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L2-INDEX THEOREMS ON
CERTAIN COMPLETE MANIFOLDS

JOCHEN BRUNING

1. Introduction

Consider a Riemannian manifold A/, Hermitian vector bundles E and
Frover M, and a first order elliptic d1fferent1al operator D: C(E) —
C®(F). Such operators arise naturally from the Riemannian structure
like the Gauss-Bonnet and the signature operator; more generally, one can
consider the Dirac operators in the sense of [10] Being a differential
operator, D has closed extensions D mapping the Hilbert space & (D)
(with the graph norm) to L? (F). In particular, there is the closure D_..
and the maximal extension D= (D! )", where D' C°°(F ) — C®(E)
is the formal adjoint. If M is complete then D, D_ .. for all Dirac
operators. Moreover, if M is compact, then D_.. 1saFredholm operator,
and its index is given by the celebrated At1yah Singer index formula. In
general, D may or may not have a Fredholm extension. In this work we
deal with a class of operators which need not be Fredholm but have a finite

L*index in the sense that ker D nL? (E) and kerD' nIL? (F )} both have

finite dimension; then we define
(L.1)  L*indD:= dimkerD N L*(E) - dimker D' n L (F).

We will also assume that M is complete and D, =D_. . Then if D .

is Fredholm, we have ind D, = =I? -ind D, but our assumptlons will not
imply the Fredholm property. Note that if D has a finite 1. -index, then
a closed extension D is Fredholm if and only if the essential spectrum
g (D D) of the self-adjoint operator D'D has a positive lower bound.
Stlll, the situation which we treat should be regarded as a type I case in
the sense of [13].

Our model case is a complete manifold with finitely many ends which
are all warped products. It follows from simple examples that the L
cohomology for such manifolds can be infinite, so we need a condition
on the warping function f (formula (2.14) below) which allows at most
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linear growth. Then we observe that a geometric operator D on a warped
product has a particularly simple normal form, as an operator valued ordi-
nary differential equation (cf. (2.3) and (2.4)). This allows us to construct
a weight function g with the property that gDg is a Fredholm operator,
even if D is not. Moreover, gDg is unitarily equivalent to a regular sin-
gular operator in the sense of [5], which enables us to compute the index
of all closed extensions. This means that we produce a normal form, for
the weighted operators, which does not involve the warping function any
more. On the other hand, we introduce boundary conditions for gDg (in
most cases), but it turns out that we always have a very natural choice.
Moreover, the transformation avoids the analysis of boundary integrals.
To obtain an index formula we have to relate the L-index of D to the
index of a suitable closed extension of gDg . Whereas it is easy to see that
under our assumptions the L*-index is always finite we do not succeed in
computing it in all cases. It seems that the difficulty arises whenever D
is itself not Fredholm and the operator §, occuring in its normal form
has small eigenvalues. The structure of the index formula is as follows.
It contains interior terms, involving the geometry of the whole manifold,
the spectral invariants of the cross-section such as the »-invariant, and the
global contributions which can be expressed in terms of the solutions of
an ordinary differential equation R, (cf. Theorem 4.3).

We derive an abstract version of the described geometric situation, al-
lowing for perturbations. Then the most definite result is Theorem 4.3.
We apply this to various geometric situations and obtain a unified and
sometimes more general treatment of the known results in these cases.
It may be of interest to note that we also obtain nonlocal contributions
for the L’-index of the Gauss-Bonnet operator similar to the conic case
treated by Cheeger and, more completely, in [5] (c¢f. Corollary 5.4),

The plan of the paper is as follows. In §2 we introduce the class of
operators to be considered. Then we reduce the problem to an index
calculation for a regular singular operator in the sense of [5] by introducing
a suitable weight function. The necessary analysis is carried out in §3
and we prove the index theorem in §4. §5 contains the applications to
manifolds which are asymptotically warped products.

List of notations.

M, c M is a compact manifold with boundary (cf. (2.1));

H is a Hilbert space, and H, C H is a dense subspace;

E and F are Hermitian vector bundles over M ;

D: C;°(E) — Cy°(F) is an elliptic first order differential operator;
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D': C°(F) — C°(E) is the formal adjoint;

D, = gDg is a weighted operator obtained from D;
D,=gD'g;

Z = LZ(E[M GBLZ(R H), # =L° (FIM)EBL (R H);
Z=1° (E|M, YoL*([0, 1], H), # =1 (F|M1)EBL ([0, 11, H);
X is the bounded operator on LZ([O, 1], H) defined by X f(x) =
xf(x).

2. The class of operators

; kThe class of operators which we consider is suggested by the example of
warped products. Therefore, we describe first the model situation in some

 detail. Thus assume that M is complete and that there is an open subset

U c M such that
M, := M\ U is a compact manifold with boundary,

U is isometric to (0, oo) x N with metric
g= afy2 + fly )ng, where N = 0M, is (compact)
Riemannian with metric g, .
Then it is a matter of calculation to obtain unitary representations of the
geometric operators on U as simple ordinary differential operators with
operator coefficients; this is, of course, done by separating the canonical
variable y on (0, oo). We will present a general scheme for this in a
future publication. For the time being we simply mention two important
examples which will suffice for our applications.
Example 1. Assume m = dim M = O mod 2. The Gauss-Bonnet op-
erator

Dgyi=d+6: Q% (U)— Q" (V)
is unitarily equivalent to

23) @ +f( )(S +8, () :

where

Co (0, 00) , Hy) = C5° ((0, 00) , H),

H:=L"(A'N), H:=H (A'N),
Sode"“sN:Hl_’H’
S, )= f () diag (-1 (/- 3)) _ .-

and n:=dim N (cf. [5] for more details).

(2.4)
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Example 2. Assume m = 0mod 4 and denote by Qi(U) the +1
eigenspace of the involution 7 on Q(U) given by multiplication with

\/—lm/ 20D, on o (U). Then the signature operator
Dg=d+6: Q" (U)—Q (U)

is unitarily equivalent to an operator -of the form (2.3),

are as in Example 1, but

Sy 1= (—1) AU/ ((—1)j

where H and H1

*ydy— dN‘N) w
for we Q' (N),
S, ) = £ (y)diag (n/2 = j)og <, -

Again, more details can be found in [5].

~ In the spirit of [4], [5] we introduce an abstract version of these exam-
ples. We assume again (2.1) and consider a first order elliptic differential
operator D: C™(E) — C*(F) on M. We replace (2.2) by the following
assumption. :

(2.5)

There is a Hilbert space. H with isometries
@, LAE|U) = L*((0, 00), H), ®,: L*(F|U) — L*((0, c0), H)
such that @, @, induce isomorphisms
H, (E|U) = H, ([0, 00) , H)NL? (0, 00) , H,) ~ Hy (F[T).
Moreover, there is a self-adjoint operator S, in H with
domain Z(S,) := H,, a smooth function (0, c0) 2 y =

- 8,(y) € Z(H,, H), apositive function /€ C*(R,), and
smooth functions
(0,00)2y—4,(»)eL(H)NZ (H)), j=1,2,
such that for u € Cy ((0, ), H,) and y € (0, o), we
have ’
@, DD, u(y)

(2.6)

=4, 00,4, M u W75 (So + S, ) ).

A Dirac operator on a complete manifold has a unique closed extension
[10, Theorem 5.7}, so it is reasonable to assume
(27) Dmax = Dmin'
This implies that the L?kernel and L*-cokernel of D are respectively the
kernel and cokernel of the unique closed extension. In what follows, the
unique closed extension will also be denoted by D. From (2.6) we derive
unitary isomorphisms
®: L*(E) > L*
@ L*(F)— L*

=7,
%/

(E|M,) ® L ((0, o)
(FIM) o L’

, H)
((0, 00) , H) =:

(2.8)

29

| forsome 7 € C*(
_ elements u = (u,,
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and the domain & (D) of D can be identified with a subspace of % . In
order to localize the analysis on U, we want to multiply by C* functions.
Asm[4lweput CT(R,):={gp ¢ C*™(R")|p is constant near 0 and near
oo}. For p € C”(R*) and u = (y,, u,) € #") we define

ou:= (go O u,, (oub) e%('),

and require that

<I>(')_‘(ou = ECD(')_Iu

M), with § € C°(M) if ¢ € C;°[0, 00). Clearly,
u,) of Z(D) will have to satisfy a “transmission con-
dition” at N = M, . To formulate it we observe that for u € H (E)

W’n‘h Du = (u;,u,),and for v e H (F) with @'v = (vy,v,) we have

(2.10) u,|N = @5 'u,| N, v [N = @;'v,| N,

%ow we define the “boundary space”

2.1

9= {ueL ([0, 00), H,) N H. ([0, c0), H) N LX((0, 00), H)

loc
' + 38+ S)u e LX((0, 00), H) }

ami we obtain that

9 (D)=H' (EIM,) ®, 2,

(2.12
12 = {(u;, u) e H' (EIM,) ® Dyl IN = &7 'u,|N}.

