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The paper gives a scheme for computing the asymptotics of tr(e~"*) as 1 — 0+,
where L is an elliptic operator of the form L = D? + x724(x) and A(x) is a family of
operators satisfying appropriate ellipticity and smoothness conditions. A principle
example is the Laplace operator for a manifold with an asymptotically conic
singularity. The expansion has the usual terms away from the singularity,
appropriately regularized at x =0, plus singular contributions determined by the {-
function of (4(0) + §)"/% Applications to index theorems are given in a subsequent
paper. © 1987 Academic Press, Inc.

1. INTRODUCTION

‘"This paper gives a scheme for computing the asymptotics of tr e =% as
— 0+, for cerain singular operators L which, near the singularity, have
the form

d
L=D*+x"24(x), O<x<g, D:=—ia. (1.1)

Here A(x) is a family of unbounded operators satisfying various conditions
which can be expected to hold in the case of elliptic operators L.
A principal example is the Laplace operator for a manifold with an
asymptotically conical singularity, where the metric has the form

g=dr’ +r’g\(r), 0<r<e, (1.2)

* Present address: University of Massachusetts at Boston, Boston, MA 02125.
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with a smooth family of nonsingular metrics g,(r) on a compact manifold
N, the “cross section” of the cone. (N need not be connected, so there may
in fact be several singular points corresponding to r=0.) An extension o
the theory will cover the second order operators arising from Dirac of
signature operators on such a manifold. Related expansions go back to
Carleman [7]; later, Minakshisundaram and Pleijel [14] used an expan:
sion of the trace of the heat kernel to study the {-function tr(4 ~*). This Ted
to the idea of Atiyah and Bott to obtain index theorems from either the ¢-
function or the heat asymptotics [17]. The {-function also serves to define
determinants det(4) in quantum theory, and to express the y-invariant in
differential geometry [27]. '

The “regular” case of an elliptic differential operator, perhaps with ellip-

~ombining ¥, with the obvious unitary transformation we can replace
~(x) by gn(0). A lengthy but straightforward computation then shows
hat under this transformation, 4 on p-forms with compact support on
0.V becomes '

A(x

D? 4+ et

here A(x) is a smooth family of second order elliptic operators on
P(N)® 27~ Y(N) and symmetric with respect to the Hilbert space struc-
¢ defined by g,(0). Moreover,

tic boundary conditions, is reasonably well explained by pseudo-differential A+ (E_ ><f_ p— 1) 2(—1)"d

operator (ydo) methods (e.g, [17, 18, 22]), and certain degenerate cases A(0)= S \2 2 ,
have also been treated. Singular cases arising from a group action were’: 2—1)78 A +<_’f+2_ p>(2+ 1— p>
treated by Briining and Heintze [3], and Cheeger [8, 9] treated a basic 2 2

singular case, the Laplace operator at cone-like singularities where the
metric (1.2) has g,(r) constant for small r. Chou [10] treated the Dirac
operator in those cases, and Lue [13] treated (1.2), where r’g,(r).
S (r)’g (0) for appropriate .

Our approach to the general case (1.1) is to study an appropriate power.
of the resolvent, ie., tr(L + 1) ™" for some m. From this we pass to the heat
kernel by means of a contour integral.

Operators of the form (1.2) also arise for the Laplace operator on R"
with appropriate singular potentials, and these have been considered by:
Callias and Uhlmann [6]. In those cases 4(r) — A4(0) is of lower order than
A(0), which simplifies the problem. On the other hand, they consider the
scattering problem, which is more difficult than the heat equation or
resolvent. , ‘ '

The Laplacian on k-forms on an asymptotic cone is reduced to (1.1)
follows. Denote by Q7(N) the smooth p-forms on N, 0< p<n=dimN,
and by C )N the Riemannian manifold (0, &) x N with the metric (1.2):
The map

where 4 and 6 are the operators for the metric g,(0). We treat an example
Section 7.
:'The simplest case of (1.1) is

L,=D*+x""a (1.3)

for constant real a, acting as an unbounded operator in L3(R). The Mellin
transform shows that a> —4 is a necessary and sufficient condition that
(1:3) be semibounded on C{(R*) (the C*-functions with compact support
i R*=(0, c0)). We thus assume throughout that a> —1 and then we
anterpret (1.3) as the Friedrichs extension. In this case [5, 4] the resolvent
(L,+2%)~" has kernel

K(x, y;2)=K(y, x; z) = (xp) > I(xz) K (yz) (x<y),
=GP
Y0 CE(0, 8), QX(N)x 27~ (N)) - Q7(C o,y N),

(@ps @y ) > X7~ (x) + x7 71 = "Pr*ey, _(x) A dx,

+ d v

;»yhere I, and K, are Bessel functions. If ¢ has compact support, then
(L, +2z*)~" has finite trace given by :

where n: C o, N — N is the projection and x denotes the canonical coor-. f o(x, xz) dx, (1.4)
dinate in (0, &), is bijective onto forms with compact support. Moreover, 0
is unitary with respect to the usual L? structure on QP(C.yN) and the
Hilbert space structure on CZ((0, &), QP(N)x 27~ 1(N)) given by
a(x, )= o(x) xI,({) K({)

J;) (“ COp(x)”?Zl'(N).gN(x) + ” wp— l(x)”?ZI’—l(N),gN(x)) dx. ~ (p(X) x[(2C)_l _ (16V2 _4)(4()—3 + .- ]




372 BRUNING AND SEELEY EXPANSION OF SINGULAR OPERATORS 373

- bundle E over a manifold M, ##; would be those sections vanishing iden-
ically within some fixed distance & of the singularity, with 4 the com-
lementary space. As in the above example of the Laplacian, the operator
- L acting in 5, can be written in the form D>+ x‘ZA(x), where A acts not
~on sections of E, but on sections of a related bundle £ over N, the cross
ection of the singularity. These sections form a Hilbert space H with norm

‘|l &, and for each x, A(x) is an unbounded operator on H with fixed
~domain H ,. Although the above construction gives A(x) only for small x,
__'we assume that it is extended in a convenient way to all x>0, and satisfies
“the following:

' The individual terms in this expansion lead to integrals which diverge as".
x— 0, so the asymptotics of (1.4) require special study [12, 21, 6, 4]. We
apply the version in the last of these papers, which gives the following:

SINGULAR ASYMPTOTICS LEMMA. Suppose that o(x,() is defined on ’
R' x C, where C is the sector {|arg {| < n—s} o is C* in x with derivatives
analytic in {; there are functions ¢, in & (R') with

xjaf[a(x,C)— ) Zz%-(X)C“lOg’C]l

Rexz —M j=0

<Coun 1C17Y, 10121,0<x<|L/C, (L5a) . (A1) Ag:=A(0)> —L and A(x)> —c+1 for some c.

(A2) [(4o+1)""|,< oo for some p< co; here || T|,=(2tf)" and
‘1, are the eigenvalues of (T"‘T)l/2

(A3) Nl do[A(x)+c] M u<C

' (A4) IIA(k)(x)(Ao-I-l)_lHH\Ck,k 0,1,2,..., where A®(x)(d,+1)"!
f denotes the derivative of the operator A(x)(Ay+ 1)L

(A5) For any monomial Q(A(x),..., AY(x), (A(x)+1)~') where the
powers of (4+ 1)~ at least balance the others, we have

and finally, the derivatives 6"(x, {)= 8% a(x, {) satisfy
1 rt .
J [ s1abst, s&)| ds di < C, (1.5b)
0 Y0
uniformly for 0<0<1, [¢|=C,. Then

© w« Kk .
[ otrxzyax~ 3 a7t £ w0, 0) dr (1.6a)
[ 0 k!

k=0

sup | Q(A,.... AV, (A+2) ") 4 < oo,

+ mafx xz)* log/(xz) dx 1.6b S
Z fo o(x)(xz)" log'(xz) (16b) ‘where the sup is for all x>0, and all A in a fixed sector

z*log/*!z ’ 7.
+ g N(0) ———= = (L6c I'={A:|arg(A—2c)|<n—e}.
E_I,Zo DGrDi—a—ni 6

(A6) For any monomial Q(4,..., A(j), (A +4)~') where the powers
of (44 1)~ exceed the others by at least p+14, Qs for each x a trace class

The o’s may be any sequence of complex numbers with Re(a) - — oo;
' -operator on H and

the sum (1.6c) includes only those « which happen to be negative integers.
The divergent integrals in (1.6a) and (1.6b) are defined by analytic
continuation. _

We reduce our general problem to an application of this lemma by mak-
ing a priori assumptions which are in fact satisfied for the Laplacian at a
simple cone-like singularity (where N is smooth and compact without
boundary); we hope to establish these assumptions in more general cases;
e.g., cross sections with a boundary, and cross sections which themselves
have cone-like singularities. We assume an operator L acting on a Hilbert
space s which is a direct sum

H = H,® A,

trQ~Y o,0(x)z*log’z, z- 00,

‘where Re(a)< —1 and z=A"2 with 1 in I.

Remarks (1) The norms | T|, in (A2) are the Schatten norms for
certain ideals generalizing the trace class operators on H [11, XI, 97. | T,
is the Hilbert-Schmidt norm, and || T{,=:T}|, is the trace norm. They
‘satisfy

ITS1, <1 Tla S,

1 1 1
ISl <ITl,IISl,,  where ;+5=;,
with # a supposedly simple “interior™ part, and 2% corresponding to a

" neighborhood of the singularity. s would typically be L? sections of a and thus 1T | e < LT N, )™
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(2) When the cross section N is a compact manifold without boun-

dary and A4(x) a family of elliptic differential operators, then (AS) is well”
- known, and (A6) is a slight generalization of the expansion in [17]. It

seems likely that these conditions hold for differential boundary problems
as well.

As we said, in 5%, L is isomorphic to an operator
D2+ x~24(x);

the domain of definition for this operator consists of those functions « such
that '

u is locally an L? map into H,, (1.7a)

u', u" are locally L? maps into H, (1.7b) -
[T —w"(xe) + 24 (x) u(x)]12, dx < oo, (17¢)
0

lim x~"u(x)=4 lim x"2/(x). (1.7d):

x—0+ x—0+ :

Condition (1.7d) characterizes the Friedrichs extension for this type of .
operator (Theorem 6.1). These conditions, together with appropriate -
assumptions away from the singularity at x =0, guarantee that L is self- -

adjoint and semibounded, and that (L+2z*)~™ is trace class for m> p+1.

Our “Main Result” (Theorem 5.2) is that, for any smooth function Q

supported sufficiently near the singular points, we have
[+o]
tr[ (L +z%)~™] =f o(x, xz) dx,
0

where ¢ satisfies the conditions of the Singular Asymptotics Lemma. The
terms o,; in (1.5a) are determined by any good interior parametrix, valid
away from the singularity. For the precise statement of the results, the
reader can consult Section 5, omitting the proofs. .

Our expansion leads directly to one for the heat kernel, which is dis-
cussed in Section 7. In that expansion, the coefficient of £° is particularly
interesting. This consists of three parts: one is the usual “interior” part,
which in this case yields one of the regularized terms (1.6b); the other two
are singular parts, corresponding to terms in (1.6a) and (1.6¢), and these
are the same as for the “frozen” operator

Ly=D?+ x~24(0).

Thus, in the case of the Laplacian, these singular contributions coincide
with the ones computed by Cheeger for the metric cone. ' :
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‘Notation
R* is the interval (0, o), R is [0, o0).
Ce(Y) is C* functions with compact support in Y.
C***  is functions whose kth derivatives are
Hoélder continuous with exponent a.
B* is functions all of whose derivatives are bounded.
H is a fixed Hilbert space.
H is the Sobolev space with exponent s.
H,cH is the domain of the self-adjoint operator 4.
D denotes the operator (&f ){(x) = ¢(x) f(x).
X denotes the operator (X7 )(x) = xf(x).
T denotes the differential expression
D? + x~2A(x) applied to any function for
which it makes sense pointwise a.e.
C denotes a “generic constant”
which may increase from one appearance
to the next, as needed.

Outline
In Section2, we construct an “interior parametrix” K7 for

(D*+ X724 +z%)™, valid away from x=0. This is used to prove a

regularity theorem (Theorem 2.1), and to establish the existence of the
-expansion (1.6a). Section 3 discusses the “frozen” operator

Lo=D*+ X"24(0).

