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(a)- The conclusion of Theorem 4.5 remains also true if instead of the injectivity of the
canonical map Vect(X) - K°(X) we assume that X is a finite CW-complex and that the
Ky-groups of the AF-fibres of the continuous fields &, and &,. are with large denominators, in
the sense of V. Nistor: On the homotopy group of the automorphisms group of
AF-C*-algebras (to appear in J. Operator Theory).

(b) Since the simple A4F-algebras have the K,-groups with large denominators, the
conclusion of Theorem 4.6 also holds if instead of the injectivity of the canonical map
Vect(X) — K°(X) we assume that X is a finite CW-complex.

In addition to the previous arguments, the proofs of these statements use the stability
properties of vector bundles over finite CW-complexes [9].
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1. INTRODUCTION

In this note we study the discreteness of operator valued Schrédinger
equations. Consider the differential operator

Ti=—02+¢ (1.1)

with a locally integrable potential g acting on C3(R*), R* := (0, o). Then
7 is symmetric in the Hilbert space L*(R ), R, =[O, o0); if we also knf)w
that t is bounded from below then the Friedrichs extension T of t exists
and is self-adjoint in L*(R,) with the same lower bound. An extensive
literature is devoted to the study of conditions on g which ensure the boun-
dedness below of 7 and the discreteness of T (recall that a self-adjoint
operator is called discrete if its spectrum consists only of isolated eigen-
values with finite multiplicity). Apparently the subject started with the
work of Weyl [W] and Titchmarsh [TI]: a sufficient condition for (boun-
dedness below of T and) discreteness of T is

lim g(x)=oo. (1.2)

X — 0O

This has been improved considerably by Molchanov [MO]: assuming

CI(X)>%, XER+a (13)

(which clearly implies the boundedness below of ) a necessary and suf-
ficient condition for the discreteness of T is

1in:or“q(y)dy=oo for O<e<l. (14)
117
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Brinck [BRI] showed that the condition

r+eq(y)dy>—C2 forall x>0and0<s<1 (15)

X

for some constant C, independent of x and e, implies the boundedness
below of 7, and that also in this case (1.4) is necessary and sufficient for the
discreteness of T. This was further generalized by Ismagilov [I] in the
following way. Assume that for some 0<hA<1and 0<x<t<x+h

[ a3) dy>a(0) - ), (1.6a)

where « and f satisfy

[‘tayy+pir149<C2 ~ (16b)

Then t is bounded below and (1.4) is sufficient but no longer necessary for
discreteness (cf. [I, p. 11407). This is, however, the case with the following

condition:

denote by K® the square {(y,?)|0<t—y<e x<1+y<
x+¢} then with p the Lebesgue measure in R? we have

lim ul:{(y, t)“y' 4(2) dz<M}r\K§]=0 (1.7)

X —+ 0

forall 0<e<1 and M>0.

The most general criterion (as far as we know) has been given by Zelenko
[Z]. Assume that g =g, + g, where

g, is locally integrable and satisfies the conditions (1.6)
and g,(x)=7'(x)+2y*(x) for some absolutely continuous
function y: R, - R. (1.8)

Then 7 is bounded below and (1.7) for g, is sufficient for the discreteness of
T. On the other hand, if T is assumed to be semibounded then (1.7) is
necessary for the discreteness of T.

“We now turn to the case of an operator potential; i.e., we consider a
family O(x), xe R, of self-adjoint operators in a fixed Hilbert space H
with common domain H, independent of x. Under suitable assumptions on
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Q (to be stated in the next section) we obtain an operator t on CP(R*, H,)
by setting

Tu(x) == —u"(x) + Q(x) u(x), x>0 (1.9)

7 is symmetric in the Hilbert space L?*(R, , H) and again the Friedrichs
extension T is defined once we know that 7 is bounded below. One reason
to be interested in the spectral properties of these operator valued
equations is that they cover as a major application the Laplacean on
certain noncompact manifolds; we will turn to this question.in Section 4
below. Considerable work has been done by Russian mathematicians in
generalizing the results from the scalar case (cf. the article of Maslov
[MA] and the references given there). If Q(x) in (1.9) is assumed to be
bounded below with lower bound ¢(x) then all the conditions (1.2)
through (1.8) make sense, but so far it seems that with the exception of
[KL] only operator potentials Q satisfying (1.3) have been considered.
Under this assumption (which implies the boundedness below of 7) it has
been shown by Levitan and Suvorchenkova [L +S7 that the Molchanov
condition (1.4) on the lower bound g is sufficient for the discreteness of T.
Guided by various examples of either necessary or sufficient conditions
Maslov [MA] gave a condition which is both necessary and sufficient: if
the lower bound g of Q satisfies (1.3) we introduce the function

Guu(x, 2) i=inf { PR o) u(3) dylue C=(Tx, 41, Hy),

X+ € v 1
lu(y)I =1, y& Lx, x+e], [ ||u'(y)uzdy<T6—5}. (1.10)

Then Maslov’s result is that

lim q,,(x, &)= forall O0<e<1 (1.11)

is necessary and sufficient for the discreteness of T if (1.3) is satisfied. As
pointed out by Maslov the main difficulty in the operator case consists in
the fact that simple necessary and sufficient criteria in terms of Q(x),

generalizing the various conditions from the scalar case, are not available

and one has to introduce functions like (1.10). Maslov’s work has been
extended in [KL] where it has been shown that (1.3) can be generalized to

x+ & ..
f g_(yydy=—C? forall x>0andO0<e<1; (1.12)

X

here g is again the lower bound of Q and ¢_(x) :=min{g(x), 0}.
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The purpose of this note is to present results that unify and extend the
previous work just described. In the operator case, the main observation is
the following. Instead of imposing conditions on the lower bound g of O
we look for a priori estimates for the bilinear form generated by Q in

L*R, , H). If © is bounded from below we have for ue CP(R*, H))

|7 <oayute) ue) dx> 1= €

It turns out that the above-mentioned conditions on g, in particular the
most general Zelenko condition (1.8), imply the estimate

7 <00 utx), ) dx> (6= 1) Il = C s

or equivalently

(tu, u) = 8 |17~ C ulZ2 (1.13)

for ue C? (R*, H,) with supp « contained in an interval of length 4,
0<h<hy<1, and some 6> 0. Under this “coerciveness” assumption on t
we give a necessary and sufficient criterion for the discreteness of T of
Maslov type (Theorem 3.1 below) from which the results described above
can be derived rather easily. In the scalar case, we give a necessary and
sufficient condition for the discreteness of T assuming only that g is locally
integrable and that t is bounded below (Theorem 3.4). The structure of the
condition is natural if one studies the Laplacean on noncompact complete

manifolds with nice ends. In the latter case we also obtain new necessary oOr -

sufficient conditions (Theorems 4.1-4.3).

