2z GUNBEKG, KAASHUEK, AND WUERDEMAN

Let of — 2 be given via (1.2) and (1.5) in Section I1.1. On these spaces we
define the operations * as the usual adjoint of an operator between Hilbeit
spaces. It is easy to see that the conditions (1.1)-(1.6) in Section IL.1 are.
satisfied. Also the required axioms are fulfilled.

Use now Theorem I1.4.1 in [GKW2] to conclude that diag (M[!) is the
right multiplicative diagonal of /— g*g, where g is the unique triangular
extension. Now the theorem follows directly from Theorem IL1.1. |
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This paper extends the analysis of an isolated conical singularity in

[BS2] to singular strata of arbitrary dimension. It gives an expansion of

tr(4+1)~", A= + o0,

in descending power of A, for suitably large m. The coefficients are given by
integrals of the usual densities associated with the Laplacian at nonsingular
points, suitably regularized at the singular stratum, plus singular terms
given as integrals over the singular stratum.

A concrete example of the situation treated is a “wedge” W< M” in a

Riemannian manifold M. The boundary of W is smooth except along a
singular stratum X parametrized by se R"~2 Near X, 0W =X, u X,, with
2, and X, intersecting transversally in 2. In a plane section perpendicular
to X at a point 5, 2, and X', meet at an angle a(s) > 0, measured inside W.
Introduce coordinates (x,, x,, 5) in a neighborhood of X, where

seR"~?is a coordinate on X,

0/0x; L 2, and ) ~ {x, =0, x, >0},
2y~ {x;=rsin ofs), x,=rcos a(s), r >0},
along X, (8/0x;, 0/0x,)=4,. ’
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. Then introduce polar coordinates in W, This problem can be treated locally in r and s, but near » =0 it must be
treated globally in ¢; for the eigenvalues of 4(s) determine the singularities
that occur as r =0+,

Melrose’s program (which applies to many problems other than the
conic ones treated here) is to first construct a uniform interior parametrix,
inverting modulo functions which are C® in the interior but singular on
- the boundary, and then to invert the normal operator to get a parametrix
with the proper boundary behavior. We stay closer to the pre-yrdo
approach to elliptic problems. Thinking of the given operator as a pertur-
bation of the normal operator, we begin by inverting the latter, thus
reversing the steps in Melrose’s program. If the coefficients of 4 are suitably
modified outside a small neighborhood of the singular stratum X, then the
inverse of the normal operator provides the first term in a convergent
Neumann series. This gives a parametrix near 2, which is patched together
with a classical ydo parametrix in the interior to give a global parametrix.

In [BS2] we carried this out for the case where X is of dimension 0, and
the operator has the form

> x;=rsin 0, x;=rcosf, 0<O<as).
Since thé vector field 0/00 is zero when r =0, the Laplacian takes the form
A=(=14+0(r)o?—(r'+0(1))d,— (r 2+ O(r=1))a;
+45(r, 0)+O0(r1)d,+ 0(1)8,0,+ O(r) 3,0,
+ 0(1)8,0,+ O(1)0,,

acting in L?(v), where v is the appropriate volume element. Here A =(r, 0)

is a Laplacian in the s variables, depending on parameters r and 6. We
transform 4 to an operator in L*(dr df v, ds), where in (r, 6, s) coordinates,
the volume element is v = rv, + O(r?) with v, the volume element on Z. So -
the change of variable

= (vy/v)"u

gives a new operator, which we write as leading terms at r =0 plus remain- 4 A= —02+r24(r), (0.3)
der: .
with normal operator —a2 +r~24(0), 4(0) > —1/4. If a denotes an eigen-
value of 4(0), and v:=(a+1/4)"? then the resolvent of the normal
operator —92+r~24(0) is the direct sum of symmetric operators with

kernels

A= —0>—r=2(024+ 1+ 4,(0)
+0(r)02+ O(r)d,
+0(r=1)85+ O(r=1)8, + O(r) 82
+0(1)8,04+ 0O(r)8,0,+ O(1)0,0, )
+0(1)0,+0(1)d,+ O(r™Y). (1)

()L JAOKS(F SR, r<F, (0.4)

where I, and K, are Bessel functions. (When there are eigenvalues a < 3/4
then the operator is not essentially self-adjoint, and a domain must be
specified. The resolvent in (0.4) is for the Friedrichs extension from smooth
functions vanishing near r =0, which in this case gives the domain with the
highest possible order of vanishing at r=0.) Denoting by Gy(A) the direct
sum of the operators with kernels (0.4), we obtained the resolvent of (0.3)
near r=0 as a sum G, 35> R’. This was patched together with an interior
resolvent to yield the expansion of tr(4 + 1) =™

* In the present paper we consider a formally self-adjoint elliptic operator
-4 on a manifold W, of second order, with scalar principal symbol, with
~conic singularities along a compact submanifold 2 = W, 8 = . Near any
- point of X, 4 is to be represented in the form suggested by (0.1) and (0.2)
.-above:

(Here 45(0)=4:(0, 8) is just the Laplacian on the singular stratum z,
and is independent of 6.) The three leading terms correspond to the
normal operator in Melrose’s study of degenerate problems [MP]. We
make a change of variable §=a(s)p with 0< ¢ <1, and write the normal
operator as

— 32+ r=24(s) + 4,(0), (02)

where A(s)=—a"%(s)02—1/4 on 0<¢<1, with suitable boundary
conditions at ¢ =0 and @=1. For the Dirichlet problem, they are
u(r,0)=u(r,1)=0; for the Zaremba problem [Z], u(r,0)=0 and
uy(r, 1)=0. In the latter problem, the difference in the two boundary
conditions (Dirichlet on X',, Neumann on X,) gives the effect of a conical
singularity along 2 even when dW is smooth, and «(s) = . The Fredholm
properties of this problem have been studied by S. Simanca [Si].

A= —2+A54+r"24(s) + R, 0.5)

where 4 ; is elliptic on X' with scalar principal symbol; 4 is a smooth family
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of elliptic operators on sections of a bundle E over a compact manifold N,
perhaps with boundary, with A(s)> —1/4; and the remainder R is a sum
of smooth terms of the form '

0(r)d,0,, O HI4O®)+1],  0()7},
0(r)d,0,,  O(1)3,[A4(0)+11'72,  0(1)8,[4(0)+ 11"~

“We use the square root v(s) to write the kernel of G, in the form (0.4)
~where the order v of the Bessel functions is now an operator family, in 2;
~sense made precise below. Thus we treat only the simplest realization of 4.
When 4 arises as a product D*D of first order operators, an alternate
»» cqnstruction allows the treatment of rather general realizations of D. This
-will be developed elsewhere.

. After modifying the coefficients of 4 outside some neighborhood of
H{(r,5)=(0,0)}, we show [Sect. 3] that

(0.6)

Here 0, denotes a partial derivative with respect to local coordinates on 2,
defined in some X' X, and O(r/) means r/ times a smooth family of
bounded operators on L*(N, E). The 4 in (0.5) is an unbounded operator
on a space which can be represented locally as

A+1)G=1-2

with Z small so that, suitably interpreted,
LHZ)® L*((0, &), dr)® L*(N, E). ’
The remainder terms in (0.6) are precisely those that tend to zero in an d+2)"'=4, > R
appropriate sense when 4 is rescaled in the (r, s) variables; see (5.14) and. 0
(6.9) below.
In local coordinates on X’, denote the principal symbol of 4 by |a|?,
where o is the variable dual to s. Qur first approximation to the resolvent’
of (0.5) is a Ydo on Z” given in local coordinates by

EThen, by studying trace class properties of @¢ for suitable m [Sect. 4], we
Tepresent S

tro(d+ 1)~ peCP(R,)

%ouls) = Op(Go)uls) i= (2m)™* [ e Gollol? +D)i(o)do, (07) G ** 2o

f:o a(r,r \/1) dr

where k=dim X, and
ue C3 (R, L*(R ., , L*(N, E))),

and Go(|o|2+ ) =(—0%+ 0|2+ r~24(s) + 1)~ (0.8)

(The inverse in (0.8) is taken as the resolvent of the Friedrichs extension:
of —0%+r~2A4(s), for fixed s.) Thus we are led to consider operators of the
form (0.7), (0.8), where A(s) is now a family of unbounded operators on:
a Hilbert space H (H=L*(N, E) in our example above), with common
domain, satisfying :

- This work foll(?ws the main outline of [BS27; but some of the arguments
have been modified, of necessity, and so we do not suppose prior

kn(?wledge of that paper, except for several crucial self-contained lemmas
which we quote here.