Itiseasily checked that in the above examples the assumptions (2.6), (2.7),

and (2.9) are satisfied. In addition, there is a Hermitian vector bundle G
over N such that

H=1%G), H =H"G),

S, is a symmetric first order elliptic differential operator
on C*(G), and

S,(¥) is a smooth family of first order differential opera-
tors on C*°(G).

(2.13)

{2.13) will not be necessary for most of our arguments.
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In the setting just described we now proceed to derive an L*-index
theorem. This will not hold without further restrictions on our data as can
be seen from the example of the Gauss-Bonnet operator for rotationally

;;sing {2.9). A convenient way t0 construct g2 is as follows. Select Yy >0
and choose y = v, € C®(R) such that

invariant metrics in R” (cf. [6]). It will be necessary to have : O<y<l, y(y)=0 ify<y,, y()=1 ify>2y,
0 y ’

i _ wF(y)

which will follow if we assume 0 g ==y SO +vfy)e"”
. 1/2
(2.14) f')=a+0(l) asy— oo, for some a > 0. M""g% .=f(0)'/ .
. _ o Lemma 2.1 lim,_  f(y) = oo, the function
Moreover, S, is thought of as a small perturbation of S, which is ex- ;
pressed by 21) /°° du
o S =

(2.15) , W= )

Is: ) (ol + 07|+ [[4Sol + DTS, 0], =0 (1) asy— oo,

Finally, A, and 4, have to be close to the identity in the following sense:

|(r09,)' (4,01-1) ‘H, (r099,) (4,00-1)|
=0(l) asy—ocofori=0,1, j=1,2.
Remarks. (1) From (2.14) it follows that
(217) fO)=ay+o(y) asy—co.

(2) Being elliptic on a compact manifold, S, has a discrete spectrum.
For a > 0 we may replace f by af and S, S| by aS,, aS, without
changing the assumptions (2.14), (2.15), and (2.16). Thus we may assume
that

(2.18) 0<a<1 and+} ¢ specsS,

a'kdzkﬁ'eomorphism (0, 00) — (0, 5(0)), and for y sufficiently large we

} s(y) — e—F(,V).

"

(2.16)

23) PG5 ((0,5(0), H) 3 ues tuose C((0, o) , H)

s() = / f e T gy = e FO.
y

4" ‘ =L 1
}  ; s () 20 f(y)S(y)<O.

m (2.17) and (2.18) we conclude that for y sufficiently large

which will make it possible to apply the analysis of the next section.

(3) All our conditions are translation invariant, i.e., invariant under the
change of variable y— y+ R, R> 0.

Under these assumptions we are going to show that the L’.index of D

o0 umptions we ng o show that | ; D (229 F(y)2logy’ +C
is finite, and we will obtain an inequality for it which, in some interesting o

cases, is an equality. Set for some 'C IS R and some & with & > 1, proving that s: (0, 00) —
, Y dy (0, s{OI)) is a diffeomorphism. That @ is unitary is obvious from the
(219) F(y):= o) . definition. q.ed.
0 /: Next we define a first order elliptic differential operator Coo(E) —
and let g € C®(M) be a positive function such that . CJ(F) by

(2.20) g2 ) = f(y)eF(y) for y sufficiently large, ' 1 {2.26) DE =%2D7,
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and study its transformation under ¥. If u € C;°((0, s(0)), H,), then
Yu e C5°((0, ), H,) and

Dy¥u(y) =g () [Al ) 8,4, )+ L) (So +35, (y))] uos(y)
=g [£0)5 ) 44,004 05 ()
+(£11) @) (S + 8, 0) + 4,/ 4,()) uos ()]

=¥YT,u(y).

Using (2.24) we obtain

Tou(x) = [-4,4, 057 (x) 9, +a(x) (So+ S, 057" (x)
(2.27) +A fAyos™! (x))] u (x)
= — [B,(x)0,B,(x) +a(x) (S, +5, (0)) ] u(x),

I defined, and obviously linear and injective. Similarly, we have a
injective map

B L*-ker D' — ker DL

N g, max”
e obtain.
2.1. Under conditions (2.14) and (2.15) D has a finite L*-

W= [@(%max)mg |/ (p émm)’

Dz y =Dg

g, max

g (D_ ) ng” ‘7.

g, max

= that this makes sense we need

where we have written mma 2.2. I (D ..,) C Z(Dg max) ng~'7.

) o - s9f.  We only have to show that gu € #Z if u € 9(D§ min) OF
(2.28a) B, (x) = Jof ) J=1.4 '{R H). Now u, = Yw, forsome w, € L’ ((0, 1), H), and,
(2.28b) S =-S5, 3.2 and (3.11) below, u e 9(D§ min) implies

S -1
(2.28¢) S ( ) =-S,0s (xX) ; llwy ()l = 0 ((xlogx)"?) . x—o.
(2.284) )= (¢’ /f) 057! (x).

L =Y(gos 'w,), so by (2.24)

~1\2 _
(go5™") ) flw, )l = O (fos™ (x)llogx1).
for large R it follows from (2.22) that

s(R) -1 oo —F(y)
fos™ (x)llogx dx = [ " TVF () ay,
0 R

{2.25) implies the convergence of the integral. So gu, =
os'w,) e L*(R,, H). qed.

Thus Z(Dg ) isall u in D (D; max) such that gu € 7. We will
¢ below (Theorem 3.4) that D; 5, is a closed Fredholm extension of

By (2.24), f/g*(y) = s(») = x for y large; so §,(x) = ~5,(s~"(x))
—S,(y) for x small. It is apparent from (2.27) that D; satisfies simi-
lar assumptions as D but now the boundary operator 7, is the model
operator for conic singularities as treated in [5]. Somewhat surprisingly,
we will be able to reduce the index calculation for D to this case. The
relevant analysis of such operators will be carried out in §3. Assuming for
the moment that all closed extensions of DE are Fredholm (this will be

proved in Theorem 3.3 below) our aim is to compare L*-ind D with the
index of a suitable closed extension of Dz. It follows from (2.20) that

Ce—l/zfoy((1+f’(u))/f(u))du

g for large y, D_ with index
so that by (2.14) indD; y, =indDg .. +dim W.
(2.29) 7 e L™ (M). the other hand we have
Thus the map Lemma 2.3. With B, ' defined in (2.30a,b) we have
(2.30a) B:L’-kerD> f—g 'fekerDy ... B(LkerD) =kerD; ,,,  f'(L’-kerD') CkerDj .
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Proof If v € L*-kerD, then B(v) = g”'v DDz ) N g‘ Z
hence B(v) € kerD— . Conversely, if u € kerD- wo then v = gu
kerDNZ,s0 B is bleCtlve

Consider next v € L? -kerD'; by (2. 30b) we know that B'(v)

ker DE max a0d to obtain B'(v) € 9’ (D_, w) it suffices to show that for al
ueg Dz w)

(2.34) (Dgu, g (u)) = (u, DLg’ (v)) =0.

Now

gmem} it seems quite difficult to compute L>-ind D in terms of D,
' and §,. Ind D- _w can be computed by the methods in [5], and
s will be carned out 1n §4. Thus the problem lies with the difference

hy = L*-indD - indDg’W
= dim kerD;’ w — dim L*-kerD'
. * . /
= dlmkeng, w— dxmkerDa -

(Dgu. 8 @) = (Dgu, v)

and gu € #Z by construction. By interior regularity we may assume i
(2.34) that u = (0, u,). Choose ¥ € C;°(R) such that

hy = dim W

by (2.33) and (2.36) the following index theorem:
2.2.  Assume conditions (2.1), (2.6), (2.7), (2.9), (2.14), (2.15),
I, <1, 6). Then D has a finite L*-index given by

0, =2,
and put v, () := w(y/n). Then we find

v (») ={
L*indD = ind Dy .+ hy + h,.

