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1. Introduction. The analysis of second order elliptic equations is most complete
in the simplest case of a one-dimensional operator of Sturm-Liouville type; by this we
mean a differential expression

7:= —8% + A(z), z in some interval . (1.1)

The very precise and well known methods developed for these equations do not, in
general, extend to elliptic equations in several variables. It has been noted, however,
that many elliptic problems can be reduced to the form (1.1) if we allew A(x) to be an
operator valued function, the most prominent example being the Laplacean in polar
coordinates. This approach made it possible to use suitably modified methods from
the Sturm-Liouville case in the analysis of second order elliptic equations in several
variables. For example, R. Seeley and the author have derived the resolvent expansion
for operators of this type, even with singularities ([2], [3]), and applied it to index
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computations in various singular situations ({4]), [5]). More precisely, we have studied
(1.1) with

A(z) = 2% A(z)

where A(z) satisfies the following conditions:

For all £ > 0, A(z) is a self-adjoint operator in the (1.2)
Hilbert space H with domain H4, independent of z,
and the function Ry 3 z — A(z) € £{H4, H) is smooth;

A(z) > —c+ 1 for some ¢ and all z > 0, (1.3)
A(0) > -1/4;

(A(0) + 1)~ € Cp(H), the von Neumann-Schatten class, (1.4)
for some p > 0;

[[A(0)(A(z) +¢) " lg < C for all z > 0; (1.5)
| A% (z)(A(0) + 1)~!||g < C forall z > 0. (1.6)

From these assumptions it follows that 7 in (1.1), regarded as an operator in L?(R, H)
with domain C§°(R*, H) is symmetric and semibounded (cf. [3] Section 2) hence the
Friedrichs extension T exists and is self-adjoint and semibounded in L2(R,, H). Using
two more assumptions, namely :

for any monomial Q(A(z), ---, AY)(z), (A(z) + A)~!) where the powers
of (A(z) + A)~! at least balance the others we have

sup [|Q(A(z),- -+, AV (z), (A(z) + ) H)llw < 0 (1.7)
z>0,A€T

where I is a suitable sector in the complex plane;

For any monomial @(z, A) as in (1.7) where the powers of {A(z) + A)~!
exceed the others at least by p + 1/2 (with p from (1.4)) Q(z, A) is trace

class in H and we have an asymptotic expansion (1.8)

trg Q(z, 2° ZGQJ £)z%log’ z

asz—»ooandzzef‘;

we have proved in [3] that for any ¢ € C§°(R) and any m > p+ 1 trp20(T + 22)—™
exists and has an asymptotic expansion of the type described in {1.8). This means that
an assumption on the resolvent of A(z) leads to an expansion theorem for the resolvent
of T. If one is interested in the heat kernel expansion, i.e. the asymptotic expansion of
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trpz et7, then this follows from the resolvent expansion using a Cauchy integral {cf.
{3] Theorem 7.1). However, in certain applications it is inconvenient to derive the heat
kernel expansion from assumptions on the resolvent of A(z) which one would like to
replace by an assumption on the heat kernel of A(z). It is the purpose of this note to
do this. We have to impose, however, an additional restriction on A(z), namely that
the family (A(z))z>o is commutative. Thus we assume

For any n € N and any choice of z := (21, -, 2,) € R7} the operator
Ay = A(zy)--- A(z,) is self-adjoint in H with domain H,, independent

(1.9)

of z, and for any permutation ¢ we have with o(z) := (z5(1), - -, Zo(n))
4; = Aa(z) .

The assumption (1.9) can be relaxed to certain commutator estimates, at the expense
of complicating the proofs and the presentation. Since even the constant coefficient
case is of considerable interest we have chosen to work with (1.9).

The plan of the paper is as follows. In Section 2 we generalize the well known
Hadamard-Minakshisundaram-Pleijel expansion to obtain a local expansion of the
operator kernel of e~*T using the assumptions (1.2) through (1.6) and (1.9); the coef-
ficients in this expansion are defined recursively. Then we indicate how the expansion
of try2e7tT follows from this if an assumption parallel to (1.8) is introduced. In
Section 3 we give explicit formulae for the coefficients in the case that A(z) = A(0).
Our results are applied to certain computations involving n-functions in Section 4.