We use the eigenvector decomposition of 4(0), obtaining estimgtes in the
high eigenspaces by means of a priori estimates, and in th'e low eigenspaces
-by means of the Bessel function kernels. This avoids the dlfﬁc_:ult prqblem of
estimating 1,(xz) K,(yz) when both v and z are large. Then in Section 4 we
construct a “boundary parametrix” G, for the variable coefficient operator

- D*+ X724+ 22

as a Neumann series with leading term (D24 X ‘ZA(0)+22)‘1.. In Sec-
tion 5 we patch (G,)” together with an assumed interior parametrix G7 for
(L+ z*)™, and prove that L is self-adjoint, and tr(L 4+ z?)~™ has an expan-
sion as in (1.6a)-(1.6¢c). Section 6 shows that our bounda.ry conditions
-(1.7d) above characterize the Friedrichs extension of L applied to smooth

- functions vanishing in a neighborhood of the singular point. Section 7 com-
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putes some coefficients, giving in particular the expansion for the heat ker- -
nel up to the term ¢°, where the {-function of 4(0) enters into the resuit.
Finally, the Appendix proves a Trace Lemma which we use to estimate

the identity I,, as far as possible. Collecting terms by degree of
omogeneity gives

kernels by means of trace class operator norms. by =(E+of +2%)7™, (2.3a)
We are glad to acknowledge helpful conversations with Richard Melrose

and David Jerison. The first author acknowledges also the support of the. b ——p 2"’2‘ ! Pb

Deutsche Forschungsgemeinschaft and the hospitality of MIT and ka1 2m ! JCke 414 j—2me (2.3b)

Northeastern University, while the second author acknowledges the

hospitality of the University of Augsburg. Then the interior parametrix

K7 :=0p @1 b,) | (24)

2. THE INTERIOR PARAMATRIX

The interior parametrix is constructed by standard pseudodifferential
methods. So as to get an operator of trace class, we will now form a

2m—~1 2m—j—1
parametrix K7 for (D*+ X~ 24 +z°)" with an appropriate integer m. Let (DA +2°)" K f= <I+ Y oy Op(ijN_k))f

the function (x,¢&,z)r> b(x, &, z) take values in the set of bounded j=0 k=0
operators on H, and define —(I=R™f, feCPR* H). (2.5)
Op(b)f(x) = ¢b(x, &, 2) /() de,  fe CF(R, H), We have
bf: Qj(é’ Z, ‘Q{""a ﬂ(j—2m)’ bZ)a (2.6)

where d& :=d&/2n. We will set K" =Op(b) with
:where by:=(&++2z°)"" and Q, is a polynomial in all variables,
homogeneous of degree —j in (¢, z, &%) if we take into account the
-dependence of b, on these variables. Note that the derivatives o7*) need
~not commute with &/ and b,. Conditions (A1)~(A5) in the introduction
imply the following:

b=Y b, 1)

where N (large) is chosen later, and b; is a function in ¢, z, and derivatives

of o/ := x 24, homogeneous of degree —j in (¢, z, &#'/*); that is, replacing,

(&, z, ) by (t&, tz, t*o/) multiplies b; by /. Two remarks: 1) K7 is not the

m'™ power of some K. 2) The eigenvalue parameter z enters on a par with

the Fourier transform variable &, since we seek asymptotic behavior as

z — 0. This idea is in Agmon [1]. '
We have

A(x) is self-adjoint and A(x)> —c+1 (2.7a)

for some constant ¢ =0; |

sup | [A(x)+c]~",< oo (2.7b)

e ¥(D? + o +2%)" &b |
2m—1

—(E+ A+ b+ z P&, 2, Ay A9, D) b, (22).

j=0

“while for 0 <},
sup | AN(x)[A(x)+c] ™! < o0. (2.7c)
where P; is a polynomial in all entries, of degree 2m —j in D, of degree <m

in of and its derivatives, and homogeneous of degree j in (&, z, &'?). To
approximate (D?+ & +22)7™, set (2.1) in (2.2) and equate the result to

iMoreover, A{x) dominates A4(0) in the sense that

[400)[4(x)+c]7 | <C. (2.7d)
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degree h<0 in (&, z, '?). Then given ¢ >0 there is a constant C such that

o Hon: |
We have further the ellipticity condition for x>z and |arg(2 2e)| < s

su Ay A9, (A+ 1)) y< 00 (28)

P It Dl , 1Q1a<CA+[E]+]z)" e
for any polynomial Q which, as a function of (4,..,A4Y, A+1) is If h< —2m then
homogeneous of degree <0, i.e., the powers of (4 + 4)~! at least balance ‘ . i
the others. The sup is for x>0 and e I'= {A:|arg(A—2c)| <m—e&}. 1O, <Cx*™(1+|&]+2]) ) (2.13)

. . ‘ Proof. The conditions on x and z imply that
LemMa 2.1. Given £>0, there is a constant C such that for xz in sector - f- ply

r . larg(x?z? — 2c)| = |arg(z? — 2¢/x%)| < |arg(z? — 2¢/e)| < m—¢
1zbY> (12 + || x ~24b, || + 1| EbY21? < C2, (2.9)
1657 < C(L+1¢]+12]) 7", (2.10)

b2, < Cx2 1)

as required in Lemma 2.1. Now Q is a product of factors ¢&, z, b,, and

x727 749 (x) with r>0; and the number of factors of b, exceeds those of

&, 2%, and the A" by —#/2 (the number of factors of &2 or z2 may of

_ course be a half integer). The factors of x ~?~"4“’ may be combined with
g i —2-—r 4(q) 3

Proof. For ||€bY |2 = || £%b, || we must estimate . iai:tzr(sq )o;yb; 1;Clzi)c;cks where each x A" is balanced by a b,, or each

x2¢2

o -2 22 2.2 —1
=su XTh, =[x+ x%22+ A(x)]
PR EES 2 e A PR 2

sup

- The norm of such a block is bounded, by (2.8), since the left-over factors of
X" are bounded in x> e. Next, each factor of ¢ or z can be paired with a
.~ factor of 5y and estimated by (2.9). This leaves —#h factors of bL?2, so
--(2.10) impties (2.12). To get (2.13) we pair the 4*, £, z with factors of by
. as before, estimate m remaining factors of b, by (2.11), and use (2.10) on
the remaining —/ — 2m factors of bY2 |

for a =0, |arg(A—2¢)| <n—¢, and p in spec(A4(x)), thus y= —c. This sup
is .

<sup{ ;a>0,n>[arg(ﬁ+c)l>e}=(sina)“

o
[o— B
: 2 . . . )
i d t of (2.9). We next estiamte x—2 Ab,. Bv (2.8 For L* estimates on Op(b;) we use the main step in the proof of the
proving the second part of (2.9). We next est ¥ > By (28) - Calder6én-Vaillancourt Theorem [23], which can be stated as follows:
=24k, || = || A(x)[x*E + x*2* + A(x)] | < C

and LemMMA 23. Let b(x, &) be a family of operators on a Hilbert space H

| A[X%2 +x%2% + A1 | < Csup[(u+c)a+A+pu| 1] : Wf”‘
I 0%04b(x, &) <C
for a0, Jarg(A—2¢)|<m—e¢, u>= —c. This is the same as the previous-
case, with o and p replaced, respectively, by u+ ¢ and a — c. Hence, z%b, =
I—(£*+x7%A4) b, is bounded, since the last term is, proving (2.9); then"
(2.10) follows. Finally, ‘

ivfbr 0<1%,j<3 and all x and & Then Op(b) is bounded on H® LX(R).
This with Lemma 2.2 gives directly
LemMma 2.4. Let Q=Q(¢, z, o,..., LD, by(&, z, o)) be a monoial in all

- entries, which is of degree 1<0 in (¢, z, o/ '?). Then for |arg(z* —2c/e?)| <
~m—¢, and for all ¢ in B®(0, c0) vanishing for x <e,

” Op(qu)ll He 2 S C ]Zl =

1x=2b, 1, < (A +e) M, (4 +c) x 72D, |

is uniformly bounded, proving (2.11). |}

Lemma 22. Let Q(&, z, ..., £V, b,) be a monomial homogeneous of
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In particular, if 2(h+i)+k+1—j<O0 then for arbitrarily large . We now expand y in Laguerre functions

| o' D*Op(pb,) D't " || g 12 < C|z|PHF D+~ Px)=cpx) e with p(x)=e*di(x‘e~)/jl.

and the same holds with Op(¢b;) replaced by the commutator [Op(¢b)), 6]}; Since
Proof. Apply Lemmas22 and 2.3. For the last part, note that_k,
[Op(¢b;). 81= —Op(d.(b))- 1

Next we display the trace class properties of these operators.

" ! 1 x g
XQ; + @i+ 277 P;=J®; ’;
1(2.16) implies that the Fourier coefficients

LemMA 2.5. If m=p in K7 and if n, Y € B°(R'), one has compact

By(2)= [[ 1(x, 7, 2) 0,(x) puly) dx dy
support, their supports are disjoint, and v vanishes near x =0, then

. satisfy
| n.et ' D* Op(b,) D't "z || < 00

| Bi(2)llw < COL+72+K2)7H (14| 2]) "
forall h, i, j, k, L, s.

- Moreover, the operator @, with kernel ¢ (x) ¢,(y) sending
Proof. Let T be the operator in the lemma. Then for an appropriate :

symbol B, using standard pseudodifferential methods, we find that =9, {00

has trace norm 1; and tensor products of operators satisfy

Tf(x) =n(x) [ [ eB(x, & 2) Y () f(7) dy de.

7

1S, ® Ssllee= 1Sy llie .52 1l
Since 1 and ¥ have disjoint supports, we can integrate by parts to get

So -
I TN <2 Byl | Pl e < C(1+ [ 2])
and Lemma 2.5 is proved. |

T/ ()= [ v(x, 3, 2) £ () dy

with . LEMMA 2.6. Given h, i, j, k, [ then the N in (2.1) can be chosen so that

Yx, y, 2) =i (x) [ [ e = y) M 0 Bk, € 2) W () S (7) dy de. |nd'D*Ry DIz, < o0

ify ‘has‘compact support disjoint from zero.
By Lemma 2.2, if M is sufficiently large then

 Proof. By Lemma 2.5 we may consider Ry where Y has compact
support, ¥ =1 in a neighborhood of supp(y). The proof then follows as
before except that, in place of a high ¢-derivative, we take many terms in
- the parametrix, ie., large N in (2.1) and (2.5).

LEMMA 2.7. Suppose that ¢ has compact support disjoint from zero.
Then, uniformly for z* in the sector T,

Gt (x) + €)™ D0 Bx, & 2)l = x 2" | (A(x) + x?)™ DL Bx, & )l
<CO+[E1+12])7 (2.15)

for arbitrarily large r = r(M). In view of the compact support of ¥ or #, the
factor (x —y)~™ in (2.15), and the assumption that m>p,

A+ )™ e < HAx)+) < C 10K ey vym< 0 i m<pt1/2,
we get loKr <00 if m>p+1/2.

11+ 1zl+x+p) 0,05 7(x, y, ) SC (2.16)  The same is true for e[K™", 0].
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Proof. By (2.1) and Lemma (2.3), the operator struct the interior parametrix K7 as in (2.4) with m= 1, N large, and a

T=(Ay+c+D*)" oK fixed large positive z. Setting K7 = K, R™ = R we have
Qv = (1 +2°) YK@d®v + y" Kpd®v + 2’ 0Kpd*v

defines a bounded operator: LA RY®H L} T")® H, where
‘ + Yy Rpd?v.

