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ON L2-INDEX THEOREMS FOR COMPLETE
MANIFOLDS OF RANK-ONE TYPE

JOCHEN BRINING
To the memory of Vojislav Avacumovi

1. Introduction. Index problems on noncompact manifolds have attracted
much interest recently. In this paper we consider a complete Riemannian manifold
M, of dimension m, and a generalized Dirac operator, D, on M. (These operators
are described in detail in [LM].) This means that D is an elliptic first-order differen-
tial operator acting on the smooth sections of a hermitian vector bundle E over M.
Now E has a Clifford module structure and a metric connection, V, compatible with
Clifford multiplication (denoted by.), and locally, with any orthonormal frame (Fi)
for TM, we have

Da Fi" Vv, a, a e C(E). (1.1)
i>l

It is easily seen that D with domain C(E) is symmetric in L2(E) and that D has a
unique closed extension, also to be denoted by D. But ifin addition E has a V-parallel
splitting, E E+ E-, such that F. E+ = E- for F TM, then D+ "= DIC(E+)
is no longer symmetric. Thus, we can ask whether the unique closed extension, D+,
is a Fredholm operator, or more generally, whether the spaces ker D+ c L2(E+) are
finite-dimensional. If so,

L2-ind D+ := dim ker D+ dim ker D- (1.2)

is well defined, and we can try to derive an L2-index formula. The first example of
such a formula seems to occur in [APS], for the geometric operators on manifolds
with cylindrical ends. Since then, there has been considerable and ongoing interest
in such formulas; see, e.g., [ADS], [BaMo], [GL], [M1], [M2], [M3], [M4], [Stl],
[St2], among others.

Nevertheless, there is still no systematic approach to such theorems. In [B] we
made a modest first step towards an abstract setting the applications of which,
however, seemed to be limited to manifolds which are asymptotically warped
products. The reason for this limitation was that we required a specific limit for the
Dirac operator at infinity. In the present paper we relax this requirement consider-
ably. This is possible by generalizing analogously the notion of regular singular
operator introduced in [BS2] and [B]. The main result is formulated as Theorem
4.4. Thus, we can treat considerably more general manifolds like multiply warped
products, which we treat as main example here in Section 5. But our theory also
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258 J. BRINING

applies to manifolds with finite volume and pinched negative curvature; this will be
treated elsewhere. In general, the sort of geometric control implying the crucial
assumptions (2.9) through (2.13) corresponds roughly to the behavior of locally
symmetric spaces of rank one with finite volume. For this reason we call complete
manifolds, which satisfy (2.1)and the above mentioned conditions for all generalized
Dirac operators, manifolds of rank-one type. We will further clarify the geometric
content in a future publication.
The index formula in Theorem 4.4 is calculable (in principle) only in the Fredholm

case, but even then we feel that it is not in its final form. In the non-Fredholm case
there occurs always a quantity ha (see (2.34)) which is virtually impossible to
compute. In the cylindrical case, it has been shown by Miiller [M3] that ha is related
to zero-energy resonances of a certain natural scattering problem. It is thus remark-
able that we get a computable LZ-signature formula in some cases where ha > 0.
(See Theorem 5.7 which generalizes Corollary (4.11) in lAPS].)
The plan of this work is as follows: In Section 2 we relate the computation of

L2-indices to the computation of Fredholm indices for certain associated weighted
operators; in particular, we provide a convenient framework for proving the
finiteness of LZ-indices.

In Section 3 we transform the weighted operator to a generalized regular singular
operator, and we study its Fredholm properties. Both Section 2 and 3 follow the
outline given in I-B], with some crucial modifications.

Section 4 is devoted to computation of the Fredholm index. This is somewhat
subtle since we have to allow deformations that change the domain.

In Section 5 we study the L2-signature. We give a very general separation of
variables for manifolds with productlike ends (Theorem 5.3) and discuss various
special cases, notably multiply warped products.

Acknowledgement. I have greatly profited from many conversations with Werner
Ballmann concerning the geometry ofends in the case ofnegative curvature. Thanks
are also due to Werner Miiller, Henri Moscovici, and Bob Seeley for helpful
discussions. I gratefully acknowledge the support of the VW-Stiftung and the
European Community (under the GADGET project), and I appreciate the hospital-
ity of the MPI, Bonn, and the IHES, Bures-sur-Yvette.

2. The class of operators. We consider a more general class of operators than
the one studied in [B]. To describe it, let M be a Riemannian manifold and U be
an open subset such that

Mx := M\U is a compact manifold with boundary. (2.1)

Consider next two hermitian vector bundles Ea, E2 over M and a first-order elliptic
differential operator D: C(Ea) C(E2). It is enough to think olD as a generalized
Dirac operator in the sense of Gromov and Lawson [GL]. We assume a "nice"
representation of D on U in the following sense.
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There are a Hilbert space H, with a dense subspace H1, and isometries

,: L2(E,I U) L2((0, ), H). (2.2)

They induce isomorphisms

H(E,[ ) --. H([0, ), H) L2((0, ), H1), i= 1,2.

Moreover, there is a smooth function (in the sense of strong differentiability)
+ . y S(y) (H, H) such that S(y) is self-adjoint in H with domain H,
and for u C([0, ), n), y > 0,

2D-u(y) -c3ru(y + S(y)u(y). (2.3)

Though we can develop most of our theory in an abstract setting, the operators
we are going to consider will be of rather special type. Consequently, the family S(y)
will be special. For the present applications we may, therefore, assume that

S(y), y >_ O, is a smooth family of self-adjoint elliptic differential operators of
first order, acting on C*(F) for some hermitian vector bundle F over the
compact Riemannian manifold N := cM1. (2.3’)

Examples of this situation are asymptotically warped products as described in [B-I;
more general examples will be given in Section 5 below. We have to impose further
conditions on D in order to obtain a finite L2-index. By this we mean the quantity

L2-ind D := dim ker D L2(E1) dim ker D’ L2(E2) (2.4)

where D’: C*(E2) C*(Ex)denotes the formal adjoint. IfDmi and Dma denote the
minimal and maximal closed extension of D, respectively, where Dmin is the closure
and Dma (Dnin)* then we can write

L2-ind D dim ker Dma dim ker Dnax.

