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Abstract. The classical result of Minakshisundaram and Pleijel on the asymptotic expansion of the trace of the
heat semigroup associated with the Laplacean on a compact Riemannian manifold M has been generalized by
Briining and Heintze to the case that a compact group is acting on M by isometries. They obtained an
asymptotic expansion involving logarithmic terms. Here we prove that these terms vanish if M has constant
sectional curvature or if M is a warped product M = [0, w]X, S" with n > 2 and suitable f.

1. Introduction

Let M be a compact Riemannian manifold and let G be a closed subgroup of I(M), the
isometry group of M. Denote by A (> 0) the Laplacean on M and by e~ the heat semigroup
with kernel I,. Then

we = [ T.(p, p) dp (11)
M :
where dp denotes the Riemannian measure. A celebrated result of Minakshisundaram and

Pleijel [11] implies that this trace has an asymptotic expansion as z — 0 +:
tre”®~(4mt)""* Y a;t/, m=dim M. (1.2)

j=0

 In the equivariant .case, the Hilbert space L*(M) decomposes according to the irreducible

representations of G and, since A commutes with G, it makes sense to restrict A to these
representation spaces. Fixing a character x and a left invariant measure dg of G, 1.1
generalizes to

1= TL(p, )x(e) dg dp, (1.3)

and one can ask whether (1.3) has an asymptotic expansion analogous to (1.2). This question has
been studied in [4,5]; the main result asserts that there is an asymptotic expansion of the form

I(t) ~ (4mt)™ % a7 (log 1)*. (1.4)
Oslgzl(c)o—l

Here I =dim M /G and k, is bounded by the number of different dimensions of G-orbits in M.
This raises of course the question whether logarithmic terms do actually occur. In [5, Theorems 5
and 7], the following negative result was proved.
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Theorem 1.1. If either M is the standard sphere or G has rank at most 1, then no logarithmic terms
occur in (1.4).

Since the logarithmic terms reflect the structure of the fixed point set,

Z={(p,g)eEMXG|gp=p}, (1.5)

which can be very complicated, even for the standard sphere, the absence of log terms is
somewhat surprising in this case. An even more natural test case arises from isometric torus
actions on Euclidean space. Then we deal with integrals

I(¢, ) :=f e”1¥TPx 1 (5 9) d§ dx (1.6)
RZn X Tk

where T is the k torus, p: T* — O(2n) a representation, and ¢ € C°(R>" X T*). The asymp-
totic expansion of these integrals turns out to be very complicated. For k=2 and n = 3 the first
author computed the expansion which seemed to produce a logarithmic term. Then Hans
Duistermaat pointed out a simplification of the rather long calculations which allowed to detect
an unfortunate error: after the correction, the logarithmic terms vanish again. In this note we
partially explain this phenomenon in presenting another vanishing result for a large class of
integrals of the type (1.6). Since the underlying manifold in (1.6) is flat, we first investigate the
case where M in (1.1) has constant sectional curvature. Using essentially the methods of [5] we
show in Section 2 that there are no log terms in this case (Theorem 2.2). The integrals (1.6) are
quite different since {x €R?*"||x| <1} cannot be isometrically and equivariantly imbedded
into a flat 7*-manifold, and since they involve the cut-off function ¢. We will show in Section 3
that (1.6) has no logarithmic terms if ¢ is radially symmetric as a function of x € R?". This is a
special case of a more general vanishing theorem (Theorem 3.1) for warped products M = [0, ]
X S™~1. The proof uses essentially the methods developed in [6,7] for operator Sturm—Liouville
equations and the special structure of isometric actions on the standard sphere.