T'=R/[0, «] and [0, «] = supp ¢. Write
Mo 2y—m
oK =(Ao+c+D*)""T. E% I:;ezmmasb 24 gnccii 25, 2the operators z2y K0, y"Kpd?, y'0Kpd>, and
*
The operator 44+ c+ D? on T" has eigenvalues /o are bounded in L(R*, H), so ‘

"_ 2 .
{(2nj/a)® + o+ c:aespec(dy),jeZ} pv" =yKpdv+w  with |w|<C,|v]. (2.19)

Now choose a further cut-off function 5 € B<(R) with =y and n=0
~ near 0, and find from (2.17)

SO

I(do+c+ D)~ 5215 =2 [(2njfe) +a+c]™ ™

ay

<czj°° (P +ate) P~V dr

|(u, W Kd*)| = |(u, i Kpd*v)| < C, | Kpdv||
<C, ol (2.20)

- since # depends on ¢, and Y K@d? is bounded on L2
<Cz (a+c)_p=cl II(A0+C)_1 Hg In applylng (217) we need
a YKpd*ve H(R*, H)n L2(R*, H ,,(1 + x)~*
Hence [[(Ao+ ¢+ D) ™" || (p+ 1/2ym < ©, and the lemma follows. I ) ( o)
;~gi2ven that v is in this same space. This function is in H? since, by (2.4),
S vel? and 0’y K, is bounded on L2 It is in L3(R*, H,, (14 x)~* dx) by
(2.7d), since (1+X)~% (4 +c) YKo is bounded on L2
Combining (2.20) with (2.19) gives

We now investigate the regularity properties (away from 0) of weak
solutions of the equation tu=fe L*(R*, H). For u in L*(R*, H), we say
that tue L%(R*, H) if

[(w, Tou)l < C, lIvll (2.17)
. ' . . [(u, @v") < c, 0]l
for all v in H*(R*, H)n L*(R*, H, (1 + x)~*dx), and all ¢ in B*(R) with
¢ =0 near 0. The space L3(R*, H) is thus “local” near x =0 and “global™
near x = co. Similarly, we say that tue HL(R*, H) if

hence pue H*(R*, H). A similar argument shows that

l(u, X2 (A +c)v)| <C, ||v] (2.21)
|, T@v)| + |(, T00v)| < C,, ||Vl (2.18) oo
o 1 B : ~hence pue L*(R*, H,, (1 +x)*dx), proving (a).
for all v in H*(R*, H)n H'(R*, H,, (1+x)~"dx) and all ¢ as above. On For (b), let tue H . It follows that tu’e L2 (R*, H); for

the other hand, tue H. (R*, H) if (2.18) holds just for ¢ in C3(R*).

| (] r@v)| = |(u| wdpv) — (£ 'u| pv)|

2 o ; = .

TueoreM 2.1. Ler ue L*(R*, H) and ¢ € B¥(R) with ¢ =0 near 0. <C, ol + 1 oot'v)|
(a) If tue L%(R*, H) then gue H*(R*, H) n L*(R*, H 4.(1 +x)"*dx).

(b) If tue H.(R*, H) then pue C**(R*, H)n C'?(R*, H ,).
Proof. For (a), choose v as in (2.17) and ¢ as in the hypotheses. Pick. -
Y € B®(R) vanishing near 0, with =1 in a neighborhood of supp ¢. Con-

by (2.18), and

|(u, @ D) = (1, [9X (A + )] Y X3 (A +c+1)~" ')
<C, vl <
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by (2.21), since Y X*(4 +¢)~' &’ is bounded [ vanishes near 0]. Thus by
(a), oue H*> and ¢@u' e H? for all ¢ in B*® vanishing near 0, so in fact

oue H*, and

ltgu) () — (0w <[ Now™

<|x =y [ oull .

Similarly, we have @X*(4+c)u’ in L*(R* H), which gives

pue CYA(R* H,). 1

3.. THE CONSTANT COEFFICIENT PARAMETRIX

This is the heart of the problem. We begin by studying the “frozen
operator”

D?>+ X %4,

through the eigenvalue decomposition of A,:=A(0). Here X~? is the

operator

(X~ 2u)(x) := x " 2u(x).

For the low eigenvalues we construct the resolvent directly, using Bessel

functions; the high eigenvalues are handled by a priori estimates, which.

obviate the need for estimates of the Bessel functions when both order and
argument grow large. We assume that

Ay —} (3.1)

and that 4, has a complete orthonomal set of eigenvectors with eigen-
values a such that

1/p '
[ £ @] =1ter <o (2)

aespA.

where each eigenvalue is counted according to its multiplicity. Thus

(Ao + 1)~ s in the Schatten class C,. We define an operator G, as a direct
sum over the spectral decomposition of Ao,

G0=®H(La+zz)—l®na’ (33)
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~where o i§ projection on the eigenspace of 4, with eigenvalue a and L,is
.the Friedrichs extension of

D*+ X%
in LR, ), discussed in [5] and [4].

Lemma 3.1. For a> —4, D*+ X ~a is nonnegative on CE(R*). Hence so
is its Friedrichs extension L,, and '

|z|~2 if Re(z%)>0,

[Im 2%} ! if Re(z?)<0. (34)

(L, +2)" <{

Proof. 1f a0, D*+ X~ a is clearly nonnegative. If —1<a<0 then

Hardy’s inequality for u e CP(R*),

IX~ ) <2 [l
implies that
(=" +aX P u)=|u' > +a | X~ 'ul>>|u'? (1 +4a) > 0.
So this holds for the Friedrichs extension L,, and (3.4) follows by the
spectral theorem. |

Remark. One can show using the Mellin transform that D2+ X~ is
not bounded below if a < —1.

The a priori estimates for high eigenvalues are the following:

LemMMA 3.2. Given 0 >0 and j real, there are constants c,, C such that if
larg Al <n—8 and az= ¢, then

al| X7* (L, +2)' X| <C, (3.52)

a' | XX L, + ) XY <C, (3.5b)

; 182X (L, +2)" X] <, (3.50)
| XL, 4 X <C A7 (3.5d)

10X (L, A+ A)"' X/ <C 4|~V (3.5¢)

+Proof. Let v be in C(R*) and set u:= X (L, +1)~* X’v. As noted in
- the Introduction, the kernel of (L,+ 1)~ is

(L4221 (3, y) = /% ky(% y;2) /7, (3.62)
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. . — 1y1/2 :
where k, is a product of Bessel functions of order v := (a+3)"%, - Choose p with y<p < 1. Expanding as before gives

lp(—u"+bX~2u) = (141 v/p) u]?
= p? " |2+ 2692 | X~ 1w |
+ (6 = 65)| X "2u 2+ (1 4] 7/p)? 1)
—2020y w12 =26 4]y | X~ u?

k,(x, y; z2)=k,(y, x; z) = I,(xz) K (yz), x<y. (3.6b)

Since v vanishes near 0 and oo, the kernel (3.6) together with familiar
asymptotic properties of I, and K, show that u decays exponentially as
x— 00 and u(x)~x* 1?7/ as x -0, with v=(a + 4)"%. Hence if a is large
enough, the integrations by parts made below are justified.

The inequalities (3.5a)—(3.5¢) are equivalent to “ Subtract this from (3.9) to get

12 (1=p)Lllu" I +2(b + (27 +j— 2%n)/(1 — p?))| X' |2
+ (b* — 6b —6jb/(1— p*))| X ~?u||*]
+IAP (L =1n—y*/p?)lul>

;’bChoose 1/n=41—9%/p*)>0, and (3.7a) follows when b =a—j(j—1) is
sufficiently large. The lemma is proved. J

Alza® | X ul>+a | X~ 1P+ w12+ AP ull?, (3.7a)
where '
I= | XL+ ) X/ul? (3.7b)

and (3.5¢) follows from (3.5¢) and (3.5d) since | du|?= —(3°u|u).

Integration by parts gives Now come the estimates for low eigenvalues, using the kernel (3.6). The

~asymptotic expansions

2Re(u”, X 2u)=—2 | X~ "' |>+6 || X 2u|? (3.8a)
2 . Iv(CU)""Ca)" I (w)Ncw——l/Zew
2Re(u, X~ 'u)=|| X" 'ul)?, (3.8b) K ()~ co as & — 0 ) 25 0 o 0
KV 1 ’ K (w)~cw™ e
2Re(u, X 2uy=3 | X u|* (3.8¢) olw)~clogw

are valid uniformly in |arg w| < (n — 0)/2. Hence, estimating separately for
"z along each ray in this sector and assuming x < y, we find

Ik (x, y; z)]

<Ce—c]z[Ix—_v|( lle 1+]yzl)v
h 1+ ([xz| |yz]

Noting that

XL, + 1) Xf:La_j(j_”—2jX"3

we set b=a—j(j—1), expand I in (3.7b) and find

I=| —u" +bX " 2u—2X""u' + Au|?
= w24 2B 4+ 2P X P + (B — 6b— 6ib)]| X2
F A2 ful2+2 Re()][ o |2 + 25 Re(A)]| X ~'u||> — 4jRe(X ~ ', Au).

1 —max(log_ |xz],log_ | yz|)
(1+|xz|)* (1 + | yz|)*?

(3.10a)

I —max(log_ |xz|,log_ | yz|)

< C —clzflx—»}.
¢ L+ 1xz) 2 (1+] yz])?

(3.10b)
We use |2 Re(2iX '/, Au)| <4y | X 'u' |2+ |1 ||ul?/n (with 5 to be
chosen later) and Re(A)= —y | A| (with y=cos Q) to get

since s/(1+s) is an increasing/function; we use
Iz 2+ 2(b+ 27+ — 2" X~ |2
+ (6> —6b—6jb)| X 2u|> =2 [Al y lw'||?

log_ ¢t :=min(log ¢, 0)<0.

Note that (3.10b) is valid for all x, y by symmetry. We will also need 9.k,
for which we use the Bessel derivative formula

—2b|mnX-‘un2+ulZ(l—lnunZ). (39)
1 (X" (x2)) = +2xF,_,(x2)
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with “+” for f,=1, and “—” for f,= K,. Now

x0.k,=x0 (x""x"k,)= —vk,+ x' 70, (x"k,)= —vk,+k, (3.11)
with

XZIV—I(xZ) Kv(yz)a x<y

ki(x, y; Z)={—-x2KV_1(XZ)Iv(J’Z)’ X2

The first term —vk, in (3.11) is controlled by (3.10) above, and the second _

by an analogous reasoning. The main difference now is that as w — o

1240 12—

wl, [(0)~wn and wK,_ (w)~ow
This gives

1+ ]xz|

<
0k (T

1/2
) e~ (1 —max(log_ | xz|,log_ | yz|).
(3.12)

In the following lemmas the operator G, in (3.3) is split: Go=G . +G.,,

where G is the sum over all sufficiently high eigenvalues and G _ is the

sum over the others.

LEMMA 3.3. For any real k, and uniformly for |arg z*| <m—¢, |z| > 1,

H1+X) " 7 X" (4o +1) GoX (1 + XY <C, (3.13a)
A+ X)TE L X2 AIG, X V(1 + X <G, (3.13b)
(14 X) =%~ 1 X*202G, X~ V(1 + X)*| < C, (3.13¢)

11+ X) ™% X°22G, X~%(1 + X)*| < C (3.14)

for |0 <1. Here A :=(4,+1)"~

Proof. Consider first G . In (3.13a) we can take k> —3, and pass to

the adjoint for k< —1 Since x<(l+x)"? and (1+x)**2<g
C(1 + x**172), we get
(1 +X)~* =1 X~ V2(Ao+1) G, X~ 21+ XY
<CNI+X) 2 X (g +1) Go XML+ X))
<C”X_1(A0+1)G>X—1“+C']IX—k—B/Z(A0+1)G>Xk——1/2”

<C
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by (3.5a). Turning to (3.14), we treat the case k>0 and take adjoints. For
k>0 it suffices to estimate

(14 X)~* X°22G_ X~°(1 + X*)||
SCIXP G X% 4+ C| X°2%G . X~°|
<C
by (3.5d). Then for (3.13c) we have
(1+X)"% ' X33°G_ = (1 + X)~*~! X 4,G.
+(1+X)" -1 22x%G_,

s0 (3.13c) follows from (3.13a) and (3.14) with § = 1 Finally, (3.14b) can be
proved like (3.14a), or by interpolation between (3.14a) and (3.14c).

Now take (3.13a) for G_. We have a finite linear combination of
operators with kernels

K(x, y;2) = (1 4+ x) 7%~ k(x, y; 2)(1 4 p)X.

From (3.10) we get for |z| > 1,

. 1+ p)* e
|K(x, y; 7)) < c—-———(l(ﬂfkll eI~ 41[ | — max(log_ x, log_ )],

Apply (3.10) and note that for any &, and any &> 0,

k
(;—{—i) o= C (3.15)

Thué, changing the constant ¢ in (3.10), for |z]|>1
| K(x, y;z) < Ce™ ™ ~*1[1 —max(log_ |x[, log_ | y|)]
- and it follows easily that

[ 1KGe 33 2] dx+ [ 1K,y ) dy <

- which bounds the norm of the operator in question.

For (3.14) the parameter z plays a bigger role. Using (3.10) and setting
'=x|z| and t:=y |z| we get kernels K{(x, y; z) such that

_ _ I —max(log_ s, log_ 1)
. 1/24041/2—0 —cls— ?
|K(x, y;z)| < C|z| s"2+% e ] A+5)72 (1417

=:|z| k(s, 1).
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Since 0] <4, then 2120 (1 +5)"2+8(1 +1)"2~¢ and (3.15) gives,
for some ¢ >0, .

k(s, 1)< Ce™“*~"I[1 —max(log_ s, log_ t].