Thus, if L2-ind D is defined, it need not be the index of some closed extension. If
Dmax Drain, however, this is the case. It should be noted that in this case the
finiteness of LZ-ind D does not imply that D is Fredholm. In fact, in this work we
are mostly interested in the non-Fredholm case.
From (2.2) we also obtain isometries

Le(Ej)- Le(EjIM) L((O, ), H) =: 3f, (2.5)

j 1, 2. This allows us to identify D with a closed operator in with values
in z. We write u (u, u) for elements in g, with u the "inner" and u the
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"boundary" component. We define a multiplication on by elements of C~(E+) "=

{q C([+)] q9 is constant near 0 and } by

ou (o(0)u, ou) . (2.6)

Then we require that

( @ %)- ou ( (R) %)-u (2.7)

for some C(M), with C(M) if q C(+).
For the domain (D) of D we have

(D) {(u,, Ub) g/gx]U, H(E1]Mx); Ub H,o([0, ), H) c LZo((0, ), H),

(-, + S(y))ub(Y) e L2((0, ), H); ulOM, -xUblC3Mx }.
(2.8)

To obtain a finite L2-index for D, we have to impose further conditions on the
operator function S in (2.2). First of all, we postulate a "spectral concentration
property" for a renormalization of S as follows.

There is a smooth family Q(y) of spectral projections of S(y) such that

and

f(y) IQ(y)S(y)I <_ C Q(y), 1/2, (2.9)

f(y)l(l- Q(y))S(y)I > C2(I Q(y)), C2 > 1/2. (2.10)

Here, f is a smooth positive function satisfying

f’(y) a + o(1) as y c, 0 < a < 1. (2.11)

With S(y) := f(y)S(y) the operator equation in (2.3) can be written as

DUb(Y) --drUb(Y)+ f(y)- CS(y)ub(Y). (2.12)

This form resembles the warped-product case dealt with in [B], but we have the
important difference that S(y) will, in general, not converge as y --, De. To extend
the methods of [B] we finally have to bound the variation of S in the following
sense: the function

0(y) :---II’(Y)(I(Y)I + (2.13a)

has to satisfy the estimate

a2(y) dy =: C3 < . (2.13b)
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The conditions (2.9) through (2.13) seem fairly sharp in this generality. For more
special families S(y) they can be relaxed, e.g., if we assume commutativity. We will
return to this question at a later occasion.

Following the pattern of [B], we now compare L2-ind D with the index of an
associated regular singular operator. We define

du
(2.14)F(y) :=

f(u)

and with e C~(O+), (0) O, ()= l,

#(y) [((1 $)(y)f(0) + 9f(y))eVr)] x/z (2.15)

LEMMA 2.1.
we have

For 1 < b < 1/a (where a is defined in (2.11)) and y sufficiently large,

F(y) > log yb. (2.16)

In particular, limr_ F(y) . The function

fr du
(2.17)s(y) :=

a(u)

maps (0, ) diffeomorphically onto (0, So), So := s(0), and for large y

s(y) e-v(r). (2.18)

Moreover, the map

q?: L2((O, So), H) v-g-lv o s L2(+, H)

is unitary, and for u C((O, So), Hi) we have

tp-1 gDgtPu(x) [Cqx + (g2/f)o s-l(x) o s-l(x)]u(x). (2.19)

Proof. See the proof of Lemma 2.1 in [B].

Later on, we will frequently use the additional hypothesis

O(y) =- Q(O)=: Q, y > 0. (2.20)

Now we introduce the weighted operator Do by

Dou := gDgu (f(O)Du,, g(y)[-Ov + S(y)]gu,(y)), u e (D), ub e C([O, ), Hi).
(2.21)
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With I := (0, So) we obtain from Lemma 2.1 the following result, exhibiting Do as a
generalized regular-singular operator.

LEMMA 2.2. Do with domain given in (2.21) is unitarily equivalent to the following
operator D" Put

"= L2(E,IM) L2(I, H), 1, 2, (2.22a)

and

@o(b) := {u := (u,, u) 3[I tP(u) (D), u C((0, So], Hx)},

bu "= (f(O)Du,, ( + x-x g(x))u,(x)), u o(D)
(2.22b)

where

g(x) "= x(o/f)o s-’(x)g(s-(x)), x e I. (2.22c)

In particular,

S satisfies the analogue of (2.3’). (2.22d)

Makine O_(x) := Q(s-l(x)) with Q in (2.9), we have for sufficiently small x

(I Q(x))lS(x)l > C(I Q(x)), (2.23a)

Q(x)lS(x)l cQ(x), (2.23b)

with C1 < 1/2 < C2 (and corresponding to (2.20) we will sometimes use the assumption

Q(x) Q(O) for x e I). (2.24)

If (2.13b) holds, then the function

(2.25a)

satisfies

f2o x(x) dx =" C2 < (2.25b)

and, with C5 depending only on C1 and C2, we have

x e (0, So). (2.25c)
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We remark that by an appropriate choice of in (2.15) we can assume that (2.23)
holds in any given neighborhood (0, sl] of 0, sl < So. The main result of the next
section, Theorem 3.6, will show that all closed extensions of Do are Fredholm
operators. From this fact we easily derive the following theorem.

THEOREM 2.3. Under the assumptions (2.2), (2.3’), (2.7), (2.9) through (2.11), and
(2.13), the LE-index of D is finite.

Proof. It follows as in I-B, (2.20)] that 9
-1 L(+). Hence, u ker Oma implies

9-1u ker Do, m,x, and since ker Do, is finite-dimensional, the injectivity of the
map u-- 9-1u implies that ker D is finite-dimensional, too. A similar argument
applies to ker Dnax. I-!

To derive an index formula we need in addition the assumptions (2.20) or (2.24)
which will be assumed for the remainder of this section. We start with defining a
suitable closed extension of D0. We obtain as in I-B, Lemma 2.2] the following
lemma.

LEMMA 2.4. g-lCg (Og,max) = (D0,min).

Proof. It will follow from Lemma 3.4 below that u (ui, Ub) (D0,max) is in
(D0,min) if and only if

IlOUb(Y)II Cs(y). (2.26)

This together with (2.16), (2.11), and (2.18)implies the assertion.

Now we introduce an extension Do, v of Do by

El

Do, V :-- O0,max]g-l (-3 o@(mg, (2.27a)

where

V g-l, r (Do,max)/(Do, min). (2.27b)

This extension is closed since Oo, min and Do, are Fredholm and V is finite-
dimensional. The boundary conditions for Do, v depend on the induced ordinary
differential operators (with Q from (2.20)) El

To := -c3r + QS(y)=: -c3r + So(y),

:= +

acting in L2(+, QH). We introduce the spaces

K’) "= {e QH[ T’)u(y) 0 has an L2-solution u with u(O) e},
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and we observe that K _L K’. (See I-B, Sec. 4].) Then we can decompose orthogonally

QH =: K @ K’@ L (2.28)

with some, possibly trivial, subspace L. We need the following fact. (See I-B, Lemma
4.1].)

LEMMA 2.5. Let v C (+, QHt) be a solution of the equation

TO.I) g-1 w

with w L2(+, QH) and denote by Wo.(y, Yx) the solution operator of To with
Wo-(y, yx)= I, y, y > O. Then there are 7v K and vt Ct(+, QH) with the
estimate

IIv(y)ll O(e-vr)) as y (2.29)

such that

v(y) Wo-(y, O)Tv + (y). (2.30)

v and v depend linearly on v and are uniquely determined by (2.29) and (2.30).