I am indebted to Bob Seeley for innumerable discussions concerning this subject
and related questions. Thanks are also due to Herbert Schroder for help with the
computations.

2. The asymptotic expansion of the operator heat kernel is based on the ansatz

e~ T (z,9) ~ (4mt) T 2em (emYR Y T4 Uz, y)ety AW (2.1)
720

for z,y,t > 0. This imitates the Hadamard-Minakshisundaram-Pleijel construction
except for the factor e~t¥~*A(¥) which we are forced to introduce in order to obtain
trace class operators. A formal computation gives
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(—82 + 22 A(z) + 3¢) [(Mt)-l/?e—(x-w’/“ Dt Uj(z, gl AG)

i20

= (4rt)71/2¢(av) [Z tj((.’f + D)Uj11(2,9) + (2 — ¥)0:Uj11 (2, 9) (2.2)

Jj=>0

~820;(z,9) + (57 A(s) - y 2 AW))Vy(,v) et AW)
+(i;“’y_)‘9on(z, y)e“-"""‘(y)} .

Equating the coefficient of ¢/ to zero we obtain the recursion scheme

Uo(z,y) =1, (2.3a)
(2~ 9)0:Uj1(2,9) + (7 + 1)Ujsa (2, y)

= 82U;(z,y) — (=72 A(z) — y2A(y))U;(=, 9)

=: R;(z,y). (2.3b)

By assumption (1.9), H; = the domain of A, = A(z)--- A(z;) for certain z; € Ry,

1<i<y,is mdependent of the choice z; and
HiywCH;CHy:=H (2.4)

for j € N. Each H; is a Hilbert space with the graph norm of some operator A(z,,...z,),
and by the closed graph theorem the embeddings H;; 1 C Hj are all continuous.
For the solution of (2.3) we have

Lemma 2.1 The recursion formulae (2.3) have a unique solution Uy
€ C*(R* x R*, L(H;, H)) given by '
1
Uytos) = [ o9 Rioaly + s(z = 3),0)d, (23)
0

z,y > 0, j € N. Moreover, U; € C®(R* x R*, L(Hjx, H)) for all k € Z, and for
z,4,2>0,e€ Hyyy

Us(z, 5)A=)e = A(z)U(=, v)e. (2.6)

Proof. The assertion is obvious for j = 0. Suppose it has been proved for j — 1 > 0.
By assumption we have for k € Z,

Ri_i(z,y) = 03Us1(z,y) — (272 Az) - y 2 A(y))Uj-1(2, )
€ C®(R* x R*, L(H ik, He)) .

s

AT

A

e

F’maﬁy,(?ﬁ) follows from (2.5) and the induction hypothesis.
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Thas defining U;(z,y) by (2.5) we also have U; € C®(R* x R*, L(Hjix, Hi)), and
1 is easily seen'that we obtain a smooth solution of (2.3b)). Substituting V;(z,y) :=
{z — yYU;(z,y) we see that V; is the unique solution of the initial value problem

3:Vi(z,9) = (z — y)" ' Ri(z,v), Vi(y,9) = 0.

0

To prove that (2.1) is asymptotic in a suitable sense we have to examine the
centmmiy properties of the coefficients U; more closely; at this point we make use of
%he commntatwlty assumption in a crucial way. We introduce the operators

Jk(y) = 3 I:c“ U(n:,y), ,yER*,j,k€Z+. (27)
k!

'The recursion (2.3) implies the following recursion for the Usjk.

Lemma 2.2 The operators Uy satisfy the recursion

Ugo(y) = I, Uok(y) =0 ifk _>_ 1, (2.80)
UJ‘+1 k(y) = (j +k+1)7H[(k + 1)(k + 2)Ujk42(y)

- Z Uje(y) Z —ﬂ%)!y""‘ﬂ"““m’(y) . (2.86)

Letting

2 1
< -5+ -k 2.9
Sgitg (2.9)

2. 1 .
gy = [§] + gk:I = the greatest integer

Ujx, is a universal polynomial in the variables A(y), A'(y), - - - of degree dji < min{ojk,7}

Proof. The formulae (2.8) follow immediately from

1
3’; lz=y Rj(z,y)

and (2.3). The second assertion is obvious if 7 = 0 and it is also obvious that djz < j
for all k; if the assertion holds for 0 < £ < j and all k we obtain from (2.8b) that
Uji1,6{(y) is a universal polynomial in the variables A(y), A'(y), -
d;11,% we have the inequality

Uinix(@)={G+k+1)?