Hence
j | K(x, y; 2)| dy+j |K(x, y; 2)] dx<2 j k(s, 1) dx < C.

For (3.13a) and (3.14) we get (3.13¢) and (3.13b), just as in the case for
G ., and this completes the proof of Lemma 3.3. |

LemMma 34. Uniformly for largz?|<n—6, |z| =1,

1X'20G, X~ "2 < C 2] 7, (3.16)
1Go X~ 21+ X)) < C. (3.17)

Proof. We obtain (3.16) first without the factor |z|~ !, then deduce the
z-decay by a scaling argument. Let 7= X"20G,X~"* Then

T*T: [X— I/ZGOX—1/2(1 +X)][(1 _I_X)—l X3/262G0X“ 1/2]
+ (X PG X 21+ X)I[(1 + X) ™' X206, X~ 7],

The two right-hand factors are bounded, by (3.13b, 3.13c), so we must
bound the left-hand factor. For G we get

| X726, X214+ X)| < C [ X6 (X~ + X7

which is bounded, by (3.13a) and (3.14). For G . we have kernels satisfying

. | 1 +Xx 2 —c|z[x— ¥l
Lk(x, y; 2) = (1 + p)l k. (x, y; 2)| < ) ¢
< Ce——-c’lzl lx—¥l

as in the proof of Lemma 3.3, which gives (3._16) without the |z[~% To
produce this factor, we define a unitary scaling operator
U, f(x):=1"f(tx).
Then
U,Go(Z) = tzG()(tZ) U,

UX=XU,, Ud=:t"'0U,,
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1 X' 20Go(z) X2 || = || U, X" 20Go(z) X~ 12|
=1 ]| X'20Go(1z) X~ 12.

Set r=|z|~! and get from (3.13b) with k=0

1X*20Go(2) X172 || = |z] =" | X*20G (/| 2]) X~ 12|

<Clz|!

proving (3.16), since we have already bounded || X¥?0G,(z/|z|) X~ "2|.
Next, considering behavior as x — 0 and x — oo, we have for x>0

TSCL(A+x)™%2 x7 12 4 (14 x)~ 12 x12],

Thus (3.17) follows from (3.13a) and (3.14) with k= 0=1, and the lemma
is proved. |

The next results for G, concern its relation to trace class.
Lemma 3.5. If G. =G, projected on sufficiently high eigenspaces then
I1+X)2 X126, X2, . <C. (3.18)
Proof. Let P=—0,0(0—7/2)3, be the Legendre operator on
L*(0, n/2), with eigenvalues j( J+1),j=0,1,2,.. Setting
x =tan 6, g(x)=cos 8 f(0)
transforms P unitarily to

P —8,[(1+x%20(0—1/2)] 3.~ [(20—1/2) + 6(6 — n/2)(2x> +1)].

The coefficient of 92 is O(x?) at oo; the coefficients of 0, and the constant
term are, respectively, 0(x2\@1d O(x). Hence by Lemma 3.2,

1X~"2G . X214+ X) =2 (P+ 4o+ 1)| < G; (3.19)

the term with 4,+ 1 has more decay than needed, and those with 0Zand 9,

have just enough. Further P+ A4,+1 (which is really shorthand for
- PI+1®(A4,+1)) is self-adjoint in L0, c0) @ H with eigenvalues

{/G+1)+a+1:aespec(4,),j=0,1,2,.,}.
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So

WP+ Ao+ 1) EEB=Y [jj+ D +a+1]77"12

aj

SCZLOO (a+1+2%)77"2dr

<C'Y (a+1)77=C|[(do+1)"||2.
This, combined with (3.19), proves (3.18).

LEMMA 3.6. For the low eigenvalue part G . we have for |z| =2

I(1+X) " X6 X~ < Clz| ™' log|z]. (3.20)

Proof. We show first that for z real

M(1+X)" "2 X" 2G X1+ X) "] < Clz| 7 logz|.  (321)

The operator in question is a finite direct sum of one-dimensional positive
operators, whose trace norm is just the trace, and this is the integral of the
kernel on the diagonal (see the Trace Lemma in the Appendix). The
relevant integrals are

[7 a0 ke Lo as=2 [T (142) T KOIL0)
0 o] z

1 o] dy
< ['kLdp+c["—2
z L v+ L A+9)(z+7)

=0(z"'logz), z22

proving (3.21).
For |z| »2 with |arg z?| <n— 6 we have

(1+Xx)"172 X 12G_(z) X1 + X))~ = STS*, (3.22)
where '
S=X""2(1+X)""G_(|zD)"2 T=G.(z])"*G ()G (IzD~"
We find the Hilbert—-Schmidt norm
IS13=1S*13=155*,<C|z| ' log |z|

EXPANSION OF SINGULAR OPERATORS 393

by (3.21), and the operator norm
T <cscb/2

by the spectral theorem. Hence for |z| > 2 and |arg z?| < — 6, (3.22) gives
(3.21). For (3.20) itself we use the commutator

[(1+X)"2 G ]=16.(1+X)" G —G_(1+X) 3G
which gives
A+ X TP X =1+ X)X PG (1+ X)X
— O+ X X6 X1+ X) 7]
x [(1+X)"  X'2G_(1+ X) =2 X~'2]
—[(L+X) 7 X~ V°G X1+ X))
x [X'29G(1+X)~' X~ V2],

In each product on the right, the first factor has trace norm O(|z| ™! log
[z]) by (3.21), and the second factor has bounded operator norm, by (3.16)
and (3.17). This proves (3.20). |

The last two lemmas give

Lemma 3.7. [(1+X) 2 X" 2GoX~2||,, 1, <C.

Finally, to identify the range of the parametrix to be constructed in
Section 4, we need

LEMMA 3.8. For fin L% the function
U=GoX~2(1+ X)\2 f

satisfies

lim x Yu(x)=2 lim x"2u'(x). (3.23)
x>0+ x—0+

p

Remark. The solutions of (D?+ X~ 2a) u=0 have singularities

xl/2+v, xl/Z—v

with v=(a+4)"% if a> —4 if a= —1 they are

1/2
>

x x'2 log x.
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In each case, the existence of lim,_ o, x~"2u(x) picks the weaker of the
two singularities, a sort of Dirichlet condition. The two limits in the lemma
are zero except when a= —4, and then they have the relation in (3.23 )

Proof of Lemma3.8. First let u=G, X~ '2(1+ X)"f; in this case the
two limits in question turn out to be zero. From Lemma 3.2,

IX*2ull SCIX PG (X2 4+ X)) - | 1]
<C,

I+ 2 X2 | SCIX (14 X) 720G, X~ 21+ X2)| - || £
SCUX~"20G . X~ 2|+ X7'8G . -1 £
<C,

I(L+X)="2 X' 20" | S C (1 4+ X) 72 X20%G . X~ 21+ X)) - | £l
SC(IX'20%G, X~ V2 ||+ [16°G . NIl £
<C
Hence the function
h(x) = x""u(x)

has (1 + X)~"2 ke L? so h is continuous and
h(x) = h(0)+ | i
0

Moreover X~ 'he L? so h(0)=0 and

im x~'2y(x)= lim A(x)=0.

x—0+ x—0*
Similarly g := x4’ has (1+X)~"2 g and (1+ X)~">*X~'g in L2, so

lim x'"%u'(x)= liI‘(I)l+ g(x)=0.

x>0+

Turning to the low eigenvalues, we have
xPu(x) = [ k6, 33 2)(14+2) 2 £ () dy
0

with k,(x, y; z) = I(xz) K,(yz), x<y. By (3.10), when x <1 and z is fixed,
the integrand is dominated by

Ce=H0=D (1 —log_ |yz|)(1+ )2 | £(»)I.
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Hence by dominated convergence

lim x~2u(x)= [ " 1,0) Koy )1 + )2 f(5) dy. (3.24)

x>0+
For the derivative,

7 (x) =4 [k f(1+ )2 dy + [ kel £(1+ )% dy.

The second integrand has, by (3.12), the same bound as the first, and we
get

lim, x'7'(x) =4 [ (0, 33 2) £(3) (1 + )2 dy

=3[ 1O Ko(32) £ (5) (143) dy

which, with (3.24), proves the lemma. [ |

4. THE BOUNDARY PARAMETRIX

The boundary parametrix G, is constructed from Gy using a Neumann
series. Formally

(D’ +X7?A42°) Go=I—X"*(4y—4) G,,
Go(D* + X724 +2%) =I— Gy X 2(dy— A),

and we expect a resolvent from the Neumann series

2 (GoX (Ao —A)) Go=G, 2 (X% (4o — A4) G,).

0 0
However, X ‘Z(AO—A\\has the same order as A4,, so we cannot expect
XAy~ A) G, to decay as z — oo; that could be expected only if we limit
ourselves to finitely many eigenvalues of A,. Thus the series need not con-
verge, even for large z. Further, although X~%(4,— 4) is qualitatively like
X~'4, at x=0, this is not enough, for X~'G, is not bounded; X! G is
all right, but not X 'G_. To surmount this second problem, we
redistribute the powers of x; and to obtain a convergent Neumann series,
we redefine 4(x) away from x =0, obtaining a parametrix G, such that
Gy(t+2?) f=f for f with support near 0.

To begin, assume that

149 4o+ 1)< C, k20 (4.1)
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Thus A(x)(A,+ 1)~ is a continuous family of bounded operators. Hence,
for any §>0, we can modify 4 on some set {x>¢} to form a new 4
satisfying (4.1) with the same constants, and also

ILA(x) — 4oJ(Ao+ 1)1 <9, (42)
For instance, set A(x)=A(y(x)) vﬁth y in C*(R!) and, for an appropriate.
£>0,
yx)=x,x<g [v1<1; 0<y(x)< 2¢ y(x)=0 for x> 3e
Now define

B(x) :=x~}(do— A(x)) O (43)

so that (D*+ X~ 24+ 2?) Gy=I— X"'BG,. As we noted, X~ 'BG, is not
bounded, because the singularity at x=0 is too great. However, by
Lemma 3.3

(1+X)~'2 X~12BG, X~ 12(1 + X)2

is bounded, and Lemma 4.1 will show that its norm is <% if § in (4.2) is
small and z is large. Hence, using the function

wo(x) 1= x2(1 +x)~12
we write our Neumann series in the form
G,=G,RQ! Z (X~1QBG,Q27Y) @, (44)
j=0

_ where 2 denotes multiplication by w. To establish the convergence of (4.4),
and of the corresponding series with the Q factors canceled, we need the
inequality (3.13a) with k=1, which we can write as

1(4o+ 1)(1+X)~1 X~1QG,Q- 1| < C. (45)

Lemva 4.1. If A satisfies (4.1) and (42) with 6~ =16C>C,, for the
constants C in (4.5) and C, in (4.1), then

| X~ 'QBG,2" 1|

<4, ' - (4.6a)
| X~'2BG, X~ '?| <3

(4.6b)
for |z| = zo := (4CC,)% Further, for all |z| =1,
1Ge2~+2l<C. (4.7)
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Proof. The inequality (4.7) is just (3.17). To prove (4.6a) we use the
scaling operator U, f(x)=t'f(tx). In addition to the formulas after (3.17)
we have

UQ=1"QU, UQ '=t"'2Q U, UB=t""'B,U,

72 and

where , is multiplication by w,(x) := x"*(1 + x)~
B(x):=x""[d,— A(tx)].
Since U, is unitary, we have

IX~'QBGo(z) @' | = X~'2,B,Go(tz) @' |
<IB(4o+ 1)~ (1+X)]
N+ X)X (Ao + 1) 2,Go(12) Q71 (48)

When <1 then o !<w ™' and o, <t~ ', so the last factor in (4.8) is
<14 X)" (Ao +1) X~ 'QGo(12) Q7' <t 2C (49)

if |#z| =1, by (4.5). In the first factor we have from (4.1),

(1+x) Bx)(do+ 1) y=(1+x)

j' A'(sx)(dg+ 1)~ ds
4]

H

<C (1 +x)<1"22C (4.10)

if x<1 and

t:=(4CC,)"2

I

If x>=1 then

(1+ ) B(x)( Ao+ 1) =1+ x")[4o— A1) (Ao + 1)~
<28 =1'2/2C (4.11)
if 6! :=16C,C? With this, the factor | B,(4,+ D1+ X)) in (48) is
<tY2/2C, and this with (4.9) proves (4.6a) for |iz| > 1, thus for

o~

|z| > (4CC,)* = z,.