2. GENERAL DISCRETENESS

The general discreteness criterion applies to the following situation. For
each x>0 we are given a self-adjoint operator Q(x) in some Hilbert space
'H, with domain H, independent of x. We assume that the map

R+ax+—>Q(x)e££(Hl., H) 2.1)

is Bochner integrable. Then we introduce the symmetric operator

7= —02+ Q(x) (2.2)

with domain CP(R*, H,) in the Hilbert space L*(R,, H). To guarantee
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the existence of self-adjoint extensions of 7 we further assume that 7 is
bounded from below; for simplicity we assume lower bound 0, i.e.,

(tu, u) 20 for ueCP(R* H)). (2.3)
Then the Friedrichs extension T of t exists and is self-adjoint in LR, H).
For the proof of our first criterion we prepare a simple lemma.
LemMa 2.1. Let 0<a<b<oo and ueC*®([a, b], H) with u(a)=
u(b)=0. Then there is a sequence (u;).5,< CT((a, b), H,) such that
u,(x) — u(x) in H,, uniformly in xe [ a, b1,

u, > u in L*([a, b], H).

- In particular, if e: L*([a, b], H) —» L*(R ., H) denotes extension by 0, then

e(u)e D(TY?) and

e(uy) s e(u)  in@(TY?).

‘ Proof. Choose a sequence ()i x < CP(a, b) with 0y, <1, i(x)=1
in (a+2/k, _ b—2/k), xu(x)=0 in (a,a+l/k)u(b—1/k,b), and
[x(x) < Ck’ for j=1,2. We see immediately that u,(x):=y,u(x)
converges to u(x) in H,, uniformly in xe[a, b]. One computes for
G =u—u=(1-yx

b b ' ' '
J| Ve dx = L0 = 20))? B (= (1= ) 200) )]
and by the estimate

lu(e)l y <min{x—a,b—x} max |u'(»)lu
yelab]

the second integral is O(1/k).

By dominated convergence it is clear that (e(uy))c»; is a Cauchy
sequence in 2(T"?), and since e(u,)—e(u) in L*R,, H) we have
e(uy) = e(u) in D(TY?), too. | )

.Thfe following result is the operator analogue of Ismagilov’s “localization
principle” (cf. [1] or [GL, p. 39]).
THEOREM 2.1. Assume (2.1) and (2.3). The following conditions are

necessary and sufficient for T to be discrete.

(@) For x>0 denote by T, the Friedrichs extension of
| CR((0, x), H,) in L*([0, x], H); then T, is discrete.
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(b) For x>0 and 0 <e< 1 introduce
H(x, ) == inf{(tu, u) |ue CL((x, x + &), Hy), lull ym,. y=1};  (24)

then

lim #(x, &)= co.

Proof. (1). We show first that our conditions are necessary. As for
condition (a) we recall that a self-adjoint operator is discrete iff its domain
embeds compactly into the whole space. The discreteness of T is equivalent
to the discreteness of T2 hence it is enough to show that extension by
zero maps D(TY?) into P(T2). Now it follows from the definition of
the Friedrichs extensions and [KA, Chap.V, Theorem 3.35] that to
ue D(TY?) we can find a sequence (4,),.n< C5((0, x), H,) such that
u,—u in L*([0, x], H) and im, ,  o(t(t, — ), 4,—u,)=0. Denoting
by e the extension map this implies that e(u,) = e(u) in L*(R,, H) and
i, , - o(t(e(u,) — e(,,)), e(u,) —e(u,,)) =0 hence e(u) € D(T?).

Assume next that (b) does not hold. Then we can find &, >0 and sequen-
ces (xn)neN’ (un)ne N with Xn+1 > Xy + &, U,E€ CSO((xm Xn + 80)’ Hl)s
lu,ll =1, and such that (tu,, u,) < C for some constant C and all n. But
then the u, span an infinite-dimensional subspace #* of 2(T) such that

(Tu,u)<C forall ues#.

This implies that T cannot be discrete so (b) must hold.

(2). We turn to the sufficiency of (a) and (b). Fix ¢>0 and define for
ue CP(R* H,)and NeN '

sin{x/e) u(x), 0 < x < Nme,
Pyu(x) = 0 x> Nme
’ ’ (2.5)
& _ 0, 0<x< Nne,
2u(x) 1= sin{x/e) u(x), x> Nre,

and define ¥, u, ¥,u analogously using cos(x/e) and (2N + 1)/2 instead of
sin(x/e) and N. Then we have

2

i=

'We claim that for ue CF R*, H,)

(1 ()% + | P () 3) = ()N - (2.6)

®u, Puecd(TY) for i=1,2, 2.7)

2

1
ITPul%> Y, (TPl + I TP al3) = lullds (28)

i=1
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and

1 TY2B,ul 22+ T2 Pull 32 > M(|9oull 72 + | Pull22), (2.9)
where M can be chosen arbitrary large if N is sufficiently large. Granting
(2.7), (2.8), and (2.9) for the moment we now assume that 7 is not discrete.

Then we can find C >0 and a subspace % < 9(T), closed in LAR ,, H), of
infinite dimension such that

I TYu2, < C |lul|22  forall ue. (2.10)

We may assume that % is an infinite-dimensional subspace of C3°(R*, H,);
in fact, if (e;);>, is an orthonormal basis of # in L* (R, , H) we can find
u;€ CP(R*, H,) such that

Nui_ei”2+ IlTl/z(ui—ei)ll2<2"} ieN,

since C2(R*, H,) is a core of T2 Then the space spanned by ()5, has
infinite dimension and its elements satisfy (2.10), possibly with a different
constant.

Combining (2.8), (2.9), and (2.10) we find for M > M(C, ¢)

I ull> + 1l > < S llul)?

hence by (2.6)

1Dyl + 1 ull® = 5 ul” (2.11)

This together with (2.8) and (2.10) gives

170wl + | T2 > < CIul® + 19l (212)

Now (2.12) means that for ve d, XDV, U =V

TNz ® T 4 1o )02 < C” 0]

Since by (2.11) ¥ has infinite dimension this contradicts (a).

It remains to prove (2.7), (2.8), and (2.9). Equation (2.7) follows
from Lemma 2.1. Equation (2.8) follows from (2.7) and a straightforward
calculation. '

To prove (2.9) we fix M and choose N so large that

Hx,e)=M if x=N (2.13)
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which is possible by assumption (b). We put

szanE, Xpp1 =X, +TE if }120,

Yo=QN+1)me/2, y,.,:=y,+me if n>0.