A(s)= —1/4, (0.9).
A(s)A(0)+1)~! is a smooth family of bounded operators (0.10):

and, to guarantee that G, is smooth in s, L. SPLITTING THE SPECTRUM

A(s)+ 1/4 has a smooth square root v(s)>0; (0.11) ~The leading term in our parametrix is a ydo with operator symbol

ie., v(s)(A(0)+1)~¥* is a smooth bounded family. To produce trace class
estimates, we assume that

(=02 +r724(s)+ 2%,

2 _ 2 H
here z*=|o|2+ A and the inverse refers to the Friedrichs extension. We

(4(0)+ 1)~ ! is in some Schatten class C,, p<co. (0.12): ssume that 4(s) > —1/4, and that 4(s) + 1/4 has a smooth positive square
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root. Moreover, since A(s) is, typically, a second order elliptic operator on
a compact manifold N, it has an eigenvalue expansion; but the eigenvalues

may coalesce and bifurcate as s varies. Nevertheless, locally near any par-
ticular s, we may split 4A(s) into a “high eigenvalue” and a “low eigenvalue”
part:

LemMmA 1.1. Let A,> —1 be a family of self-adjoint operators on a :
Hilbert space H, with A(Aq+1)~" smooth. (Thus the A, have a common -
domain.) Let C<C be compact, with smooth boundary 9C disjoint from -
spec A, for all s near 0. Then for s sufficiently small, there is a smooth :
family of unitary operators U, such that for the family A, :=U,A,U¥, the *

spectral projection for spec A, C is independent of s.

Proof. (A,—2)"1=(Ado+ 1) [(4,—A)(Ao+1)7*]"" is smooth in
(4, 5) for A ¢ spec 4,. So the orthogonal projections

i
P .=— —A)"tda
: 2RLC(As 2)

form a smooth family. Set P} =I— P, and N,= P (H), the range of P,
The operator
Q.s‘:=‘P01)s4_I,(J)_IJ.;L

is invertible for s=0, hencé for s near 0; and
| Q*Q,=P,P,P,+ P} Py P}
maps N, to N, and N} to N}, so
U,:=0,(0%0,) "
maps N, to N, and N} to Ny . Also
U Ur=0(0%0,)7'0F=1=U}U,;

~so U,A, U} has the properties claimed in the lemma. ||

In view of this “Splitting Lemma,” locally, we can write A(s)

U(s)* A(s)U(s) where the linitary family U(s) has locally bounded
derivatives of all orders, and A(s) has a constant spectral projection. Then
A(s)y=:4.(s)+ A -(s) with the “high eigenvalue part” 4. (s) and the “low

eigenvalue part” 4 _(s) each acting in a fixed Hilbert space. Thus 4 _(s) is

represented by a matrix, and by assumption (0.11), 4 _(s)+1/4 has a

smooth matrix square root v _(s) > 0. We analyze the resolvent

(=02+r"24 _(s)+2°)7!

~ of the Friedrichs extension of —0}+r~24_, as in [BS2], by representing

- where v is short for v_(s). The “matrix” Bessel funct1ons I, and K, are

- matrix functions

-Extend these definitions by the standard recursions

where 1 and 2 in the subscripts denote the diagonal matrices [ and 21. We
talso need the derivative formulas

.each s.
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it as an integral operator with kernel

(rf')l/zlv(rz)Kv(Fz), r<Fr,

defined and analyzed as follows.

2. ESTIMATES FOR MATRIX BESSEL KERNELS

Let v be a self-adjoint C* matrix function of parameter se R*. Define the

m):fo Ple=tdn,  v>0, | 2.1)
_ (z/2)" T e 2yw—1/2
I(z)= F(v+1/2)1"(1/2)f (1=~ 12 gy,
v>—1/2, |argzl<n/2, 22)
coelf
K(2)=(nj2z)? =& r( = j e~ V(1 4 127~ V2 gy,

v>—1/2, B-n<argz<f+m, |Bl<n/2. (2.3)

1(2)—2(V+1)Z“Iv+1(z)+ I, . ,(2), (2.4a)
K,(z)=-20v+1)z7'K,  (z) + K, . ,(z), (2.4b)

di, v

EZ‘=IV+1(Z)+;I\:(Z)J ) (253.)
dK, v

7 -Kv+1(z)+51v(z). (2.5b)

LemMa 2.1. (a) I, and K, solve z%y"(z) + z' (2) = (22 +v?) y(z) =0, for

(b) K,=K_,=(n2)(sinmv)~'(I_,—1,), if sin v is nonsingular.
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(©) As z— 0, |arg z| <m/2 —s,

KV(Z) ~ (7-5/2)1/26—2(2—-1/2 + 0(2_3/2))
I(z)~(2r)~2e(z= >+ O(z*?)).

These expansions can be differentiated in s and z, and the resulting constants
implied in O(z~>?) are locally bounded in s.

(d) For |z|<1/2, |largz|<m/2, asv<h,
”a:alzclv(z)“ < Ca,b,k,v |Z‘a_k |10g|°‘| z.

The constant can be chosen uniformly in compact subsets of the parameter
space R*.
(e) For |z|<1/2, |argz] <m/2, —a<v<a witha>0,

”a?alchv(Z)“ < Ca,b,k,v iZl —a—k |10g|°‘1 Z|~

The constant can be chosen uniformly in compact subsets of the parameter
space R”,
Proof. (a) For fixed s, v(s) can be diagonalized, and then. (2.1)-(2.3) -
decompose into a direct sum of standard integral representations of the :
Bessel functions solving the differential equation in (a); see [W, p. 172 (2), 5'
p- 168 (3), and p. 78 (8)]. :
(b) Again, diagonalize and use standard Bessel formulas.

(¢) For K, with v> —1/2, we use the expansion of (2.3). given in °
[W], as follows. Take |argz|<m/2—e¢, ﬁ=arg z. Then in (23),
-arg(t/z)=0, so for u=0, |1+ ut/2z| = 1. By diagonalizing, :

(v—— 1/2

p—1
(A +t/22) 2=

m=0

) (t/22)"
m
+p <v —p1/2> (t/ZZ)p Ll (1 _u)p—l (1 +ut/2z)v—-p—1/2 du.

If p>v—1/2 then (1 + ut/2z)*~?~ 2 is bounded, so

coelf

k

x [1 + 211 (” _ml/ 2) (t/22)" + b, (v, 1, z)] dr,

4

7 et =12
Ir(v+1/2) ‘

K,(2)=: (n/2z)"
(2.6)

where b, is a suitably bounded function of all arguments. The expansion

|arg z} < /2 we then integrate (2.5b) along the ray from z to
1—

apply the estimate of the previous case to reach the conclusion of the
- lemma.
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(2.6) can be differentiated in z, and also in s, in view of Lemma 2.2 below
on differentiating exponentials.

For general v, we use Lemma 1.1 to split K, into a part with v> —1/2
and a part with v < 1/2; since K, =K —v» the previous argument covers both
parts.

For I,, v> —1/2, we use a similar integral [W, pp. 74, 77]: for |B| <r/2
and —n/2<argz<m/2 :
L(z)= e~ (2¢™)

e ™2 HW(iz) + HO)(iz)]

1
2
e~ Tiv/2

TT(v+12)

oo
X [e—z—niv/Z—ni/4J
0

e -
+ ez+7:iv/2+ni/4f e~y = 12(1 — u/2z)" =12 du]. 2.7)
0

(2niz) =12

s
e " V(1 uf2z) 12 gy

In the last integral, we take |§ — arg z| > 1. For v< —1/2, we use the recur-
- sion (2.4a).

(d) Assume first that v> —1/2 and apply (2.5a) to express the

z-derivatives. Each term in the resulting formula is an integral of type (2.2),
- and these integrals can be differentiated with respect to s using Lemma 2.2
below. In the general case, apply (2.4a) to reduce to v> — 1/2.

(e) We prove the estimate for k=0, then extend it using (2.5b).

From (2.3) with =0 we obtain

KV(Z)=7t1/2F(V+ 1/2)_22_v2_ve_zf00 e_;tv—l/Z(t+22)v_1/2 dr.

0

Let us assume first that v satisfies @ < v(s) < a for some @ > 0. Then differen-
- tiate the integral using Lemma 2.2. Observing that ¢ < |t + 2z| < . /2(£2+1)
the desired estimate follows easily, with a constant depending on a.