2. Manifolds with constant sectional curvature

Manifolds with constant sectional curvature do not have logarithmic terms in expansion (1.4),
for any closed subgroup G of the isometry group. This will be proved using the methods of [5]
and the well known structure of such manifolds. In addition, we need the following lemma (a
similar result was used implicitly in the proof of [5, Theorem 6]). To formulate it we need some
terminology. Let M be a compact Riemannian manifold and I € I(M) a closed subgroup acting
freely on M. Then M := M/T is a compact manifold which can be provided with a Riemannian
structure in such a way that the projection 7: M — M becomes a Riemannian submersion; let
A, denote the Laplacean with respect to this metric. The function A(p):=vol 7~ Y(p), pE M,
is smooth and positive; therefore,

q::h_1/2 AMhl/ZECOO(M). (21)

Lemma 2.1. Let G I(M) be a closed subgroup with
I'c G c N(T') = the normalizer of T in I( M) (2.2)

e

ff*
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and
h o 7 is G-invariant. (2.3)

Then G = G/F is naturally isomorphic to a closed subgroup of I(M), h is G-invariant, and the
operators AY; and NS, + q are unitarily equivalent.

Proof. For € G, g=gI" acts on M by gn(p)=x(gp). By (2.2), this is well defined and g
maps 7~ '( p) to 7~ '(gp). Thus g is an isometry since = is a Riemannian submersion. Now it
has been shown in [3, Theorem 1] that the map

\I’LZ(M)Bf*‘*)(h o r”_)—1/2fo WeLz(M)T

is an isgmetry and intertwines A,, + g and Al;. But ¥ also restricts to an isometry L(M)S —
L*(M)°. Since, by (2.3), ¢ is G-invariant, the assertion follows from [4, Lemma 2.2]. O

We are ready to prove the main result of this section.

Theorem 2.2. Let M be a compact Riemannian manifold with constant sectional curvature. For any
closed subgroup G of I( M), the asymptotic expansion (1.4) does not have logarithmic terms.

Proof. If the sectional curvature K, is negative, then it is well-known (cf. [9, p. 55]) that I (M) is
a finite group. Thus the theorem follows from [5, Theorem 4].

If K, is positive, then M is a spherical space form, i.e, M = S"/I" for some finite group
I'C O(m +1) acting freely on S™. It is easily seen that I(M) = N(I') /T and that % is constant
on M. Thus Lemma 2.1 applies, and the assertion follows from [5, Theorem 5] in this case.

It remains to study the flat case. If K,, =0, then M = R™/T" where I' C E(m) is a torsion-free
crystallographic group. By the Bieberbach Theorem (cf. [13, Theorem 3.2.1]), I'*:=T'NR™ is a
free abelian group of rank m which is normal with finite index in I'. Thus M is covered by the
torus T=R"™/I'"* with Gy:==1I/I'* as the group of covering transformations. M and T have
isometry groups N(I')/I' and N(I'*)/I'* respectively, where N(I') C N(I'*), and we have a
surjective homomorphism ¢: N(I')/I'* - N(I')/T" = N(I') /T* /G,. Since G, CN(I')/T* c

'} N(G,), we can find, for any closed subgroup G of I(M), a closed subgroup G of I(T) with

G, C G C N(G,) such that the assumptions of Lemma 2.1 are satisfied for M := T, I'= G,. Thus
it is enough to treat the case M =T. It is readily seen that I(T) has identity component
I(T)° =T with the natural action on itself. Thus any closed subgroup G of T has as identity
component G° a closed subgroup of T. So Lemma 2.1 applies again to M =T, I''= G°, and the
proof is completed by using [5, Theorem 4] once more. [

3. Warped products

Warped products M =[0, ] X, " with n > 2 and suitable f do not have logarithmic terms in
expansion (1.4). We choose a function f& C*[0, ] with the following properties:

f(x)*>0 and f(x)=f(7r—x), XE(O, 77):

feR0) =0, k>0, f'(0)=1. (3.1)
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Now let M be the suspension of S”, i.e., the product [0, 7] X §” with {0} X S” and {m} X S"
identified with a point (the northpole N and the southpole S respectively) equipped with the
metric

g=dx®dx+f(x)’g, on(0, 7) xS, (3.2)

where x denotes the canonical coordinate in (0, 7) and g, the standard metric on S”. It is easily
seen that (M, g) is a smooth compact Riemannian manifold, which becomes the standard sphere
S"*1 for example, if we take f(x) = sin x; in this case we already know from [5, Theorem 5] that
we do not encounter log terms in the expansion.

Now we choose a compact subgroup G of O(n+ 1) and extend its action on S” to an
isometric action on M. Then we obtain the following theorem, the proof of which will be done in
a sequence of lemmas.