For its degree

diin < maxasesa, e (aje+ 1)}

But

2. 1
Q5 k42 = [5] + g(k + 2)] = 041k,

2. 1
aje+1< [51 + 3k 1)] tl=oj1k,
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and the assertion follows.

0

Now we choose ¢, % € C°(R*) such that y =1ina neighborhood of supp . As
a parametrix for the heat operator 0¢ + T we then try

HY u(z) = / " B (2, 4)(u(e))dy, u € L*(Ry, H),

where

N
HY (z,y) = (4nt)~ /2= =014 3 p9(n)Uj(z, 9)ply)e ™AW (2.10)

7=0
From Lemma 2.1 and (1.5), (1.6), and (1.9) we see that
U;(z, 4)(A(y) + Co) ™7 € C2(R* x R, L(H))
hence

HY(z,y) € C&(R* x R*, L(H)).

Also, HY is a bounded operator in L?(R4, H) and the L? norm can be bounded
independent of ¢ € (0, 1]. In fact, it follows from the spectral theorem and the Cauchy-

Schwarz inequality that

17 B ety < Ontam) | " el ugy) .
Next we check the initial condition.
Lemma 2.3 For u € L?(R,, H) we have
tli_r}(l)Hgvu =u in L*(R4,H).
Proof. By the uniform boundedness of |HN |1z for t € (0,1] we may assume that

u € CP(R*, H). We first estimate the operator norm of a term in the sum (2.10) with
j > 1. To do so we use the Taylor expansion of U;(z,y) near z =y,

M
Uj(z,9) =) U()(z = 9)*
k=0

M+ gl
+ —(—z——Ay—}i——‘/o (1 - u)MBQ‘“Uj(y + u(z - y),y)du.

From Lemma 2.2 we find that

79

(st 2 (g gy,
 I#(@)Ui(9)(Aly) + Co)** p(y)(Aly) + Co) e~ AW
. = o(tj/3+k/6)(4ﬂ.t)—1/26—(z—y)2/4t

in zand y. Since U; € C®(R* xR*, L(H;, H)) w in simi
ly m zand ; e obtain similarly that th
m'ﬁlséo(t(MH)/z)(Mrt)_l/28‘(“‘5’)2/‘“.’Thus we infer that Y )

o0
0

- ImE - (4m)7t / e (= y(2)p(y)e ™ AW (u(y))dyll 2 R, )
9 < +‘

S:,E R is fixed the‘difference

L TAW) (pu(y) — pu(z))
= (THAG) A (pu(y)

+e7t 40 (pu(y) - pu(z))
. + (A — ) (pu(a))
~ has H-norm as small as we please if y is sufficiently close to z and ¢ is sufficiently small.

~ Since u € Cg°(R*, H) the assertion is obvious for the second and third term on the

 right. The first term is estimated b i
. y standard semigroup theo f. [7 i
_ the continuity of y — A(y). P 7 (cf. [7], §7.3) using
Thus

. Bm —1/2 —(z—y)? —ty~?
B4t 212 [ o0 (2)emts A0 (o) — ()
=0

completing the proof of the lemma.

O

JNo”w we compare HY and e~*T ¢y imitating Duhamel’s principle as usual. Note
first thz.xt the operator functions (¢,y) — (A(y) + Co)7e~tv""4lv) ¢ L(H) are smooth
for all 7 Z.O: This follows again from the arguments in [7] §7.3 quoted above, and the
commutativity of the family A(y) implies that

By et AW = _t 4! (y)etAW) | (2.11)

Since C§°(R*, H;) C D(T) it is then easy to see that ¢ — HNu € D(T) is smooth in
t > 0 for all u € C§°(Ry, H). Using (2.2) and (2.3) one computes that writing

(0 + T)HN u=: RN u (2.12)
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we have

RYu(z) = /Om RY (z,y)(u(y))dy
with
RN (z,y) = — ¥"(2) HY (z,9)o(y) — 2¢'(2) 0 H' (z, ) (3)
+ (4mt) /2 (2= 44N (2)[ 82U N (2, y)
+ (z72A(z) — 2 AY))Un (=, 9)le A0 p(y) .