Using Lemma 2.1 as above it follows from (2.13) that for n>0

[ D@20 (0l + < Q(x) Bu(x), B5u(x)>] ax

Xn

>M [ @) dx, (2.14a)

[ T (1 + <00 Pautx), Wau(x)>] dix

Yn

>M [ 1P,u))? dx. (2.14b)
Yn :

Summing (2.14) over all n proves (2.9) and completes the proof of the
theorem. || '

As an easy corollary we obtain an abstract version of the “decomposition
principle” in the discrete case, introduced in [GL] for scalar equations and
in [D + L] for the case of the Laplacean.

THEOREM 2.2. Suppose that T satisfies (2.3). Then T is discrete iff

(a) T, is discrete for all x> 0;
(b) writing for x>0

t(x) :=inf{(tu, u) |lue CP((x, ), Hy), |lull,=1}
we have

lim #(x)= co.

X —+ o0

Proof. (1) Assume that (a) and (b) hold. Then (b) is also true and T'is
discrete by Theorem 2.1. .

(2) Let T be discrete and fix M > 0. Determine N = N(M) such that (2.9)
holds with M replaced by M +1 and ¢=1. Choose x> (2N + 1)7/2 and
ue Ce((x, o), H;). Then @, u=¥,u=0 and from (2.8), (29), and (2.6)
we obtain

(tu, u) = M |ul 7.

SCHRODINGER OPERATORS 125

The proof of Theorem 2.1 can be used to obtain the following global
versions of (1.13).

THEOREM 2.3. The following conditions are equivalent to (1.13).
(2) There are constants C,, C, >0 such that for all ue C$(R*, H,)

(cu, u) 2 Cy |17 — Ca JullZe. (2.15)

(B) @(T*)c HY(R*, H)~ H"*(R*)® H where H"“* denotes the
usual Sobolev space. ,

Proof. We prove the implications (1.13) = (a)=> (f) = (1.13). Assuming
(1.13) for ue CP((x, x+h), H,) for x>0 and some 4, 0<h<1, we con-
clude from Lemma 2.1 that (1.13) also holds for ue C*([x, x + ], H,) if
u(x)=u(x+h)=0. With e=h/n in (2.5) we have for ue CP(R*, Hy) by
(2.8)

7'[2

2
()= 3, (1T ul| 7+ | TP ul?) — 73 lullZa-
i=1

We write xq:=0, x,,, =x,+ 708 yo:=—ng/2, y,. =y, +7e and find
from (1.13) (—

2

Y (NT2@ull 32+ I TV2¥ 1 32)

i=1

-2 U (16.{sin(x/e) u(x))]?

nz0

+ {Q(x) sin(x/e) u(x), sin(x/e) u(x))) dx
[ (1o (cosCefe) uGe)I®

Yn

+ {Q(x) cos(x/e) u(x), cos(x/e) u(x))) dx:l

> UXM(& 10,(sin(x/z) u(x))]12 — C sin?(x/e) lu(x)|?) dx

477" 6 10.dcos(afe) eI € c0s(xf) 1)) i

26 w7~ Cllul 2.

This proves the first implication. The second implication follows from the
fact that CP(R*, H,) is a core for T'?, by definition of the Friedrichs
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extension and [KA, Chap.V, Theorem 3.35]. Next, assuming (f) it
follows from the closed graph theorem that the inclusion map
2(T'?)c H**(R*, H) is continuous from which we obtain (2.15) by
definition of H? Equation (2.15) clearly implies (1.13). |

3. SpecrIFic DISCRETENESS

More specific discreteness criteria will now be derived from Theorem 2.1.
We start by observing that condition (a) in Theorem 2.1 is implied by very
natural assumptions on Q. '

LemMa 3.1, If the function (2.1) is continuous and if Q(z) is bounded
below and discrete for all x then T, is discrete for all x.

Proof. Fix x>0. It is enough to show that any sequence
(un)nzl < CSO((O, i), Hl) Satisfying

1T u, | + u,l?< C (3.1)

has a subsequence convergent in L*([0, ], H). To see this let g(x) denote
the lower bound of Q(x). It follows from our assumptions on Q and
standard interpolation techniques that the function

(Q(x0) — g(x0) + 1) T2(Q(x) — (o) + 1) Q(x0) — g(x0) + 1) =2 =: J(x)

is continuous on R + with values in the space of hermitian operators on H.
Since Q(x,)=1 this implies the estimate

Q(x)v, v) = (1—6)<Q(x0)v, v) (3.2)
forveH,,0<0<1, and |x — x| < e=¢(x,, 6). We cover [0, %] with inter-
vals Jy = (x, —¢&, x; +¢), l <k <K, such that (3.2) with x, replaced by x,

and 6 =3 holds in J,. Let (,);>; be a partition of unity subordinate to
this covering. By (3.2) there is a constant C >0 such that

Qx)yv,v>=—C|v|? for xe[0,x]andveH,. (3.3)
From (3.2) applied to all x, and (3.3) we now obtain the estimate

[, THOH ) G + <QO00) Y, Yeaen) 3 1 i

SCUTH u* + luall®) (34)
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for 1 k< K and all n, with C independent of k and n. Now the Friedrichs
extension of the constant coefficient operator

T = —02+ Q(x,)

in L*[0,x), H)~ L*[0,x]® H has domain H?*0, x)n H}O0, ¥)® H,
which embeds compactly by Rellich’s theorem and the discreteness of
Q(x.)- Hence it follows from (3.4) and (3.1) that the sequences (Y ,,),5,
as well as all their subsequences have convergent subsequences in
L*([0, x], H), hence the same is true for (#,), > . The lemma is proved. ||

We observe next that assuming the continuity of (2.1), the discreteness
and boundedness below of all Q(x) is necessary for the discreteness of T.

LemMA 3.2, If the function (2.1) is continuous and if T is discrete then
Q(x) is discrete and bounded below for all x = 0.

Proof. We start with the proof of discreteness. Let (v,),», be a
bounded sequence in H; and pick ¥ e CP(R*) with ||yfl,2=1. Then
u, = Yv,e P(T) and

I Tl * + IIunllz(

<23 [ W) dz
0

£2 [ W 1QGR) ol d+ [ W) Il dx

< C vl

by the continuity of x> Q(x). Hence (u,),, is bounded in &(T) so by
discreteness we may assume that (u,),-, is convergent in L(R, , H). Since
10, — 0l % = 4 — |32 (0,)) 5 1 1 convergent in H which proves that H,
embeds compactly into H.