S

Theorem 3.1. Let o € CP(M), ¢ =& © o where ¢:[0, ] X S" — [0, w] denotes the projection and
¢ € C*[0, ), and let p be a finite-dimensional irreducible representation of G with character x.
Then

trane® e —f e(p)L(p, gp)x(g) dgdp , (3:3)
has an asymptotic expansion as t — 0 + without logarithmic terms.

We want to apply the expansion of the operator heat kernel derived in [2] to evaluate (3.3).
This requires that we can write A® as a second-order ordinary differential operator with operator
coefficients. To do so we introduce the map

®: C((0, m), L*(S™)) - L*(M),
u(x, w)=f(x)""*u(x)(w), x€(0, ), weS".

In what follows we write f(x)=: xf(x) Then we find, by a straightforward computation, the
following lemma.

(3.4)

Lemma 3.2. @ is bijective C3°((0, m), C*(S")) = C*(M\{N, S}) and unitary as a map from
L*((0, m), L*(S™)) to L*(M). Under ® the Laplacean A on CP(M\{N, SY) transforms to (/

-2+ x7%4(x) on C((0, m), C*(S™)),
where

A(x) =f(x)7 B+ 3n(3n—1) + bnxF(x) + x2(4n°F(x) + InF’ ()
and F(x) = 9, log f(x).

Next we restrict @ to the space C5°((0, ), C*(S™)%) and we obtain a bijection
@5 C2((0, m), €=(5")%) = CP(M\ (N, 5))°.

Again, @, extends to a unitary map L*([0, m], L*(S")%) = L*(M)° which we also denote by
@;. It follows from Lemma 3.2 that A on CP(M\ { N, S})¢ transforms to

~32+x724(x)° on C2((0, m), C=(S™)°),
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where

A(x)=f(x)"? AG. +in(3n—1) + In*xF(x) + x2 ( n?F(x)’ + inF (x))
= f(x) 7% A8G + g, (x) (3.5)

and AS. denotes the restriction of Ag: to C®(S™)C. It is easy to see that the operator family
A(x)C satisfies the assumptions in [2, Section 1]; in particular, it is commutative. Next we extend
A(x)€ to an operator function A(x) on R, satisfying the same assumptions. We denote by T
the Friedrichs extension of the symmetric differential operator

= —02+ x724(x)
with domain C3°(R*, H,) in L*(R,, H) where H = L*(S") and H, = H?*(5§")%, the space of

G-invariant functions in the Sobolev space H*(S"). We relate this operator to our problem.

Lemma 3.3. Let o € C*°(M) with o=¢ ° 0, § € C°(—m, m). Then, ast >0+,

— A9 ~ —tT
trLZ(M)G(p € ! -~ tI'Lz(R+, H)(P € ! .

Proof. Suppose that we already know that

¢0;'uc2(T) if us2(A°). : (3.6)
Choosing i € C°(—m, ) with y=1lina neighborhood of supp & we try

05" e 0§

as a parametrix for 9, + T near 0. It follows from Duhamel’s principle (cf. [10, Theorem 6.1]),
and from the rapid decay of I,(p, ¢g) and its derivatives off the diagonal that

trp2f e T — trpf @51 e B = 0y (1Y), -0+,
for all N (here and in what follows tr;> stands for tr;2  g). Since Y§ =& and ¢<15G_ =& o,
and since @, is unitary, we obtain
| tr 2651 e NP = trp2 e e
So it only remains to prove (3.6). By [7, Theorem 6.1] it is enough to prove that
@ (x) @5 u(x) ||2;2 =0(x) asx—0, foruecP(A°).