Proof. We have for y > 0

v(y) Wo-(y, O)v(O) + f W(y, y’)g-X w(y’) dy’. (2.31)

Since We(y, y’) solves the equation ToW 0 with respect to y, we have for e QH,
by (2.9)

WQ(y, y’)ell z Ilell 2 + 2 (So.Wo.(t, y)e, Wo.(t, y)e) dt

< Ilell 2 + 2C f(t)- W(t, y)ell z dt;

hence, from Gronwall’s lemma

wo.(y, y’)ll ec’lvr)-vr’)l. (2.32)

(2.32), together with g(y’)- f(y’)-X/2e-VtY’)/2 for y’ large, shows that the integral
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in (2.31) converges at . Since We(y, y’) We(y, O)Wo,(y’, 0)-x, we can write

v(y) =: Wo(y, O)Tv Wt2(y, y’)g-w(y’)dy’

=: Wo.(y O)/v + v (y).
(2.33)

Finally, we estimate with (2.32), for large y,

IIx(Y)ll = Ilwll2z+,me-) f(y’)-le-{l-2cl)e(s’)-Fr)) dy’

e-<)llwll2+,m(1 2Cx)-x"

Assume now a second representation

v(y) WQ(y, 0)- + (y).

Then, with W the solution operator for T, we find

7v 7v W2(y O)*WQ(y, O)(/v

W(y, 0)*( v)(y).

Using (2.29) and (2.32) for W, we obtain

lily ll Ce(C-/2)F(s), y >_ O;

hence,

Now we can prove the following relation between L2-ind D and ind D0,mi Put

ho := dim V, hi "= dim ker Do*,v dim ker Dnax. (2.34)

THEOREM 2.6. Under the assumptions of Theorem 2.3 we have

L2-ind D ind Do, mi @ ho + hi. (2.35)

If we assume also (2.20), then

ho dim K, h < dim L. (2.36)
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If the metric on M or on El, E2, is changed on a compact set or if the weight function
9 is changed on a compact set such that it remains positive and equal to f(0) a/2 near
O, then ho does not change; ha is invariant under compact perturbations of 9.

Proof. We know from Theorem 2.3 that dim ker Dma and dim ker D,ax are
finite. Since g-1 e LOO(N+), it follows from the construction of Do, v that u-+ 9-au
defines a bijective map ker Dmax ker Do, v. Combining this with Lemma 2.2 and
Theorem 3.2 below, we obtain

L2-ind D dim ker Do, v dim ker Do*,v + h

ind D,v + ha ind Do, mi -I-- ho + hi.

To prove ho dim K we define a linear map : (Do,v) QH with image K and
kernel (Do, min). Pick q9 C(R) with o(y)= 0 if y < 1, qg(y)= 1 if y > 2. For
u (Ui, Ub) (D0, max) we have (1 (p)u (D0,min) by (2.26), and rp(l Q)u
(Do,min) by Lemma 3.4. We obtain for v := q99Qu

TQv g-1 qQDou qg’gQu =: ]-lw

with w L2(+, H). Using Lemma 2.5, we define by

g(u) := 7v

The decomposition (2.30) gives

v(y) We(y, O)Tv + v (y) =: vo(y) + v (y),

and the estimate (2.29) shows that va L2(+, H). Hence, u (Do,,v) if and only if
v L2(+, H) if and only if Vo L2(+, H) if and only if v K. Thus, maps into
K, and this map is easily seen to be surjective. If u ker , then it follows from (2.29)
and (2.26) that

qgQu 9-a Va (Do,min);

hence, u (D#,min). Conversely, u 6 (Da,min) implies, by (2.26), (2.29), and (2.32),
as in the uniqueness proof of Lemma 2.5,

v II/ Cec’-I/2)F(y), y O.

It follows readily that 7v 0.
To prove the second estimate in (2.36), we introduce the quantities V’, 7’, ’, W

for D’, analogous to V, 7, , We. Then the argument in I-B, Lemma 2.3] shows that

ker D’o, v, 9
-1 ker Dma c ker D, v
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Also, y’ maps (D,max) tO QH with ’-I(K’)= N(D’o,v, ). Hence, 7’ induces an
injective map ker D,v/ker D’o,v, (K’ O) L)/K’

_
L if we show that

ff’u _1_ K for u e ker Do* v.

To see this, let e e K and put e’ "= ’u for some u ker Do* v. With q as above and
qg,(y) "= qg(y a), a > 1, it is clear that we can replace q9 by qg, in the previous
considerations. Then, for a > 0 we have "= 9

-1 qg, Woe @(Do, v), and it follows
from Lemma 2.5 that

o u)

(-q)’Wo.e, qg_gu) -: -(qgWo.e, qg_ We’ + vl)

-(e, e’} (p’We.e,

Letting , we obtain (e, e’) 0.

It remains to study the invariance of ho, hi under compact perturbations. Observe
first that the map T: u- gu induces a bijection

T: @(Do,o) (gDmax).

It follows from the closed graph theorem that T is continuous, and hence is an
isomorphism by the open mapping theorem. But then we conclude that

T((Do,min) (gDmin)

since T preserves the support. Hence,

ho dim (]Dmax)/’o(lDmin)

where the spaces occuring on the right-hand side do not change if 9 or the metric
is altered on a compact set.
The invariance of hi follows from

ker Dv {u e L2(E2)I(u, gDgv) 0 for all v e (Do, v)}

{ e gLZ(E2)l(5, DO 0 for all g e (gDmin) }

Again, the spaces involved do not change ifg experiences a compact perturbation. El

In general, hi is very difficult to compute. It vanishes, however, if the operator D
is Fredholm.
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LEMMA 2.7. Assume that D satisfies the assumptions of Theorem 2.3 and (2.20)
and that D has a unique closed extension which is Fredholm. Then hi O.

Proof. Denote the unique closed extension also by D. It is well known that the
Fredholm property implies that

0 q; spece D*D DD* (2.37)

where spece denotes the essential spectrum. It follows from the decomposition
principle and (2.20) that with A and A’ the Friedrichs extension of TTo and ToT
in L2(+, QH), respectively, we also have

0 spece A spece A’. (2.38)

Now denote by J the space of solutions of the equation

Au(y) T2 To.u(y O,

which we may identify with C2n via u--(u(O), v(0)), where v := To,u and n "= dim Q.
A well-known result in the spectral theory of ordinary differential operators (see,
e.g., [W, Theorem 11.4]) asserts that (2.38) implies

dim J1 n (2.39)

where

J1 :--- J L2(+, QH).

Now consider the spaces

Jz :- {u Jlv(0) K G) L},

J3 := {u Jlu(O)/(, v(o) o}.