Thus we obtain from Lemma 2.3 and [7} Theorem 6.1.

(2.13)

t
HNu=eTou+ f e~ ¢ T RN uds,
0

and this holds for all u € L2(Ry, H). Pick x € Cg°(R*) such that x D ¥ in the sense
that ¥ = 1 in a neighborhood of supp . Then

£
HY —xeTop = f xe ¢ ITRNds (2.14)
0

as operator equality in L2(R4., H). Now we choose ¥, € C°(R*) such that
x D% D@D p. Then

t t 5
/Xe—u—a)TRgvds:/ xe =T GRN ds .
0 0

We construct fItN , 1~ZtN in the same way as HY, RY with ¢, o replaced by 9, ¢. Then
we obtain from (2.14) with ¢ and ¢

¢
xetTo=HY —/ xe =TGR ds
t ° t pt—s _
— BN —/ I?{‘L,Rf’ds+/ / e (t=+=wIT RN gy RN ds
' 0 o Jo
¢
— BN -/ A RV ds+ UY .
0
Now we want to apply the Trace Lemma in [3] to conclude that U{¥ has a continuous

kernel with values in the trace class Cy (H). To see this and to estimate the trace norm
of this kernel we only have to prove the following

Lemma 2.4 We have [0, UY] € Ci(L?(Ry4, H)) for N sufficiently large and

102, UM llee = O(8#¥)

with 0 < uy — o0 as N — 0.
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W éﬁﬁ*inshdwing that BngRtN (z,y) is in the von Neumann-Schatten class
o > 0 and that we have an estimate
18285 RY (2, y)llc, )y S CHUY

dsan N, a, b, and p, and vy — oo as N — oo for a, b, and p fixed.
s sach that y2A(y) + C > 0 we have

(2.15)

. ottt Al

? xi(y) +C)e ”Cv(H)
3 (toptetr
Agspecy—2A(y)

< Cpt Y (A+C)rotromte
e A

= Gt (52 A() + O) B, gy S CEPT.

(2.16)‘

yékxpa:n:’s‘iion of 328} U(z,y) around z = y as in the proof of Lemma 2.3,
operties of the Uy in Lemma 2.2, (2.16), and (1.5), (1.6) we arrive at

e deducefrom (2.15) with p=2,a=b=00ra =0, b=1 that

1B llcaize) + 1R Bllcy(ze) < Co#v (2.17)

% -+00 as N — oo. In fact, L?(R,., H) has an orthonormal basis (Y5 ®@e); ieN
ere (9] N and (&);c are orthonormal bases of L?(R,.) and H, respectively, so

”RtN”%‘z(Lz):,/(; /o B (2, y)I1&, (zr)dzdy -

~ The proof of (2.17) is completed observing that R’ 3 has kernel —3, R} (z,y). Thus
we find for N sufficiently large

t t—3
U¥ 8lles < / / RN N6, 10RY [lc, du ds

. i < CN 1

1

wi%hyy —ooas N — oo. To prove the analogous estimate for UY it is clearly
safficient o prove the estimate

ll8xe™T||g2 < Ct~1/2, (2.18)

To see this we recall from [3] Theorem 2.1 that yu € H%(R,, H) if w € D(T). Hence
it follows from the closed graph theorem that the map
D(T)> u s xue H*(R,, H)

is conﬁnuous. Combining this with standard interpolation inequalities we obtain for
s L3R, H)
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9xe=*Tullz, < Cllxe™ T ull}2 |Ixe T ull 3
< C(ITe T ullzo + |lullps) /2|l 7
< Ct= 12| |ul|L2 .

The lemma is proved.

The desired expansion theorem is now an easy consequence.

Theorem 2.1 Let T be a semibounded self-adjoint extension in L?*(Ry, H) of the
operator —32 + z—2A(z). Then ¢t has an operator kernel e~ (z,y) € Ci(H),
z,y,t > 0. Ast — 0 we have the expansion

T (z,y) ~ (4mt) 1204 T4 (g, y)emt T AG) (2.19)
320

which is asymptotic with respect to the norm in Cy(H), and uniformly in compact
subsets of R* x R*. The coefficients U; are given by the recursion scheme (2.3).