, min
fori, &, depends on the choice of g. We have, however,

(Dgu, v) = /0 (Dgu(y) ,v(y),dy 24. For i=0,1, h, is the same for all positive § € C™(M ‘)

] oo , g {2.20) for sufficiently large y .
= nll’ngo (Dgu(¥), v, »)v WNydy . By (2.31), W, and thus hy, is independent of Z; for g is
Ooo large y, and a change of g in a compact set does not affect .
T 7 -1 . . .
= nl_x_’rgo ; [(gu(y) ¥, DV )y s Q(D(g min) > & & O ind D 4, , so A, isalso independent.

tain a more explicit formula we have to compute the various terms
This'will be done below for .ind D_ _min and h, whereas we have

nequality for 4, . We will show, however that h, = 0 in many
ing cases; thus we arrive at a satisfying L*-index theorem.

+3(gu ), W /) v ()] dy

=0.

Hence the proof is complete. q.e.d.
We can treat D’ in the same way; we introduce

Wl:‘: [Q(D{g‘,max)ng %]/9( gmm)

and 3. Regular singular operators

’ﬁze operators D— introduced in the previous section belong to the class
arising from the study of conic singularities (cf. [5]). Though their proper-
quife analogous to our assumptions on D above, we write them out
XDl cxtlj(for convenience. Thus let M be a Riemannian manifold, not
cessarily complete, Iet E and F be Hermitian vector bundles over M,

d iei D CT(E) — C*™(F) be a first order elliptic differential operator.

/ -1 !
D o 1= Dy ol (D ) 8717,

which makes sense by Lemma 2.2 applied to D’ . Applying Lemma 2.3 to
D' we obtain

(2.35) indD; ,, < L*-indD < ~ind Dj, ,
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Jerators ﬁgsatisfying the above assumptions will be called regular sin-
gular. Thus the geometric operators on manifolds with conic singularities
regular singular (cf. [5]) but also the weighted operator D; introduced
. The analysis of [5] has to be extended since we allow much weaker
bations. This has to be paid for by assuming that either °

We assume agaln (2.1) but we replace (2.6) by the following assumption:
* there is a Hilbert space H w1th a dense subspace H, and
isometries ®,: L*(E|U) — L*((0, 1), H), ®,: L*(F|U) —
Lz((O, 1), H) such that &)E, <T>F induce isomorphisms
Hy (E|U) = Hy (0, 1) , HINL* ((0, 1) , H,) = Hy (F|T).
Moreover, there is a self-adjoint operator S, in H with
domain Z(S,) := H,, a smooth function (0, 1) > x —
§1 (x) e Z(H,, H), and smooth functions :
(0,1)>x~ B, (x)e L (H)NZ (H,), ji=1,2,
such that for u € C;°((0, 1), H;) and x € (0, 1),

&, Dd;'u(x) = B, (x)asz(x)u(x)+x_l(§0+§l (x))u(x). 012

As before, we think of §1 as a perturbation. Thus we require an estimate

& > 0. This is not a restriction in dealing with D, in view of
similar to (2.15): L . .

(3.2)

o (8 +1)7 ] +

H ’S|+l) l§1(X>H=0(‘1) as x — 0.

| ~
We also need the analogue of (2.16): max) ~H _(E|M1) &, 7,

ey’ (8,00 -1), + ) (5,007,
=o0(l) asx—0 fori_=v0, land j =1, 2.

= {(“i’ u,) € H' (E|M,) @§b|”i|N=&>ElublN} ;
(3.3)

7, = {ue L (0,11, H) N Hy (0,11, H)NL*((0, 1), H) |
x> B3 Bu(x)+x" (S +85, (x))u(x)eL (0, 1),H)}.

Hows we identify D with &' Do
; struct a boundary parametrix we 1ntroduce

ORLS)= /0 W/x) fO) dy,  s>-L,

As in (2.8) we derive unitary isomorphisms o
®: L’ (E) - L* (EIM,)® L*((0,1) , H) =7, .
& L (F)— L (FIM)eL*((0,1) ,H):=Z.
We need, furthermore, the anélogue of (2.9): we put C7[0, 1] = {q) €
C™[0, 1]]¢ is constant near 0 and 1} and define for u = (u;, u,) € e 7"

pu=(p (), pu,) € Z P [0 fo dy, s<d,

Then we require that

(3.4) " oy ="'y
for Sorﬁe 7 € C®(M), with g € C(M) if ¢ € C(0, 1]. Finally, we Lemma 2.1 in [5] we have the followmg estimates for x € (0, 1)
have again for u € HOI(E) with ®u = (4;, u,), and v € Hol (F) with : :
®'v = (v, v,) :

PR+ 1Tl ifs >4,

(3.5)




504 JOCHEN BRUNING F7INDEX THEOREMS ON CERTAIN COMPLETE MANIFOLDS 505

(3.9b) ‘Pl ,_l/zf(x)‘ <e(xflogx))'? ifx<x(e), foralle> 0. ea 'mg the proof of Lemma 2.3 in [5] and using (3.9) and (3.10) w
Lemma 2.2 in [5] has to be extended to include the case § = —1, at the.
expense of loosing the g-decay. ‘

Lemma 3.1. In LZ(O, 1) we have the norm estimates

2. If y € G°(~1, 1), then wP, maps L*((0, 1), H) into

i

1 33, Ifu=(u,,u e (D) with u; =0 and u, (1) =0,
(3.10a) “X_P o0 ( ») (Dy) (1)

-1 -1
A )
; PB ' Du=u+Px 'S u
Denote by (e, )s cspec$,
’ {mth a slight abuse of notation in the case of multiple eigen-

(3100 |x7'p

0 X <ls 4, s<-L

By an orthonormal basis of H satisfying
In L°(0,¢), 0<e< 1, wehavefor 6 >0

3100 [|X°7'R ||+ [ R X7 < Is+ 487, s<o-4
Moreover, By . and P, _  are compact for s > ——

Proof. The proof follows as before from Schurs test, with p(x)
g(x) = x"7? (cf. [8]) By [5, (2.8)], P} _,=—-P, ,,and B, _ is Hllbert

Schmidt for s > — 2 , thus Fy s and P, _, are compact for s > ——.
In what follows it is convenient to rewrite the operator in (3.1):

B (x)8,8,(x)+x™" (§,+5,(x)
= B\B, ()0, +x' (§,+5, (x) + xB, B, (x))
(1) =BB,(x) [0, +x" (5+(B'B (x) - 1) 3,

u (x):=(u(x),e) = P,k (x) foralls.

> —1 we find

1
=B () == [h,0) dy + By ()
rex ‘v P, h (x),

0,5"%s

+B; 'B,'S, (x)+xB; ' B[ 'B,B; (x))
=: B (x) [6X +x7! <§0 +§1 (x))] .

I’ . Since lf(x)]l = o((x] logx|)1/2) , x — 0, it follows from

=0,s0 u=PFPh=F, Du— P .S~’ u and the lemma is proved.
34, Thereis 0<e< 1 such thatfor 0, ye C (—¢, &) with

aud ue@(Do)

It follows from (3.2) and (3.6) that S, satisfies either (3.2) or (3.6b
whereas B satisfies (3.3b).

Now we define an extension 130 of D as a restriction of Bmax to th
domain

1 { €7 (Bp)

pu=yhk, V50¢u
,baunded operator V in L? ((0, 1), H). As a consequence,

XS u, e L2(0, 1), H), lox™" (|35] + 1) u < ¢ || Boor.

 Note first that pu € D(D D_.) by (3.7a,b), hence pu € Q(DO)
'ctxon Then the proof differs from that of Lemma 2.5 in [5]

af that P X~ S1 is not necessarily bounded in L?. But for

luy ()l = 0 (¢ Hogx])'*?) as x — 0}

We will show below that 50 = ﬁmin, which in general differs from D
introduced in [5]. The corresponding boundary parametrix is now

(3.13) K= P p,0 D P

s€spec S, sEspec S,
s>—1/2 s<~1/2

~ n+l ~
(WPGX‘ISlx> pu=yP, ((//X S x) X_lSlgou,
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where x € C;°(—¢, &) with yw = v, and hence by iteration

1 :
a2/ X ogxdx = 225%n 10g8 — 1 5%
" Jo 2 4

_ logd 1 eZlogJ/(logn)”z
2(logn)1/2 4 ’

$o this term is uniformly bounded in 0 <J <1 and n > 2. Moreover, -

n ~ Jj _
(ou=y/P0xZ(—!//X_1S1POx> B lf
j=0

~ n ~
+(-1)"" yp, <z//X_lSlPOx) X~'S,pu.