Then we claim that

J1 c J2 J. (2.40)

Accepting (2.40) for the moment, the lemma follows from (2.36) and

2n > dim(J + J2) dim J + dim J2 dim J c J2

dim Jx + n + dim K + dim L dim K

> 2n + dim L.
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For the proofof(2.40) we pick u e J and obtain with v(y) To.u(y W(y, 0)v(0)

u(y) We(y, O)u(O) + f We(y, y’) W(y’, O)v(O)dy’.

Hence, with W(2(y, .)* Wo.(y )-1, Wo.(y ) W(y, y)*,

(u(y), v(y)) (We.(y, 0)u(0), W(y, 0)v(0))

+ f (We(y, y’)W.(y’, 0)v(0), W.(y, 0)v(0)) dy’

(u(O), v(O)) + (Wo.(O y’)W(y’, 0)v(0), v(0)) dy’

(u(0), v(0)> + f Ilv(y’)ll dy’.

This implies for T > 0 that

f: (T y)/2 f llv(Y’)ll2 dy’ dy

f: (T y)/2((u(y), v(y)) (u(0), v(0))) dy

< Ilu(y)ll 2 dy (T- y)Z/4llv(y)ll 2 dy

+ (T2/a)Ilu(O)II IIv(0)ll,

and since

(T- y)/2 IIv(y’)ll 2 dy’ dy (T- y)2/41lv(y)ll2 dy,
0

we arrive at the inequality

4
v(y)ll 2 dy Ilu(0) v(0)ll

T

u(y)[I 2 dy. (2.41)
0



270 J. BRAINING

Clearly, J3 c J1 c J2. Conversely, let u J1 c J2. Since Tv 0 and v(0) K L,
v(0) : 0 implies v L2(E+, QH). But then u L2(+, QH) by (2.41); so we conclude
v(0) 0. Then v Tt2u =- O, and u L2(+, QH) implies u(0) e K, i.e., u

3. The boundary parametrix. We will now study the weighted operator Do
introduced in (2.21). By Lemma 2.2 this operator is, near the boundary, unitarily
equivalent to

T "= cx + x-x 3(x) (3.1)

acting in C(I, H). Here, S(x) is explicitly given by (2.22c). In what follows, we will
treat the abstract situation described in Lemma 2.2; i.e., we consider an operator D
satisfying the assumptions (2.22a, b, d) and (2.23a, b) for all x 1. Moreover, we will
at first assume that a stronger version of (2.24) holds, namely,

we can split I Q Q > + Q <, independent of x, such that

S(x)Q C20>, S(x)Q C2 Q < (3.2)

We will also assume that I (0, So] is such that So < C2.
The operator D is not regular singular in the sense of [BS2] or [B] since we do

not have convergence of S(x) as x 0. However, we do have the sort of control
given by (2.25). Under these assumptions we are going to construct a boundary
parametrix for D. Since we have no limiting operator as in [BS2] or [B], we cannot
use eigenspace decomposition. Instead, we use the theory of abstract evolution
equations as exposed, e.g., in [Kr]. In view of (3.2) we can treat the cases

s> (x) := O > S(x), So(x) "= Os(x), S< (x) "= Q S(x)

separately. Starting with So(x), we denote by Wo(x, y) the solution operator, i.e., the
unique matrix-valued function solving

(Ox + x-’ o(X)) Wo(x, y) o, (3.3a)

Wo(y, y) I, x, y e I. (3.3b)

Then we define the parametrix by

Pof(x) := I Wo(x, y)f(y) dy,
30

x e I, f e L2(I, OH). (3.4)

To imitate this procedure for S>, we recall the following lemma.

LEMMA 3.1. For 6 I consider the triangle

Ao := {(x, y)e I x 116 _< y _< x _< So}.
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OnA we can define an operator-valued function W> (x, y) e (Q> H) with the follow-
ing properties.

(a) For e H1, (x, y) Aa, the unique solution of the initial-value problem

( + x- 3> (x))u(x) o, x > y, (3.5a)

is given by

u(y) e, (3.5b)

u(x) W> (x, y)e.

(b) W> is uniformly bounded and strontly continuous in A.
(c) For (x, y) A, and y N z < x, we have

and

W> (x, y) W> (x, z) W> (z, y)

W> (y, y)= I.

(d) W> (x, y) maps HI to itself, and

U(x, y) := g> (x) W> (x, y)g> (y)-

is bounded and strongly continuous in A.
(e) On H, W> is strongly continuously differentiable in A, and

c3, W> (x, y) S> (x) W> (x, y), cr W> (x, y) W> (x, y)S> (y).

Proof. The proof follows from [Kr, p. 195] if we show that the Cauchy problem
for (3.1) is uniformly correct. But we have the estimate for 2 > 0

so the assertion follows from [Kr, Theorem 3.11]. 12

Lemma 3.1 does not give a uniform norm estimate for W> in I. To derive it we
construct an approximation to W> in the following way. Introduce the contour

c(t) := d + Itl / it, E, 1/2 < d < C2

and define for 0 < y < x

if’> (x, y)"= (2hi)- f elg(Y/x)(g> (x) )- d. (3.6)
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With f C(I, H1) we define for 6 I

fi(x) "= W> (x, y)f(y) dy, (3.7)

and we want to use Duhamel’s principle to compare W> and W>. Applying T to
(3.7) formally, we obtain

where

(Cx + x-x3 (x))(x) f(x) + f; l(x, y)f(y) dy

/(x, y):= -(2rci)-1 e’g(Y/x)(:. (x) )-1S,> (x)(g> (x) )-1 d.

(3.8)

(3.9)

Ifwe know that u is differentiable in [6, So) with values in H1 and that the right-hand
side is continuous in [6, So), then it follows from [Kr, Theorem 3.1] that

W> (x, y)f(y) dy W> (x, y)f(y) dy

+ W> (x, y) R(y, z)f(z) dz dy.

(3.10)

Arguing again formally, we define for 0 < y < x < So

/(x, y)"= I, (x, y) "= K(x, y),

gJ+(x, y):= g(x, z)g(z, y) ,/z

=" R (x, y),

and we expect a representation of W> by the Neumann series

W>(x, y) (- 1)JF> J(x, y). (3.11)
j>O

If this has been established, estimates for W> and R will imply estimates for W>.
LEMMA 3.2. If C4 in (2.25) is sufficiently small, then we have in 0 < y < x < So

the estimate

W> (x, Y)II < C(y/x)1/2 (1 + log x/y) 1/3

"- \ /
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Proof. We first want to justify (3.10). To do so we observe that W> (x, y) has a
continuous derivative with respect to x (y, So), given by

3 I> (x, y) --(2ri)-’ elgty/x)(> (X) )-1 [/X -i- SS> (x)(g> (x) )-1] d

x-1 g> (x) I> (x, y) +/(x, y). (3.12)