Assume next that Q(x,) is not bounded below for some x,>0. Then we
can find a sequence 1, — — oo and corresponding v, € H, such that

loal =1,  <Q(x0) v, v,> <Ass  [1Q(xoI0Wl w<IA |+ 1. (3.5)
Since Q(x,) is closed in H with domain H, we have for ve H,
o1, < Clxo)*(1Q(x0) 0l 1 + 0l 3); (3.6)
and since (2.1) is continuous we have also

@(x) — Q(x0))oll 1 < (2C(%0)) " 0]l (3.7)
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if |x—x,| <6 for suitable 6 = d(x,). Choosing Y € CP(x,— 9, xo+ &) with
f¥?=1 and setting u, :=yv, we obtain

(Tu,, u,) < Jow LI ()1 + [ ()2 AQ(x) — Q(30)) Dy 0,0 1 dx + 4,

<CO)+ 34l +2)+ 4,
<(C+34,) ul?
by (3.5), (3.6), and (3.7). This contradicts (2.3). |

Our next goal is to replace (b) in Theorem 2.1 by a more practical
condition similar to the Maslov condition, adding now the coerciveness
assumption (1.13). To formulate our result we put a, :=max{n?, 6 '} with
-6 the constant in (1.13), and introduce

X
x

aut0)=int {77 QM) W) dylue (s +0), 1),

o
JulZ=1, nu'niz<8—2}, (3.8)

where o is any constant > a,. Note that this choice of & makes sure that the
set on the right hand side of (3.8) is nonempty.

LemMa 3.3. Suppose that (2.1), (2.3), and (1.13) hold. Then (b) in
Theorem 2.1 is equivalent to

lim ¢q,(x,&)= for all O<g< hyand all o> ay. (3.9)

Proof. (1) Assume (b). Then from

1(x, €) <inf{(tu, u)|[ue CL((x, x + &), Hy), lull7:=1, [w']|72< o/e?}
< ofe’ + q,(x, ¢)

for all a> o, we deduce that lim, _, ., g,(x, &)= c0.

(2) Assume (3.9) for some o > &, and fix ¢,>0 and M > 0. Then we have
to find xo=x4(M, &) such that #(x, e,) =M if x>x,. With N, & to be
determined later we consider ue CP({x, x +¢&y), H;) where we require
x> (2N + 1)rg/2. Using the definition (2.5) we have @,u= ¥,u=0, and
(2.7) and (2.8) give

D,u, Youe D(TY?), (3.10a)

1
(vu, u) > | TV2@yull* + || Tl’zq’z?’zullz—-s—g |uall Z2- (3.10b)

SCHRODINGER OPERATORS 129

We put x, ;= Nne, x,,,, :=x,-+ne Then

IT@ul2= % [ [H®su) (D)3 + <Qx) Byu(x), Byu(x) ] do.

nzl"*n

Given ne N assume first that

s

Xn

+1 o [Xn+1
1(Pou) ()F dx > — @, u(x)117, dx. (3.11)
€7 Vx,

If £ < hy we deduce from (1.13) and Lemma 2.1 the estimate

[ 1@y G+ <Qx) Bou(ar), Bru(x) )] dx

Xn

>(‘§‘ )f 1, u(x)|2, dx. (3.12)

Xn

If (3.11) is not satisfied we apply again Lemma 2.1 and deduce from (3.8)
that

[ L@y (13 + <Qx) Boutx), @yu(x)>] dx
> e) [ 195ulx)l} dx. (3.13)

Combining (3.12) and (3.13) and summing over all ne N we obtain

) 0 .
Tl min {75 G, nt 0.0} 100"

Setting y, :=(2N+1)ne/2, y,..:=y,+7ne a completely analogous
argument gives :

2 .. fod .
7l > min (%= C, inf 003, 0)} 1 Pl

Hence it follows from (3.10b) and (2.6) that

. o—1 . , .
(03 min {2 C, il g )= 1, 0 (320 €)= U}
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Since ayd — 1= 0 by assumption we can now choose 0 <& < ki, such that

ad—1 ad—1
= —-Cz2M or 82<M+C.

By (3.9) we can determine N = N(M, &) such that
qu(x,8)=>M+1/e* if x> Nne.

The proof is completed with xq=(N+1)ne. |

Combining the preceding lemmas we obtain

THEOREM 3.1. T is discrete if and only if (

(a) T, is discrete for all x>0;
(b") for 0<e< hyand all > oy

lim g,(x, &)= 0.

We proceed to show how the results mentioned in Section 1 follow from
Theorem 3.1. We observe first that a condition stronger than the Zelenko
condition (1.8) implies (1.13).

LeMMA 3.4. Assume (2.1), (2.3), and that Q is bounded below a.e. Denote
by q(x) the lower bound of Q(x). If g=gq, + q, where q, is locally integrable
and satisfies (1.6) and

q2(x) 2 y'(x) + {y(x)? (3.14)

for some { > 1 and some absolutely continuous function y: R, — R, then t
satisfies (1.13).

Proof. Since for ue CP(R*, H;) we have by assumption

(1,02 [ (0206) + 42(x)) o)l e + 1,

it is enough to prove the following inequalities:

(1) there is n >0 such that

7 020 o) > (n = 1) 11353 (3.15)
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(2) if suppu is contained in an interval of length at most / then
L q1(x) llu(x)|; dx = — Ci(h) ||| 2, (3.16)

where lim, _, , C,(#)=0.
For the proof of (3.15) we estimate

J,” @:00) o) > [~ /o) + o)) ) e
= |7 (@00? lulee)l 3= 2900) Reulix), w(x)) dx

z L (Ly(e)? N 3 — 2y (x) Nu()ll g Nl ()] ) dx
> (7] 2
The proof of (3.16) is implicit in the work of Ismagilov [1]. We repeat

the argument for convenience of the reader. We write for 0<x<t<x+h
with «, § as in (1.6)

o) = qiw)du,  P(1):= sup (O(s)—B(5))
R(t) ;== 0O(t)— P(1).
Then we have

a(t) < R(1) <ﬂ(i). (3.17)

In fact, the right inequality is obvious from the definition of P whereas the
left one follows from

0(1) ~ (0(s) — B(5)) = B(s) + [ g3(u) du>a(2)

by (1.6a). From (1.6b) and (3.17) we find

x+h
f R(t)*dt<C2 (3.18)

X

Since P is increasing and ¢, is locally integrable we can now estimate for
ue Ce((x, x+ k), Hy)
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[ gu(o) Ity

x

=r+h (P'(1)+ R'(2)) Nu()lI7, dt

X

> _r” 2R(t) Reu(t), u'(1)) dt

: x+h 172
>—2 sup f w(s)ds| |z < j R(1)? dt>
x<I<x+h lITX H x
> —2h'2C |u'| % (3.19)
using (3.18). The proof is complete. / ‘

To deal with the case { =1 in (3.14) which is of interest in applications
we need the following recent result of Gurka [GU] on weighted Sobolev
estimates. It will also lead us to general coerciveness and discreteness
criteria in the scalar case.