Consider next the case when —a < v(s)<a with a< 1. For |z| < 1/2 with

z/2 |z|. Since
asv+1<a+1 we can differentiate the integral with respect to s and

Finally, we consider —a<v(s)<a with a>1/2. Using Lemma 1.1 we

can split K, into three parts, one with —asvs —a<(0, one with
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0<a<v<a, and one with —1/2<v<1/2. The last part we have just
considered; the other two parts are covered by our first case, since
K_,=K, | '

The derivatives of exponentials above are estimated by:
LemMa 22, If a<v(s)<b, then for |arg z| <m/2
1852° Il < Coll2] + |21 ) |log!™! 2]

with C, depending only on the derivatives 8%v for <.

Proof. Let u(s, t)=e"'"8*, where v=v(s). Then u,=(vlogz)u and
u(s, 0)=I. Denoting by u, the gradient of u with respect to s, we find

O,u,=(v,log z)u + (vlog z)u,, uy s, 0)=0.
Hence_

1
us, 1)= f et —vloezy Jog zetvioez gy
0

This gives the desired estimate for 9,z* = u (s, 1); the higher derivatives are
estimated by induction, differentiating the above integral. ||

Now the operators with kernel defined by
k(x, y)=(xp)?L,(x2)K,(y2),  x<}p,
k(y, x)=k(x, y),

are estimated using Lemma 2.1 and “Schur’s Test” (¢f. [HS, p; 227).
If Kf(x) =j'k(x, y)f(y)dy, and w(x)>0, then

1K1} < sup [ 00 ktx, ) 070

| sup, [ 000) ks, ) 0700y ax |

LeMMA 2.3. Let I be a positive continuous function on R, with

1) = —logx, 0<x<1/2,
=1, x> 1.

Suppose that k is a matrix kernel with k(x, y)=0, y<x, and for x<y

(s, y)Il < COxz)* (2)° (L4 x2)? (14 y2)’ (xz)I"(yz)e™ = (2.9)

28)
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with
o> —1/2, a+f>—1, a+pf+y+6<0. (2.10)
T hén k defines a bounded operator K on L2, with
1Kl < C'(a, B,7,8)Cz! [Casin(29)].
Proof. Use Schur’s Test with weight w(x)= (xz)~*17/(xz). Then

- changing variables xz to x, yz to y, dy to z~! dy, gives

200x) [ k(s ) @~ (0) dy < C [~ P+ ()1 + x (14 )0~ @y,

This integral is bounded as x—>0+, and as x— 4o it is

0‘(x°‘+ﬁ”+5)=0(1), by (2.10), since /(y)=1 for y>1. For the integral
with respect to x;

z0(y) [ Ik(x, )l 0=1(x) dx

y . N
< jo X2%(x) yP = I p)(1 + 1) (1 + y)Pe*— dx

is like Cy#*e+117+m(3) 50 as y — 04, since a+f>—1. As y — + oo, the

' integral is dominated by

»/2 '
yﬂ_”‘s[e””/zf x*[F(x)(1 + x)” dx+y2°‘+yfy
0

yI2

e"“ydx]
=0(y* 7+ =0(1). |

Remark. A precise accounting shows that for a, B, v, 6 in any bounded

- subset of (2.10),

KN < C2= X1+ B+ @) +m e (24 4 1)~i=172

-~ where C depends‘on the subset.

3. REMAINDER ESTIMATES

~ We now introduce a model operator, 4, acting in LR, x R¥, H) for

~-some Hilbert space H and coinciding with 4 in the introduction near

(0,0)eR, xR*. More specifically, we assume that with 0¢ = 98/0r,
0;:=0/0s;, 1<i<k,
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k

k
o Z A,-,-(r,s)@,~6,-+ Z B(r, s)(A(())+1)1/26i

= i=

+r2C(r, s)(A(0) + 1), (3.1)

where A(s) is an operator family satifying (0.9)-(0.12), 4= 4}, B,, C are
smooth functions in R, x R* with values in #(H), uniformly bounded
together with their derivatives, and A,(0,s)= —a;(s)/ such that

ago(s)= —1, agi(s)=0 for 1<j<k, and
k .
si=— 3 8a;(s)9; (3.2)

ij=1

is uniformly elliptic on IR" Assuming also C(0, s)= A(s)(4(0)+1)~%, we
may write

A=: —3*+ Az +r 2A(s) + R, (3.3)

where

i .
R=Ag(r, $)roj+ Y, Ay(r, s)rdyd;
=1
k ko
+ Z Zij(r, S)r@,ﬁj—i— Z B.(r, s)(4(0) + 1)1/26,-

Lj=1 i=0

+r~1C(r, s)(A(0)+1); "(3.4)

the operator functions A;, B;, C have again values in £(H) and are

smooth and uniformly bounded on R, x R* together with their derivatives.

Finally, we assume that 4 is symmetric and bounded below as an operator

in # := L*(R, x R*, H) with domain C®((0, ) x R¥, H,), H,:=2(A4(0)).
The “ansatz” for the resolvent is a ydo with operator symbol,

Gu(s) = (2n) [ (=32 +r724(s) +27) Vi) do (35)

k

with z22=A+ |012 and |o|? the principal symbol of 4. Denote the symbol
of %, by

Go:=(—0>+r24(s)+2%)"1, (3.6)

the resolvent of the Friedrichs extension. We estimate the norm of %, on

L} (R, x R*)® H by the Calderon—Vaillancourt Theorem [CV], which

states that

%l <C sup ||a:agG0”L2(R+,H)- (3-7) 

fel, 1Bl < 3k

: and
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According to Lemma 1.1 we have A(s)-—U(s)*A(s) U(s) where U is a
smooth family of unitary operators and A(s)=A4 _(s)+ 4. (s), with both
the low eigenvalue and the large eigenvalue part acting on a fixed Hilbert
space. For the estimates (3.7) we can hence assume that A(s) = A(s), since
all derivatives of U(s) are uniformly bounded in R*, Thus G, is the direct
sum of G _ with kernel

G _(r, F)= (rF)"*I (rz) K (Fz), r<F,

38
G.(Rr)=G.(r,7), G2

Ss=(—=02+r24_(s)+2z*)"L

- It follows from [BS2, Lemma 3.2 and Theorem 6.1] that the domain of the
- Frledrlchs extension of —82+r24_(s) is independent of seR*. Since
- 2?=|0|2+ A, we have

0,G,=~G.(r%0,4,)G, —2G2 8, |o|?; (3.9a)

~ the product (r729,4.)G.. is justified by [BS2, Lemma 3.27], since
0,4.(A(0)+ 1)~ is bounded. Observing that

0,G,=—-G%0,]0|2, (3.9b)
that same lemma applies to higher derivatives, and gives

102656 | 2.y < Cog 121 212 (3.10)

_ For G. we use Lemmas 2.1 and 2.3. By the Splitting Lemma we may
- assume that v is a direct sum, v(s)= @, v;(s), such that 0<a;<v,(s)<
b;<a;+2. From Lemma 2.1, in each such interval,

11,(rz)| S C(rz)® (1 +rz) =2~ 12¢,
| K, (F2)|| < C(7z) =% (1 + Fz)b~ Y27,

-so the kernel in (3.8) satisfies

G <(r, P < C(rF)* (rz)* (Fz) ~° (1 +r2) =2~ 2 (1 + Fz)b— V2 =2 =7,

r<r.

_Replace (r7)"? by z~!(rzrz)*”* and apply Lemma 2.3 to find |G _|| < Cz ™2
 Similarly, using Lemma 2.1 and (3.9), we get

10208G (| < Cppz=27 12, (3.11)
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Thus from (3.7) and (}.10), recalling z*> = |o|?> + 4, Proof. Split Go=G_@®G. by splitting 4 as in Section2. For G.,

V BS2, (3.5 i
1%l <CA L : (3.12) : [ (3.5¢c)] gives

I(1+0R) " RQ(1+ RY 87G . (1 + R) /2| a1ty < C sup r(1 + or) ™!
< Cla, (3.19)

Next, we estimate the remainder R in

(A+0)%=1-2%, (3.13) L .
which is small when « is large. The s-derivatives add factors
and make sense of the Neumann series %, 3. %’. As in the simpler case of

Jp—-2 — _
[BS21, 2 itself need not be bounded on L2. But if we define Q(1+R)’R™*(04/05,)G . (1+ R)~'2~"

“and ‘these are bounded, by [BS2, (3.5a)]. The o-derivatives bring extra
factors of Q(1+ R)’8,|0|2G.(1+R)~72~! in view of (3.6); by [BS2,
(3.5d) ] these factors are O(z~1).