We also have the norm estimates

lg’> (x, Y)]I < C(y/x)d(log x/Y) I1- I( dl-dl(I

<_ c(y/x)Oog x/y)-, (3.13)

II/(x, y)ll C(y/x)d(log x/Y)-(x), (3.14)

uniformly in < y < x _< So, and for 0 < e < 1/2. Then we conclude from standard
estimates that, in [6, So), fi in (3.7) is differentiable with derivative

’(x) f(x) x- g> (x)(x) + ff (x, y)f(y) dy,

=: x- g> (x)O(x) +
(3.15)

Moreover, since f C(I, H), it is readily seen that g is continuous in [6, So] and
that (x) H for all x. Hence, it follows from [Kr, p. 195] that

t(x) f] W> (x, y)g(y) dy

or

W> (x, y)f(y) dy W> (x, y)f(y) dy W> (x, y) R(y, z)f(z) dz dy

W> (x, y)f(y)dy W> R(x, y)f(y)dy,

which is (3.10). Since C(I, H) is dense in L2(I, H), we conclude that

W> (x, y)= W> (x, y)- W> R(x, y), 6<y<x<so
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From this it follows by induction that for all N IN

N

W> (x, y) (- 1)J I,> /J(x, y) + (- 1)TM W> /N+l(x, y).
j=O

(3.16a)

Next, we fix A > 1, and we claim that, for j > 1 and 1 < x/y < A1,

II/(x, y)lln < C{/3 C6-1(y/x)a(log x/y)-l/S(x) (3.16b)

with C1/3 from (3.14) and (see (2.25))

C6 C4B(1/3, 1/3) 1/2 sup (log Z) 1/6

<z<Al

where B denotes Euler’s beta function.
In fact, ifj 1, this follows from (3.14) with e 1/3 since 0 < y < x. Assume next

that (3.16b) is proved for somej > 1. Then from (3.14), (3.16b), and (2.25), we get

II/7;+ (x, y)II n (x, z)J(z, y) clz
H

--< "-’1/3/’J+1CJ6-1(y/x)d(x) (log x/z)-V3(log z/y)-l/3(z) dz

<-- "-’1/3/"J+1 cJ6-1(y/x)d(x)C4 (log X/Z)-2/3(log z/y)-2/3

/-,j+ (flgx/y,.,/ c, c6-(y/x)"(x) (log x/y t)-2/3 t-2/3 dt)l/2

/j+l C(y/x)(logx/y) ().

If now C4 C,(A1) is so small that C1/3C6 .< 1, then the series (3.16a) converges
uniformly in < y < x < So, in view of Lemma 3.1, (b), and the above estimates.
Hence, we derive the bound

w> (x, y)II < A2(Y/X)d (1 + log x/y1/3

1 < x/y < A1, (3.17)

with A2 independent of 6 and A1.
Next, we let A1 > 2, and we choose C4 C4(A1) so small that (3.17) holds for

1 < x/y < A2. For arbitrary x > y > 0 we now put zj := Ay, and we determine
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N e 7+ by the requirement zN < x < zN+l, i.e.,

flog x/y]N
[logAlJ’

we assume N > 2. Then we estimate, using Lemma 3.1, (c), and (3.17),

N-1

IIW>(x, y)ll IlW>(x,z-x)ll H IIW>(zj+x,z)ll
j=0

< A(y/x)a
1 + log X/ZN_I.
log X/Zl_ log A

<_ (AzA3 )I(y/x)a

where we have set

A3 := sup(lz>2

+ lg z)x/31Ogz

Now we have, assuming A2A3 _> 1 as we may,

(A2A3)N < ega2A3/lg h I} log X/y _...: (x/y)a (y/x)-a.

Since limA l_.o 0, we can now choose A > 2 definitely in such a way that
d- > 1/2, and we choose C4 such that (3.17) holds with this choice of A. It
follows that W> (x, y) satisfies the asserted estimate for all x > y > 0. 121

Remark. It is clear from the proof that the exponents in the estimate are not
the best possible.

In view of the last result, we will from now on assume that Ca is small enough.
We now define the boundary parametrix for S> by

P> f(x) "= ff W> (x, y)f(y) dy, x I, f L2(I, H). (3.18)

This is well defined in view of Lemma 3.2.
To obtain the parametrix for <, we introduce the solution operator W> asso-

ciated to the equation

(I0 X-1 g< (X))U(X) 0,

and we put

W< (x, y)"= W (y, x)*, O<x<y<so (3.19)
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Then we define

P< f(x) :- W< (x, y)f(y) dy. (3.20)

The full boundary parametrix is then given by

Pf(x) := (P< + Po + P>)f(x). (3.21)

We now collect the main properties of P.

THEOREM 3.1. (1) For f C(I, H1) we have Pf e C1(I, H) c C(I, Hx) and

(c3,, + x-x 3(x))Pf(x)= f(x),

(2) For f L2(I, H) we have Pf C(I, H) and

]IPf(x)IIH -- X1/2 ]lfllra,m,

(3) With e C(I) we have

.1,) + IlcPfll (I,H) < collfll 2
L2(I,H)

(4) With q e C(-so, So), qgP is compact in L2(I, H).
(5) For f C(I, Hx) we have P*f Cx(I, H) c C(I, Hx) and

--(Ox X-1 (x))P*f(x) f(x),

Proof. (1) This is Theorem 3.2 in [Kr, p. 196] (note that the proof there needs
a slight correction since U(t, z) is defined only for > z) for P> f and Pof. The proof
for P< f is analogous.

(2) It follows from Lemma 3.2 that for 0 < y < x < So

W< (y. x)ll. + W> (x. y)ll. C(y/x)m(log x/Y)-1/3

which implies the desired estimate, by Cauchy-Schwarz, for P> f and P< f.
For Wo(x, y) we obtain as in the proof of Lemma 2.5

Wo(x, y)II,, <- c(x/y)c, (3.22)

which implies the estimate for Pof.
(3) Again, we prove the estimate separately for P>, P<, and Po. Let u := tpP> f

with f C(1, H1) and tp e C(1). Then

(t + x-1 g> (x))u(x) tp’P> f(x) + qf(x) =: Tu(x),
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and with C > 0

o

(u, u) x- (gu, u)(x) ,Ix > cllg>/ull I_,2,

Furthermore,

Tu][2 u’[]2 + ]]X-lg>u]] + 2 Re(u’, X-g>u)

and

[2 Re(u’, X-ag> u)l 2 (x-(g u, u) (x) x-l (g’> u, u) (x)) dx

Since P> is continuous in L2(I, H), the assertion follows in this case.
The proof for P< is similar, and the proof for Po is just the regularity of ordinary

differential equations.
(4) Let B be a bounded set in L2(I, H); we have to show that PB has a finite z-net

for any > 0. Fix e > 0 and choose q C(I) such that

I1(1 )pPfll < iff B;

this is possible by (2). Therefore, we may assume that q C(I). Fix Xo I and let
(es, s)s R be the spectral resolution of S(xo). Using (3), we have for f B

c > IIqpfll 2 > Cl (Ig(xo)l + 1)pPfL2(I,H1)

> C (sz + 1)ll<qPf, e> 12:,) + IpNcppfll 2
Lz(I,H)

Isl > N

where PN denotes the orthogonal projection in H onto the space spanned by
(e,I Isl < N}. It follows that

II(I- PN),PfIIt,m < C(N2 + 1)-x

and it is enough to prove the assertion for the set PNqPB. But (3) implies that
qPB c H(I, PsH) c Co(I, PsH) and that qPB is equicontinuous. In fact,

IIpPf(x)- qPf(y)ll < I d
zq,lf(z)

<_ Ix yl 1/2 IIPPflIH,tI, H) < CIx yl 1/2.
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Thus, the proof is completed with the Arzela-Ascoli theorem, applied to the set
PuoPn.