. LemMa 3.5. Let 0<a<b<oo and let g, heCla,b] be positive in
(a, b). Then the weighted Sobolev inequality

fb 2(x) ju(x)]> dx< A f * hx) |1 ()2 dx (3.20)
holds for all ue CZ(a, b) iff

B:= sup min {r g(x) dx Jl h(x)~!dx, r g(x) dx fb h(x)™! dx} < 0.
a<t<s<b ’ a t s
(3.21)

Moreover, we have
B<24<8B. (3.22)
This leads to the following coerciveness result.

LemMA 3.6. Let Q satisfy the hypotheses of Lemma 3.4 with { =1 and
put

a(x) 1= e (3.23)
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Then (1.13) holds if for some h,0<h<1,

sup sup min

x>0 O<t<s<b

2 a2

S [ an [ Corw[ " an v<e.
(3.24)

If Q=q and q, =7y +7?, then (3.24) is also necessary for coerciveness.

Proof. By (the proof of) Theorem 2.3 and Lemma 3.4, it is enough to
prove the estimate

llo'l1Z2+ Lw (' (%) +9(x)*) lu()l% dx 20 |7~ C ulZ

for ue CP((x,x+ k), H,), some h with 0<h<1, and certain constants
1, C>0. Using an orthonormal basis in H it is easily seen that it is enough
to prove coerciveness for the scalar potential

, . Lla'(x) 1/d(x)\?
e 35w

Then the unitary map
& LH(R,)surra Pue LA(R, ,adx)=: L2

transforms = — 9%+ y'(x) +y*(x) to
1
1, =@1P*=——0,.a0,.
a

The inequality
(tw,u)zn >  ueCP(x,x+h), (3.25)

is then equivalent to

ar 2

vV t=—v| |, ve CP(x, x+ h),
2a

(749, ")L§ =1
L

and this in turn is equivalent to the weighted Sobolev inequality

J~x+h a’([)z
a(t)

where C is independent of x. Now the assertion follows from Lemma 3.5.

P di<c [ a (ol d
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Assume next that in the scalar case Q(x)=g(x), (1.13) holds for
0<h<hy<1. Replacing ¢ by g+ C gives the decomposition g+ C=
g, + C + g, where g, + C still satisfies (1.6). Using (3.16) we obtain (3.25) if
h is chosen small enough. Since this implies the weighted Sobolev
inequality with C independent of x the assertion follows again from
Lemma 3.5. |

The preceding lemmas show that Theorem 3.1 is applicable in all cases
listed in the Introduction. We now derive various discreteness criteria from
condition (b') in Theorem 3.1. We show first that the Ismagilov condition
(1.7) on the lower bound of Q is sufficient for discreteness in a large class of
potentials, extending the Zelenko class even for scalar potentials.

TueorReM 3.2. If the lower bound q of Q is locally integrable and satisfies
the assumptions of Lemma3.4 or Lemma3.6 then (1.7) is a ifficient
condition for discreteness.

Proof. By Theorem 2.1, it is clearly sufficient to show that we have dis-
creteness for the scalar operator 7 := — 82+ g(x) on L*(R , ). By Lemma 3.4
or Lemma 3.6, Theorem 3.1 applies to 7. Thus a necessary and sufficient
condition for discreteness of 7 is

. . +e
lim  inof q(t) lu(t)|? dt = 0
x—00 ueHrevx
where we have put &, , = {ue C¥(x, x+¢)| |ulf.=1, lu'||2, < ofe?} for a
suitable constant a. Now

[ o+ o) o de

x

=fx+2 (Ly2(2) [u(2)|> —2y(t) Re u(t) u'(r)) dt

x

4, a
= -0 W Z> —¢ 1;:7

By (3.14) it is therefore enough to show that .

lim  inf r+8q1(1)|u(t)|2dt=oo, (3.26)

X—00 ueHy,

where g, satisfies (1.6). The proof of (3.26) is due to Ismagilov [1]; we
reproduce it here for completeness. Recall that with the notation
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introduced in the proof of Lemma 3.4 ¢,(x) = P'(x) + R'(x) with P’(x) >0,
and that by the estimate leading to (3.19) for ue #,,

fm 2:(t) (1)) dt;fm P'(t) [u(t)|? di— C,. (3.27)

X

For x>0, 0<s<t<¢e, we write

0us =] g,

x+s

P.(s, 1) :=P(x+1t)— P(x+3s), R (s, 1) :=R(x+1t)— R(x +35),

SO

O.(s, 1)=P(s, 1)+ R.(s, 1).

Now (1.7) means that @, — co in measure as x — co and by (3.18) this
implies that P, — o0 in measure, too. But from P’'>0 it follows that
lzx(s, 1)< P,(s, t') whenever s'<s and ¢ >t hence we conclude that
P (s, t)— o0 for all 0<s<t<e To prove (3.26) we now observe that for
ue i, , we can find yoe (x, x +¢) with |u(yo)|>=¢~" and |u(y)|>= (4e)~!
if |y—yol<e/4a. Any such interval contains x-+ je/i2«¢ and
x+(j+1)(¢/12a) for some j with 0<j<[12a]+ 1, so (3.26) follows from
P'>0and P (0, ¢/12a) > o0 as x> 0. |

Next we derive an extension of Maslov’s criterion [MA] which also
contains the result of Kleine [KL].

THEOREM 3.3. Assume (2.1), (2.3), and that Q is bounded below a.e. If

Brinck’s condition (1.5) holds for the lower bound q of Q then a necessary
and sufficient condition for the discreteness of T is

xlirrio qu(x;8 ) =00, (3.28)
where for &, { >0 we put

autis 0=int {7 <00ty ) ]

ue C(|x, +¢&l, Hy), [u(y)ll =1 for ye [x, x+¢],

J‘X+£

X

Hu’(y)llzdysc}.
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Proof. By Lemma 3.4, Theorem 3.1 applies and 6 in (1.13) can be any
number < 1. So we have lim, _, ., g,(x, &) = oo for all ¢ >0 and all « >=* as
necessary and sufficient conditions for discreteness. Now assume that T is
discrete. Choose ue C®([x, x +¢], H,) with |u(y)ll=1, ye[x, x+¢], and

[ womar<e
Write u,(p) := (2/e)Pu( y) sin(nfe)(y — x), uy(y) = (2/e)u( y) cos (n/e)
(y—x); then

217 ) u) ) dy

X

= [ K@) (3), () + Q) ua7) wal1)] ﬂ(y
To estimate the second term we use Q(y) = g(y), the assumptions on g and
u, and Lemma 3 in [BRI]. This gives

[T <o) ), wlr)> dy

X

> [ U+ (D) dy> —Cs,

where C, depends only on ¢ and (. We observe next that
ulecw([xs x+£]’ Hl)a ul(x)zul(x+8)=03

[y =1,

X

[ a2 dy < o2 4+ 260) = afe?

x

hence

2 rx+e
=[O U ()Y > 4ulxs £) — o,
and since ¢,(x, &) = co as x - co we obtain (3.28). . .