" For G_, 8*[(r7)"*I,(rz)K,(Fz)] gives three terms, the worst of which is

o(r)=r"?(1+r)~""2,  Q=multiplication by w, (3.14)

~ then we can prove that 4,Q7!, Q%, and Q#ZQ ' are bounded; and the
norm of QAR ! can be made small so that

o r3F 2 (r2)? IV K, r<rF. (3.20)
%+% Q27" Y (QAQLY QR (3.15) L :

j=0 ~(The other terms are similar for fixed z, but this one has the worst growth
~as rz—c0.) By splitting as after (3.10), we can assume a<v<b with
0<a<b<a+1l. Combining Lemma 2.1(c), (d), (e), we can dominate

(320) by .

converges, giving the resolvent of 4. For technical reasons, we also need to
estimate the commutators of # with powers of (1 +r).

The terms in the remainder & arise from two sources: the dlfference
between 4 and the normal operator —82>+ A, +r 2A4(s) [the terms in
(34) above], and the remainder from the ido approximation to
(—0?+ 45 +r"2A(s)+ A)~ L The latter terms are small when A is large.
The former are made small by further modifying the coefficients outside a
small neighborhood of (0, 0), i.e., by multiplying # by a cut-off function in
the r-variable. The most delicate is the term O(r)d° %,, a Ydo on R* with
operator symbol.

r—3/2(rz)ﬂ (1 + rz)3/2—af1/2(fz)—b (1 + fz)b—l/zl(fz)e—z(F—r)_

‘Taking into account the factor rg(oar) and the conjugation with w(r) and
(14 r)’ in (3.18), we have a kernel dominated, for r <7, by

147
X (1 +7z)> =12 )(Fz)e 2" —"), (3.21)

J—1/2 )
<1+t> (1+ocr)“l(rz)“(1+rz)3/2—a (FZ)_[’
O(r) 9} Go. (3.16)

When J>1/2, the leading term in (3.21) is <1; thus assume J < 1/2. Then

We multiply this by a function @q(ar), where o(r)=1 near 0, 0< o<1,
at leading term is <((1 4 rz)/(1 +7z))’~?, for z> 1. Moreover, if z>a,

and @u(r)=0 for r 2 1. Then @,<1 and ragy(ar) <1, so

Poler) <2(1 +ar)~ L. (3.17) z z 2/a

(T4ar) t=

o ztarz atorz 1+rz
Denote by R the operator “multiplication by r.”

: _Hence for zza>1 and r <7, our kernel is dominated by
.LemMA 3.1. When o and z are sufficiently large then the operator symbol
' (z/a)(1 +rz) =4 (1 +72)° 7 (rz)? (Fz) "0 (Fz)e 2"~
(1+aR)"'RQ(1+ R) 0802 02G,(1+ R)7Q2~, JeR, B,yeZk _
(3.18) y Lemma 2.3, the norm of the corresponding operator is O(1/x), hence

; rbitrarily small for large « and z>a. Similarly, for r > 7, the worst term

has small norm in LA(R ,, H). the kernel estimate is
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Ir(X + ar) ~Hr =2 2(r2) K (r2) 1(2) |
S Cr(14ar) = r =2 (rz) =8 (1 + r2)? 37
x lrz)(Fz)* (1 +Fz) =" e~ 7
< Clzfa)(rz) = WA= (14 rz)* 12

x I(rz)(Fz)** V2 (1 + Fz)~2— 1R —F=D

LemMmA 3.3. The operator symbol

Z(1+RY'Q0507GQ (1 +R)~, JeR, Bezt,
is uniformly bounded in norm on L*(R , , H).

» Proof. For G, we now use [BS2, (3.5d)] to obtain

- Z|(1+R)YQG. 2 Y1+ R)~|<C.
when z > a. Conjugate with w(r) and (1 + r)’ as before, and find again that
the norm is O(1/a). -

The derivatives with respect to s and o are similarly estimated, as in the
proof of (3.12). 1

- For G-, we may assume that J<1/2 and a<v<bh, 0<a<b<a+1,asin
“the proof of Lemma 3.1. For the kernel of z%(1 + R)’QG _Q~(1 +R)~7
--we obtain the bound

A similar analysis applies to all the remainder terms listed in (3.4). In
addition to Lemma 3.1 we need the following symbol estimates.

1+rz\/~%2
z (1 T Fz> (r2) L (L +r2) 72 V2 (F2) =8 (1 + Fz)? — 12~

- if 221. Thus the assertion follows from Lemma 2.3. Again, s and ¢
~derivatives are dealt with as before. |

LEMMA 3.2. When o and z are sufficiently large then the operator symbol
(14+aR)"'R™Y(A(0)+ 1)1 + R)'Q0%07 G, 2~ (1 + R) 7,

i These estimates imply the desired smallness of fhe remainder term.
J € R: ﬁ L] 'y € Z +?

_ . TueoreM 3.1. Given any numbers j and k, the o
, ‘. : , perator (3.1) can be
has small norm in L*(R _, H). - modified outside a small neighborhood of (0, 0) so that for the remainder

Proof. For G, the essential point is [BS2, (3.5a)] which gives -
A f. P [BS2, (3.5a)] g R=1- 9,

A()+ DHR2*YG_R™7|<C . . . ;
I(4(s)+1) I - & conjugated with Q(1 + RY (1+|S|2)* is arbitrarily small, Jfor A sufficiently
Using (1+RY<C(L+R’) if j20 and (1+aR)"'R7'<a"'R™2 we [f laee

obtain for J>1/2 Proof. We can ignore the powers of (1 + [s]2); for
I(1+R) " R (4(s) + 1)(1 + RY' "2 RVG . R2(1 + R~
<Ca '[[(A(s)+ 1)R2T2G RV + |(A(s) + 1) R™>*G . R™||]

<Col. (3.22)

[ (415652 H(s, 0)(1 + 1512 do

=f [(1+4,)e">Te %> H(1 +|5*) ! do.
If 7<1/2, we argue similarly, estimating (1+R)Y>~“. By (0.10),"
(A4(0)+1)(A(s)+1)~* is a smooth family of bounded operators; this
completes the proof for G .

For G _, denote by P _(s) the projection onto the low eigenspaces. Then:

(A(0) + 1) P (s) = (A(0) + 1)(A(s) + 1) ™" (4(s) + 1) P (s)

Integrate by parts, and use (1 + |5]2)~ to balance the powers of § coming

-fro derivatives of e~**°>, This reduces the estimate of the s-conjugations
of

_ , Op(H) = f eSO (s, 0) do
is a smooth bounded family so we can ignore the factor 4(0)+ 1 in this®
case. Then the proof of (3.22) for G _ follows as the corresponding part of:

) fo estimates of Op(0” H), hence to estimates of H and its derivatives in s
Lemma 3.1. The s and o derivatives are also handled as before. ]

-and o.
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Now, as noted before Lemma 3.1, we multiply each of the remainder ‘,
terms in (3.4), right and left, by the function @o(ar) and introduce the new -

operator

A= 024 Ao+ r2A(s) + 0, Ro,,

where ¢,(r) := @o(ar). Since 4 and — 82+ 4>+ r~2A4 are symmetric, so is

R and hence so is 4.

Since ¢, =1 for small r, this does not change 4 in some neighborhood -

of r=0. The new remainder is
QIR+ @, [2r, Ay 0o+ ro. 240+ Pour~4y
+roLr1By(A(0)+ 1)?].

Here ro,, and r’p. have bounds independent of «, wile ¢, and ¢2 are -
<2(1+or)”'; so Lemmas 3.1 and 3.2 show that the terms arising from the
difference between 4 and the normal operator —92+ 45+ r~24(s) can be -

made small. The other remainder terms arise from

u—(—02+ A5+ r=2A(s)+ A)2m)~* j ¢<59>G,i(a) do.