. 1E . 1/n 2 2 ,
By Lemma 3.1 and assumpt;on (3.2) or (3.6b), |lwX SxfoX” <life n2/ e+l logxdx = — za”+ 2,1—2&,,—2 log 1 — n zn—zan-z
sufficiently small, and X -l NS I’ by definition of D,. So we rea 0 n (zan +2)
2
the same conclusion. q.e.d. —2(log )"

Recalling that Dou = ¢Du + C,u for some bounded operator C, = ——— ((2e,, + 2) logn + 1)

(2a, +2)°
.=0(l) asn— oc.
Combining these estimates with (3. 11) and the obv1ous fact that

7 , we obtain exactly as in [5] from Lemmas 3.4 and 3.1, and from (3.
Lemma 3.5. D0 is a closed operator.
Theorem 3.1. Do =D

min "

Proof. Since Do is a closed extension we have 50 ») ﬁmin' It r
mains to show the reverse inclusion. If u € & (lNDmax) and vy € C*[0, 1]
with (0) = 0, then yu € & (5min) by interior regularity. Therefor
it is enough to prove the following: if u € & (l~)0) there is a sequen

(%) pen € (D such that

min)

i / Vi (0 I (0 dx = 0

for all § € (0, 1], we arrive at
2

Vot =0

lim
n,m—oco

as desired. q.e.d.

Since we have only used that lu(x)lly = o(x 1/2| logxll/z) if ue( O)
we thus obtain

Corollary3.2. (D) = {u € Z(D_)u(x)|,; = o(x'"| logx|‘/2)}
If (3.6a) holds, then we can replace “ 0(x1/2| 10gx|1/2 ” by « O(x 1/2) .
Now we are ready to deal with the Fredholm properties of D '
Theorem 3.3. D9 (D_. ) — Z is a Fredholm operator.

min min . :
Proof. To show that D is Fredholm it is enough to construct a

(3.17a) u, — pu in # for some ¢€C§°(—1, 1) with ¢ = | near 0,

(3.17b) (1514”) N is a Cauchy sequence in Z.
ne

Now we proceed as in [4, Theorem 6.1}: choose ¢ € C(‘)>o (—1,1) with
0<p<1and g(x)=11if |x|<1/2,put

min

a, =1 ogn)” 72 n>2, right parametrix for D_,  and Dmn; since D and D' have the same
structure it is cenough to deal with D So we have to construct an operator
and let PE,S”(Z/ 7/) with P(%)C@( ) and
. !
W, (x) = XM (1 -9 (nx)) e (x), Yo (X) =, (X) — W, (x). DP=I+K, K compact in Z .

Since D is elliptic, we have interior parametrices, i.c., given v, ¥ €
C5’° (M) with ¢ =1 ina neighborhood ‘of suppy we can find com-
pact operators P, € Z(L*(F), L*(E)) and K, € Z(L*(F)) such that
,(LX(F)) C Hy(E) and

3.18) DbP, =y +K,.

Then we put u, := w,u and u,, =y, u,such that u, € D (D ;)
satisfies (3.17a), n > 2. It remains to show that [|5unm|| 5 tends to zero
as m>n—oco. Now '
~ 12
WDz < €|

2
m‘,%le

~

Hﬁun v/,'lmu“; +o(l).
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Now let ¢ be sufficiently small and choose ¢ € Cg" (—e,¢) with ¢ =1
in a neighborhood of 0. Put w =1 —¢ and pick ¢ € Cy (—¢, &) such
that ¢ = 1 in a neighborhood of suppg. Define

P= CT)P '+ ¢ P, B o.

By (3.11) and Lemma 3.2, P € Z(# , %) with P(Z 7'y c 9(D,,,)-
Moreover,
1

PP=y+®K,3 " +o+ ¢'BP,B” 9+ X 'BS PB ¢
= I+K+¢x 'BSPB 'op=1+K+R
By (3.18) and Lemma 3.1, K is compact in #' . If ¢ is sufficiently small
we conclude from (3.2) or (3.6b) and Lemma 3.1 that ||R|| < 1. Putting
= P(I + R)_1 and K := K(I + R)—1 we obtain DP = I + K which
completes the proof. q.e.d.
Next we study the closed extensions of D besides Dmm
Theorem 3.4. The closed extensions of D are all Fredholm operators,
which correspond bijectively to the subspaces of the finite-dimensional space

D (D) 12 (Dpia) = Wiy

Moreover, denoting by ].~)W the closed extension corresponding to the space
W c W, we have

ng} — PI ,shs (X) =0
iﬁe'left—hand side is in L* only if

nal projection in H onto

indIS =indD_. +dimW.

min

Proof. The proof of Theorem 3.3 actually works for every closed ex-
tension of D . Hence all closed extensions of D are Fredholm operators.
Thus it follows that W, = (D max) /9 (D mm) is finite-dimensional. If
W c W, is an arbltrary subspace we obtain a closed Fredholm extension
DW by restricting Dmax to the inverse image Z(D W) of W under the
projection & (lN)max) — W,. The inclusion map iy, : <Z (Dmm) — 2D w)
is then Fredholm with ind i, = —dim W, and from 5min = DW o, we
find

ind D, = ind D, + dimW. q.e.d.
In §4 we will use the following facts.
Lemma 3.6. Put

(319) Pmax = @ PO,S63 @ PI,S'

52172 5<1/2

Ifuzubegb and ¢ € C;°(—1, 1), then we have

, ’@él—* Q). Multiplying (3.20) by 7 — @ from
- Dguc L? we find

oU-Qu+P (I~ Q) X"'BS, pu.
"Bix} =P(I-Q)x (x) bounded in H, and

3.20) P B 'Dou=ogu+P x7'S ou Dix)j=0(1) asx—0.
max max 1
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Hence if ¢ has sufficiently small support, we obtain as in the proof of

Lemma 3.4 that see that- D§ min 18 unitarily equivalent to 7 with domain

p(I-Qu=PWf
for some bounded operator W in Lz((O, 1), H). Thus the assertion
follows from Lemma 3.2. g.e.d. N .

We remark that (3.21) is always satisfied if S 1(x) commutes with Q

2(T)=H' (EIM,) 8,5,
(u;, uy) (f(O)Dul., -B [Ox +a (~0.+§1>} ub) eZ.

~ We now introduce
for x near 0; otherwise it is a decay condition on the perturbation S, . S :
' A= su I (B.(x) - NPRV

e Do ISIZSZ [H(xax) (B,x) =D, + [ x,)! (B,(x) - 1)

0</j<1

‘4, The index formula i

Theorem 2.2 will be made more explicit in this section by computing
mdD . This will be done by a Fredholm deformation to an operator
with computable index, using essentially the methods of [5]. To do so it
is convenient to introduce the following assumption:

(4.1) in (2.6) we have S, (¥) = 0 and 4, (y) = 4, (y) =1 for y near 0. -

Note that this assumption has also been used in [1] and is satisfied if M
has the product metric near M; . In concrete situations, however, it is
easy to remove (cf. §5)

Now construct g by (2.20") and s by (2.21). Using (2.23) and (2.27)
we find that D- min transforms unitarily to an operator T m & with
boundary part '

~Bd.B,+a (SO +§1)
= BB, [-0.+a(S,+((8,8)7" ~1)5,
B

s+ 175, 0o, + 5 o 107 )

~ Theorem 4.1.  Assume (2.1), (2.6), (2.7), and (4.1). If 4 < A(S,), then
ach of the operators : : : P

T.:.9(T)~ 2, A
(u;, ub) (f(O)Du.,—B [6 +a (§ oS )Ju)

is a Fredholm operator where a€[0, 1] and B (X)) :=aB(x)+ (1 —a)l.

. Moreover, the functzon 0, 1]2a=T eZ(2(T), ') is continuous.
n particular,
ind7 = ind T,

Proof. For sufficiently small 4, B ' (x) is a continuous family of in-
emble operators on [0, 1]x [0, (0 )] To prove that T is well defined

and continuous in « it is thus enough to prove that aS1 is continuous
n Z(T). Now from (the proof of) Lemma 3.4 we obtain (3.16) for all

€ C°°( s(0), s(0)) if A(s,) is small enough. Since S( x) = 0 near
(0), the desired continuity follows from (3.2) and (3.16).

It remains to show that each T, is a Fredholm operator. As remarked
ove, (4.1) implies that for some & € (0, s(0))

(4.2)

- —B{(‘) +a(S §)} Sy = —Sp-

Here B,, B,, §1 ,and a are given by. (2.28) which implies (3.2), (3.3)
and (3.6a). Note that ' '

B (x)=B,(x)=1, §l (x) :§l (x)=0 near s(0), 4.5) Tu=Tu forallue 2 (T) with suppu, N (0, d] =

and that hoose ¢ € C7°(—5(0), 5(0)) with p = 1 in a neighborhood of [~&, d]

nd y € C (- s( ), $(0)) with wg = ¢. Since D_ 1s elliptic, we can ﬁnd

operator P, e¥ (Z/ Z(T)) and a compact operator K, € Z(% )
ch that ’

1 x near s (0) ,
o ={
1/x, = x near 0.