(5) A straightforward computation shows that

P*> f(x) W> (y, x)*f(y) dy,

-Pf(x) Wo(y, x)*f(y) dy,

P*< f(x) ff W> (x, y)f(y) dy.

Thus, the proof is the same as in (1) except for P’. But since this concerns a matrix
equation, the result is also clear. Note, however, that Pgf will, in general, not satisfy
the estimate (2). Instead, using (3.22), we see that for x I,f L2(I, H) the estimate

P*f(x) n < Cx-c (3.23)

holds.

We show next that P is, near the boundary, a left inverse for Dma on functions
vanishing sufficiently fast.

LEMMA 3.3. Let U (Dmax) satisfy

IlUb(X)lln < Cuxl/2, x I.

Then for q C(-So, So) we have

qU PDma qu. (3.24)

Proof. Let v C(I, H) and C(R) with (x) 1 if Ixl 1 and (x) 0 if

Ixl _> 2. Put ,(x)-= 1 (nx) and compute

(PDmaxtPU v)-- lim (DmaxtPU, nP*v)

lim (qu, D’mincnP*v)

lim [(qu, nv)- (qu, ’.P*v)];

here, we have used Theorem 3.1, (5). To estimate the second term we use the
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f /n

I(pu, ,’P*v)l Cn IIq)u(x)lllle*v(x)ll dx

Since C1 < 1/2, the assertion follows.

X1/2-C1 dx < Cnc-/2

Lemma 3.3 leads us to define

LEMMA 3.4.

x := (u (/max)l Ilu(x)ll O(xx/2) as x 0},

D1 := Dmaxll

D Dmi

Moreover, for q9 C(-so, So) and u (Dmax) we have

(I Q)q)u e .

279

r-1

(3.25a)

(3.25b)

Proof. The argument in [BS1, Theorem 6.1] extends to this case to show that

91 C (Dmin).

But Lemma 3.3 implies that D is closed; so D Dmin.

For the proof of (3.26) we observe that (I Q)pu s (Dmax) since Q commutes
with Dma Thus, we find, as in the proof of Lemma 3.3,

(I Q)u PDmax(I Q)u

and hence the assertion by Theorem 3.1, (2), if we can prove that (in the notation
above)

lim (u, ’(P + P)v)= O.
n

Using (the analogue of) Theorem 3.1, (2), we estimate

* x dxI(eu, .(P> + P)v)l < co Ilu(x)ll dx n

C u(xll dx

which completes the proof.

(3.26)
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So far, we have worked with the condition (3.2) which says that the projections
Q>, Q and Q are all independent of x. In general, however, we only have the
spectral concentration property expressed in (2.9) and (2.10). Fortunately, this is still
sufficient to prove that all closed extensions of D are Fredholm operators. To see
this, we view/ as perturbation of an operator/5o satisfying (3.2).

LEMMA 3.5. Assume that D satisfies the assumptions (2.22a, b, d) and (2.23a, b).
Then there is a smooth family U(x) of unitary operators in H such that

g(x) := U(x)*(x)U(x) satisfies (3.2) (3.27)

and

U’(x)llu < C(x). (3.28)

Proof. From (2.25c) we have

Q’(x) I c(x),

Next, we observe the relations

20> (x) (I O(x))(g(x)lg(x)l -x +

which follow from the spectral theorem. They imply that Q > (x) is differentiable with
an estimate

O’ (x)I1,, -< Ca(x);

so the analogous result also holds for Q < (x).
Now we construct unitary transformation functions Uo(x), U> (x), U<(x) as in

[Ka, pp. 100], satisfying

Uo(x)*Q(x)Uo(x) Q(So),

U (x)*O (x)U (x) Q (So),

Then

U(x) "= Uo(x)+ u> (x)+ u< (x)

is unitary and has the desired properties. H
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Now we use the unitary transformation

P: L2(I, H) f- Uf L2(I, H).

Then Lemma 3.5 shows that we may assume that

bu(x) [ + x- g(x) + 3(x)]u(x) (3.29a)

where g(x) satisfies (3.2) and B(x) U’(x)U(x)* is bounded in H with

IIB(x)ll C(x). (3.29b)

We can now state and prove the main result of this section.

THEOREM 3.2. Assume that D satisfies the assumptions (2.22a, b, c, d) and (2.23a, b)
and that the constant C4 in (2.25b) is sufficiently small. Moreover, assume that
for every q C(-So, So) with q 1 near 0 there is a compact operator P
(32, (/3mi.) and compact operators Ki oq() such that

DminP 1 - + K2, eoOmin 1 q) + glq,. (3.30)

Assume also that for each C(- So, So) with 1 near 0 and 99 near supp
we can construct Ki Ki, such that $Ki O, $Ki* O.

(1) With D as in (3.25), we have D1 Dmi,.
(2) All closed extensions of D are Fredholm operators, corresponding bijectively to

the subspaces of the finite-dimensional space

V0 ".-- (Dmax)l(Omin).

Denoting by Dv the operator corresponding to V c Vo, we have

ind Dv ind Dmi + dim V.

Proof. (1) We may assume that D fulfills (3.29). We conclude as above, using
the arguments of [BS1, Theorem 6.1], that 1 c (Dmin). Thus, we will have the
desired equality if we show that Da is a closed operator.
For u x we have by (3.29b), (3.25a), and (2.25b),

IIB(x)u(x)llr dx Cu xc(x)2 dx C (3.31)

Thus, we find with 99 C( So, So)

[c3 + x- g(x)]qgu(x)= bqu(x)- Bpu(x)=" v(x)



282 j. BRINING

with v L2(I, H). If we denote by po the boundary parametrix constructed with o,
we conclude from Lemma 3.3 that

qgu Pbqgu- PBqgu,

and by iteration, setting f := Dqu,

N

qgu (- 1)P(BP)f + (-- 1)l+’P(Bp)lBqm.
j=O

Using Theorem 3.1, (2), we find as in the proof of (3.31) that

IIBPII < 1 (3.32)

if C4 is sufficiently small. Thus, we obtain

qgu _, (- 1)P(BP)if =: PVSq)u (3.33)
j--O

for some bounded operator V in L2(I, H). From this we see immediately that/1 is
closed.