Now it has been shown in [4, Lemma 2.2] that 2(A%) = H*(M)®. By (3.4) we have for
ue C®(M)

$(x) 05 u(x) = q~o<x>(xf~<x))"”u<x, W) = x"%(x)

with v(x) = 0 for x near . Next we observe that

fx |0 (x) |7 dx= 3,(¢(x)f(x)"* u(x w))‘ dw dx

2 _ 2
C( | vu ||L2(M) +|lu ||L2(M)) =C|lullman
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where dw denotes the standard volume element on S”. For u € H*(M) and small x we thus find

2 T
x"|lv(x) || 5=x" “H< Cux”f t77dr<Cyx

since n > 2. This completes the proof. O

The computation of expansion (3.3) can now be carried out combining [2, Lemma 3.3 and
Theorem 2.1]. For ¢ € C°(R*) we obtain as in [2, Equation (2.20)]

tr 2 e =/ G(x) try e T(x, x) dx
0

- ()™ L [ gl (x) € a ()
j=

where the U, are universal polynomials in the derivatives of 4. So the asymptotic expansion of

J
tr;2@ e~7 is reduced to the pointwise expansion of tryU;(x) e™™ M) For ¢ € C2(R) we can

use the scaling property

e T(x, x)=x"1e ™ (1, 1)
of T (cf. [7, Section 4]) to get

tr ¢ e T = ci)(x)x_l try e”™ (1, 1) dx. 3.8
L ' .

Here T, is the Fnednchs extension of the “scaled operator”
= —92+ x"24(yx).
As already noted in [2, Section 2] the Singular Asymptotics Lemma of [6] can now be applied to

o(x, §)=§(x)$7 try e (1, 1)
which by [2, Theorem 2.1] has the following asymptotic expansion as { — oco:
a(x, ) ~ B(x)(4m) V2 T £ tr| U (x) e8], (3.9)
Jj=0

By (3.5) we have ff(x) = f"(x)_2 AS. + g,(x) for small x with some smooth function q,, SO We
can write in view of >0

AP (x) = a, (x) A(x) + by (x)

with smooth functions a, and b,. Therefore, U(x) is a polynomial in A(x) with smooth
coefficients. These coefficients are, in turn, easily seen to be universal polynomials in f ' and
the derivatives ). Now it follows from the methods used in the proof of Theorem 5 in [5] that
try2 gnel(A s e mS”] has an asymptotic expansion without logarithmic terms for all k; in fact,

k -
trLZ(Sn)GI:(Agn) € tAg"] = (-—8,)k trLZ(Sn)G € tA%".
Inserting this in (3.9) we obtain an expansion

o(x, &)~ X o(x)$ | (3.10)

Jz—n
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with 6; € C*(R ). Then the Singular Asymptotics Lemma gives the logarithmic contributions
47 log 1 1 7% Tou(0) = ~ 10 log tay, k1. (3.11)

—~tA

To handle the coefficients a, we need the asymptotic expansion of trH e~ = itry € more

explicitly.

Lemma 34. Let p: G — Aut(V') be a finite-dimensional irreducible representation with multiplicity
dim Hom(V, E,) in the complexified eigenspace E, of Ag. with eigenvalue \. Then

try e =Y e ™ dim Hom,(V, E,)
A0

has the asymptotic expansion

(n—1)/2 . )
trye M~ Y ot iV DALt/ Y g gk (3.12)
i=0 k=0

with certain coefficients ¢, depending on p.

Proof. Recall that Ag. has eigenvalues A, = k(k + n — 1). By [5, Section 5, Proposition 1] there
exists an integer m > 1 and polynomials P,,..., P,,_; € Q[x] of degree at most n — 1, such that
dim Homy(V, E,) = P(k) = L7 'c,,k' if k=r mod m and k is sufficiently large. Hence we
can write

m—1
try e_tA= Z Z e—t(mk+r)(mk+r+n—1)Pr(mk+r)+q(t)
m—
=y Z e () eV 4 g (1)

where ¢ is an entire function in ¢ and «,=2r+n—1)/2m, ¢, € Q. Expansion (3.12) now
follows by bringing in the asymptotic expansions

Y e_’(k+“)2(k+ a)21~ '3 (l"‘ %)t—1_1/2 + fui(2) (3.13a)
k=0

and
Y e O ket o)~ AT+ 1) £y (1) (3.13b)
k=0

with certain explicitly calculable functions fui € C°°(IR +)- These expansions can be derived from
[5, Lemma 13] or the representation of e * as an inverse Mellin transform (cf. [8, p. 50]) and
known properties of the Riemann {-function (there is a misprint in [5, Lemma 13(2)]: the factor
(—=1)" has to be deleted). O

If we put B:= A + 3n(3n — 1), then expansion (3.12) becomes
(=12
try e B~et Y TV 24t IAN gtk (3.13)
i=0 k>0 .
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Lemma 3.5. The coefficients a, of the logarithmic terms in (3.11) have the form
ay= Y bpf (3.14)
j=0 v

where the coefficients b; depend only on G and p, and pF are universal polynomials in the derivatives
of ¢ and f at 0, mdependent of G and p.