We can now apply the results of §3 to T, with obvious modifications due

to the fact that xa(x I in (0, $(0)]. Thus with &, "as in (3.12) wi '
(x) # (0, s(0)] 0 ( ) .6) Tan = TP(F =(1-(0)+K¢.
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Oy < s2 < 5(0) such that g2 )
and a{x)=x ! for x € (0, 5;1. Then
C7(0, 5(0)) such that %, =1 ina
in a neighborhood of [0, s,]1, and

Denote next by P, the boundary parametrix for 9, + as , as constructed

in (3.13). Then we find
-1 ' -1 _ S -1
@) T, (-oPwB.') = ¢ - B,0'PyB,' ~ 0aB S, 0P,B]
=19 +K, +aR;

By Lemma 3.1, KZ is compact in #(#") and ||RZ|| < 1if A(Sp) is
sufficiently small. Hence

-1 o o sa o
T, (P, - 9PyB,') = I+K, +K; +aR = I+ K" +R

(4.8) _ o o - ‘

T, (P, - oPyB, ) (I+R) ™ =1+ K (I1+R) ™ =1 +K". : e proof of Lemma 4.4 in [5] shows
Thus we have constructed a right parametrix for 7,. To complete the -
proof we have to construct a right parametrix for T* too. But our as- - ' s ) Zak Res 7Is, (2k).
sumptions imply that T* is also regular singular, and the parametrlx Just ’ k21
constructed maps into the minimal domain. g.e.d. .} . we use [3, Theorem 4.1] to find that

We proceed to compute the index of T;, using the heat kernel method

as in [5]. The only modifications in the argument arise from the fact that , ‘
xa(x) # 1. With the notation in [5, Theorem 4.1] we have formula for C(x,) that we can increase
Theorem 4.2. Assume (2.1), (2.6), (2.7), (2.9), and (4.1), and let A in B(x,). Thus we conclude

(4.4) be sufficiently small. Then D; rmin is Fredholm with
ind Dy = /M wp + 3 (1(S,) — dimker S,)
1
Z dimker (S, — s) — Z o Res g, (2k). | |
~1/2<s<0 k1 ; _ + Y dimker (S, - ).
Proof. The closed extensions of T}, = T min are classified by the sub .
spaces of the space .
D D W= @ ker (5, ; and that Theorem 4.2 applies to —D
0 a2 ’ ‘ Then we compute, recalling Wy =
as in [5, Lemma 3.2]. The “Dirichlet extension” T s constructed there
corresponds to : Dg min)
w_ = @ ker (S, —s) , .
—1/2<s5<0
SO ;
(4.9) indT,=indT, ;—~ 5 dimker(S,—s). o) +dimkerS,)

—1/2<s<0

It remains to determine the constant term, S(x), in the asymptoti
expansion as { — 0 of

—iTy T, —T, T . T
(4.10) try (e7TowTos — ™ TosTos) = F (1), | | | =R
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Now we turn to the computation of 4, and #, . Their analysis depends

. (c) Let ve C I(R‘+ , QH) be a solution of the equation
on the small eigenvalues of S, and S, . We introduce the orthogonal pro-

jection Q onto the eigenspaces of §, with eigenvalues ®ts| <12 ker(S0 s) .18a) ; DQ’U - g—l w, we I R, H).
between —% and 5 . By construction, there is s, with 0 <'s, <~~ such
that hen for y, >0 there is MU E QH and v, € CI(R+, QH) such that

_L -
(4.14) spec Sy N [~3, 3] € [-5;, 5] .18b) v (y) =W, (y,yl)yylv+vyI o),

We will use Lemma 3.7 so we want the decay condition (3.21) for the
transformed operator obtained from gDZ . In view of (2.23) it takes the
form

@  oeo |05, 0 -5, e =0() asy o,

and this will be assumed in what follows. Here we have written (cf. (3.1 3))'

.18¢) Il'uyl (y)“2 =0 (e—F(y)) .

oreover, the map v — 7,V is linear, and 7, U and v, are uniquely
l

etermined by the propertzes (4.18b) and (4.18c¢).

Proof. (a) Since W, oV, ¥) solves the equation DyWy(-s y)) =0, for’

€ QH from (4.16a), (2 15), and (4.14) we have
.19)

Wo (v, 1) "’”2 = Jlell” + 2/: Re <‘9y’ Wo (y', yl) e, WQ (y' yl) e>~afy"
i
< llel” + 2, /ylyzf(y’)"1 ||WQ. 0 ) e av,

$; € (s, %), and y, y, are sufficiently large. "Hence the assertion
llows from Gronwall’s Lemma (cf. [9, p. 24]). The proof for Wé is
alogous.

(b) It follows from a stralghtforward computation that

20) 2wy W (y,yl))=0.

D=~A®) [a +f( ) (S +5, ))}
with
40) = 4,4,0),
$10):= (471 0) = 1) S+ A7'S, 0) + f47 4,00
We will have to study the reduced matrlx operators

(4.16a) D, = ay+f(y) (QSOQ+QSI( )Q>,

(4.16b) D=3, + ()" (25,0 + 05, )" Q).

For y, ¥ =2 0 we denote by W(y, y,) and W'(y,yl)‘ the respéctive ¥y

solution operators, i.e., the matrix functions with "(c) We choose y, =0, for simplicity of notation. Then
pIw (y,y)=0, y>0,
w" ) =1

Lemma 4.1. (a) For y, y, 20 and any s, € (s, %) we have

(4.17) 21 v)=Woly, 00 (0)+ /OyWQ@,‘y/)g—lW(y))dyé"

Since g~ (y) fl )_l/2 ~FON/2 for y' large, we deduce from part (a)
and w € L? (R+, QH) that the integrand in (4.20) is in L' (R,, QH).
: 1nce W, (y y') = (y 0w, (O y'), we may write

v (y) = Wy (y, 0) ypv —/ Wo(r.¥) g w(y) ay
: y
= Wy (5, 0) 70 + 0y ().

HW(') v h)” < CeFO=F ol

where s, is defined in (4.14), and F in (2.19).
(b) For y,y, >0 we have

W (y.») Wiy =1
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We estimate, again with part (a), ith w € L*(R +» H). Hence from Lemma 4.1 we obtain the decomposi-

oo W5, < ”wuiz(&’m /wa(y')“e‘”y’) HWQ (y’ yl>“2 dy

2 ~F X (25~ DF )~ dy' _
< wlg, e (y)/ eBImVECH=FO) Y _ 0(e F(»)
. y I

gRY) =Wy (v, )7, 80+ ().

w choose y; > 0 such that ¢(y) =0 if y >y, and define
' y(u)=y, gi=y, (¢(1-9)Qu) € QH.
lext we want to show that

kery=9 (D'g,min) , imy = KJ’;'

u € kery. Then we obtain from (4.24) and (4.18c)

lga )l = 0 (e~")

min) DY (423)and v € (D* _min) - Consequently, if
), from (4.24) and Lemma 4.1(c) we obtain

which proves (4.18c).
Now assume a second representation

V() =Wy, 0) 70 + 7, (»).
It follows from part (b) that
ToU = %0 = Wy (¥, 0)" (v, () =T (),

hence from part (a) and (4.18c) that
ence i € I (D_

c (D,

— (s, —1/2)F(y)

_— < 1
1757 = yov|| < Ce -0, y — oo. % min
Thus 7,7 = y,v and Yy=7,. qed

We can now calculate h, . For some ¥, 2 0 we introduce

K = {e cQHW" (-, y)eeL’} c OH.

y() =Wy (v, ) (&) -9 ().

we substitute the above equation in the estimates (4.23) and (4.18c¢),
id use Lemma 4.1(a) we obtain for y >y,

Since W W, y) = (y yZ)W( (¥4, ¥,), it is easily seen that the
mensions of these spaces are independent of Y.
Lemma 4.2. For y, >0 we have

(422)  hy=dim (D .. )ne 7/ (Dg,min) = dimK, .

