, by 02¢¥(M) and Q°4¢(M)
720

those of even and odd degree, respectively, and by d and d* the exterior derivative and

its adjoint with respect to the natural L2-structure on (M), Dgp is defined by

Dgp i=d+d* : QY (M) — 0°%4(M) .

It is well known that D¢ p is a first order elliptic differential operator. If M is compact
then it is easily seen that with H¥(M) := {w € (M) | (d*d + dd*)w = 0}, the space
of harmonic j-forms,

[*-ind Dgp = »_(—1)dim H'(M).
>0

By de Rham’s theorem H?(M) is isomorphic to the j* singular cohomology group of
M with real coefficients so

L?-ind Dgp = x(M),

the Euler characteristic of M. In the noncompact complete case the harmonic forms

have to be replaced by the L?-harmonic forms i.e. we introduce
H (M) :={we(M)|(dd+d*d)w =0,

/ WA *w < 00} .
M

It follows from a well known theorem of Andreotti and Vesentini that w € ¥7(M) iff

dw = d*w = 0. Hence we obtain

L?-ind Dgp = Y _(—1)7dim ¥7(M) =t x(2)(M),

jzo

the L2-Euler characteristic of M. It is natural to ask whether X(2)(M) is a topological
invariant. That this is not the case can be seen already from the fact that the finiteness
of x(3)(M) depends on the metric and not on the topology alone, cf. [D]. The L2-index
theorem above will give a formula for x(3)(M) if we can show that D¢p satisfies our
assumptions. For this purpose we note that any w € 9(U;) can be written as
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w=w;{y) +w;—1(y) Ady

where wy € C®((yos, 00), Q(N;)), £= 7 — 1,7.

A lengthy but straightforward calculation then gives the following result.

LEMMA 4 On Q¢(U;) we have

o Log s B
Dep = 8y + 710 Soi + gy B

acting on C'®((yoi, 00), §(N;)). Here

o . . Wo

W,

X

where w; denotes the component in Q7(N;) and dy,, d}, denote the intrinsic operations
on N;. Moreover,

(33) sul @)=

n

where ¢; = (—1)7(j — ).

Note that n; =: n =dim M — 1 for all 4; as in the compact case we assume from now
on that dim M is even i.e.

dm M=2k=n+1,k>1.

So Dgp satisfies condition (1). Now it is easily checked that

(34) ker So; = EP HY(N:)

320
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and consequently Dgp also satisfies (18) for all +. Hence the L2-index theorem applies
and we obtain

1 .
(35) X (M) = [ wan + 3(1(S5) — dim ker So) +ho + by,
M

where Sy, hg, h; are defined at the end of §4. We have to investigate the terms on the
right hand side of (35) more closely. Clearly, (34) implies that

(36) dim ker S =y _ dim HI(N;) = ) b;(7%)

67
where b, is the j*® Betti number. Next, the calculations in {B+S,3] Lemma 5.1 prove

LEMMA 6  IfS, denotes the operator in (32) on an arbitrary compact Riemannian
manifold N then

f](S()) =0.

Using (30) and (33) we also arrive at

(37) ho= > bi(N).
17
feL?
Now consider [ a WeB, the integral of the GauB-Bonnet integrand. If M is compact
then the Chern—-GauB8-Bonnet Theorem asserts that

(38) /M wgp = X(M) .

For a general complete manifold M with finitely many ends we say that the Chern-
GauB-Bonnet theorem holds if (38) is true. This is not true in general as the example
M = R"™ shows. On the other hand, the surface case has been studied thoroughly in
a classical paper by Cohn—Vossen {CV]; he gives various sufficient conditions for (38)
and shows that in great generality the inequality
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/ wgp < x(M)
M

is true. Further work concerns the case of locally symmetric spaces [H] and the case
of bounded geometry [Ch-GJ. In our situation there seems to apply only the result of
Rosenberg [R] Theorem 1.9 which says that (38) holds if

. N o) — .
zlglgo fi(z) = xli’n;o fi(z) =0 foralli.
We will show that the Chern-Gauf-Bonnet theorem also holds under our assumptions.

LEMMA ¢ If all warping factors satisfy the condition {24) then the Chern-Gauf-
Bonnet theorem holds for M.

PROOF The function f5(y) = 1 satisfies (24). Then we pick ¢ € C°(R) with ¢ =1
in a sufficiently large neigborhood of 0 and try to deform all warping factors f; to fo

near infinity i.e. we put

fio =ofi+(1—)(0fo+(1-6)1), 6 €[0,1].