These involve operator symbols 0,,0,,G, and 6,0, G,; their norms are small -

when A is large, by Lemma 3.3, since z2=|o|2+ 4. |

4. TRACE CLASS PROPERTIES

If 4(0) is a nonsingular elliptic operator of second order on a compact -

manifold N, A(0)” has a trace class resolvent if 2m>dim N; thus
(A(0)+1)~" is of Schatten class C, for p>3dim N. This fact is incor-
porated in (0.12). We will show that (4+1)~! is of class C, for

29>2p+k+1, hence (4 + 1)~ ™ is trace class if 2m > dim M, precisely the

same relation as for a nonsingular problem (see Remark below).
The proof uses “test operators” adapted to the singularities of the
problem. ‘

Lemma 4.1. Suppose that ¢ is C* and

r=°, O0<r<i,
o(r)=< >0, 1<rg2,
r=k, rz2.
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'Ifﬂ >2 and 3/2< 0 <2, then the operator

T:=—0,¢" 10

r

. with domain {ue L*(0, 00) | Tue L} has an inverse T~" of trace class, with
_ trace norm [§ ro(r) dr.

Proof. Set &(x):=[P ¢(x)dx. Then e L', d¢L? and

Tu=f=ux)=["o0) [ M dyat-Cox+C, @)

~for constants C, and C,. Define

K0)=" 0 [ 1) dy =" k(x, ) 100)

' where

D(x), y<Xx,.

K y)= {ab(y), x <.

~ Then K=J*J, where J is the Hilbert-Schmidt operator

I)=Vo® [ f) .

Thus K is positive and trace class, and its trace norm is

tr K= || %s = f:’ x(x) dx = f:’ ®(x) dx
= [ k(x, x) dx.
1]

Moreover, if ue L? and Tu=fe L* then u = Kf; for the constants C, and
> in (4.1) must vanish if we L2 Thus T-'= K is trace class. |

-On R!, we use a variant of the test operator from the proof of
emma 3.5 in [BS2].

:LEMMA 4.2. There is a self-adjoint operator on L*(R}),

= —a(s)0% + b(s)d, + c(s)
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with eigenvalues {j(j+1)}¢°, and as s > + associated with &_. For, the eigenvalues of 7+ SPPare {t+{y,y+1)}
with 7 in spec T and y in Z* ; and

a(s)~ns? |s|,
b(s) ~ —3ns Is|, Lt D)TISE [ (e o)) 7 do

c(s)~ —m s} B

—CY T < o

T

Proof. The Legendre operator ) Y
. if —q+£c/2< —1. Thus %_ is of class Ciinp

: For &, we replace the test operator T' by a “Legendre operator”

“ Py=(1/4)P on L*(R,), with P as in the proof of Lemma 3.5 of [BS2],

~ having eigenvalues _j( J+1). Then, as before, P,%. is bounded, and so is
(1+4(0)+X5P)F. ; and (1 +4(0)+X§ P)~"is in Cpt (k4 1y25 SiDCE

p: —6x(n2—4x2)ax

on L*(—mn/2,m/2) has eigenvalues {4j(j+1)}5. Thjc map Uf(x)
", sec x f(tan x) is unitary from L*(R') to L*(—n/2, n/2); it follows directly
that

—

P=LU"'PU

N,

) =1
Y X YUGHD+py+1>+a+1]0

aespec A(0) j=0 y

SCY (a+1)79+E+D2 o o

a

if g=p+ (k+1)/2, as claimed. |

has the properties stated in the lemma. ||

THeoREM 4.1. If A(0)e C,on H, p > 1, then for each j, € R, BeZ* , the
operator . ) ) .
, » . Remark. If 4 acts on a manifold M with a singular stratum X of dimen-
G :=(1+R)>(1+S]%)'~*0p(6¢Gy)Q~' (1+R)~ (1 +|S|?) ion k, then the conical cross-section N has dimension 7 = dim M — k — 1.
The second order elliptic operator A(0) has resolvent (4(0)+1)~! in C,
for all p>n/2; Theorem 4.1 implies that (4+A)~™ is trace class for
m=p+(k+1)2if m>(n+k+1)2= 1/2 dim M; this is the same restric-
ion as for nonsingular operators. :
Theorem 4.1 gives trace class estimates in LY (R, xR*)® H. We pass
.from these to pointwise estimates on the kernel by a k-dimensional version
f the Trace Lemma in [BS2, Appendix].

is in the Schattef class C, @ 41y2 in L*(R, x RF)® H.

Proof. Split #=%_®&. by splitting A(s) as in Section 1. On thg first’
term, use the test operator T of Lemma 4.1 with 2<f<3, ‘3/2.<oz<>2.:»
Writing T(1 + R) % =:a,0%? + a,8, + a, we have a; bounded at infinity and

a(r)=0(r*?),

a;, ag= 0(r'?), r—0. Lemma 4.3. Let H be a Hilbert space, and T a trace class operator on

%R, H) such that all commutators [0, T], [0,,[0,, T]], ... of order <k

We use again the Calderén—Vaillancourt Theorem to estimate the operator: are also trace class. Then has a continuous kernel such that

norms. As in the proof of Lemma 3.1, o-derivatives are harmles. Hence by
Lemmas 3.1, 3.2, and 3.3, T%_ is bounded. (To apply (3.18), note that”
a,(r)/ro(r) is bounded.) So Pj§?< is bounded, where P; is the differential
operator of Lemma 4.2 acting in the variable s;. Hence

(T+ i Pj) g.

j=1

()= | T(5,5) /) ds

with

' ITCs, e < W00k o [0, 181, TIT -+ M e o 1)
iin”urther, '

is* bounded. Moreover, (T+X5P,)" ' is of class C,,,,, acting o

. ) N 1, ds< | T,
L*(R* x R,) ® H_, where H_ is the finite-dimensional subspace ka | 7(8, M e 177
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and

tr T=ka try T(s, ) ds.

Proof. When k=1, this is the Trace Lemma in [BS2, p.425]. The
general case follows by induction. For, if all the commutators up to order
k are trace class, then by the induction hypothesis [, T], acting on
L*>(R*=!, L*(R!, H)), has a continuous kernel with

L8155 TI(s2, s S5 525 s Sl e 22¢mt; a1y < NL0ks s [015 T+l e

Moreover, T itself has a continuous kernel T(s,, ..., Sg; Sa; .., 5) With
values in trace class operators on L*(R’, H). One checks that the com-

mutator of this kernel with 8, is precisely the kernel [8,, T](s;, - Sk;
§,, .., 5;) above. Hence, the present lemma follows with one more applica- -

tion of the case k=1. |

5. AsyMPTOTIC EXPANSIONS

Consider again the abstract second order elliptic operator (3.1),

A= —02+d5+r2A4(s)+R, (5.0)°

where 4 5 is uniformly elliptic in R¥, 4 satisfies the assumptions (0.9)-(0.12),
and R is given in (3.4), with uniform norm estimates in R, x R¥. Outside
some small neighborhood of (0, 0) we have modified the coefficients of 4
in such a way that we have remainder estimates suitable for the following
arguments. We can assume that 4 is symmetric and bounded from below
in #:=L*R, xR H) with domain CZ((0, o) x R¥, H). Hence the
Friedrichs extension exists; we will denote it, too, by 4, with domain 2(4)..
In (3.5) we introduced the operator %(4) in L* (R, x R*, H) as our first.

approximation to the resolvent (4 + 4)~'. From Theorem 3.1 we have

4+ 20)%(A)=1—2R(4) (5.2):

with

12221 <1, A=, (53).

and %2 ' bounded (see the proof of (5.8) below). Hence

Y1) =% Y (QaQ"'YQ o (54)

j=z0
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is well defined; we are going to show that in fact
GA)=(Ad+ 1)~ (5.5)
We have from (3.1)

k » k
A=Y A4;0,0,+ Y B,(A0)+1)"20,+r 2C(A(0)+1 (5.6)

i,j=0 i=0 R
.w@th coefﬁciegts A;=A}%, B;, C which are smooth functions in R;x R*
with values in #(H), A4;(0,s)= —ay(s)l, and uniformly bounded in
R, x R* together with their derivatives. Consider the space
D(4):={ueH#|0uc H if1<i<k, Aue #, and

() L2t gy = O(r**) as r - 0}. (5.7
'H?re 4 is applied in the sense of distributions. Note that 2,4
HY((0, c0), LA(R¥, H)) = C((0, o0), L¥(R*, H)), by elliptic regularity (cf,
eg, [BS2, Theorem 2.1]), which makes the last condition in (5.7)
meaningful. '