A simpler version of the same argument gives (4:6b), completing the
proof. 1

We will need the conclusion of this lemma for the scaled operator

B(x)=x"'[do—A(tx)], 0<:t<Ll
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This is valid with the same constants z,, C,, and C. For if (4.2) holds for
all x, then it holds with x replaced by tx; and the same is true for (4.1)

when £<1. Hence we can define for 0<s<1 a bounded operator in
L*® H by

Goi=GoR™' ), (X™'QB,G, Q") Q. (412)

j=0

From (4.7) and (3.13a, 3.13c) with k=4, we have

1G,2~"' | <C, (4.13a)
22X 24,G,2 ' <C, (4.13b)
[(2%0%G,2~ | <C. C T (4.13¢)

Hence we may apply Q*(D>+ X~24,+2?) to G,,, where 4,(x):= A(sx).
We find

QYD*+X24,+2%)G,, = Q>
Thus, pointwise,
(D*+X24,+2%) Gy, f=f. (4.14)

From (4.12)-(4.14) and (3.23), any function u= G, f with fin L? satisfies

Q%uel? (4.150)
(14X)2 dgue L2, (4.15b)
(D*+X"%4,)uel? (4.15¢)

Tim x~Pux) = 4 lim 7 (x). (4.15d) .

Hence G, , is a right inverse for the “scaled boundary oprator”
L, :=D*+X"%4,

with domain 9(L,,) defined by (4.15). We set L, =L, =D>+X24. To
simplify the notation, we state many of our results for L,, though they hold
generally for L,,, 0<t<1. In particular the pointwise equation (4.14)
gives the operator equation :

(L, +2%) G, =1 (4.16)

LemMMA 42. L, is symmetric.
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Proof. Since w3(x)—1 as x - o0, (4.15a) implies that for u in @(L,),
fe lu"||* < oo for all >0, and hence [ ||u'||> < oo as well. It follows that

(Lyu, v)= ling foo (—u"+ X 24u,v),
= lim [ — (e~ u(e), ¢v'(e)) + (2 (e), e~ 0(c))]
=0 :

lim [ (, —0" + X2v),

e—0 J¢

= (us Lb)

by (4.15¢, 4.15d) for u and v. The lemma is proved. |

In view of the symmetry and (4.16) we have

THEOREM 4.1. L, is self-adjoint and semibounded, and G, is its resolvent.
In particular

Gy(2)*=Gy(2),  [G(2)I=0(lz]7?).
Proof. Since (L,+z*) G, =1 and L, is symmetric,

(Go(2)f, 8)=(Gy(2) f, (Lpy+ 52) G(2) g)
=((Ls+2%) Go(2) f, G4(2) 8)
= (f, G4(2) g)-

So for z real, G,(z) is self-adjoint, and (4.16) proves it injective. Thus the
spectral resolution of G,(z) yields a self-adjoint operator G,(z)~' with
domain G,(z) #. By (4.16), L,+z> extends G,(z)~'. But a self-adjoint
operator has no proper symmetric extensions, so L,+z>=G,(z)"!; and
G,(z) is the resolvent K(ib—#zz)“ of the self-adjoint operator L,. Since
G,(z) is defined for z =%, then L, is bounded below by —z3, completing
the proof. 1

Remark 1. Boundary conditions for the case where H is 1-dimensional,
and for more general equations, have been treated in classical studies by
Weyl, Stone, and Rellich [20, Chap. X; 16, Sect. 1]. The boundary con-
dition (4.15d) implies that of Weyl and Stone. In fact, according to their
theory any self-adjoint extension of the differential expression

DZ + aJ(:ZC) =T, deﬁned on CSO(R)’
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is given by restricting the adjoint t¥* to a linear space

lirr(l) [v, al{x)= 0},

dx
{uefﬁJR*ﬁﬁLi<R+,T13?>

where [v, a] denotes the Wronskian, and the function ve C'(0, ¢), with v’
locally absolutely continuous, and

[ (ol + 120 < oo.
4]
Now we have a solution v of

(02 + a(f)) o(x)=0

X

of the form
v(x) :==f(x) x'2*, v=/a(0)+1/4,

with fe C2([0, ¢]). If ue @(L,) then we obtain from (4.15d),
lim [0, u](x)
= lim {247 o ()= [(1/2-4v) 6~ ()4 X0 () T wl)
=ii_rg {xf (x)(x "2 (x) — 1/2x ™ V2u(x))
— (O () X+ X () 2 Pu(x)}
=0.

Remark 2. Our proof gives an explicit lower bound for L,. Thus in our
case, we improve the result of Rellich [16, Satz 2a].

The next aim is to show that an appropriate mth power G7' is “locally trace
class,” i.e., @G is trace class for any ¢ in CP(R') and moreover that the
kernel of @G defines a function

a(t,{) := (1) try G}(2, 1, (/1)
satisfying the conditions of the Singular Asymptotics Lemma. Lemma 49
gives

o(t, ) =r""o(t) tr,G7 (1, 1, ()
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which leads us to take derivatives of G,, with respect to the scaling
parameter ¢.

LemMA 4.3. Set A,:= A'(tx). Then '
| 3,Gpy=—G, X~ PA X~1"G,,. (4.17)
Proof. 1In the series (4.12) write
X'QB,G,Q ' = [B,(A0+ DT (4e+ ) X'2G,271]
and note that

9, B(x)(Ag+1)~" = —a,f',z'(sx)(AoJr 1)~ ds
0

= —A(x)(do+ 1)L
Hence
0, X 'QB,GyQ2 ' = —[A(Ao+ 1) 1 ][(4o+ 1) X 'QG, 27 1]
=—X"'Q4,G,Q".

This derivative is bounded, by (4.1) and (3.13) with k= —3, since for each
t>0, Aj(x)=A'(tx) vanishes for large x. (The lack of x-decay that is
uniform as ¢ — 0 causes problems elsewhere, which are dealt with below).
To simplify the writing of the differentiated series (4.12), let

a=G,Q™! and f=X"'Q.

Then the derivative of the jth term in (4.12) is

N (BB,a)* (BA,a)(B,a)’~'~* BB,G,

k=

—o(BB,a)’ " BA,G,.

Summed over j, this coincides with the term-by-term product of the right-.
hand side of (4.17), and the lemma is proved. J

Next we establish properties of G,, that will allow us to verify the
necessary integrability conditions (1.5b) on the derivatives of

a(t, z) =1*""lo(t) tr y G (1, 1, 2). (4.18)
From Lemma 4.3, 0¥G7, is a polynomial in

—1% k-2 4
Gy XA, X240,
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where the factors of G,, outnumber the others by m, and each factor AV is
flanked by factors of G,,. Thus we will have to juggle high powers of Xin
the middle of our terms. This is the purpose of the following lemmas.

LemMma 44. Suppose that ¢ and y are C*, and for fixed ke Z .,
yP(x)=0(x*"7), j=0,1,2,.,

o(x)=0(x7")
as x — . Then for G :=G,,, YGo is bounded and
YGop=GYo—GY" +24'0) Go. (4.19)

Similarly Qy0Go is bounded.

Proof. Suppose, first, that k =0, and  vanishes near 0. Then for any f
in L? setting t=D*+ X~°4,, we have

Y(r+2%) Gf — (1 +2°) YGf = (" + 24'0) Gf.

Since Y vanishes near 0, Y'0G is bounded [see (3.14) and (4.12)], so we
can multiply on the left by G, getting

GYf—yGf=G(y" +2y'0) Gf. (4.20)
Suppose next that k =0 and ¢/(0) =0. Define
Y (x) =n(jx) ¥(x),

 where 1—-neC2(R"), n=0 near 0. Thus ¥,—>y pointwise, and (4.20)
holds for ¥, so it will follow for y if we show the weak convergence

("G ) WG, G*g) >0, (jn'(j-) ¥'Gf, G*g) —0,
(n'(J-) ¥oGf, G*g) = 0.

The first integrand — 0 pointwise, vanishes for x > x,, and is dominated for
0<x<x by

132" (o)l [x ™ ()] ™G ()l | x~H2G*g()
<Clx~"GF () Il x~2G*g(x)k<C

by (4.15d) for u=Gf and v=G(2)g. For the third integrand we have
similarly for 0< x < x,, recalling w(x) = x"*(1+x)~ "2,

Lo’ Gl 1x ™1 ()] [l () 0GF (3| o 0™ (x) G*e(x)l
< C | x"?0Gf (x| o~ '(x) G*g(X) n < C.
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The remaining integrand is likewise dominated, establishing the weak con-
vergence apd hence (4.20) in this case. We can now drop the condition
50(0) =0, since (4.20) holds both for ¥, = (0) and for ¥ — . Thus (4.19)
is proved for k'=0. So is the boundedness of .

QoYGo =[R0G]1[Ye] - [Q0GX ][ X'2(y" + 2y0) Gp]

which gives a bound for QydGe.

Suppose now that the lemma holds for all k£ </, and let i
by 3 t
hypotheses with k =17+ 1. Let Vi @ satisy the

V() =Y (N1 + x/f) = (x) ji/ (x + ).
By the induction hypothesis
(1 +X)[‘G(l + X))+ 1 X2+ x) - 0G(1+X)7'|<C (421)
and
l[/jG(p=Glﬁj<p—G(l//j'+2lﬁ;6) Go. (4.22)
Since ¢(x)=O((1 +x)~!~"), the functions

Vios U +x)7L ()14 x)

are uniformly bounded, and the weak convergence of (4.22) follows from

(4.21). A bound on QydGe follows as in the case k =0, and the lemma is
proved. ||

LemMma 4.5. For real k>0, and uniformly in 0<t<1,
a1+ X% X6, X "1+ X)*|<C|z]|7} (4.23)
(14 X)~* X'20G, X~ '2(1 + X)*| < C [z| 7L (4.24)

Proof. Write the series (4.13) in the abbreviated form

- G=Gy=Go ), (X'B,Go). (4.25)

j=0

Take first £ =0. Then (4.24) is

X' P9GX ™ = X%0G X 12 Y (X~ \2BG X~ 1))
[}

£ and (4.24) follows from (3.16) and (4.6b). The proof of (4.23) for k=0 is
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similar. Assuming (4.23) and (4.24) for a given k, we obtain them for k+ 1
by the commutator [G, 1 + X]=2GdG, which follows from (4.19). Thus

(1+ X))~ = XV29GX (1 + X)*+?
=(1+X)"*X"20GX 7 (1+ X)*
+ (14 X) " LXV2GX V(1 + X
+2[(1+ X))~ 7 X P0G X (1 + X)F]
x [X'2(1 4+ X) ™% 0GX (1 + X)*]
=0(z|™")

by the induction hypothesis. The proof of (4.23) is similar. The re_sult for ?111
real k>0 follows by interpolation, using the analytic family
(I+X) %" XV29GX 21+ X)+*, 0<Re(w)<1. 1

LEMMA 4.6. For real k=0 and uniformly in 0<1t<1,
(1+X)~*2 X“/'ZGb,,X‘ 21+ XN, 112 <G, (4.26)
I(1+ X)X 26, e 1p < C. (4.27)

Proof. For k=0, the series (4.25) gives
(1+X)"2Xx" G, X~
=[(1+X) 2 X" 2G, X~ *] i (X~ '2B,G, X~11?).
0

The first term on the right is in C,, ,,, by Lemma 3.7, and the series con-

i i =1, 2,..., we use induction and
verges uniformly in ¢, by Lemma 4.1, For k_ s 2yeres
interpolation as in the previous lemma, proving (4.26). Then (4.27) follows,

taking k=14 in (4.26). 1
- LemMma 4.7. For j=1,2,..., and uniformly in 0<t<1,
11+ X)~*~ xX/=40G, X~ (1+ XY | <C, (4.28)
I(1+X) ™~ X7I=32 490G, | < C.