Proof. Let K be a compact subset of R* x R* and choose ¥, ¢ € C§°(R") such that
Y ® @ = 1on K. Lemma 2.4 and the Trace Lemma in [3] imply that e~ tT has an
operator kernel on K and that for z,y € K

t o0
et (2, 4) — B (z,9) - / / BN (2, 2)RY (2, y)dz dsfl oo
< Gty s

where uy — oo as N — oo. But estimating as in Lemma 2.3 we see that

IBY (2, 2)RY (2,9)lcuiry S On(dn(t = )7/ 2em == /=N RY (2,9) o (a1 »

so (2.19) follows from (2.15).
i

The main interest of Theorem 2.1 is of course in its application to the expansion
of the heat kernel on the diagonal. For ¢ € C$°(R*) we obtain from the Trace Lemma
and Theorem 2.1 the asymptotic expansion

o0
trp2petT =/ o(z) try e 77 (z, z)dz

(4rt)~1/2 th/

7>0

] (2.20)
) try Uj(z,z)e t* A dz.

So away from the singularity the asymptotic expansion of tre~tT is reduced to the

expansion of

try Q;(A(z),- . A(k)(x))e_"_z“‘(’) (2.21)
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cerfain polynomials @; in the derivatives of A which can be computed recur-
ey from {2:8). Moreover, by [3] Theorem 7.1 also some singular contributions to
; _*T with p € C(R) are determinded by the expansions in (2.21),-as it stands.

the Friedrichs extension' we can obtain the Expansion Theorem 7.1 in (3]
¥ from Theorem 2:1 as follows. The scaling property of T' (cf. [3] §4 for these
ts and the notation) gives

e~tT(z,z) = 271t T=(1, 1) (2.22)
20} becomes
[e o] 2 .
trpz e~ tT = / o(z)z " ry et T=(1,1)ds. (2.23)
0

is eas:lychecked that in view of Theorem 2.1 the Singular Asymptotics Lemma
12 can be applied to

a(z,¢) i= ()¢ trg e T=(1,1)

d %stgiwes the asymptotic expansion of {2.23). It is to be noted, however, that this
mses commutativity or, more generally, commutator assumptions and thus is

%mgeneral than the method of 3].

-

Explicit computations of the coefficient functions Uj(z,y) are of considerable
terest even in the constant coefficient case. Thus we now assume

. A(z) = A(0)=: A, £ >0. (3.1)
e
Uji == Ujk(l) ; (3.2)

by Lemma 2.2 Ujy, is a universal polynomial in A of degree d;, < min{%j + %k, 7} and
the recursion (2.9) specializes to

Uo() :I, Uok =0 if k >1 , ’ (330,)

Ujiie =7 + b+ 1)k + 1)k + 2)Uj k42 ~ (3.38)

+§: 1F=1=4k 4+ 1 — 0)AU;,].
=0

Writing
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Ujk = Z kA'

and inserting this in (3.3) leads to the following recursion for the coefficients Uf;:

(3.4)

;:k = if i’ji ork< g, (3.5(1)
U(())Ozly U(‘;k:0 fk>1,720, (3.55)
Uipre =0 + b+ D)7 (6 + 1)(k +2)Uf ks (3.5¢)

+ i(—l)k—“l(k +1- Ui

t=0

ifi,7,k>0.

A straightforward computation gives the following formulae for the first few Uj.

Lemma 3.1

Uy =0, Ujp = (—1)*14 ifk>1;

Uso = — A, Uge = (~1*+1(k+ DA+ (1)

—k—;—l)Az ifE>1;

1
U30=—2A+ §A2;

Use =(~1)*+1(k + 1) (k + 2) A + g——Gl—)k(Zk + 1)(2k + 2) 4%

k41
+(_11l2_(k-1)(k—2)43 k> 1;

5
U4o =—64+ EAZ;

11
A3
15 s

49 1
Ugo = — 1204 + T6A2% — FAs + ﬁA“ .

Uso = — 24A + ?,ﬁ -

Next we single out two easy special cases.

Lemma 3.2 We have

0 ifj+k<1,
k+7—
i-

Ul

= (1 — 1)v( (3.6)

1 ) ifj3+k>1,

and

g &symp%sm 85

1 ifj=k=0,
0 -~ ifj=0,k>0,

=)

é'éiart with the proof of (3.6) using induction on j. It is clear from (3.5a,b)
: —3,1 that UJk =01if 7+ k <1. Also, it is easily seen that for 7,k >0

Uo—{l ifj=k=0,
ik — .
0 otherwise.