LEMMA 5.1. @(4) < D(4).
j froof. We extend the argument in [BS2, Theorem 6.1] to this case.
With ¢, x, ¥, as defined there we put ) '
Vulr, 8) = @(Isl/n) (r/n) ¥ (1),
lan :zipn_l;nn n9m>2'

Then ll,% is uniformly bounded and converges to 0 pointwise. .Also,
»l},,ue@(d) for ue @,(4), by interior regularity and mollification. It is,
therefore, enough to show that

hm Re[(Zlanu’ ipnm u) - (ipnm Zu’ lanu)] = O;

nm-—» oo

To see this we use (5.6). For the terms coming from 4402 we write
= 0y/0r =41, and obtain

(AOO(‘ZZmu + 2!;;,,,,11’), 'Inmu)
= 2(';;""1{/, A'()O‘;nmu) - (‘Z;zm u, AOO(lp;tmu + 'Inm u,) + A:)O%nm”‘)
- ('Z;zmu,a AOO‘anu):

ue 9,(4).

hence
Re(AOO(lZ:mu + 2‘;;zm u,)a J;nmu) = Re(l;;m i, AOO 'I;mu + A(I)O ‘an u)

anmein
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So this term is bounded by C(||¥’,.u >+ |¥ . ull?). All other term have -

similar bounds. Hence it is enough to show that |, u[ = 0, 1, m — co.
But for m>=n (5.7) gives

ot < Cu| [ 074000 P 45
and the assertion follows as in [BS2, Theorem 6.17.

LeMMA 5.2. 9(A) maps 5 into D,(A), for large A.

Proof. By construction, for fe %, A%f< #, as a distribution. In view of
(5.4) and (5.7) it is hence enough to prove that

0,%,2 'is bounded for 1 <i<k , (5.8)

and

1%Q2 =1 ()| 2t 1y < Cpr'2. (59)

For the proof of (5.8) we write % =%, +%. , splitting 4 as in Section 2

Estimating again by the Calderén—Vaillancourt Theorem we obtain the -
boundedness of 9,%_Q ' as in Lemmas3.1, 3.2, and 3.3, whereas
0,%. 2 Q-1 is estimated using (3.9a), (3.9b), [BS2, Lemma32] and the .

inequality w(x)~!'< C(1 + 1/x?).
For (5.9), we split once more. Let u=%,.

Q7 and h(r) :=r="u(r)

The argument for (3.10) gives similar bounds for R~?G_. Q! and
8,R™'’G_ Q' (with less decay as z— o). Hence % and 4’ :=0,h are in -

L2(R x R" H). By standard regularity, A(1)e L*(R*, H), so |h(r)] =
IA(1) + |7 #'|| < C, proving (5.9) for %, .

LEMMA 53. (% .Q7 ()| Lz(Rk,H)O(r‘/z).
Proof. We can assume that v is scalar, since all estimates are made with

a fixed s.
First we prove that if a<b, z> 0, then

011 ,(az)K,(bz) < C;z /I (az/2) K, (bz/2). (5.10)
For by [MOS, p. 98],

I(az)K,(bz) =1 jm 1= le= = @+ BV (ap 101 .
0
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Since 8Je~**=z"7P,(z%)e~** with a polynomial P, we find
071,(az) K, (bz) = (2z7)~* j ” t71P;(2%t) e~ Fle~ @+ (4h/2t) dit.
0

Since P;(z%t)e = < Cie="" and I,>0 on R, , (5.10) follows.
Next we show, again for a <, that for 0 < g <1/2

“u:ek Iv(az)Kv(éz.)e"““5"’> do

S Comin(ls —35°7% (b—a) =%, |s— 5| 4~ 1)~ C-aryp)  (511a)

- To start, we have for a < b, and for any multiindex o,

G5 | L)k (b2)e =5 ap
=ka ei<s—§,G>(iaa)u1v(az)Kv(bz) do'.

Since z> =1+ |0(2, [0%2] < C|z|*~ ¥, Then by (5.10) and Lemma 2.1

- (,)* I,(az) K, (bz)| .
<Clzl =" I(az/2) K, (b/2)
<Clel ™M e~ =Y pr)(az)* (b2) = (1+az)="=Y2 (1 + bz~ 112
<Clz|7H=2 b —a] ~* [(b) =t

for any 620, since e=¢ =< Clb—a| =z~ and z>1. With |a] =k + 1

~and ¢ =0 this gives

U[Rk I(az) K\ (bz)e™* ™% do| < C [s— 5%~ I(b)e =@~ (511b)

ikWith la| =k and =4 it gives

(b—a)’|s—

f I(az) K, (bz)es—59> g

< Cl(b)e= G4,

‘With |a|=k—1and e=1+4it gives

(b—a)i+|s—s]=1 )f Aaz) K (b2)e™ =52 dg | < Cl(b)e~ e~ 0
RE
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Add the previous. two inequalities, use x + 1> x° for x> <<, with
=(b—a)/|s—35|, and find

. THEOREM 5.1. & is the resolvent of the Friedrichs extension, and
D(4)=2(4).

Proof. 1t follows from Lemmas 5.1 and 5.2 that we have the operator

_ 26 __glk—2o i(s—.?,a‘)d <Clb —(b—a)/4‘
(b—a)? |s—3 ka I(az)K,(bz)e o< Cl(b)e—® Wil

This, with (5.11b), proves (5.11a).

d+0)%N)=1I
Now, to prove Lemma 5.3, we have

‘ Since the Friedrichs extension is self-adjoint, ¢ must be the resolvent.

r= % o0~ f(r, 5) Thus, 2(4) =im %(1) = 9,(4) so by Lemma 5.1, 2,(1) = 2(1). |

Flnally, we need the scaling properties of 4 and its kernel. We are going

‘to use “scaling to a base point” in R, x R; for fixed s,e R* we consider
the maps

(2m)~* Jﬂk fR r=2G, _(r, 7, s;z)F 12

x (1 +7) 2 f(F, 6)e' > dF do

(r, S) (tr, o+ t(s —s0)),  t>0. (5.12)
It will be clear that the estimates we are going to obtain are uniform in s,

80, for simplicity of notation, we take s,=0. With (5.15) we associate the
unitary transformation

:J .[ r 1/ZGA0<("5 ’_'; S, E;Z)f_llz(l—i-f)l/zf('-', S_) dfds—n
R¢ YR
where

Go(r, 738, 5, 2)=(2m) " f . e s HOPILL (r2) K (F2) 7 do, r<r.
R

By (5.11), Ui S(r, 5) = 1t“* D20 (ar, 15) (5.13)

r=Y2G, (r, Fy 5, 5, 2)F 12 (1 + F)Y? ‘and the scaled operators

<Ce "= min(|ls —5° % |r—F =%, |s—5 % 1)

d4,:=U, AU}

x I(max(r, F))(1 4+ 7)"2. k k

, = Y Ay(tr, 1)8,0;+1t Y B,(tr, 1s)(A(0) + 1),
By Schur’s test, for r<1, 4j=0 i=0

-2
”r—l/2g0 w—-lf(r)” LRk ) +r C(ti‘, IS)(A(0)+ 1)
’ =: =02+ Ay, +r2A(ts) + IR, 514)
<f ka r=12Gy F V(14 P2 £(F, §) d5 | oy AF G = (d 4 1)L .

By construction, 4, is self-adjoint and equals the Friedrichs extension of

<c| [ emr=ma r—7=2 1)1 + )2 £ ()] dr
l:‘[o e | | () ) P -the diﬁerential expression in (5.14). By Lemma 5.2,

.@(A,)—U@(A)—{ue,}fla ueéfforl <i<k,4d,ue#,and

”u(r)”z,l(nk,y) = O(rl/z) asr — 0}

+f AR T e (DT T o REl Vi (] S df]

clunra=s ( J e~ PE ST (147 o) 1/2] 171

Hence %, is constructed in the same way as ¥ =%,. We only have to replace
<C. ‘

G, by

The lemma is proved. | Go,, 3=(—3f+r"2A(tS)+1+10|f,,)_1, (5.15)
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where |o|2, is the principal symbol of

k
As,= Y ay(is)d0; (5.16)

Lj=1

(such that G, is the resolvent of the Friedrichs extension of the scaled
pormal operator), and R by tR,, where R, is given by (5.14). It is clear
from this description that all estimates we have obtained so far are valid -

uniformly for te [0, 1]. We turn to the trace class properties of &,.