Proof. The outline is by now familiar, and reduces essentially to the

boundedness of
1(1+ X))~ X/ 3PANG X 12|
<NAP o+ D)7 I+ X)) X2 (4o +1) GoX ™2 <C

by (4.1) and (3.13a) with k=0. |
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LemMMma 4.8.
1X*(1+X)~%=32 %G, X ~'2(1 + X)*| < C, (4.30)
N X(1+X)~*-2 0G, X121 + x)* ll2p+1<C. (4.31)

Proof. For (4.30) with k=0, the essential point is
[ X%(14+ X)~¥2 302G, X~ 2| < C

which follows from (3.13c) with k=0. The proof proceeds by induction

- and (4.24). For (4.31), let T be the operator in question; we show that T*

isin C,,,. Let o =X(1+ X)~%—2 and G=G,, and find
T*T = (1 +X)k X—I/ZGa(PzaGX—l/z(l +X)k
=[(1+Xx)* X“/ngo’X—‘/Z][X_‘/ZgoaGX_l/z(l + X)*]
+ [(1+ X)* X‘I/ZG<pX"3/2][(pX3/2&2GX“‘/2(1 + X)*7.
In each term on the right-hand side, the first factor is in C, .12 by (4.26),
since at co the sum of the powers is—3, keeping in mind the definition of

¢; and the second factor is bounded, by (4.30) and Lemma 4.5, since at oo
the sum of the powers is<0. [

LEMMA 49. If m=p+1 then the operator Gy, has a kernel G7(x, y; z)
which, for each z, is a continuous map of R* x R* into the trace class
operators C,(H), and such that

Gy(xt, yt; {/t) ="~ 1G (%, y; {), (4.32)

where Gy =G,,.

Proof. For a sufficiently large k, the operator
T=X(1+X)"*Gr,X(1+X)~*
=[XU+X)7 G, (1+ X *TL(L+ X)** G, (1 + X)*=7] -

is in the Schatten class C(p +12ym> by Lemma 4.6. Combining that lemma
with Lemma 4.8 shows further that 6T and T8 are in C,, where

g =+ D) (m—1)(p+1/2)" =1,

given that m>p+ 1. Hence by the Trace Lemma (Appendix), T has a
kernel mapping R* x R* continuously into C(H), and then so does

Gy =X"'1+X)* TX~'(1 + X)~
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To prove the scaling (4.32), recall from Lemma4.1 that the unitary
operator U, f(x)=t"*f(tx) satisfies

UtGO(Z)=t2GO(ZZ) U, Utht_lBt U,,
UX'=1"x"1U,.
This with (4.25) shows that
U,G,(z)= tsz,,(lZ) U, U, GZ!(Z) = tszb,z(tZ) U,

and hence the kernel G7'(x, y; z) has the scaling stated in the Lemma. |

THEOREM 4.2. If m=p+ 1, the function
O-(x’ C) = trHGZ"(x, X; C/X)

satisfies the integrability condition (1.5b). In fact, with ¢V(x, {) =040 (x, {),
[ 0Dt sDlds<C, O<t<LIli=20,  (433)
0

with the z, in Lemma 4.1. For every ¢ in CF(R),

tr oG = j:o 0(x) 6(x, xz) dx. (434)

Proof. By (4.32)
o(st, s{) ="~ "try G (s, 55 () (4.35)
50
SaD(st, L) = diL 7" 'try Gy (s, 55 O)).
Choose ¢ =0 in CP(R') with ¢ =1 in [0, 1]. We have from (4.35) and the

Trace Lemma

F s/ eV (st, sO)| ds = .[1 |04 [ try G (s, 5 0)]| ds
o

0 -

<19{[2" @GR Nl < Co. (4.36)

For j=1, (4.36) requires us to estimate the trace norm of

08,67 = —¢ i GJ, X~ "PA X 1PGy (4.37)

j=1
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by Lemma 4.3. The first summand in (4.37) is

= LoGX ™21+ X)" =T [(1+ X)' 3 X~ V201 GX (1 4 X)Pm~2]
XX [(1 +X)—-7 XI/ZGX—I/Z(I +X)4] [XI/Z(I +X)—4 G]

From Lemma 4.6, m of these factors are in C, 412, and from Lemma 4.7
the remaining term is bounded, so the product is trace class. The other

terms in (4.37) are similarly bounded, and we thus obtain from the Trace
Lemma

1
[, 1tr 00,6545, )| ds < 90,G5, . < C.

This with (4.36) proves (4.33) for j=1. The proof for general j follows the
same pattern, using Lemmas 4.6 and 4.7. Finally, again from the Trace
Lemma, tr(pG7) = [& ¢(x) o(x, xz) dx. |

This proof explains the form of the lemmas in Sections 3 and 4. The first
point is that when # — 0, 4/(x)=4'(¢x) loses its decay as x — o0; we com-
pensate for this by introducing a factor (1+ X)~2 and cancelling it with a
(1+ X)? on the next term to the left. Second, G itself is not C,. 1, but
(14+X)7? G is; hence we introduce still more negative powers of (1 + X).
The terms in Lemmas 4.6 and 4.7 are designed to fit together so that all the
positive powers are shifted to the left hand factor @G, where they are
harmless since ¢ has compact support.

THEOREM 4.3. If m=p+ 1, the function
o(x, {) =tr, G7(x, x; {/x)
has an expansion in th sense of (1.5a),
a(x, {) ~ 3 0,i(x) {*log’ L.
Proof. As in Theorem 4.2,
o(t, ) = try 2"~ G (1, 15 0)

Let K7, be an interior parametrix as in Section 2, using A (x)=x"24(tx).
Thus

2m+N
K= "3 Op(d),
Jj=2m
b=04¢ z, A ., L2 b,), by=(E+ o, +2%) 7,
dm—2_N
(D2 + ‘2{1 + ZZ)m KT{ =J— R:,n[ =I— Z Op(Rk(é, 2, M:"': "Q{SN)’ b2))3

k=—N .
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where Q, and R; are polynomials in all entries, of degree —3j in
(62, 2°, )y ZV). Now choose ¢, Y in CP(R*) with ¢ =1 near x=1,
=1 on a neighborhood of supp ¢. Then

(D*+ o, + 2*)" YKT,
m—1 . :
=y —yR— Y (D + s, +22Y" 77 (" + 200D + o+ 2°) KT
j=0

(4.38)

Multiply on the left by ¢G7, and on the right by ¢, and use @y = @:

m—1
0G0 =K 0+ [prK,!PR:{’,fp + Y oG (" +2y'0)
=0

j=

x (D* + o, + z*)/ K'.",qo]. (4.39)

A

Let R denote the term in braces. By Lemmas 2.5 and 2.6, R, GR,. and_ RO all
have trace norm O(|z| ~™), where M can be as large as desired if N is large
enough. Hence

o(t, {) =" try(oGT, o)1, 15 0)
=" Utr (K7 0)(1, 1O+ 0311 ~M).

From the above description of K7, we have

K50, 0= 5 [" 06 5 (Do SY72(1), (€ (0 +1)7)
, Com) o

Each term has an expansion as required, obtained by integ_rating ‘the

assumed expansion (A6). To check the derivative ¢’ = 0,0, we differentiate

(4.39) with respect to ¢, using on the right hand side Lemma 4.3:

ale,t = - Gb’,X_l/z‘(Z,,X_ l/sz,t.

One sees further that 9,R7, and 0,K7, have the same structure as R7, and
K7, with the same degrees of homogeneity, and it follows that ¢’ has the

same expansion as tr,(d, K7 ¢) up to O(|z|~™). Higher derivatives ¢/
are similarly treated, and the proof is complete. §

Finally, to blend the boundary parametrix G’ with various interior
parametrices, we need
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Lemma 4.10. If 9 € CT(R'), 5 € B*(R*), and o, n have disjoint support,
then for every N, k, J,

140Gy ¢l = O(12] ).

Proof. Take (4.38) with r=1. Choose ¥ =1 on a neighborhood of
supp 77, ¥ =0 on a neighborhood of supp ¢. Multiply (4.38) on the left by
@Gy and on the right by n4%9’:

0GynA*d' = Gy R A’

m—1
+ Y @GIT " + 2y 0)(D? + sty + 2°) KT A*Y.

j=0

Since supp ¥” and suppy’ are disjoint from supp#, Lemma 4.10 now
follows from Lemmas 2.5 and 2.6. ]

5. THE GLOBAL PARAMETRIX

The global parametrix is a blend of “boundary” and “interior”

- parametrices. As in the Introduction, we use a Hilbert space structure

H =H, @ A,
with the “boundary part”

= L*((0, 2); H),

where H is a fixed Hilbert space “fiber.” If f= f, @ f; with f, € L>((0, 2); H),
and likewise for g, then

(1) =[ Ui g + (8.

(Below,~we will often drop the subscripts and write f for either f}, or f;; the
context makes it clear what is intended.) For ¢ in C([0,2]) we define a
“multiplication operator” & on 3# by

(@S =) f:(")® 0 (2) ]

By C~ ([0, 2]) we denote those functions in C*([0, 2]) which are constant
near x =2; we can think of them as extending smoothly to functions which
are constant on some underlying manifold for 5.
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The set of all measurable f: (0, 2) —» H such that {2 || f(x)]|% dx < oo for
all 6> 0 forms a space J#;,, and then we set

H = A, DA

Those f in L*((0, 2), H) which vanish in a neighborhood of x =0 form a
subspace #,,, and we define the “compact support” subspace of H by

Ho = Ao @ A,

We assume a C™ family of operators A(x), 0<x<2, with common
domain H ,c H, and satisfying conditions (Al)-(A6) of the Introduction.
We then assume an unbounded operator L with domain Z(L)< H such
that:

(L1) 2(L) is closed under multiplication by functions ¢ in
C~([0,2]). [This is adequate for the Dirichlet boundary condition, but
others would require ¢'(0)=0.]

(L2) ue2(L) if and only if:

(a) There is a Y € C~([0, 2]) vanishing near 0, with ¥(2) =1,
such that yue 2(L).

(b) For all pe CP(0,2), pue H*((0, 2), H)n L*((0, 2), H,).

(c) lim,_ o, x~"2u(x)=2lim,_q, x"%u'(x).
(d) [2 1 —u"(x)+x2A(x) u(x)||3 dx < c0.
(L3) Foruin 2(L)and for 0<x<2

(a) Lu(x)= —u"(x)+ x"2A(x) u(x).

(b) For o, Yy e C~([0,2]) with disjoint supports and for all
ue P(L) we have pLyu=0.

(L4) If yeC~([0,2]) is real and y =0 near O, then PLY is sym
metric on Z(L). :

(L5) For |z|>z, with |argz?|<n—0; for m=1,2,.; and for
arbitrarily large N, there is an “interior parametrix” G7(z) such that for all
@, ¥ in C~ ([0, 2]) vanishing near 0,

() YGr(z): # - D((L+z%)7). -
(b) If Yy =1 near supp @, then

(L+23)"YG™(z) ®=P— RV, @)
with

I R7 (Y, @)l =0 z] ™).
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(c) If @, have disjoint supports, and ¢ vanishes near 2, then
1470*PG ¥l =O(l2] "),  j+k2<m—1.

(d) If m>=p+1, there are smooth functions 0,(x) and con-
tants c,; such that for ¢, ¥ as in (b)

(PG o)=Y [f()z(p(x)aaj(x)(xz)“(1ogxz)fdx

Re{a)=z — N
0/ Uy -

+¢(2) ¢,;z%(log z)’] +0(lz]~™).

(The constants c,; account for contributions from .)

LemMA 5.1.  Assuming (L1)-(L4), then L is symmetric.

Proof. Choose 0< ¢, @, in C~([0,2]) with @, +¢@,=1, 0, =0 néar 2,
and ¢, =0 near 0. Choose real functions ¢ = 1 near supp ¢,, ¢ =0 near 2,
and ¥ =1 near supp ¢;, ¥ =0 near 0. Then for u, v in 2(L)

(Lu, v)= (LD,u, v) + (LD,u, v)
= (L®,u, Pv)+ (YLYD,u, v) [by (L3)]
=(P,u, LOv)+ (D,u, PL¥)
[by (L4) and Lemma 4.2]
=(®,u, Lv)+ (P;u, Lv)

S~ =W L) o

Remark. Lemma 4.2 does not literally apply, but the proof here is
exactly the same.

THEOREM 5.1.  Assuming (L1)-(L5)(c), L is self-adjoint and semi-
bounded, and has the resolvent in (5.1) below.

Proof. Choose the ¢, in the proof of Lemma 5.1 so that in the con-
struction of G, in Section 4, 4(x) = A(x) for x in supp ¢,. Let G,=G! as in
(L5). By (4.15), (4.16), (LS)(a), and (L2), &G, P, + ¥YG, P, maps into
2(L), and

(L+ 229G, D, + ¥YG,D,)=1—R,
where

R=(2"+22'0) G, P, + R(Y, )
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with R; as in (L5)(b). By (L5)(b),)(c), | R;|| = 0 as z — o0, so for large z we
have an operator

G=(8G,P,+ PG,D,)Y R’ (5.1)
0

with
(L+23)G=1I
The proof now follows the proof of Theorem 4.1. ||

~ Remark. Let t be the restriction of L obtained by replacing the boun-
dary condition (L2)(c) by

u(x)=0 for x near 0.