Proof. We want to construct a linear map y: & (Dg max) — @H such
that

||y(u)|| < Cyle(sz“l/Z)F()’) -0, y — 0o,

nce y(u) =0 as claimed.
It remains to show that imy = Ky . Pick e € K, and y € C*”(R)

ch that y(y) =1 for y > y,/2 and y(y) =0 for y<y1/3. Define
u(y)i=wg  )Wy(,v)e.

kery|2 (D~ ) ng'#=9 (D_ ) nce ¥’ has compact support and e € K ,wehave u € Z(D; ...) and

&> max 2, min
To achieve this, observe first that ¥ € @ (D pip) if and only if u € 8% € . It follows that
Z(Dg ) and gay) =Wy (y,y)e+((1-p)y )~ )W, (v, »)e
(4.23) leu Wy = 0( el 2) , ¥y — oo. the uniqueness of the decomposition (4.24) implies

In fact, this follows from the remark after Corollary 3.2 and (2.23). Next e=7y(u). gqed

we note that for 7 € C (M) with § =1 in a neighborhood of M, we
have pu c¢ @ (D_ min) for ez (D§ max) » DY interior regularity. Also,
I -0)1 - (o)u € Q(DE min) > DY Lemma 3.7. So it remains to study

O(1 — ¢)u := iz. We compute

Dygit(y) =g '47'QD, (1= p)u(y )—f“Q(QE1 —EIQ) gu(y) (426) 0 (26) wehave 4, = 4, =1 and 5,(y) = £ S, for
) some self-adjoint operator in H with domain H, .

We can make (4.22) even more precise in the following special case
hich covers the examples given in §1. Thus we now assume the following:

.25) spec Sy N [-%, 3] ={0},
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(4.27) (I-0)S,0=0..

In view of Remark (2) after (2.16), only (4.27) requires verification in th
warped product case. But this is straightforward from the explicit formul

(2.3) and (2.4). Note that (4.26) implies g = 0 in (2.14).
We write the spectral decomposition of S, := 0S,Q as

=P,

(4.28)

Then we obtain
Lemma 4.3. Under the assumptions (4. 25) (4.26), and (4.27) we ha

> dimQ,.
rter,

- Proof Tt is readily seen that in this'ca_ée‘,‘

D,=p |3, + fT (y)t} Q,
w
W, 0=@Uo /oy
Therefore h

= ¢ aed

f—leLZ

As mentioned before, h1 is more difficult to deal with. So we only
obtain an inequality for this quantity, which implies, however, 2, =0 in
and K
1 Y
. Then *

many interesting cases. To.formulate it we observe first that Ky'
w9, y)e"

@0, W 0) = (Wy)e W o))
= <€’:W(y,yl)*W'(y,yl)e'>=<e,e'>,

by Lemma 4.1(b). Since. u, ' € L* we obtain

(o)

are orthogonal: let ¢ € K}()'I) and put 4" (y) ==

T+l

ERCIORIOE o.'

Denote by L
Q, the orthogonal prOJectlon onto L
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emma 4.4 below) that with .
X = {v eC®(F)lg 've# ,Dv=0, (Du,v)=0
29)
o . for all u € # with gDu € Z/-'}':,'

W=ﬂl (’%;)

ith y, > 0 arbitrary but fixed we introduce the map

¢ have
%
ker D§ z

Z/ B’UHQI})g 1UGL

here y is the map-analogous to y for D .'Note that thls is well deﬁned
y gl e@(D§ max) and Lemma 4. l(c) ' '
Lemma 4.4.

L? kerD = kert Conseqttently,

h, = dimkerD;’ v — dim L-ker D'
= dimimry <dimlL, .
1 Y1

Proof Llet v € L*-kerD'. Then clearly v € CP(F), gl e,
nd D'v = 0. Moreover, it follows as in the proof of Lemma 2.3 that
Du,v) =0 forall ue# with gDuecZ' so veZ,. Next we obtain
,'Q(l - @ = ¢ 'w with w € L*, hence from (the analogue of) Lemma

1(c)

.30) - (1= p)v(y)=W (v V1), 8 s aly, y,)

-1

here v, v€L2 Thusy & veK andvekert

Conversely, let v € kerr we have to show that v € /‘? We have

=g v € 9(D: (DL o max)
mma 4.2) by Lemma 3.7 (I — Q)(1 = " min
.23), equivalent to

=0 (1-9)v ), =0 (7).

mplying (I — @)(1 — )1) e, by (2.25). Frorn:Lemnla 4.1 we obtain
€ decomposmon (4 30) $0 it remains to show that y_v OIS K B_y
= yy eK GBK Choose eeK

n g"l/‘? w1th Py U= e. Write il := gu such that i€ Z/,

and consequently - (with ¢- as in the proof of
p)U e 9( ) which is, by

ssumptlon e then we can ﬁnd

€ ‘9( g, max)
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and gDii =D RS #', hence 0 = (Di1, v). From Lemma 4.1 again we 5. Asymptotically warped products

have Asymptotically warped products will be studied in this section. By this

Ql-p)aW)=wMW(y,y)e+W (), ¢ mean a complete orientable Riemannian manifold M with (2.1) and
so we obtain, in consequence of (4.30), Lemma 4.1(a), and Lemma 3.7,
(

0= (Dit, v) = lim (@(T), v(T))

lim (W (T,y)e+ W (T), W (T,y,)e +4 (T, y1)>+0(1)

T—o0

= <e,e’>+o(1).

Thus ¢ L K which completes the proof. q.e.d.
Let us agam assume (4.25), (4.26), and (4.27). The proof of Lemma

4.3 shows that
!
D e K=o,

U is isometric to (0, co) x N with metric

g=dy’+ 1 ey ).

ere f is a smooth positive function satisfying (2.14), and g&y(y) isa
mooth family of metrics on N = O M, converging to a limiting metric
= guy(oo) as y — oo. This defines a warped metric g0 = dy2 +
y)ng on U. We denote by V and v the Levi-Civita connections
or the metrics g and go, and by o, @° and Q, Q° the respective
onnection and curvature forms. Then we want that with 6 := @ — "

o=

0
f'er? fer? 5.2) sup (’g—go’( )+f(y)|9|?y’p)) =0(l) asy— co.
hence in this case PEN A y.p
(4.31) L,= @ Q,, ere. |- [0 denotes the norm defined by ,go . These conditions are enough
forie Lt ensure that D;, and Dg have a finite L*-index. To obtain a more

which gives as a useful special case onvenient formula for ind D§ min 1D sOme cases we will need in addition

Lemma 4.5. Suppose that f' € L* -or ftel? forall t # 0 and that at

= {0} in (4.28). Then h =0. 2140

Note that in the examples of §2, Q, = {0} is always satisfied so that 3) f,ggf(” IQI(y,p) =0(1) asy—oco.

Lemma 4.5 applies.

We combine the results of this section with Theorem 2.2 to formulate
our main result.

Theorem 4.3. Let M be a complete Riemannian manifold, let E and
F be Hermitian vector bundles over M, and let D: C*°(E) — C®(F) bea
first order elliptic differential operator. Assume conditions (2.1), (2.6), (2. 7,
(2.9), (2.14), (4.1), (4.15), and that the constant A in (4.4) is sufficiently
small. Then D has a finite L index given by

o handle &, and A, we will also impose the decay condition (4.15). The
alculations for Dg and D, are almost identical, so we will give proofs
nly for the latter operator. We begin by establishing (2.6). We recall first
e method used in [5, §5] for the warped product case (actually only for
(y) =y, but the generalization is obvious). With c; =j-(m=-1)/2,

= dim M, we introduce the maps D, 0aa’ Cp (0, 00), QN)) —
Qv /0aa(U) by

L*indD = / wp+ 3 (17 (s,) — dimker S,) Z dimker (S, — s) (5.4a) : ' ’
M, —1/2<s<0 .
— Caj C2j41
= 3" a, Resng, (2K) + dim K, + dimim . q)”<j>;6wj (y)) ) ,;o(f(y)z @3 0)+ 100 gy () A d)
p > >
=1 (5.4b)

Here w, is the usual index form, s, is the n-function associated with the

operator S, in (2.6), and K, and the map 1, are defined in Lemmas 4. 2
and 4.4 respecttvely

®odd<z w; (y)) > (f(y)c” @, A dy + [ () @y, (y)) :
Jj20 jz

>0
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which define unitary maps bétween Lz((O,' 00), LZ(A*N)) an

Lg(A:V JoaaU), where N has the metric g, , and the subscript O refers

to the metric g0 . Thus we obtain as in Example 1 of §2°

So (5.6) follows from (5.2). Moreover, B, oaa satisfies (2.16b) which
follows from (5.2) and the explicit formulas for the Levi-Civita connection
v° (cf. [11, p. 206]). Thus we obtain a unitary equivalence

- ! pl/2 —-1/2
Dgp=d+6 =0, B’ D, B
172 4 —1 —1/2
=Blo . (d+s) @ B

eviTey

ev

—1 40 e | 0 -
q)oddDGB(I)ev - q)odd (d +4 ) (Dev

=8+ 1 (So+ S 0)s,)

(5.7)

(5.5) , f) Recall that [10, Lemma 5.13]
. 1 / _ A N
v . ,-=ay+m(so+asl+(f (y)-a)Sl) Jz_;fkl_vﬁ,
v 1 e
=0, + = (S, +S , N L >
D) ( o t5 ) ) where L denotes interior multiplication, and ( J;) isthe local orthonormal

frame for (U, g) constructed above. We write
Je= Z @ty s
!

and observe that the @,, are smooth functions in the variables &;;- Then
it follows as above that

where Sé and §, are given by (2.3), a >0 is defined byt (2.14), and w

may assume a < 1 and :t% ¢ specS;. Now we introduce an endomo
phism B € C* (End A"U) with the property that _

(w,, w,) (p):(wl,sz)Ov(p) , w,,w0,eQU), pel.