LemMma 54. Let o CP(R, x R*). Then for m=p+ (k+1)/2, ¢%7(A) 1
is in the trace class C () with uniform trace norm estimates for te [0, 1], -

A= 1. Moreover, 97 has a continuous kernel

gm(s, 5 A) e C(LAR, , H)) (517)

which has in turn a kernel

G7(r, 7 5, 5 4) € Cy(H) (5.18)

such that

tr 9@ (A)= fR . o(r, s)try G7(r, 1y 8, 5, A) dr ds. (5.19

Proof. We want to use Theorem 4.1 and the Trace Lemma 4.3. We

introduce the following notation: let 4 € #(#) and let I= (i}, .., i) €Z’,
be a multiindex of length /> 0. We define the multiple commutators of 4
with the operators d;, 1 <i<k, by

G[A] =4, (5.20) -
@'[A] =GP A] = [8;, €=~D[4]]. (521)

We want to prove that for JeR, te[0,1], g=p+(k+1)/2
I(L+R) =3 (1 +[S1H)Y =22 [](1+ R) ™ (1+1S17) "l ¢y < Co 1

(522)°

This will prove the lemma. For, commutators act as derivations on & (# ),
so we may write with y(r, s) := (1 +7)(1 +|s|*)"* and certain numbers.

c(Iyy s Iy)

PG G =0y’ Y

L+ oo A y=1

e  CAT A B U AN

(e(Lys o L)W €1 [G,197 D)
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now @y*" is bounded, and by (5.22) and Theorem 4.1, p%’[%™] is trace
class with uniform trace norm estimate in ¢< 1. Then (5.17)~(5.19) follow
from Lemma 4.3 and the Trace Lemma in the appendix of [BS2].

- For the proof of (5.22) we use the following estimates: for JeR,
te[0,1] and g=p+(k+1)/2, and with y the operator “multiplication

byy”

176" (%, 12 7'l ) < Cut (5.23)
and, for the remainder #=1I1—(4,+ 1)%, ,,
1P/QE (R | <Dyys (5.24)

and, given J,>0 we can assume that the model operator has been so
constructed that

D;x<1/2 if |J|<J, and Az, (5.25) -

For the proof of (5.23) we use the commutator relation

0
[4,, Op(G)]1=Op (;,f) (5.26)

1

and we obtain
Y’"”g’[%’,]Q“IYJ‘J: Y/ =30p(01G,,, ) Q2.

So (5.23) follows from Theorem 4.1. For the proof of (5.24) we recall that
by (5.14), 4, is a sum of Ydo’s, and the commutators only add s-derivatives
of the symbols, by (5.26). Thus the remainder estimates in Theorem 3.1 do
not change, and the result is uniform in r< 1.

To prove (5.25) we cosider first the terms in £, coming from (R,%, ,. The
modifying function ¢, introduced in Lemma 3.1 is replaced by zo(atr)
whereas the remainder estimate is otherwise uniform in 7<1. Then the
inequality (3.17) is replaced with

too(atr) <2t(1 +atr) ' <2(1 4 ar) ™!

so the proof of Lemma 3.1 carries through to show that all these terms can
be made uniformly small if |J| <J,, « is sufficiently large, and A is large.
The other terms in %, come from

I— (=04 A5, +r2A(ts) + M) %, (4)

and are O(A~") uniformly in #< 1, just as in the proof of Theorem 3.1. This
~ completes the proof of (5.25) and hence the proof of the lemma. ||
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Let 4 be the operator described in the introduction. The asymptotic -~ Use Lemma 4.3 next to derive
expansion of (4 4 A)~™ near the singular stratum will be determined by the
corresponding expansion of tr p%™(1), ¢ € CP(R, x R¥). To derive it we
will use the Singular Asymptotics Lemma (SAL) from [BS1] as cited in

[BS2]. Thus we write

1 s
fo (s 1)] du <G "-OLoJ(*™ 0T (A)) iy wmtye (5:32)

We have to show that the right hand side of (5.32) is uniformly bounded

é(r, 5;0) =ty G™(r, 1y 5, 5; £2/r?), (5.27a) if j<Jo, 0<¢< 1. For j=0 this has been proved in Lemma 5.4. Following
o(r.0) = J 03 (r, 5:0) ds (5.27b) the pattern of that proof, we generalized (5.23), (5.24) to
a 19727016 (9, 12|l ¢, < Cys (5.33)
and we get from Theorem 5.1 1P/ ~7Q0IC'[R1Q ¥~ o <D, .1 (5.34)

for any multiindex I, JeR, jeZ,, te[0,1], and g=p+ (k+1)/2. To
prove (5.33) we have to show first that Op(9.G, ) is a smooth function of

tr e%™(1)= Joo J ) o(r, s)é(r,s;r ﬂ) ds dr

© » te [0, 1]. But usi 5.15) we see that
- f o(r, r /) dr. (5.28) [0, 1]. But using (5.15) we s :
0
0,Go, =) 5;0,Go,,. (5.35)

i=1

We verify the integrability condition (1.5b) of the SAL in [BS2] by means

of the scaling. If follows from (5.14) that This proves differentiability and shows at the same time that the argument

‘used to prove (5.23) still works except for a factor (1 + |s|)”? which is
balanced by the additinal factor ¢~/ in (5.33). We can deal analogously
with (5.34) if we observe that the terms in %, have the form Op(4,G,)
where G, is an appropriate operator symbol of order <0 satisfying (5.35),
and 4, = A(tr, ts) for some smooth function 4 with values in F(H). There-
fore, the proof of (5.34) must take into account powers of r and |s| which
were not present in (5.24). These are again taken care of by y .

- The above estimates use the scaling (5.12) with base point sq=0. They
can be carried out equally well with any base point s, and are uniform in
S, 8O

G™(r, Fy 5, 5 Ay ="K 1gm (/e 7L s/t §)t; £2) (5.29)
and consequently
6,0, ) =" "1y 97(1,1,0,0; (7). (5.30)

Set 6U)(r, s; {) =076 and oV(r, {) = d7a(r, {). The cited integrability condi-
tion follows from: :

LEMMA 5.5. Given J,>0 we can choose A, an_d oo Such that for 1= Ay,
o=a, in Lemmas 3.1-3.8, 0<j< Jy, 0<t< 1, 6V exists, and , .
fo W& D ut, s; uil?)| du< Cy,

1 . %
j W [oP(ut, uilf?)| du< C,,. (531)
0

Since the ¢ in (5.27b) is 0 for |s| > 1, (5.31) follows by integration of this

Proof. From (5.27a) and (5.29) we have last inequality ins. ||

Li(u, t) := w6 (ut; 0; udl?) = a{(,}Zm—k—l tr G7(u, 1; 0, 0; Ag)). ~'We can now prove the main result of this paper.

THEOREM 52. Let A be the Friedrichs extension of a second order
symmetrzc Laplace type operator as described in the introduction. If
m>dim M/2 then (4 + 1)~ is trace class and there is an asymptotic expan-

Now choose ¢ € CP(R . x R*) with ¢(r, s)=1 1f r<1, |s| <1. Then apply :
the Trace Lemma in [BS27] to get :

1 .
fo [T (u, 1)] du< |02~ * L% ™(0, 0; io))llu(RJr,H): .
tr(d+4) " ~,_, , AdmM2—m Y a A"+ Y b2~ log A.

where the subscript denotes the trace norm for operators on L*(R ., H). ) s 2m—k
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Proof. We first obtain this expansion to arbitrarily high order for the Hence

model operator 4 with resolvent 4. We apply the SAL of [BS1] to the a

right hand side of (5.28). By Lemma 5.5, the assumption (1.5b) in [BS2] [Yo*(4+A) "yl < Cn A~ (5.39)

is satisfied. It only remains to verify (1.5a) in [BS2], that we have an

asymptotic expansion Now take ¢ as above and choose $eCP(R, xR*) with ¢=1 near

supp ¢. Then, since derivatives of @ vanish near the support of ¢, we

o(r, )~ Z o (r)* (5.36) obtain from (5.39) that

A+ 34 +2) "9 =0l <Cya~™
with smooth coefficients, o,€ C*(R,). To see this we recall from the

H
identifies (5.28) and (5.30) that enee

. tr o((4+2)~" = F™())| < Cya~".
ol =] ol 5) a0, 5:0) ds, .
(5.37) -The theorem is proved. ||

é(r, 0; Q) =r""*"1tr, 9™(1, 1,0, 0; {?).