It is easily checked that f; ¢ satisfies (24), too. In this way we obtain a family Dgp ¢ of
elliptic first order differential operators. Now we construct a smooth family of functions

go satisfying

B =1,9%<y<yp+1/3,
By) = foly)eP ) if e Fol0) <173,

/'°° du 1
Y1 gg(u.)7 ’

Y 48 and we define sy(y) := y°° 97,‘%3' Transforming the square

Yo Jocu)
integrable forms on the Riemannian manifold with warping function fp using the trans-

where Fy(y) =
formation (10) generated by ¢gs and sy maps the closure Dy of the operators gs Depgo

to a family of Fredholm operators with domain independent of §, variing continuously
with 8. Using (27) and (28) we thus conclude that

(37) [ wp=[ b
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where w’b is the index form of Dgp ;, 7 = 0,1. Moreover, it follows easily from the
GauB-Bonnet theorem for manifolds with boundary that

(38) jM wh = x(M) .

The Lemma follows from (37) and (38).
g

Since (24) holds e.g. for f(y) = y? with # < 1, Lemma 6 applies to warping factors
which are not covered in [R]. As pointed out in this paper it is not necessary to control
the derivatives of f of order greater than 1; thus it seems likely that the Chern-Gauf-
Bonnet theorem will hold if only (4) is satisfied for all .

Summing up we have proved
THEOREM 4 Let M be a complete connected Riemannian manifold with finitely

many ends U, 1 < 1 < k, and assume that each end is a warped product with warping
factor f; satisfying (24). Then

1
X M) =x(M)+ 5| 3 b(N)= 3 b(N)]|+h
1. eLs PR35

where h, is an integer satisfying

0<h < ) bi(N).
f:d’,'_‘fg[,z

We conclude this section with the surface case which allows the explicit calculation of
hi under much weaker conditions than stated in Theorem 4. In particular, it shows
that hy > 0 in general.

THEOREM 5 Let M be a complete connected surface with finitely many ends U;,
1 €1 < k, and assume that each end is a warped product with warping factor f;

satisfying

@ du
) [, 7=
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Then
_x(M)+k ifvol M < o0,
(40) X(2)(M)*{X(M)+k-2 ifvol M = co.
This implies that
o ifvol M < oo,
(41) kl:{z{ﬁ{iﬁfeibl}“l} ifvol M = o0.

PROOF  Assume first that vol M < co which is equivalent to f; € L' for 1 <1 < k;
in view of Theorem 4 this yields by = 0. By (33) we have ¢; = —1/2 for j = 0,1,

hence we see from (30) that hy = 2k. Also, dim ker 8§, = 2k. On each U; the circles

y = const have constant geodesic curvature equal to % s0 it follows from (4) and

the GauB-Bonnet theorem for surfaces with boundary that

/MwGB = x(M).

Plugging this into (35) and observing Lemma 5 we obtain

(42) X(2)(M) = x(M) — k + 2k = x(M) + k.

Next, if vol M = oo h; may be nonzero since

o7 =

for all 4, by fi(y) = o(y) as a consequence of {4). Now

X(2)(M) = dim ¥°(M) —dim ¥'(M)+dim ¥*(M),

and we have

1 if vol M < 00,

H 4] — A 2 -
(43) d:m,\((M)_dxm)/(M)-{O fvol M = oo
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since M is connected and the Hodge * operator induces an isomorphism

X°(M) — ¥2(M). 1t is also easily checked that dim ¥!(M) is a conformal invariant of
M (cf. [D] for these facts). So (40) follows from (42) and (43) if we can show that under
our assumptions M is conformally equivalent to a finite volume surface M with all ends
warped products with warping factors f; satisfying (4). To achieve this we first choose
a positive C® function f on M such that on U; f(y) = fi(y)~2 if y is sufficiently
large. Next we construct a diffeomorphism ¢ : M — M such that ¥y = idon y < R
for R sufficiently large and ¢(y,n) = ( yyo.' f_fi(":ﬁ’ n) if y is sufficiently large and n € N;.
Denoting by g the original metric on M we obtain a conformally equivalent metric
setting § 1= (¢¥~!)*fg. Clearly, this construction can always be carried out if we have
(39), and it gives a conformal equivalence to a manifold with cylindrical ends. But
then we can also obiain a conformal equivalence to a manifold all of whose warping
factors equal e~ ¥ for y sufficiently large which completes the argument.

Finally, (41) follows from (40) and (35) by comparison.
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