(3.7)

ifj>1.

(3.8)
‘ 'm;siqn {3.5¢) reduces to

=G +k+ 17 (k+1)(k+ 2)U) g + (=11 (K + 1)850]
= +k+1)" b+ 1)(k+ 22Uk,

EEDRH kT -1
— w1 (K+7
, ( D ( j >

roof of (3.7) we use induction on j, too. The assertion for § = 0,1 is proved
d for 7 > 1 we have by dji < j the recursion

(k+1)

k—1
TR =GR Y ()R k1 U,
=0

i+1 -1 (k+1 £-1
_( l)k++(]+l+k Z i )( >

=0 7-1

a0 )

'(]+1+k [(k“‘( ' )—j(fil)]
)

To see the common structure of (3.6) and (3.7) we note the identity

= (_1)k+j+1

- (_1)k+:i+1

= ('_l)k+j+1
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(1) =S (1) () -

=0

flection shows that the equations (3.13) have a unique solution: in fact,
range of ¢ first to j — 1< £ <j— 2 we obtain the o %, inductively from
"-’— jin (3.13b) shows that the coefficients o ;_, are also.determined.

me some experimental computations suggest a further ansatz, namely
valid for all 7,k > 0. Thus we are lead to the ansatz ‘

RIS a;'-e("j‘f) (3.10)

t=5—1i

R G ) A
Qg = (j—g——l)!(£+1)!ﬂ‘ (3.14)

in the range 1 < 4 < §, k > 0. This does in fact result in the following explicit formulae

which give the U Jik in terms of derivatives of rational functions evaluated at 0.

0 — 0 0=1,¢>1 3.15
Theorem 8.1 For1<i<jandk>0 we have Fo » P ez, : (3.150)

3.14) into (3:13) gives (setting m = j — 1)

T = (1) 2B, + B

j—1 . .
; : (_1)J+l+1 k+£ _ .
o= GO Y G reianral ¢ o lemo B -2 TIDTN) (B11)
t=y—f¢
where D is the differential operator
Bt — Bt = g(e+1)B, . (3.15b)
D=082z*(1-z)"". (3.12) Lt tsdefine
Proof. To prove (3.11) we start with the ansatz (3.10). Combining it with the recur-

sion (3.5) with the additional definition Bl =0 ife<m.

. o mmmediately for £>m + 1
aj,=0 feg<j—torg>3-1 -

and observing the identity Zn+1 mi% + Z (B! — m+1
m

k—1 n=m+2

Z(k+1—e)(£+m) _ (k+m+2) _ (k+m)

=0 m+2 m =Bt + E (n+1)(n+2)67,
n=m+1

we obtain for k> 0

b £— m + 1 we obtain from (3.15a)

J+1
Z (eaby 1+ — QG — e~ 1) Qo

(=it1—i
: N
—1 1
oy — 5y )( ¢ > =0.

Since this can only be true if the coefficient of (k':‘) vanishes for all ¢ the a;'t have to
satisfy the recursion

Pti = (m+1)(m+2)f5 =0

£—1
prtt= Y (n+1)(n+2)8r. (3.16)

n=m+1

is natural to introduce the generating functions
a}o =0 y (3.13(1)

£a§-+1£ 1+(f—e) §'+1g (e—1)e; Q52 (3.13b)
l=0,1<4<3,7+1-1<¢<7.

Pu(z):= Y fra". (3.17)
n>0
' By {3.154) we have

+aJt 2—-a]
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Py(z) = z(1 —z)71, (3.18)
and an easy computation shows that
Poii(z) = Po(5)0%5% Pp(2) . (3.19)

Introducing the differential operator D defined by (3.12) we see by induction on m
that
Prn(z) = Po(2) D™ (1)(2)

form>0, (3.20)

where the notation means application of D™ to the constant function 1. From (3.18)
and (3.20) it is also clear that the functions Py, are analytic in |#| < 1 hence it follows
from (3.17) that o

The proof is completfe.