Theorem 5.1 shows that 7 is symmetric and semibounded. In Section 6 we
show that L is the Friedrichs extension of t.

THEOREM 5.2. Assuming (L1)—(L5), we have for y=0 near 0, using the
notation of (L5)(d)

Re(a)= — N
0<j</y

try(L+2z%)""= ) [j: P(x) 0,4(x)(x2)* (log xz)’ dx
+9(2) ¢ z*(log Z)j]+0(lz|—N). (5.2)

On the other hand, if B is supported so near zero that L= L, near supp B,
then

tr BG™ =tr BG7 + O(|z| V) (5.3)

while
tr BG = j * Bx) o(x, x2) dx, (5.4)
0

where o satisfies the integrability conditions (1.5b), and with the notation of
(L5)(d)

a(x, {)~ ), 64(x) {*log’{ (55)

in the sense of (1.5a). Throughout, N may be arbitrarily large.
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Remark. The point of (5.5) is that the expansion of the “boundary
parametrix” trace in (5.4) can be computed from the interior parametrix
assumed in (L5); this is, in practice, generally simpler to analyze than the
parametrix constructed in Section 2.

Proof. Proceeding as in Theorem 5.1, we have

(L+ 22" (DGr D, + PG D)
m—1

=]— Y (L+z23)" 71 (®"+20'3)L+z*) GFP,— RV, ¢,).

j=0

Multiply on the left by G™ (guaranteed to exist, by Theorem 5.1) and
rearrange terms:

G"=dGp D, + PGP, + R, (5.6a)
where

1
Y GItYD" +28'9) G i, + G R

0

=0(lz|™") (5.6b)

IR e=

tr

by (L5)(b) and Lemma 4.10. Given y =0 near 0, we can choose @ and @,
with support where y =0; then y = ¢, =1 on supp y and we get

YG" =yGlp; +yR
hence

[ t0G)=t(Gre) +0(z] M)

which with (L5)(d) proves (5.2). Suppose next that L =L, near supp f.
Choose ¢, =1 and ¢ =1 on supp f; then ¢,=0 on supp f. Since tr(ST) =
tr(TS), we get (5.3) from (5.6).

The representation (5.4) with the integrability condition (1.5b) is proved
in Theorem 4.1, and Theorem 4.2 guarantees an expansion

a(x, ) ~ Y 554(x) {* log” L. (5.7)

It remains only to identify the coefficients s,,. Suppose that # vanishes near
0, and L= L, near supp 5. Then by (5.3) and (5.4)

tr nG™ = r 7(x) a(x, xz) dx + O(|z| = ™).
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By (5.7) and the Singular Asymptotics Lemma, noting that # vanishes near
0,

trnG™ ~3 LZ 1(x) 5,(x)(x2)* (log xz)’ dx + O(1z| V).

Compare the coefficient of z* log® z here with the one in (5.2) with 7=11,
and note that #(2)=0, to get

f’l(x) i Saj(X) xaCi(log x)j—k dx

i=k

=) 5. a0 x°Cillog x~ a
j=k

J

for Re(a) > — N. Since this holds for all # with appropriate support, we get
the equality of finite sums

Ju I
Y. s4(x) Cl(log x)’~* =} 0,,(x) C{(log x)’~*
Jj=k

j=k

for all k<J,. For each x>0, this nonsingular triangular system has a
unique solution, and the proof is complete.

6. Tur FRIEDRICHS EXTENSION

Let t© be the operator L in Section 5, but with the boundary condition
(L2)(c) replaced by

(L2)(c'} u=0 in some neighborhood of x=0.
Since t is a restriction of L, Theorem 5.1 shows that it is symmetric and
semibounded. We now show:

THEOREM 6.1. L is the Friedrichs extension of 1, and D(L) equals
{ue # |u satisfies (L2a, b, d), and || u(x)| ;= O(x'?) as x > 0}. (6.1)

Proof. Denote by L the Friedrichs extension of 7. It is sufficient to show
" that 9(L) contains (6.1), since this contains (L) by construction. Recall

that
DL)=2(c*) " D'(z),

where 9'(1) denotes the closure of 2(7) under the norm

((t+c)ulu)t?, t+ezl, (6.2)
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'considered as a subspace of #. Choose u in the set (6.1). By (L2)(a) there
s YeCg[o, 2~] with =0 near 0 such that Yyue P(L), hence
Yue 2(t)= D(L). That v := I=yY)ueD(z*)is a consequence of (L2)(b)
(d). It therefore remains to prove the following: if v E@(‘E*)’
supp v < {0, 2), and ’

lo)a=0(x"?),  x-0,
then ve@’(?). Choose functions ¢, y e C*(R) such that
0<op<«l, p(x)=1 if [x|<1, p(x)=0 if |x|>2,(64a)
O<y(x)<x if x>0,
x(ix)=x if 0<x<1, (6.4b)
xx)=1 if x=22,
and put
a,:=[logn]=2  nx2. (6.4c)
Note that a, — 0, # — c0. Put
Yalx) == x(x)* (1 - @(nx)), (6.5a)
V(X)) = W o(x) = ¥,.(x), xeR nm=2. (6.5b)

Then ,eC®(R); y, is uniformly  bounded; ,veP(zr); and
Yulx)>1,n> 00, §,,.(x) >0, n, m— oo, for all x>0. Since Y, >0 in
L*([0, 2]), H) we only have to show that {¥,v} is a Cauchy sequence with
respect to the ?arrn (6.2), ie,

Bm (e 4¢) Y0 1) =0,

Using (L2)(d) one easily computes
(V0 | Ym0} = (12,01 0) + 2 Re(Y u T*0 [, 0).

From (6.5a) we obtain

—~

Vi(x)* < CLaga(x) =2 y'(x)* (1 - p(nx))?
+x(x)** n’¢'(nx)*] . (6.6)

s0 by (6.4c) ¥,(x)* - 0 uniformly in x> 1, and

2
| i 1003 dx >0, mms oo,
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For the remaining integral over [0, 1] we use (6.3) and estimate the two
terms arising from (6.6). The first can be estimated by

1 o«
Coc,%f xz“"“ldx=C—23—>0, n—> o0,
. :

the second by

2/n . 12
anf x2n+ 1 e L Cp~ 2 = Ce 208 ™™ 5 n — 0.
0

The proof is complete. |

7. Tue HEAT ASYMPTOTICS

The computation of the asymptotics of tr e "L is based on the Cauchy
integral. Denote by I” the contour

{larg(d + c)| =n/4}

traversed upward, with ¢ chosen so that L>1—c. Then

il — ,1-m(ﬂ2_ﬂf e=G™((—2)1?) di. (7.1)

Tl

Choose a cut-off function y such that L=L, on the support of y and
p(x)=1 for small x. By (5.3)

- _mm=Dle
tL__l—mM 12 me(__ 2 i/2 di
trye= == [ Ty GR(—A))

— 1 ©
o OO o [ ) b, G, x; (— 1)) e i
2ni Jr 0
Writing as before

a(x, xz) =y(x) tr y G7'(x, x; 2)

=y(x) x* " tr, G (1, 1; xz) (7.2)

we obtain from the Singular Asymptotics Lemma
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THEOREM 7.1. If'y is supported sufficiently near to 0, then as t > 0+,

o Fk
trye =t ~ z z(k+1)/2—mf %O_(k)(o’ 6y de
o] .

k=0
—1)! )
X(mzm) eTH =) g (7.3a)
—m )2 (m_l)' ® AT
+§t BT L_L o, (x)(x/—4)
xlog/(x \/ —A/t) e ~* dx di. (13b)

(m—1)!
G+1D)(—a—1) 270

—o0 Jy
X LT PelEm(0)

a=—1j=0
xjre~’-\/—_a log/*! /—Atdh, (7.3¢)

where
a(x, {)=y(x) x* " tr,Gr (1, 1;0) ~ Y, 0,(x) {*log’ . (7.4)

We single out for further study the leading term, and the term in °. Note
first that

a(x, {)=y(x) x*"~1é(x, ), (7.5)

where
( §(x, {) =t Gy (1, 1;0) (7.6)

has a smooth expansion [ Theorem 4.3 ]
G(x, {)~ ), 6,4(x) (*log’ L. (7.7)

The factor x?”~! in (7.5) means that the first non-vanishing term in (7.3a)
is ~

(m—1)! -2 —m ® am—1x
tOWLe (1) dzjoc &0, 0) de

= [7 0, Gy 1O &
0

=: 1%,. (7.8)
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We recall from [19] the main steps in computing c,,; similar calculations
are found in [9]. We have

Gron(C) = (LO + gZ)—m = ®aespec Ao(La + Z.-,2)_"13

where L, denotes the Friedrichs extension of D*+x~2a in L*(R,).
(L,+¢?* " has a kernel k, given on the diagonal by

ko (x, x;0)=xI(x{) K ,(x(), v=,/a+1/4.

Hence, on the diagonal, (L, +¢?)~" has kernel

1 1 a\"!
e (’“"";C)=m<‘z‘az> GO K. (19)

From [19], or Lemma 4.9, yG({) has a kernel which is trace class for
Re({)>0, and since L,>0 for a> —4, (7.9) gives

tr, G, ;)= Y

ua e spec Ag

1 1o\, _(, .,
m(_ia_c> L({) K({). (7.10)

To compute ¢y, in (7.8) >we need the Mellin transform of each term in
(7.10)

(75_1_)! Lw Cw<_2_1§8%)m_ LK) L
-t
4 /m(m—1)!

e O e )

=<1"<%1—>F<m—1—;)/4\/;(m—1)!>£(1%;§)1—), (7.11)

" where z(w) :=(w+ 1 —2m)/2. This function is analytic if

max{—1,2m—2v—3} <Re(w)<2m—2

and by Stirling’s formula it is

O(VRew+2—2m) — O(aRew/2+ 1 —m).
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Thus, except for finitely many simple poles arising from values v with
2m—2v—3> —1, the integral

[ eaGp, 0 a

in (7.8) is the sum of a convergent series of functions analytic in the strip
—1<Rew<2m-—-2-2p
which is nonempty when we take m> p + 1/2. Set

w=22z+2m—1

in (7.11). By the prescription of the Singular Asymptotics Lemma, we find
from (7.8) that c,, is the regular analytic continuation to z=0 of

=i, G, 0 d

_I(=2=1/2) Iz +m) Iv+z+1)
4\/;(”1_ I)’ a e specAg F(V'*Z)

(7.12)

We introduce the {-function of (4, + 1)/2,

)= Y wa)™,  va)=./a+1/4. (7.13)

aespecAy
v(a)>0

Since 3 (a+1)7”< 0, {(s) is holomorphic for Re(s)> 2p. We further
assume for the present calculations that {(s) has only simple poles, as is the
case when A4, is a non-singular elliptic operator. We obtain from
[15, p. 119] the asymptotic expansion

I'v+z+1) ., & iy
—~ =z | I
oo =" L 0 b (z)

where Qo=1, 0,=0, Q,= —(z/6)(z+ 1)(2z + 1), Q; is an appropriate
polynomial, and

Ly, i(z,v)=T(—1—2z)"" fow e "By, (1 2) dt,

Pyt ) =00V 2R~y if N> _2Re(z)—1, |z|<z,.
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In view of the factor I'(—1—22)"", Iy, ,(z, v)=O(| z} v?R**~ ). Hence for
sufficiently large N,

Zﬂ;(tz—t)l“L f 0/2)l(j—1—2z)+ R(z), (7.14)
— =

where R(z) is analytic in Re(z) <1, and R(0)=0. Thus the residue and the
regular analytic continuation of the left-hand side of (7.14) can be com-
puted from the finite sum on the right. Moreover, assuming simple poles
for {, we need only the linear parts of the Q,. These are given by [9],
Lemma 4.2, as

N

o(z%), jodd
Q)z)= 72— 1 .1 2 :
7 (—1)2=12zB,,j~ '+ 0(z%), jeven>0.