Next assume (3.28). Choose ue CP((x, x +¢), H;) with [ul7.=1 and
|12 < ofe* for some a>n? As in the proof of Theorem 3.2 we can
decompose [x, x +¢&] =1, ul,uI; where each I; is a closed subinterval of

length > Ce with C independent of x and & and |lu(y)|?>=1/4¢ for yel,.
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Applying Lemma 3 of [BRI] as before we find with i(y) := u( y)/|lu( )|

[T <o uts), uy)>

X

>[  a» ey

+f,2 [é <Q(») (), a(y»+q(y>'("u(y)”2‘é>] v

1 px*+Ce
>—Cre | QW) i) d.

Here C is independent of x and x* e [x, x +¢]. Now it is easily checked
that 4e C°([x*, x* + Cel, H,), |#(y)||=1 for ye [x*, x* + Ce], and

x* + Ce o 8a
L wora<=

This gives
1
qu(x, €)= — C+§ qr(x*; Ce, 8a/e).

Thus (3.28) implies the discreteness of T by Theoreml3.1. 1

The methods developed so far enable us to give a necessary and sufficient
discreteness criterion in the scalar case assuming merely (2.1) and (2.3) but
no further conditions on the potential. This criterion is based on the
Riccati equation

Y (x) +y(x)* = g(x)
which enters naturally if we apply our technique to the Laplacean on
complete manifolds (cf. Section 4). In the remainder of this section we will

assume Q@ =gq.

"THEOREM 3.4. Assume (2.1) and in addition

inf  (tu, u)=0. . (3.29))

ue C(R*)
Then T is discrete if and only if the Riccati equation

Y () +(x)* = gq(x) (3.30)
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has a solution y in R* with the property that for all 0 <e<1

. . s t . s x+6 .

im  sup min{["a)ay a0~ [at)ay [ el af=o,
xX— o x<t<s<x+t+e t x t s

where a is defined by

a(x) = 2D, (3.31)

Proof. We start with the proof of pecessity. If T is discrete and satisfies
(3.29) then 0 is an eigenvalue. If ;:5 is a corresponding eigenfunction
normalized by w(1)=1 then it is well known that w(x)>0 if x> 0. Thus

_w(x)

P(x):

 w(x)
solves (3.30) for x> 0. Thus with a defined by (3.31) we have

Cla'(x) 1 (M)Z

e SR e b

y(x)= 3 ax)

If T denotes the Friedrichs extension of t| C2(1, c0) in L*[1, c0) then T'is
discrete, too, by the max—min principle. As in the proof of Lemma 3.6 we
see that T is unitarily equivalent to the Friedrichs extension T in
L*([1, ), adx)=: L2 of

1
1, :=01Pf = — 0,.a0,

with domain C2(1, 00); here @, u(x) = a(x)~*u(x). Applying Theorem 2.1
to T we see that for M >0 and 0<e<1 we can find x, = xo(M; &) such
that for x = x,

() S M Yauu) if ueCP(x,x+e)
Setting v := @, u we obtain
(Da v)LZ SM_I(’CIU, U)Lﬁ'

Since @, is bijective as a map of C&(x, x + ¢) onto itself we thus obtain
X+ & 2 1 X+I; , 2
[T e <Mt [ an vy (332)

for all ve CP(x, x +¢). Now the assertion follows from Lemma 3.5
For the proof of sufficiency we start with the sglution y of (3.30) and
define a again by (3.31). As before we obtain that T is unitarily equivalent
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to T, and from Lemma 3.5 we obtain (3.32) for all M >0 and 0 <e<1 if
x> xo(M, ¢). Thus Theorem 2.1 implies that T, and hence T is discrete. But
then it follows from Theorem 2.2 that T is discrete, too. |

The next lemma provides necessary or sufficient conditions for the
discreteness of T" in terms of y; this will be important in the next section.

LemMMA 3.7. (a) If T is discrete then for any solution y of (3.30) in R* we
have for 0<e<1

. X+e&
lim j Iy(2)] dt = oo
and

lim  sup

X200 x<z<y<x+eE£iZ

() a’tl = 0.

(b) If (3.30) has a solution y such that y is bounded either from below
or above and

lim
X = 0O

X

fx+ev(y)dy’=oo

for 0<e<1 then T is discrete.

Proof. (a) Defining again a by (3.31) we obtain from the proof of
Theorem 3.4 that the weighted Sobolev estimate (3.32) holds for
x> xo(M, ). We replace ¢ by 3¢ and choose v(y) = sin(n/3e)( y — x) which
is possible in view of Lemma 2.1. It follows that

7[2 X 4 2

x+ 3¢ 3 ) e
ge—zfx a(y)dy=y Mj a(y) dy. (3.33)

x+e

Put x,:=x and x;:=x,_,+¢, ieN, and conclude from (3.33) that with
o :=27¢*/4n? for all Ne N

aM j" a(y)dy < <LO + LN” +3 j:") a(y) dy. (3.34)

We have to distinguish two cases. If |{° a(y) dy = co then it follows from
(3.34) that fo; large N

e

xN

"y dy> @M —3) [ a(y)dy— [ a(y)dy

o XN
>§Mf a(y) dy.

XN-1
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This means that

X4 & X
[Tandy=m|  aly)dy (3.35a)
if x=x(M,¢).

If [ a(y) dy < oo we let N — oo in (3.34) and deduce that for M > M,

[’ ay)dy=M|[ " a(y)dy. (3.35b)

x—&

Now we observe that with
ri(t) dt }
a

A(x, &) = min {rj f’a-'(t)

dt, sup

x—e<y<z<x+¢

we have for ze [x—¢, x], ye [x, x+¢]

a(y) < a(z) e?=*), (3.36)

Assume now that (3.35a) holds; we integrate (3.36) over ye [x, x+¢] and
obtain from (3.35a)

M r a(y) dy < ea(z) e*=.

Integrating over ze [x —e¢, x] gives

e > M or A(x,e)=logM
which is the assertion in this case. If (3.35b) holds instead we just
interchange the role of y and z in (3.36).