4. An application of the pointwise expansion will be given to index compu-
tations. The index theorem for regular singular operators derived in [4] requires the
calculation of the constant terms in two expansions of the type (2.19); this has been
carried out in [3] §7 and [4] §4. With further applications in mind we will use Theorem
2.1 to deal with a more general situation. Recall that a first order elliptic differential
operator D : C®(E) — C®(F) between sections of two hermitian bundles E, F' over
a Riemannian manifold M was called “regular singular” in [4] if the following is true:
there is an open subset U C M such that M\ U is a smooth compact manifold with
boundary and D | C§°(E | U) is unitarily equivalent to an operator valued ordinary
differential operator

s+ 77 HSo + S1(2)) =T (4.1)

with domain C§°((0,zo), H;) in the Hilbert space LZ((0, zo), H). Here H is a Hilbert
space, H, is a compactly embedded dense subspace, S is self-adjoint with domain H,
(in fact, Sp is an elliptic differential operator of first order), and S;(z) is a smooth
function in (0, zo) with values in the continuous linear maps from H; to H, such that
for some 8 > 1/2

1(1So] + 1)~ S1(2)| + 181(2)(So] + 1)~ = O(F), = > 0. (4.2)

In computing the index of D we may assume that S;(z) = 0 for z < §, and we are
lead to consider the difference

89

(43)

trps p(e 77T — 177"

with §o= 1 near 0; the constant term in the asymptofic expansion
hen contribute to-the index. A simple computation shows that

T*T = -8%2 +z72(S2 + &),
TT* = -82 +572(82 - S,),

(4.4a)
(4.4d)

{{05},32), Hz = D(Sg) Since Sg + So + % = (So + %)2 Z 0 the
§1 are satisfied: Let us write for |¢] < 1 :
"= £5a,
Friedrichs extension of —92+272 A, with domain C§°(R*, Hy) in L?(Ry, H).
ding to Theorem 2.1 we have for z > 0 an asymptotic expansion
g et (5,5) ~ (4mt) V2 Y6 by Q(s, Ac)emie A

; k j>0 '
a:lii}ipolynomials Q; in A, of order < 2j. Since A, is an elliptic operator it
hat we have an expansion of the type
trr eV (2,2) ~ 3 7g5(a)

B

The index calculation connected with (4.3) then requires the knowledge of

%' (z) — 93" (2),
We will now generalize this situation in assuming that instead of (4.1) we
T =208, +3 p(z)S, (4.5)

{0, 20), Hy) where ¢ € C*°(R) is positive and = 1 for large |z|, and Sy is such
e assumptions of §1 are satisfied by SZ + S;. Then we obtain

T*T = 92 + 2~ 2(p(x)253 + () — 5¢'(x)) o),
TT* = —82 + 57%(p(2)25% — (p(s) — 2¢(2))S0)

S = ()%, () = () (ple) - 2'(2))
ave ¥€ C°(R) and



(4.60.)
(4.6b)

T*T = 0% +27%(5(2)* + ¢(2)5(2)) ,
TT* = —02% + z72(5(2)? — ¥(2)S(z)) .

As before we put for |¢] < 1, z € [0, x0)
Ac(z) = 5(2)? — e ¥(2)S(z),

U. := Friedrichs extension of —82 + z72Ac(z) with domain C§*(R*, Hz) in
LZ(R-H H))
which makes sense since A.(z) satisfies the assumptions of §1, too. Starting from
Theorem 2.1 we have

trgr eV (3, 8) ~ (4t) /2 D17 trg (U, 2)e~= 7 A), (4.7)
320
and by Lemma 2.2 U;(z,z) is a universal polynomial in A(z), Az(z),--- of degree

d; < 25 and with coefficients in C* (R*). Since p(z) > 0 for all z it is easy to see that
we have
¢} ()8 (z)?* (e S(z))* (4.8)

Uj(z,z) = Z

k>0
k+€<2/3 75
where cit € C*(R*) depends universally on ¢ but not on Sp. To derive an asymptotic
expansion of (4.7) it is, therefore, enough to study the expansion of each term in
the sum which arises from (4.7) if we plug in (4.8). Now we claim that we have the
expansion

L 17 trpg (S(z)2k+lemta " (S(a)* —e ¥ (2)S(2)