-Setting j=2k, we find from (7.12) that ¢y, is the regular analytic con-
tinuation to z =0 of
I'(—z—12)I'(z+m)
4./n I'(m)

[((—1—22)— %2 (=) k= 'B,z{(2k—1 —22)].
k=1

(7.15)

For a meromorphic function f we denote by

Res, f(zo)

the coefficient of (z —z,) ™ in the Laurent expansion of f at z,. Thus Res. 1
is the usual residue, and Res, the regular analytic continuation. If f is
analytic and-g has a simple pole at 0, then

Reso(f2)(0) =/(0) Res, g(0) +/7(0) Res, g(0).
Thus when we continue (7.15), noting that
I'm)y mz'1
TN s
I'(m) ,-; J

where y is Euler’s constant, and I'(—1)= —2./=, we find

1 -
o= 3 Resol(~1) =7 ¥ (~1)*k~'B, Res, (2% 1)
k=1

AT s o
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Since {(s) is analytic for Re(s) large, the sum in (7.16) is finite. There are
no contributions with Res,(, etc., since we assume simple poles.

We now turn to the “interior” contributions (7.3b). If A(x) is a family
of non-singular elliptic operators then there are no logarithmic terms
0,,(x){*log’ { with j>0. We will assume a little less, namely that

0,=0 if Reaz—2m and j>1 (7.17)

By the arguments leading to (7.3), the operator ye~* has an operator
kernel y(x)e ~"*(x, y) with the pointwise asymption expansion

(m—1)!
2ni

tryy(x) e™ " (x, x) = Y T % ,(x)

Reaxz ~2m

x j e /=AY di+ 0, (%)

= Z tﬁxwzﬂ_zma—zﬁ—zm,o(x)
B<0

(m—1)
27

X

j e H=A)"F" di+ 0 (1)

=: ) tPg4(x)+ 0, (1% (7.18)

B<0

Thus the coefficients in (7.3b) with Re a > —2m are, up to constants, just
regularizations(of

J:o gp(x) dx.

But from (7.18) and (7.5)—(7.7) it is apparent that

gs(x)= aﬂ,mx_zﬂhzmo'—zli—zm,o(x)

=aﬁ,my(x)x_ZB_la—ZB—Zm,O(x)a (7.19)
where _
_(m—1)! 2 —pem g, T(m)
Ghm =g | eTH=2) =T F+m)

and 6_,5_,, o(x) is smooth at 0. Hence no regularization is needed if
B <0; but the constant term

Cop = jo“’ go(x) dx (7.20)
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will in principle need regularization. Note that by (7.19),

6 _amo(0)= lin(l) xgo(X). (7.21)

Turning at last to the terms (7.3c), we see again from
Ta0(X) = p(x) X*" 7 1§ ()

that all terms before the one with & = —2m are zero, so no negative powers
of t arise from this source. In particular, if the index «, with maximal real
part has Re oy > —2m, then the leading term in the entire expansion (7.3)
is of type (7.3a), and

oo m—1p _,
—tL | —m— )2 % — A% dA
trye 't~t o L P(x) X0 ,00(x) dx i Le vV

= P j " (%) gy(x) dx + 0(%),
0

This, together with suitable information from the interior, determines tbe
eigenvalue distribution of L. As for the ¢° term, taking a = —2m, j=0 in
(7.3c) gives a contribution

am—1y M= D1

Coe =05 (O)Qm—_ﬁﬁjre*(—z)-mlog(—z)dz

=6 —2m,0(0)

(m4;i1)!j e~ (—2)""log(—4) dA

:% &_2,,,,0(0)[ —rt ’:;1 l/j]'

Adding to this the contributions from (7.16) and (7.19) gives the coefficient
of 1% as

Co = Coa + Cop + Coc

= IResgl(—1) =1 ¥ (= 1) k=B, Res,{(2k 1)
2 _ 4k>1 ’
+MRes‘l‘c(~1)+Eo golx) dx

NG

+§-<'"i’}—Q[Resla—1)+2&_zm,0(0)1

Jj=1
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This holds for each integer m sufficiently large. Moreover, the go(x) in
(7.18) is independent of m, hence from (7.21), 50 is G _,,,4(0). Since ¢, itself
is independent of m, we find that the last term above drops out:

26 _3mo(0) = —Res, {(—1).
Thus, finally,

o= =5 Reso {(~1) % 3 (= 1)%~1B, Res, (2 1)

k=1
(=12 e
+§4—\/E/—) Res, {(—1)+ jo golx) dx (7.22)
and
Res; {(—1)= —26_,, 4(0)= —2 lim xgo(x). (7.23)

Thus we have the regularized interior term J& go(x) dx plus singular terms
in the {-function of (4, +4)"2 Since these depend only on A4,, they are the
same as in the constant coefficient case, including the cases studied by
Cheeger [9].

The coefficient of t° log ¢ has some interest. Assuming (7.15), this term
comes only from (7.3¢). It is

o1 (m—1)! —1 _ o
/U(_zm,o)(o)mﬂl‘.fre l(“"/l) di

1. 1 1.
=5 0-2mo(0)=7Res,{(~1)= —5 lim xgo(x).  (7.24)

We conclude with simple examples. Take a finite curve in the upper half
plane, beginning at the origin with positive slope tan ¢, and rotate it about
the x 9xis to form a surface of revolution M; suppose that M is a smooth
surface except at the origin. Let r be arc length on the curve, measured
from the origin, and let y = f(r) along the curve. The Laplacian is

4=—1"0,f0)—~f"%0; in L*(fdrdf)

and the change of dependent variable u+— £y transforms 4 into

L=—-0+f?[=0}— 4/ )Y+10"]
= —82—r=24(r) in L¥(dr dO), (7.25)
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where
A(r)= —o’[1+rk cot ¢ + O(r?)182 — L[1 —rk cot ¢ + O(r?)]

with x the curvature of the generating curve at the origin and a=csc ¢,
where tan ¢ is the slope of the generating curve at the tip. The eigenvalues
of A, are

{4+

so the { function (7.13) is

() =2 ¥, ()" =22"a(s)

Jj=

with {p the Riemann {-function. Thus Res;{(—1)=0 and (7.22) gives

1 ©
Co= —aln(~1)+5- BiRes [x(1)+ | ~ golx) dx

o 1

=E—m+ L go(x) dx.

From (7.23), the integral is actually convergent, since Res, {(—1)=0.
When there is no singularity then the cone angle ¢ =n/2 and a =csc ¢ =1,
so the singular contribution is zero.

If we apply the operator (7.25) only to rotation-invariant functions, we
get a one-dimension example,

L= —+r"2a(r),
al(r)= —1/4 4 r(x cot ¢)/4 + O(r?).

This is covered in [4]; Eq. (4.8) in that paper gives

u0¢L+¢2y*)=z—lLfyoqdﬁz—z—3Lwyu)r4aa)dﬂ4

—z 3 cot p[c+ (log 2)/16]
+O0(z*log z), ‘

where ¢ is a positive constant. Thus we find a nontrivial logarithmic term
which, given the angle ¢, will determine the curvature x at the tip of the
cone. :

As a final example, let L=A4+ ¥V, where 4 is the Laplacian on a 2-
manifold and V is a potential function having at one point P a singularity
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asymptotic to cr =2, ¢ >0, r = distance from P. The Laplacian is now given
by (7.25) with £(0)=0 and f(0)=1, so :

Ao=—-0}—-L+c

The eigenvalues are {c—1+ 7}z, and the {-function of (Ao +HM is

C(S)= Z (C+j2)-s/2=c—s/2+2 i j—s(l +Cj—2)—s/2

j=—o j=1
=¢7" 4+ 20 g (s) ~ cstr(s +2) + R(s)
with R(s) analyFic in Re(s)> —3. Thus Res; {(—1)=0, and (7.24) gives a
term (c/4) log ¢ in the heat expansion. From (7.22), this residue contributes

also to the ° term; the other singular contribution to this term, involving
Resq{(—1), seems harder to compute.

APPENDIX: A TRACE LEMMA
We estimate kernels of operators by their trace norm as follows:

.LEMMA 4.1. Let T be a trace class operator on L*(R', H) where H is a
Hilbert space. Then T has a kernel H(x, y) such that

( T0)=[" w0
and
| R t(-, -+ h) (1)
is a continuous map into L' maps of R' into C,(H), the trace class operators |
on H. Further .

[~ 1 Dl <71, 2)

ftﬂMJnﬂznT )

If 0T — 10 is also trace class, then (1) is continuous into the absolutely con-

tinuous L' maps: R' > C(H), and so T has a continuous kernel t(x, y).
Moreover

” t(x,y)”tr< ”aT— 70 ”tr' (4)
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Remarks. The kernel of an integral operator is defined only up to a set
of measure zero in (x, y) space, so (2), (3), and (4) are meaningless unless
the kernel is normalized in some way. The continuity of (1) normalizes 1.

The lemma implies that for any kernel ¢ for T, and any approximate
identity {¢,},

sup ” @alx— ) 1(x, Pl dy dx < 0

lim H O (x—y)trt(x,y)dydx=tr T.

This is very similar to [24, Chap.TII Coroliary 10.2]. However, it is con-
wenient to have kernels for which no approximate identity need intercede.

.From (4) follows an obvious fact: A nonzero translation-invariant
operator on R' cannot be of trace class. For if T is translation-invariant,
0T —T0=0.

Proof. T=RS, where R and S are Hilbert-Schmidt with
Hilbert—-Schmidt norms || R|,, || S,, and

ITN =R, ST,

We have Rf(x) = [r(x, y)f(y)dy where for almost all (x,y),

l7(x, )il < o0, and

[ 17 913 dx dy = | RI3 < 0
and similarly for S. Thus 7'= RS has a kernel

t(x, y) =Jr(x, u)s(u, y) du
with

f 1206, )l dx S W RN USH2 =1 Tl

The family of translations %, f(x)=f(x — h) is strongly continuous, so S%,
is continuous in the norm |- ||,, and this implies the continuity of the map

(1) '

jw l2Cx, x +B)—t(x, x + B)l| dx < || RI, - || S~ SU ). >0 as h— k.

— oo
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To prove (3), choose a basis {¢,} for L(R')® H. Then
RIG) =215 [ (F(9), 04(7)) dy (),
2 () =IIRI3
and the kernel of R is

(% 2) =2 1, 9u(3)) @x).

Let R, be the operator where the summation is restricted to j+k <n, and
define S, likewise. Then T, = R,S, has kernel

06 9)= [ 15 1) 5,0 3) du = 3. (- 0(1)) 0,5)

summed for j+k<n, k+m < n. Since (s, o) ¥ =, p),

(

The inequality (2) allows passing to the limit

tr T, =Y 5= | 3 7eSim(0,(x), 9,(x)) dx

=ftr t,(x, x) dx.

tr T=lim tr T, = lim j trt,(x, x) dx = j tr #(x, x) dx.

.
Finally, to prove (4), suppose that §7— T4 is trace class. Let ¢ be the above
kernel for 7T, and ¢ a similar kernel for 97— T9. Then as distributions

, (0 0
?(x,y)= (b;‘f'@) H(x, y)
or

t'(x,x+h) =% t(x, x + h).
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. L. .. 1 : ’ 3
Since #(+, -+ h) is in L', and #'(x, y + h) is the kernel of (6T—10) U, 18. R. SeeLeY, The resolvent of an elliptic boundary problem, dmer. J. Math. 91
, 889-920. T
19. R. SEELEY, Asymptotic expansions at cone-like singularities, in “Proceedings of the Inter-
national Conferer.lce on Partial Differential Equations, Novosibirsk, October 1983.”
20. 11\{4[ H1.987:‘)0NE, “Linear Transformations in Hilbert Space,” Amer. Math. Soc., Providence,

0

< J- 128 E+h)] o dé < 10T —T0| o 21. R. Wong, Explicit error terms for asymptotic expansions of Mellin convolutions, J. Math.
e Anal. Appl. T2 (1979), 740-756.

22. 'I;h GILKE:(,M“Ir}llvariaflceLTheory, the Heat Equation, and the Atiyah-Singer Index

. eorem, athematics Lecture Seri . i i ilmi

by (2) The pro of is complete. l 23. A. P. CALDERON AND R. VAILLANSZ[X(OTI, I(I)’npltll?:sgoZ;g:(ri];:s,s“:;H;: i
operators, J. Math. Soc. Japan 23 (1971), 374-378.

24. 1. C. GoHBERG AND M. G. KRN, “Introduction to the Theory of Linear Nonselfadjoint‘

Operators,” Translations of Mathematical Monographs Vol. 18, Amer. Math. Soc
Providence, RI, 1969, :

(1969),

| 0, 3+ 1)l = H [ reema

tr

eudo-differential
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