Here (-, ) and (-, ), denotes the pointwise scalar product with respe
to g and g, respectively. - : . : R
Then we find smooth functions B, , 44 € C*((0, ), £ (H)NZ(H,)

where H = L*(A*N), H, = H'(A*N) ,such that

(5.8) glellg(f(y)ay)j(ak,—ék;)(y,p)=0(1) asy —oo, j<1L

Hence we have

0= — Z a,a f L (Vf:' —V%,)
k1,0

0 <0
= 2 (@@ = 8,8,) fiL vy, +é
k1,0

. 0
=t Y 4y Cy +Zb1,1' Ny
k0,0 , nr
= C+E+d .
So we must study the transformation of C and E under ®. Note that

C and E are independent of the choice of frame.
Lemma 5.1. We have

C =0y Cd,, € C* ((0, 00) , Z (H)NZ (H,))

Bd)ei//odd = q)ev/oddBev/odd'

Moreover, B, Jodd satisﬁes‘ (2.16a), ‘i.e.,

56 (103) (Bajoaa=1) =0, asy—oo, j<l

To see this we choose a local orthonormal frame (€)1 <i<m—; fOr (N, gy
such that fo=98/0y, f:= f(y)"lei, i > 1, is alocal orthonormal fram
for (U, g°), parallel with respect to V° along the geodesics normal to N
From this frame we construct a local orthonormal frame ( f;')0<i<m—1 f
(U, g) by the Gram-Schmidt procedure. Then it is readily seen that th
coefficients of B,, Joda With respect to the frame ( /f;) are smooth function
in the variables g;; := (f,, f;) - But

Q

5 ) o w0 and
5y (o 1) = {(v Vfo)f?’f?>+<ﬁf (4= ¥3)%) 1010 (Jeor (8] +1)” [+ 1) ew]) o
=2 (0w e+ 0 () ) 25 ¥ co.
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Proof. 1t is enough to prove the assertion locally for each Cy - Usmg'
the frame (f;) constructed above we have

(V- Vi) fi= 20y ()1, = Zﬂu

If (¢]), <i<m—1 and ( fr Jo<i<m—1 denote the respective dual frames, f;
dy , we find

(vfk—vgk)e;ef() Opdy+ 0ye;, i1,

Here E, € C*((0, o), Z(H)NZ(H,)) with
|E:0), =o() asy—oo,

=o(l) asy—oo, j<1,

and E, € C*((0, 00), Z(H,, H)) with

- ~ -1 ~ -1 .
= IEZ ) (}SO’H) +“(‘SO|+1) Ez(y)”H=0(l) as y — oo.
(V ) dy = 900 dy+f(») ; 9 Proof. The lemma follows by straightforward computations, together
j=1

with (5.4a,b), [11, p. 206] and (5.8).

Now we combine (5.7), (5.5), and (5.9) with Lemmas 5.1 and 5.2 to
derive the unitary representation

5.12)

Dgp~®,4,B"*D, B

Thus for p € N and 1§i1<--~<i,§m—1
(5.11a)

0 * *
(V- V5) e none;

ev

= (y)—l Z(_l)’—l gé‘ile A--ANeN--~Ae, Ady = B;ég ») KI-%E1 (y)) 3y
! _ v i ) )
+ 3 (=1 ej.‘iléi*l A---NefN--~Ne, ANe + /) (SO +S, M+ CWY) +E, (y)> B )
" + 10) 7 8, + 5,00 + FICD) + B0))] BL )

(5.11b)
(V,;—Vi)eZA"“ZAdy
___((ka_vo)e’_“/\.../\ef)/\dy
+

k =i
Og0e; N Ae; /\dy+f y)ZGJOe A Ael Nej.
j>1

= Bééi( ) (1+8,0) 8.7 0] o,
+ —(—*) [S +Bysg (v )(S1 W)+ ) C ) +E, (y)) P
+(BL0)-1) S8 0 +5, (B2 00 - 1)
0BG 0) (8.7 )|

Combining (5.4a,b) with (5.11a,b) and (5.2) gives the lemma. q.e"d,.,

Lemma 5.2. We have, with bij in (5.9), = A(»)9, +f(y)_l <§0 + S, ) )

where S (y) satisfies (2.15), and A(y) satisfies (2.16). Now we put E :=
AM, F:=A M, D:=D,p=d+d,and

eV

= by diag (1)) 8, + £ ()" by diag (c,)
+2 (bIOel Lo, + ) b, L diag (cr))’

>1

+fo)! Z b,,,e,l_V

1>

= E,(0)0,+f(0) " E, ().

-1/2 1/2
(D (CD B ) ’ (D _Boddq)odd

evoev

Then it is easily checked that (2.6), (2.9), and (2.10) are satisfied. (2.7)
holds since M is complete, and (2.1), (2.14) hold by assumption.

Theorem 5.1. Let D = D,y or D = Dy, and assume m = dim M is
even or divisible by four, respectively. Under the assumptions (2.1), (5.1),
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(2.14), and (5.2), D has a finite L*-index, given by
L*-indD .
(5.13) =/ wD+/ ap+ 4 (n(8,) - dimker,)
M, oM,

Z dim ker ,(§°

—1/2<5<0 k>1

where the various notation of (5.13) is defined as follows.

(@) wy, is the “index form” of D (defined in [5] after (4.32)), équal

to the Chern-Gauss-Bonnet form for Dgp and to the Hirzebruch L
polynomlal for D,.
from v to ve, where v?

a = 0
(b) .§0 is given by (5.5), with Sy, S| in (2.3) for Dgp and S('), Si
(2.5) for Dy. '

(c) hy and h, are defined by (2.37) and (2.36). If the decay condition
(4.15) holds, then they are given by Lemmas 4.2 and 4.4, respectively. If

g = g°, then Lemmas 4.3 and 4.5 apply.
Proof. - Again, we consider only the case D = Dgp.

given by (2.38). To derive (5.13) we deform the given metric g near M,

. a . . .
to the metric g°. By the description of Dz i resulting from (3.11),

(3.7a), and Corollary 3.2 it is easily seen that this deformation does not

change the index of Dz ... . For the new metric we have (4.1) in view

of (2.3) and (2.5}, hence Theorem 4.2 applies.

2.1]). q.e.d.
We can now derive extensions of known I’-index theorems in some
special situations.
Corollary 5.2 (the asymptotically Euclidean case).
totically warped with f(y)

Assume M is asymp-

holds and

(5.14) sggyz [Ql?y »=0() asy — oo,
14 .

then

(5.15) L*-ind Dy = lim /y Wy

) ZakResnS (2k) + hy +h1, .

o, is the transgression of the characteristic form w D
is the Levi-Civita connection for the metric

= dy’ +f(y) gy(o0) with f(y):=ay if a>0, and f(y):=1 if

in

From the above
considerations and Theorem 2.2 it is clear that D has a ﬁmte L*index

The proof of (5.13) is
completed by recalling the definition of the transgression (cf. {7, Chapter

=y, N=S""' and m=dimM >2. If(5.2) | , A
. and S; as in (2.5), as before we conclude that specSyN[-1, 3] = O
. Hence again h; = h) =0 and (5.13) holds. Letting R — oo as before and
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and

(5.16) [*indDg = lim [

We.
R—00 y<R S

Proof. We have a = 1 in (2.14), and, in consequence of [5, Lemma
5.1; 12],
specS,N-1,1] =2
if m > 2. In view of (2.18) we may thus assume that 0 < a < 1 in (2.14),
and - - : - - '
specS,N[-%, 3] =2.
Hence Q =0 in (4.15), and 4y = A =0 by Lemmas 4.2 and 4.4.
Now let R > 0 and apply our-construction and Theorem 5.1-to-