(b) As in the proof of Theorem 3.4 it is enough to establish (3.32) for all
ve CP(x, x +¢) if x> x(M, ¢); here a is again defined by (3.31). In view of
Lemma 3.5 this will follow if we prove for te [x, x 4+ ¢] the estimate

L
sup jdyj a(y)dy=: sup F(0)<7 (337a)
xX<tI<X+e¢e ) X<[<X4+E
or
xX+¢&

sup fa(y) y_[ =: sup F,,(t)<i. (3.37b)

x<t<x+e x<i<x+te
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By assumption, we have for given M'>0, 0<¢'<1, and x> x(M', &)
either

_J“ i(y) dy=M' (3.38a)
or

x4 &'
[z ( PYdy= M. (3.38b)
Assume (3.38a); since F, (x)=F,(x+¢)=0 and F, is positive in (x, x + &),
F, takes on its maximum in 7, € (x, x+¢). Then

ta d .
0="F;(t,)= Caly) dy—ate) [ 22 (3.39)

( a) tg
and it is enough to estimate the first integral on the right hand side of
(3.39). To do so we write

1 x+e

7 (a'la)(s)ds
eLa( fa)s) d)’
a(la) 7]

a(y)dy= Lx

With ¢', M’ in (3.38a) to be chosen later we put y,:=1,, y;:=y;,_;+¢
and determine Le Z | by Ye<X+eSYrir- fyely,yivi1) 1<is<L, we
estimate

_[:%’(s) ds=<j: +D";’(s) ds

< —iM'+¢C
i M M’

€ e "CL e (Y — !
R (y—t)+e'C 28,(y t,)+e'C

if we have the one-sided bound (a'/a)(x) < C for x > 1. Thus we obtain

I

&'C— (M2’ Wy —ta) dy

a ta+ &

X+ &
e.b (a’/a)(s)ds dy <g'e’ 'C _*_j e
ecf o [*F°  —zeyy—10)
<e*C|é + e e dy
fa

2
< eC/ 1
(*M')
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So we may choose M’ =2 and &’ so small that

1
2 t ,Ce <—
g e i
‘to reach the desired conclusion. If (3.38b) holds the proof is completely
analogous. |

Finally, we single out the following obvious corollary to Lemma 3.7.

THEOREM 3.5. Suppose that the Riccati equation (3.30) admits a solution
y in R* which is either bounded from below or bounded from above. Then T is
discrete if and only if for 0<e<1

lim
x—00 |Vx

r+ev(y) dy]=00-

4. AN APPLICATION

Our results can be applied to self-adjoint elliptic operators on noncom-
pact Riemannian manifolds. As an example, we treat the Laplacean on
functions on a noncompact complete Riemannian manifold M. We make
the following assumption on the structure of M at infinity: there is an open
subset U of M such that M\U is a compact manifold with boundary and U
is diffeomorphic to R* x N for some compact manifold N. Moreover, we
assume that the diffeomorphism induces on R* x N the metric

ds® = dx? + ds y(x)?, 4.1)

where dsp(x)? is a smooth family of metrics on N. If not indicated
otherwise, however, N will always be provided with the metric ds(0)%
Denote by 4 the nonnegative Laplacean on functions; by the decom-
position principle [D + L], 4 is discrete on M iff the Friedrichs extension
T of 4 on R*x N is. We show first that the methods of Section 2 apply
to T.

LeMMA 4.1. The Friedrichs extension T of A on R* xN is unitarily
equivalent to the Friedrichs extension of

e =02+ 0(x) (4.2)
with domain CP(R*, H,) in L*(R , , H) where
H :=L*(N),
Hy=HXN),  with |lul}, =llulf+ 14dul?,
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and
16" 1/67\? |
=024 0~V 4 — (=
O(x) x +2 0 4<9) . 4.3)

Here A, denotes the Laplacean on N with respect to the metric ds(x)* and 0
is defined as follows: if w, and w are the volume forms on N for the metric
dsp(x)? and ds\(0)%, respectively, then

w,=0w. (4.4)
Proof. For ue CP(R* x N) we define
®u(x) = 0(x, -) u(x, -) € H-2(N) = L}(N). (4.5)

Fubini’s theorem gives
2 | @ 2
[Pl m, = | 19U F

:f: ng(x, 3 lul*(x, ) wdx

= fu R

Thus & extends to an isometry L*R*xN)— L*R,, H) mapping
CP(R* x N) into CP(R*, H,). Using local coordinates it is easily computed
that for ue CP(R*, H,) we have

@ 407~ (352 (2)) ) 1 077 4,070,

(4.6)

where ' denotes application of J,.. The lemma follows from (4.6). |

We start with a necessary condition for the discreteness of 4 based on
Theorem 2.1 and Lemma 3.7. Various known conditions are then easy
corollaries. The main geometric ingredient is the mean curvature function
of the family of hypersurfaces

N,:={x}xN.
We define

H(x, z) := the mean curvature of N, at (x,z)e N, 4.7)
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and

H(x) :=sup |H(x, z)|, H(x):= in}fv |H(x, z)|.

zeN

(4.8)

H is connected with the operator potential Q in {4.3) by the well-known

relation (cf, e.g., [GA, Lemma 3.2])

0'(x, 2)
0(x, z)"

H(x,z)=

(4.9)

THEOREM 4.1. Let &, :=w,/{y w, be the family of normalized volume

forms induced by dsy(x)2. If 4 is discrete then for 0<e<1

lim rﬂ

X — 00

fHa)

dy = c0.
In particular,

hmj H(y)dy = 0.

Proof. Combining Lemma 4.1 and Theorem 2.1 we find that

(du, u) > M ||ull®

(4.10)

(4.11) :

if ue CP((x, x+¢)x N) and x = x(M, ¢). For ue CP(x, x -+ ¢) this gives

x+e 2 1 x+¢e 2
[ oo, dy<m= [ wiPe,
x N x N
which is the weighted Sobolev estimate (3.32) with
a(y):= J-N @,.
But then by (4.4)
_la (x)
y(x) = 3a0) J Ho /f @,
= Ha,,
N

so the theorem follows from (the proof of) Lemma 3.7. |

(4.12)

SCHRODINGER OPERATORS 145
LemMma 4.2. Assume that A is discrete.
(1) Let

B(x) .W{VOI{(%Z)EUU’SX} - if vol U= oo,
Tvol{(y, 2)eUly=x}1""  if volU< oo;

then
!
lim o log B(x)= o0

(2) |H| cannot be bounded on U.
(3) The Ricci curvature cannot be bounded below on U.

Remark. (1) is essentially proved in [BRO1,2] by a quite different
argument; (2) and (3) are contained in [KL].

Proof. (1) Assume first that with a(y)=[y w, we have

w=["a(y)dy

or equivalently vol M = co. Then we conclude from (4.12) as in the proof of
Lemma 3.7 that for x > x(M)

f”lf © dy>Mf JNcoydy, (4.13)

where M can be choosen arbitrarily large. Iterating (4.13) we obtain for
NeN, x = x(M),

fog B(x+N)=NlogM+C 4.14)

which implies the assertion in this case. If vol M < oo we obtain in place of

(4.13)

rﬂf w,dyzM"! f_IJwady

which by iteration again gives (4.14).
(2) This is obvious from Theorem 4.1.
(3) The volume growth comparison theorems (cf. [GA, Lemma 4.2])

imply that a lower bound on the Ricci curvature gives a bound on |H]|
which is impossible by (2). |
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We turn to sufficient conditions for discreteness which we deduce either
from Lemma 3.7 or from Theorem 3.2. In the first case we have to assume a
one-sided bound for H, and the coerciveness condition (1.13) in the second.