Proof. By (3.11), (3.10) and (3.9), a, is the coefficient of ¢*/? in the asymptotic expansion of

4m) T a| (#00 e[ e )

Jj=0

Since we can assume ¢ to be an even function, and since, by (3.5), U, and A are even too, it

J
follows that o; is even for all j. Thus a,, =0 for kK € N. Now by

A(x) =f(x)7"B+q,(x) = $n(3n - 1)f(x) "
and by [2, Lemma 2.2], we have
[2/3]

U;(x) = X Cji(x)Bi,

i=0
where the ¢;; are even functions with c{’(0) a universal polynomial in the even derivatives of f at
0. From this we obtain easily by induction

k—1+[2//3]

(k 1)'ak I(U(x) e tA(x)) ’_;0 'dijk(x)Bi et

where d, ;,(0) is again a universal polynomial in the derivatives f®”(0). Thus @, equals the
coefficient of #¥*172 in the asymptotic expansion of

4a) "2 t'd, ; (0) tr, B’ e~ 'B
. 0 j

’ =

0<i<k1—1+[2j/3}

-1/2 i -
=@m)™ Y P 0)(=1) Yty e
0<i<k T 23

Plugging in (3.13) we obtain the desired result. O

Next we show that the constants b, in (3.14) can be controlled by choosing suitable group
actions on S”. We view S” as the unit sphere in Ty M = R"**, Then, for k=1,..., n, SO(k) acts
on S” by g(Xy,--vs Xpp1) = (8(X15-- 05 X1)s Xpis1r---» Xp01) Where on R* we take the standard
effective action; here SO(1):=1Z, acts by x; = —x;. Then dim(S"/SO(k))=n+1—k, and
from [5, Theorems 4 and 5] we obtain the asymptotic expansion

—tAGn —(n+1-k)/2 /2
try, e ~ (4mt) Y a;t”
Jj>0
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with a, = vol(S"/SO(k)) # 0. Therefore, for 0 </<[3(n — 1)] there is a closed subgroup G,C
SO(n + 1) with

/
Gt . 2
try e s~ Y bt T2 gD A L TN o gk
i=0 k>0

and b;# 0; in fact, we only have to choose G,:= SO(n — 2/). Since the coefficients a,,,, are
linear combinations of the b,’s, the proof of Theorem 3.1 will be completed if we can show that
the action of these special groups G, on M produces no log terms. The proof of this fact is
similar to the proof of [5, Theorem 7] and is given in the following lemma.

Lemma 3.6. Let, for 1 <k <n, SO(k) act on M as above. Then, with ¢ € C*(M)°® and x a
character of SO(k), the integral

I(t) ==f ¢(p)L(p, gp)x(g) dgdp (3.15)
MxSO(k) ~
has an asymptotic expansion as t — 0 + without logarithmic terms.

Proof. Since SO(k) acts by isometries, the SO(k)-integrand in (3.15) is a class function. Thus we
can apply the Weyl integration formula (cf. [1, p. 56]): if T, denotes a maximal torus of SO(k),
there is an f&€ C*(M X T,) such that

I(t)=fM>< L(p, 9p)f(p, &) dd dp. (3.16)