~ E ili"ifﬁ <f(7z)_)mtrH(S(z)2k+t+me—tg;ZS(:c)) ] (4.9)
= m! z
This follows from
= ez (@)S@) o
etz (S(2)?—e $(2)5(2)) — Z - e—tz=75(2)?
i=0 ” (4.10)
tez—2(z))¥ ! _ ta3(5(2) —ue ble)S (e
+ B DT [ (1 -t (ayemte Sl e v D
and
IS ()N =227 *S@ ||y = O, (£~ N2 7o) (4.11)
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e by P, the orthogonal projection in H onto
from Taylor’s formula for. S,(z) := P,S(z) and in .

g0 to Infinity; (4.11) is a consequence of the spectré,l theorem and

, (48], and (4.9) we deduce.
;‘H'(z, z) —trg e tV-¢(z, 1)

. é;fl f2 Z

7.k, L,m>0
tim odd k<25

‘0 try [S(z)2k+l+me—tz"2s(z):| ,

T

relate this expansion to the g-function

Ns(z)(2) 1= Z

A€spec §(z)\{0}

sgn A [A|[7F

k’ti S(z). Assuming now as in the beginning of this section that Sp is a
Hiptic differential operator of first order we have the following statement.

Ns(sy is meromorphic in € with poles on the real line, and holomor-
right halfplane. In each set {z | |Imz| > 1,Rez > c}, ng(z) grows
Moreover, for g € Z and c sufficiently large

c+io00

JPatlemtzT?5(2)" - —1—/ (tz72)"*T(2)s(z)(22 — 2¢ — 1)dz. (4.13)

2m c—100

our assumptions on Sp and [4] (4.19) the meromorphy and the growth
5(2) are evident. (4.13) follows from summing the identity

c¢+soo
(tz72)°D(2)| A0+ 22 dz,

c—i00

sgn A

, )“2¢1+le—ta:“2z\2 —
2w

# 0 (cf. [6] Corollary 2.2), over all nonzero eigenvalues X of §(z) and noting
gammia function decays exponentially in vertical strips.

u
tegral in (4.13) can now be expanded by the residue theorem, shifting the path
ration to the left and using the exponential decay of I'(2)ns(5)(22 — 29 — 1) in
I strips. The resulting expansion in ¢ involves powers of ¢ and possibly logt if
of the shifted n-function coincides with a pole of I'. To avoid this complication
zict attention to nonpositive ¢-powers. Thus let o < 0, then the coefficients of

#2logt in (4.12) can in view of (4.13) only come from
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1 Y@
trtm—3 €l+m Cfct(’:)—r;'_z 2m o

Cpl/2 Z

5,k.4,m>0
t+m odd k+t<Zj

. Res [(tz72)"*T(2)ns(s) (22 — 2k — m — £)] .

z=j+m—-a—1/2

Since a <Owehavej+m—a— 1/2>1/2if j > 1;if § = 0 we have £ = 0 and hence
m > 1 since m + £ is odd so in general

1 1
. U
Jjtm—a«a 223
Thus we encounter no poles of I and only simple poles of ng(;). Therefore, the coeffi-
cient of t* logt is zero and the coefficient of t* is given by

. m .
a2 Z €e+mcil(z)¢(zz p2i—2a—1 ¢
m!

sktm>0 (4.14)
eI'(j+m—a- %)%Resr]s(z)(Z(j—k—Z)+m+£—1—2a).
Since j —k —£2> %jand m + £ is odd we have
2j—k—O+m+L—1-2a> 2« (4.15)

and we can have equality only if j = 0, m = 1. Since in (4.7) Up(z,y) = 1 we obtain
for the contribution from j = 0, m = 1 the expression

(4m)~1/2¢ 1/)(:0)2‘“‘“‘(% — a) Resng(4)(—20)

= e(4n)~2Y(2)p(=)**5 < T3 ~ &) Resms, (~20)

and all other contributions come from poles of ng, of the form —2a + 2k, £ € N.
Summing up our results we obtain

Theorem 4.1 For £ >0, || < 1 we have an asymptotic expansion

—tU,( —tU_,(

z,z) —trge

~ " galz,€)t + 04(1)

a<0

trge z, )

(4.16)

ast — 0. The coefficients are given by

(2, 6) = o(4m) 1 (2)p(2)* 5 T — ) Res ns, (~2a)

+ Z hak(z,€) Resns, (—2c + 2k)
k21

where hy, is a universal polynomial in o=, ¢, - -
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mme right halfplane containing 0 iff go(z,e) =0
aad some z > 0 with ¥(z) # 0.
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