(2) If we prove thatDm and Dm, =/), are both Fredholm operators, then all~
closed extensions of D are Fredholm, and the assertions concerning Vo and ind D
are easy consequences. But our assumptions on D imply the same assumptions for
D’. Therefore, it is enough to prove that~ DmA is Fredholm. This will be achieved if
we construct an operator Pm e o(, N(D)) with the property

DminPmin-- I + K (3.34)

for some compact operator K Za(2). To construct Pmin we only need a boundary
parametrix, in view of (3.30) (which expresses the ellipticity of D away from the
singularities).
Choose q), q C(-So, So) with 0 < q, q < 1, q9 1 near 0, and q 1 near

supp qg. We define

Pmin :’-- bPtP + Po,

and we compute with Theorem 3.1, (1), (3.29), and (3.30)

/maxPmin I " ’Pq9 + bBPtp + K2
=: I +/ + kBPq9

=:I+K+R.
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Here, K is compact by Theorem 3.1, (4), and IIRII < 1 by (3.32). Moreover, Pmin maps
into (Dmin) by the first part of the proof. Thus, we obtain (3.34) with

Pmin :-- /3min(I + R)-x K :=/(I + R)- 121

Remarks. (1) Later on, we will apply this result to the weighted operator
gDg, introduced in the previous section. To verify the assumptions we note that
(2.22a, b, d) and (2.23a, b) have already been established. Moreover, since gDg is also
elliptic, we have (3.30). Finally, the smallness of C4 follows from the smallness of C3
in (2.13b). This in turn can be achieved by choosing U suitably; e.g., if U is a
productlike end of the manifold, we move towards infinity on U making the integral
(2.13b) as small as we please.

(2) It is obvious from the proof of Theorem 3.2 that the results also hold for
suitable perturbations of D.

(3) We will show below (Corollary 4.3) that

dim Vo dim Q(x).

In particular, D has a unique closed extension if Q(x) 0 (for some and hence all
xI).

4. The index formula. We consider again the operator D of the previous section,
and we keep the assumptions of Theorem 3.2. In addition we require that

S(x) is constant near x So, i.e. S(x) S(so) for x e [6, So], 0 < 6 < So. (4.1)

Note that this implies g(x) g(So), B(x) 0 near So in the representation (3.29).
In what follows we write g := go to simplify notation. In applications, (4.1) is not a
severe restriction; see [B, Sec. 5] and Section 5 below.
The index ofDmi will be computed by deforming D to an operator with calculable

index. Choose q) C(-So, So) with 091[-6, 6] 1. By (4.1), B Bq9 qgB, and it
follows from (3.29b), (3.33), and (3.32) that qB is continuous (Dmi,) 2" Thus,
the operator family

is continuous in , with To =/min" The proof of Theorem 3.2 shows (with the same
choice of cp) that each T is a Fredholm operator. Hence, we have

ind min ind Tll; (4.2)

i.e., we may assume that B(x) O.
Next, we define a family of operators, T2, fl [0, 1], as follows. Let (with o
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defined in (2.2))

S(x) S(flx + So(1 fl)), x I, (4.3a)

T2 "= closure in 1 of the operator 9o 2 given by

(u, Ub) (f(O)Du, (, + x-1 gI(X))Ub(X)).
(4.3b)

We write , := (T2), * "= (T2*). Note that T12 T11 and

TZu =/3 if Ub vanishes in a neighborhood of (0, 6]. (4.4)

The main difficulty in dealing with this deformation is that now a will vary. This
can be dealt with using a result of Cordes and Labrousse [CL]; our approach
follows a suggestion of R. Seeley; see [SSi].

THEOREM 4.1. The operators T defined above are Fredholm operators in fig1, with
index independent of fl [0, 1].

Proof. We start with the proof of the Fredholm property which we want to
deduce from Theorem 3.2. So we check first that the assumptions there are satisfied,
uniformly in fl [0, 1]. This is clear for (2.22a, b, d) and also for (2.23a, b). Consider
next

fl(flx + So(1 fl))

and estimate

xa(x)2 dx (flx)(flx + So(1 fl))dflx

o(1-0)
(X- S0(1 fl))(X)2 dx C24

If we use, in the proof of Theorem 3.2, q9 e C(-So, So) with q 1 in a neighbor-
hood of [-6, 6], then we can use the same P for all fl [0, 1], in view of (4.4). The
Fredholm property follows.

In [CL, Section 3] a metric was introduced on the space of closed operators with
the property that a curve of (semi-) Fredholm operators, continuous in this metric,
has constant index. It is a straightforward consequence of this definition that the
curve Tfl2, fl [0, 1], has a constant index if the operator family formed by the
orthogonal projections onto the graph of T2 is continuous in (1 03 2). This,
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in turn, is equivalent to the fact that

Ea:= T2 (4.5)

has an inverse which varies continuously with fl [0, 1], as a bounded operator in
og2. Note that Ea is closed in Jeg2 with domain a @’ and is bijective

for each fl [0, 1].
Now denote by Pa,mi, the parametrix just constructed for T2, with fixed q as

above and K K* 0 for some C(-So, So) with 1 near [-6, 6].
This means that

Pfl,min ff/Pfl(]9 + Pq

where Pa is defined by (3.21) for Sa. We set

Eft:--- emin ;m (4.6)

Then Fa is compact in ogl W2 and maps into the domain of Ea. In fact, we have
by construction P,min(2) c fl, and it follows from Theorem 3.1, (5), and (3.30)
that Pmi,(l) c !’. NOW we compute, as in the proof of Theorem 3.2, (2),

fl,minEaFa Fa + TZ*P*
0

0

+ 0 +
0

0 ) (4.7)
ff’Paq9 + K

=’I+Ft+Ga.

By Theorems 3.1 and 3.2, Fa + Ga is compact. Moreover, it follows from Theorem
3.1, (3), and the construction of P that

for all fl’ e [0, 1]. (4.8)

Now, ifZa denotes the orthogonal projection onto ker Fa, then we obtain from (4.7)

Z ker(l + Fa + Ga) (4.9)

and

Z, -GaZa (4.10)
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(4.9) implies that Z0 is finite-dimensional, and (4.10) together with (4.8) shows that
Z0 maps into (E0, for all fl’ [0, 1].
Now fix flo [0, 1] and consider for fl near flo

Eo(Fo + Zoo I + Fj + Go + EoZoo =" no (4.11)

By construction, Ha is a Fredholm operator of index 0. Since F0 -F’, F0o + Zo
is injective; hence H0o is invertible. But in view of the strong differentiability of So
and Lemma 4.1 below, Ha varies continuously with fl; hence, is invertible near flo
with H-1 continuous in ft. Thus, (Fo + Zoo)H E- is continuous near fl flo.
The proof is complete. El

LEMMA 4.1. Under the assumptions of Theorem 4.1 the map

[0, 1] D fl Po,min C ’(L(I, H))

is continuous.