It is therefore sufficient to prove an asymptotic expansion of the type (5.36)
for the right hand side of (5.37), which is uniform in the base point of the
scaling. We can also restrict attention to an arbitrairly small neighborhood
of r =0 by choosing the r-support of ¢ sufficiently small. By (5.14) and the
construction of the model operator 4 in Section 3, &, is the resolvent of a
second order differential operator, 4,, acting on C*(E), where E is the
pullback of E to (0, co) x X x N. Moreover, for small r, 4, is elliptic in view
of (5.14), so we obtain the desired expansion for tr 2y, £y %.(1, 1; 0, 0; ) by

6. THE NATURE OF THE SINGULAR TERMS

f‘rom (5.28) we get the contribution to tr(4 +2)™" from a
‘neighborhood of a given point s, on X by using a cutoff function @(r, 5)

supported near (0,s0). To simplify notation we replace &(r,s; () by
o(r, s; () and have

standard elliptic theory. Obviously, this expansion is uniform in the base tr (4 +22)“m=j J . @(r, s)o(r, s;rz) ds dr (6.1)
point. Thus we obtain an asymptotic expansion of ¢%™(1) of the desired : o R

form: the term of highest order in the interior expansion is cA4mM/2=m and ‘with

the contributions from [BS2, (1.6a) and (1.6¢c)] are of smaller order in ‘

view of the factor r¥" %1, o(r,; ()=te g G™(r, r; s, 5; (2/r?), (6.2)

It remains to see that ¢(4 + 1)~"™ has the same asymptotic expansion as’
@%™(A). Let 47(1) be an interior parametrix for (44 41)™, and choose
¥, ¥ e C2((0, 00) x RF) with =1 on a neighborhood of supp ¥, while
supp ¥ and supp ¥ are near r =0, so that 4 and 4 agree in these supports:
We have, with slight abuse of notation, ’

and H =L'2(N, E). We analyze o by scaling to a base point s, as in (5.12);
the result in (5.30) has s, =0, and in general, with (5.12),

(1, 50;2) =" " Mg G7(L, 15 50, 503 2°). (63)

According to [BS2, (1.6)], taking 87/¢(0, s)=0 for j=1, 2, ...,

YITPA+ A =yGTI A+ A" =y + &, (5.38)
o £l
where trp(4+2%)""~ ¥ z—l—lJ’ %j k(p(o, 5)a 0, 53 ) ds dt (6.4a)
] > V] - YR
10°F e < Cvud ™V -
for all N and a. Multiply (5.38) on the right by (4+4) ™y, where +§fo JR,( o(r, $)on(r, s)rz)*dsdr  (6.4b)

x € CZ(R x R¥) with supp x N supp ¥ = &, to find
z%log z

(—_O(—T)!’ (6.40)

+ 2 f @(0, 5)al"*" 10, 5) ds
i3

o= —1

YA+A) "= —L4+1)""y
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where a{(r, 5; () = d'a(r, s; (), and

o(r,5; ()~ 2o0,(r,8){% [0, (6.5)

is a given expansioﬁ obtained from (5.37), arising from the standard do

calculus away from the singular stratum, as in [S1] or [S2]. Thus the
integrands in (6.4b) are the usual ones; they may have singularities on the -

stratum 2, and (6.4b) represents a regularization of improper integrals by
analytic continuation.

The functions o, in (6.5) are computed recursively from the symbol of 4,
so the coefficients in (6.4¢c) are recursively defined from that symbol. They
are integrals of smooth densities defined on the singular stratum X

The integrals in (6.4a) are defined by analytic continuation, and so the
order of integration can be reversed; thus the coefficient of z='~! there is
likewise the integgral of a smooth density defined on %, which we now
discuss in more detail.

The coefficients in (6.4a) are recursively defined from the Taylor expan-
sion in r of a suitable operator symbol of 4 along the singular stratum 2
the operators in question act on L?*(N, E), so are “global on the cross-
section” N of the cone with vertex at s. To verify this, consider the relation

4%=%,+%R (6.6)
with %, , = Op(G, ,),
| ' Gopy= (=024 [0l + 2 A(s(0)) + 1) (6.7)
and
s(t)=s0+ t(s—sg) (6.8)
and

[ Z Ay(tr, s(t))a )+ i B,(tr, s(2)) A0, + r~'B(tr, s(t))Az] %,

i,j=0 Jj=0
k .
+t0p(—2,/—1 Y. gy(s(1))e,0,Go—1 Y, gij(s(t))a,-ajGo),(6.9)
Lj=1 Lj=1

where d,=09/0r, A=(A4(0)+1)"? and A4, B;, B are smooth families of
bounded operators on L*(N, E).

Since %, =0, the derivatives of &, at =0 are deﬁned recursively by (6.6),
and this allows the calculation of the terms

a0, 5;2) = 0P F ey 97(L, 1 s, 552%)) 1o
in (6.4a).
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We illustrate the nature of these singular terms more concretely by
‘describing the first two. In view of the factor t*”~*~! in (6.3) and the
_derivative in (6.4a), the first nonvanishing term in (6.4a) is

72 [ 90,8) [ try 951, L s, 5 ()41 d ds
RK 0

=2 [ (0, $)e_an(s) d,
233

—k 2m—k—1 -1 9\~
R R M S Y e ol
X v(s) v(s)( C2+|al§) dO' dC

“can be evaluated using the Mellin transform of I,K,, cf. [BS2, (2.11)].

For the next term, with z*~2"~!, we need tr §,47|,_,, computed from

: (6 6). We take the base point s, =-0 for s1mphclty, and find from (5.15)

azGo,z]z=0=Z Si(as,-GO)’s=0=: s, Gy

- Set Gog=(—082+r"24(0) + |¢|2+ () ~'. Then

0,97 1,-0=0p({s, G,>)Op(Gr~")
+0p(Goo)Op({s, G »)OP(Gay )+ -~ (6.10)

,Tbhe factor of 5 can be moved to the left of each product using

Op(Gs;) =5, Op(G) + Op(— iﬁ,jG).

,' For the other terms of 9,%7, we need the derivative at =0 of (6.9). This
S

’ ) k k

[r Y, A;(0,0)0,0,+ Y B;(0,0)40,+r~'B(0, O)Az] Op(Gyo)

5j=0 j=0

3
—=2y/=1 3. £4(0,0)Op(s,9,Go),

Lj=1

~which we denote by #,. Thus 8 %7 =0 is a sum of products of ydo’s on
‘TIR" with symbols which are operators on LR, )® L*(N, E), with polyno-
-~ mial dependence on s as seen in (6.10). For such symbols the functional
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calculus has no residual terms, so we obtain (in principle) an explicit
formula for

try 0,97(1, 10,0, 8% o

and hence an explicit smooth function ¢ _,,, _(s) giving the coefficient of

z¥=2"=1in (6.4a) in the form

[ 000, 9)c_am_1(s) s
pa

Of course, to work out these coefficients in a given case is challenging. We
intend to return to this question in a further publication.
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- Two groups G,, G, are said to be a matched pair if each acts on the space of the
other and these actions, (a, f) say, obey a certain compatibility condition. For
every matched pair of locally compact groups (G,, G,,a, B) we construct an
associated coinvolutive Hopf-von Neumann algebra #(G,)*x, L*(G,) by
simultaneous cross product and cross coproduct. For non-trivial o, § these
bicrossproduct Hopf-von Neumann algebras are non-commutative and non-cocom-

“'mutative. If the modules for the actions a, f are also matched then these
bicrossproducts are Kac algebras. In this case we show that the dual Kac algebra

. is of the same form with the roles of G,, G, and of «, § interchanged. Examples
exist with G, a simply connected Lie group and choices of G, determined by
sultable solutions of the Classical Yang—Baxter Equations on the complexification
of the Lie algebra of G;. © 1991 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

The idea of semidirect products of operator algebras by group actions
has proven a very fruitful one for generating new examples. A natural
formulation for such group actions is in the language of coinvolutive
opf von Neumann algebras and Kac algebras, e.g., [Str]. One would like
btain still more examples of coinvolutive Hopf-von Neumann and Kac
algebras, and in this paper this will be achieved by combining a semidirect
‘oduct algebra construction with a dual semidirect coproduct coalgebra
nstruction. It turns out that the constraint for these to fit together to
rm a coinvolutive Hopf-von Neumann algebra, called the bisemidirect
oduct or bicrossproduct, is a generalization of the Classical Yang—Baxter
FEquations (CYBE). Thus many examples of the necessary data are known.
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