 Tueorem 4.2. (a) Assume that the mean curvature function H is bounded
from below or above on U. Then

lim jmg(y) dy = oo (4.15)

X

implies the discreteness of T.
(b) If v in (4.2) is coercive then

lim jm H(y)? dy =0 (4.16)

X

is a sufficient condition for discreteness of T.

Proof. (a) By Lemma 4.2 and Theorem 2.1 the discreteness of 4
follows if for given M, ¢, and x > x(M, &) we have for ue Ce({x, x+€)x N)

[ [ wnaremado@zm] [ u.20 00,2 dy o)
NYx NYx

which is implied by

[T o dM] W d  (@17)

X

uniformly in ve CP(x, x+¢) and zeN. It follows from the proof -of
Lemma 3.7(b) that (4.17) is a consequence of the semiboundedness of H
and (4.15).

(b) Assuming the coerciveness of (4.2) a (necessary and) sufficient
condition for discreteness of T is

im il [ Q) () u(udy= 0,

x—> oo uneH(xga)dx
where
H(x; e 0) = {ne CP((x, x+e), H)llulz=1,

1132 < o/2%}.

Let us denote by H(x)e % (H) the multiplication operator defined by the
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mean curvature function on H = L%(N). Then we obtain from (4.3) for
ue H(x;e, a)

[ <o)y, u)>udy

x+¢ 1 1

> [ ((FA0 7407 ) ) ) o

= [—Re<A(y) w9 ()t IA() u(y)n%,] dy
1 px+e N 2

=1 14(9) uly)WFs dy =2 1132
1 px+e 2 2 5

>e HOP I dy =22/

Arguing as in the proof of Theorem 3.2 we find x* € [x, x + ¢] such that

lu(p)I2=1/4e  if x*<y<x*+e/da,

hence

x* +

[ <o u )ty s [T HOY dy— 22

X

The proof is complete. |}

COROLLARY (“Basic technical criterion” of [D+L1]). If lim, , ., H(x)
= o0 then A4 is discrete. ‘

The assumptions of Theorem 4.2 are generally easy to check in concrete
cases. They do not seem to be implied, however, by more familiar
assumptions on the geometry of U unless we have good control over the
second fundamental form of the hypersurfaces N, as x — oo. Thus we
obtain the most complete answer if each connected component of U is a
warped product.

THEOREM 4.3. Assume that each connected component of U is a warped
product with warping function f;, 1 <i<N.

(a) 4 is discrete iff the scalar operators

S (e e
(x)?

T=—0%+

T2 filx)

4 2
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have discrete Friedrichs extension in L(R ) for all i; here n=dim N. Thus a
necessary and sufficient condition for discreteness follows from Theorem 3.4.

(b) If n=2 and the operator
7= — 92 —Ricc(d,, 0,)

satisfies the coerciveness assumption (1.13) then 4 is discrete iff
. X+ &
lim [ [H(y)| dy=co.

Proof. (a) By the decomposition principle it is enough to treat each
end separately, so assume that U= R* x,N. Then dsy(x)* = f(x)%dsy(0)?
so by Lemma 4.1 we obtain that T is unitarily equivalent to the Friedrichs
extension T of

” 4 2
=_a2+f(x) 2nAN+nf (X)+(4 g)f(x)

2 flx) f(x)?
=t =03+ f(x) "> 4y +q(x)

with domain CP(R* HXN)) in L*R,,L*N)). Denote by
0=A;<A, < ---<i,—>o0 the ecigenvalues of 4, and decompose
H=L*N) into the eigenspaces. Then it is easily seen that T is unitarily
equivalent to @ ,,, T. with T, the Friedrichs extension of

1= — 0%+ q(x)+ A, f(x) 7>

in L*(R.). Clearly, the discreteness of T implies the discreteness of T,.
Conversely, if T, is discrete so is T; for each i by the max-min prmmple
Thus the discreteness of T will follow if we show that lim,_, o, 4,(T;) = o0
where 4,(T) is the smallest eigenvalue. To see this we use the terminology
introduced in Theorem 2.1: with ¢=1 and N sufficiently large in (2.5) we
obtain from (2.8) for ue CF(R*)

(Tiu, u) > Zz', (Tiou, @)+ (T, Pu, Pyu)) = llullze.  (418),

ji=1
Fixing M >0 we can make N = N(M) so large that
(T, ®Du, Dyu)+ (T, ¥, u, ¥ou) > (T, ®,u, &,u) + (T, ¥ou, Pru)
= (M+1)(1Pull T+ | Foulllz),  (419)
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by Theorem 2.2. Since f is positive there is constant C(M) >0 such that
(Ti¢lua Du)+ (Tiqjxu: ¥, u)
= C(M) 241Dy ul 32+ | P ul22). (4.20)

Now choose i so large that C(M) ™21, > M + 1; then it follows from (4.18),
(4.19), (4.20), and (2.6) that

(Tiu, u) = M |lu|)2,,
hence 1,(T,) > M.

Remark. The result just proved follows also from the more general
Theorem 3.3 in [BA].

(b) The necessity follows from Theorem 4.1. To prove sufficiency we
only have to observe that

n n nfn .
2__§=5<5—1>>O if n=2
and
. f"(x)
—Ricc(d,, 8,)=n
f(x)

(cf. [ON, p. 211]). The assertion now follows from Theorem 4.2(b). ||
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We prove that a necessary and sufficient condition for a given partially positive
matrix to have a positive completion is that a certain Schur product map defined
on a certain subspace of matrices is a positive map. By analyzing the positive
elements of this subspace, we obtain new proofs of the results of H. Dym and
I. Gohberg and Grone, Johnson, Sa, and Wolkowitz (Linear Algebra Appl. 58
(1984), 109-124). (Linear Algebra Appl. 36 (1981), 1-24). We also obtain a new
proof of a result of U. Haagerup (Decomposition of completely bounded maps on
operation algebras, preprint), characterizing the norm of Schur product maps,
and a new Hahn-Banach type extension theorem for these maps. Finally, we
obtain generalizations of many of these results to matrices of operators, which we
apply to the study of representations of certain subalgebras of the n x n matrices.
© 1989 Academic Press, Inc.

1. INTRODUCTION

‘An nxn complex matrix is partially defined if only some of its entries
are specified with the unspecified entries treated as complex variables. A
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