M =M U{peUl(@)<R}, US:={peUly(p) >R}

(cf ‘ Remark (3) after (2.16)). Then we obtaln (5.13) with M, replaced by
MR . .and hy=h; = 0. We want to prove next that

(5.17) lim

a, = 0.
R—00 D

amt . ‘
Observe that in this case the metrics go and g” coincide on U. Thus,
if- Q_ denotes the curvature two-form of the connection sV° + (1-95)V,
then

. 1
aD=(m—l)/O PO,9,...,Q) ds,

where P is the complete polarization of the invariant polynomial defining

p (cf. [7, Lemma 2.1.2]) and 6 asin (5.2). Since Q° =0, it follows
from (5.2) and (5.3) that :
1 0.
sup R” laD|(R p)—rO, R = o0,

which implies (5.17). The proof of (5.15) is completed if we compare the
resulting index formula with the formula for A = R™ 5 A
In the case D = Dy, from [12], and [5, Lemma 5.3] with So. = S(') + S{

comparing again with M = R” we obtain the assertion (5.16). q.e.d.
Corollary 5.2 extends Theorem 5.2 in [2], which in turn extends Theo-
rem 1 in [14]. It should be noted, however, that in [2] the case m =2 is
also treated but not in [14]. By [5, Lemma 5.1] we have specS ﬂ[——, %] #
@& and consequently @ # 0, so we have to deal with %, . Note that this is




JOCHEN BRUNING L*-INDEX THEOREMS ON CERTAIN COMPLETE MANIFOLDS 529

not a Fredholm problem since in the asymptotically Euclidean case Dgz = for y < 1. By assumption and (2.31), g~ L e 2 (Dy z.w)» and by

is not Fredholm in any dimension. We hope to return to this question in (2.37) and Lemma 4.2, Dg = Dg 5 Thus Corollary 3.2 gives

a future publication. _ —FGY2y, _ —y/2 g, min” _
Corollary 5.3 (the cylindrical case). Assume f(y) = 1 in (5.1) and ey ”H O(e ) = 0( ), and it follows that (Dgu, v) = 0.

g=g" on U. Then - Hence L2 kerD' cZy.

Conversely, if v EZ/ , we have the decomposition (5.19) and only have
to show that v, =0 for 1> 0. Fix 4> 0 and put u(y) := o)y, Ned
with ¢ € C™(R) such that ¢(y) = 0 for y < 1 and ¢(y) = 1 for
y > 2. Clearly, u € L*(0, ), H) and gDgu(y) = g¢'(y)v,e™ €
L*((0, o), H), hence

e 2 2
0= (Dsu, )= [0 0 el v = ol

Thus L2 kerD' = X/u’j . We now recall the definition of the map T, intro-
duce y :Q(DS z. max) — QH asin Lemma 4.1. Then 7 (v) = yy(g_lv)
since Q = Q, . Choose ¥, > 0 such that in (4.18a) ¢(y ) =1 and write

[*-indDg = / o, +14 (n(S;) - dimkerS}) +,

where h, is the dimension of the space of limiting values of elements in the
extended L*-kernel of D (as defined in [1, p. 58]).

Proof. 1t is clear that (5.2) and (5.3) hold and that o, = 0. Thus
-Theorem 5.1 applies. By [1, Theorem (4.14)], s isregularin Rez > ——‘
so all residues in (5.10) vanish. Moreover, since a = 0 in (2.14), we«
have S = S and may assume by the usual scaling that Q = kerS'
éh jZOH N). Furthermore, it follows from (2.5) that (4.15) holds, 1
Lemma 4.2 gives &, = 0. To prove the assertion concerning %, recall
definition of the extended L’-kernel of D':

_ _ -1

L?kerD' := {’U eCc® (Q (M)) ID'v =0, lim v (y) = v, Quy)=08-8 v(y)=1= W (v, )

exists in H = L (A'N) and v - v, € L*((0, ) , H)} .
- Bv =87, (V) =1,

which completes the proof of (5.18). gq.e.d.

Corollary 5.3 is Corollary (3.14) in [1]; note the difference in orientation

where we identify v with its image under ®_ in Lz((O, o0), H). W
claim that

(5.18) h; = dim {voolv el? kerD'}_ which leads to 4 = — (', in Theorem (3.10). Finally, we treat the cusp
: case
To see this we show that L?kerD = #,, , where 7%, is defined Corollary 5.4 (the cusp case). Assume (2.1), (5.1), (5.2), and in addition
(4.29), and that the map 7, in Lemma 4.4 is given by L’kerD' 3 v 5.20) vol’ U < oo
g_l(y)voo € H for all y; then (5.18) follows from Lemma 4.4. Con and
: 2 . -1 2 ‘
sider v € L“kerD ; we have to show that g~ v € L°((0, c0), H) and 5.21) ’ Ricc® <0 on U,

(Dgu,v) =0 forall u € LZ((O, o), H) with gDsu € LZ((O, oo), H}
Since D¢ = 6y + S(') we can decompose v in the eigenspaces of S,

(5.19) v = Y ve”

AEspec S, .
° 5.22) Ricc’ <~ on U,

Since v € szerD', we have v, = 0 for 4 > 0 and Uy = Uy €
kerSy = Q. Moreover, g(y) = ¢/* so g7'v € L*((0, o), H). Now

2. o 1 !
consider u as above and assume without loss of generality that u(y) =0 5.23) L*-indDg = ,}‘_,“go /y <R Wg + 31 (SO) ’




530 JOCHEN BRUNING
and - . , ,
J
(524)  L™indDgy = lim /y et Y () dmH ().
: 0<j<n/2
Proof. From (5.21) together with [11, p. 211] we find
(5.25) Ricc’ (i ' —‘9—) — L () <0 n=dim N
= dy’ 8y foom ' ’

hence f' is increasing. Since, by (5.20),
| 1oy <o,

we must have f'(y) <0 forall y,and a = limy_,oo o=
positive. Thus we may also assume specS,N[~3, 2] = {0}.

Assume next g = g on U and (5.22) mstead of (5.21). Then (5.25)
implies nf”(y) > &2 f(v), hence

/°°f<y> dy<-21(0).
0 &
> 1

Since lim,_, f) =0, we have [~ €L2(0 oo) forall @ > 5. As noted
before, (4.15) also holds in this case if D = Dg or D = D, so we
obtain (5.13). For R >0 we can also derlve (5. 13) with M, replaced by
Ml =M U{pecUlyp)<R}. To study the transgression a; we denote
by @° and w” the connection one-forms for V° and V* respectively,

and we put 6 :=.a)0 — " . It follows from [11, p. 206] that

0 since f is

sup (v =o(l)

PEN
Moreover, since f is bounded, using (5.3) and [11, p. 211} we conclude
sup f (y

that
(lo l ) =0(1)
PEN p)

Hence as in the proof of Corollary 5.2 we have lim,_  f; MROp = 0.

} 1 as y — oo.
v.p)

as y — co.

Since a =0, ,§0 = S(') if D= Dg, and we may assume that
O =kerSy =@ H'(N).
j20
Then it is easily seen that (4.15) holds and 4, and A, are given by Lemmas
4.3 and 4.4 respectively. Since n =m — 1 is odd and N is orientable,

(5.26) dimker S, _ZdlmH’( =2 Z dim H’ (N).

=0 Jj=m/2

Now j—n/2>1

(5.27)
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rom (2.5) we have the spectral resolution
08,0 = EB(——J)H’<N>

if and only if ] > m/2, hence by Lemma 4.3 we
conclude

= Z dim B (N

Jj=m/2

Note that the contributions from 4, and kerS(') to the index cancel with

each other. Moreover, |n/2 — j| > 1 for all j, hence f_lt| € L2(0, 00)
for all ¢ € spec QS;Q. Thus Lemma 4.5 implies
(5.28) h, = 0.

Now (5.23) follows from (5.26) through (5.28) since s, is regular in

Rez > —1 by Theorem (4.14) in [1].
If D= Dy, from (2.4) as before we have that

n .
kerS, = D H' (N
j=0

(5.29)

and
QS 0= @

Since (~1)’*'(j —n/2) > 1 if and only if (-1

using Lemma 4.3 we obtain .

(5.30) ho=2 > dim H* (N).
0<2j<n/2

(J——)HJ(N).

DA TR n/2> >4,

As before we conclude #; = 0 and lim,_ __ [, MFOp = 0. Finally, from
[5, Lemma 5.1] it follows that in this case
(5.31) 15, = 0.

The proof is completed by combining (5.30) and (5.31). q.e.d.
Corollary 5.4 substantially generalizes Theorem 2 in [14].
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