We observe that we may assume f€ C°(U X T}) for an arbitrary small T,-invariant neighbor-
hood U of N. In fact, if f€ C°(M\ {N, S} X T,), then (3.15) has no logarithmic terms by [5,
Theorem 4] since T, acts freely on a neighborhood of the projection of supp f in M. Moreover,
M carries an equivariant isometry mapping S to N. We choose U in such _a way that the
Minakshisundaram-Pleijel expansion for I, (cf. [5, eq. (2)]) is valid in UX U. Inserting this
expansion in (3.16) and using the exponential map we have reduced the problem to the
expansion of

i(t) = f e~ I/MF x9) A9 dx (3.17) -
Rn+1 XT
where fe C°(R"*! X T}) and d is the Riemannian distance with respect to the metric expkg on
R"*!, g the metric on M. Now recall that T, has rank [1k]=: k. Writing
X = (xla" ‘s xn+1) = (yl’ Ziseees Vhs ZRs X2ka100- - xn+1) = (x s x”)a
the action of T, = R* / ZF is given by
(P1,..., %) x = (y; cos 2 — z; sin 2@dy, ..., y; sin 209z + z; cos 2ad;, x”
Since d is comparable to the Euclidean distance, we obtain the inequality

k k
X (37 +22)sin’hd, < d(x, 9%) < C X (37 +22) sindo, (3.18)
i=1

i=1
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for (x, &) € supp f. We write r?i=y}+z? and r? ——Zf‘ 72 =1x"|% If V is a neighborhood of
0 in T, we derive from (3.18) for (x, &) € supp f, 9 ¢ V the inequality
—1—r2 <d?*(x, 9x) < C,r2.

Cy
Then it follows from Taylor’s formula that, with polar coordinates in R2*, x’=rw with
(r, w)ER, X §**~1 we have

d*(x, 9x)=a(r, @, x”, 8)r?

with a >1/C,, where a is a smooth function in all variables for (x, %) € supp f, ® € V. Thus,
for supp f€ R"*1 X (T, \ V), the asymptotic expansion of (3.17) reduces to Gaussian asymp-
totics which do not involve logarithmic terms. We may, therefore, assume that f€ CP(R"*! X V)
for an arbitrarily small neighborhood V of 0 in T,. We choose V' such that (3.18) implies the
estimate

<d?*(x, 9x) < CY, r2d} (3.19)

i=1

1
C,

T Mm

in UX V, and in ad~dition invariant under the reflections in the coordinate hyperplanes. Thus the
group G=T, X Z5 acts orthogonally on U X V< R"*! X R*. By construction, d* (x, ¥x) is
invariant under thls act1on The algebra P of G-invariant polynomials is obviously generated
by the functions r;, 02 x;’, <k 2k+1<i<n+1. Hence, it follows from a theorem of
Schwarz [12] that

d*(x, ox) =h(r12,...,r,;2_, 82,..., 02, x")

for some function A € C°°(IR§ X R’i X IR"_Z’;). Invoking Lemma 3.7 below, it follows that

d*(x, 0x) =Y r28h,(x, 9)

i=1

where %, is smooth and w.lo.g. positive on the support of f. Introducing polar coordinates
(7, w;) in the (y;, z;)-integral in (3.17) and substituting 7 := h,(x, 9)*%r, we reduce the problem
to the situation of [5, Lemma 14]. It follows that (3.17) does not have logarithmic terms in the
asymptotic expansion and the proof is complete. O

Finally, we need the following technical result which was used in the proof of Lemma 3.6.

Lemma 3.7. Let h € C*(R. X R, X R™) satisfy

|h(x, ¥, 2) | <C Y %y, (%, 9, 2) ERTXREXR™
i=1
Then there are functions h; € C*(R". X R, X R™) such that

h(x’ ya Z)= inyihi(xa ya Z)? (x> Y Z)ER’—:—XR{LXRM'
i=1

PN
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Proof. We interpret the sums to be 0 if n = 0. Then, for n = 0, there is nothing to prove. Suppose
we have proved the lemma for some n with n—1 > 0. From Taylor’s formula we have, with

x=(x', x,), y=(¥", ¥
h(x, y, z)=h(x",0, y',0, z) + x,h'(x, y, z) + y,h"(x, , z)

where k', h” are smooth. By assumption and the induction hypothesis, we have with certain
smooth functions #;

n—1

h(x',0, y",0, z) + x,h'(x, ', 0, z) +y,h"(x", 0, y, z) = ¥ x,p.h:(x, v, z),

i=1

so the assertion follows from Taylor’s formula again. O
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