Proof. It is enough to prove the continuity of the map fl-Poq9 for if,
C(-So, So). Fix flo [0, 1] and e > 0. All estimates obtained for Po in Section

are uniform in fl [0, 1 ] since the constants C2, C3, C4 remain unchanged. Hence,
wecan use Theorem 3.1, (2), to find ff C(-So, So)with ffl 1 near 0 such that

Hence, we obtain the estimate

II(Po Po)Oll,m,m for Ifl flol sufficiently small

if we show that the map fl--(1 l)P0q is continuous at rio- This will follow if
we prove that the kernels defining P0 are continuous in fl, with suitable estimates
in 0 < 6 _< y < x _< So. For Woo we clearly have uniform continuity. For W> 0 we
derive from (3.6) the estimate

1> a(x, y) I> ao(X, y)ll C(y/x)a(log x/Y)-/3 I/ -/ol

which implies an analogous estimate for W>0, by the proof of Lemma 3.2. This
implies continuity for P0>, and the analogous estimate for W> implies continuity
also for P0 El

Using the argum_ents leading to Theorem 4.2 in [B], we now obtain the following
index formula for Dmi,.

THEOREM 4.2. Assume that D satisfies the assumptions of Theorem 3.2 and, in
addition, (4.1). Then we have with So := S(so) and 090 the index form of the elliptic
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operator representin9 D on M

ind Dn % (r/(So) + dim ker So)

Z dim ker(So s)- E k Res r/So(2k).
-1/2<s<0 k>_l

(4.12)

Similarly, we derive from I-B, Corollary 4.3] the following theorem.

THEOREM 4.3. Under the assumptions of Theorem 4.2 we have

ind max ind min -[- dim ker(So s) ind/min -[- dim ((0). (4.13)
Isl < 1/2

Finally, we want to give the index formula for the original operator D we started
with in Section 2.

THEOREM 4.4. Assume that D satisfies the assumptions (2.2), (2.3’), (2.7), (2.9)
through (2.11), (2.13), and with So := S(0)

(y) (1 y/s(O)f(O))-1 So near y O. (4.14)

Then we have

fl 1
L2-ind D o9o (q(So) + dim ker So)

dim ker(So s) + ho + hi. (4.15)
-1/2 <s<O

Here, ho and hx are liven in (2.34). (See also Theorem 2.6.)

Proof. From Theorem 2.6 we obtain

L2-ind D ind Do, min "k- ho + hi (4.16)

with hi defined in (2.34). Next, we observe that Dmi is unitarily equivalent to Do, min
by Lemma 2.2 and that our assumptions imply the assumptions (2.22) and (2.23).
We can also choose the unitary equivalence in such a way that the constant C# in
(2.25b) is as small as we please. Moreover, (3.30) follows from the ellipticity of D,
and (4.14) implies (4.1). Thus, we can apply Theorem 4.2 to arrive at the formula

1
L2-ind D coo (r/(So) + dim ker So) dim ker(So s)

-1/2 <s< 0

ek Res r/So(2k + ho + hi.
k>l

(4.17)
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Now choose e close to 1 and replace D by eD. Then it is easy to see that (4.16) does
not change, nor does o9o since

%(p) constant term in the asymptotic expansion of

{trE, e-’*(p, p)- trE e-’*(p, p)} as ’ 0.

Transforming (2.3) under the unitary map Gu(y):= e,1/2u(ey), we see that S in (2.3)
has to be replaced by

S(Y)"
e,

If we now define f,(y)"= f(y/e), then all assumptions above except possibly (4.14)
are easily seen to be satisfied for eD with S(y) (1/e)S(y/e). To satisfy (4.14) we have
to construct 9 in such a way that

s(0)=f0 dy f dy
s(O) (4.18)g,(y)2 g(y)

To do so we recall first from Theorem 2.6 that a modification of0 in (2.15) in compact
subsets of (0, ) does not affect (4.16) since 9

2 will still equal f(0) near 0 and fe
near . Constructing as in (2.15), usingf and ff, ff(y):= (y/e), we can ofcourse
modify on a compact subset of (0, ) such that (4.18) holds for the modified
function 9.

It remains to study the So-dependent terms in (4.17). By (2.3’) and [Gi, Sec. 1.10]
and 4.3, r/s is meromorphic in C with at most simple poles and no pole at 0. If e is
sufficiently close to 0, then the only change occurs in the residues Res r/So(2k):
Res rl-lSo(2k) 2k Res qSo(2k). Thus, all residues must vanish, r-I

5. The signature operator. Consider a complete Riemannian manifold M of
dimension m 4k. On f(M) we have an involution z given by zoo (- 1)k+ptp-I)/2
co for 09 6 fe(M). Denoting by f___(M) the 1 eigenspaces of z and by d exterior
differentiation with formal adjoint 6, the signature operator is defined by

Os" E+(M)
_

(M), og(d + 6)co. (5.1)

Since M is complete, Ds has a unique closed extension, also to be denoted by Ds.
We want to investigate the finiteness of

L2-sign M "= L2-ind Ds dim ker Ds dim ker D’

and find a formula for it, using the theory developed above. To do so we have to
restrict the geometry ofM near infinity. Our first assumption is that in the decompo-
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sition (2.1), M M1 w U, U is productlike, i.e., that we have

U (0, ) x N with metric g dy2 gn(y)2 (5.3)

where gn(y) is a family of metrics on the compact manifold N, smoothly varying
on +. This will allow separation of variables and thus verification of the basic
assumptions (2.2) and (2.3’). For convenience we collect some terminology.
nl: U (0, ) and n2: U N are the natural projections. For y e [0, ) we write
Nr := { y} x N and it: N p- (y, p) e Nr; we usually identify N with No to simplify
notation. With y the global coordinate defined by nl, we put Fo := 3/c3y, a unit
vector field normal to all Nr. The second fundamental form of Nr will be denoted
by

IIr(F) -VvFo (5.4)

and the mean curvature by

Hr tr II. (5.5)

Since n is a Riemannian submersion, we have

expty, p)tFo (y + t, p). (5.6)

It follows that the vector fields

E(iy(p)) "= Ti,(p)(E), E TpN, (5.7)

are Jacobi fields along the normal geodesic defined by p, with initial value E and
initial velocity IIo(E).

In dealing with the signature operator Ds: f+,o(U) f-,o(U), it will be conve-
nient to use the Clifford bundle c#U instead of the Grassmann bundle/*U. It is
well known (see [LM]) that there is a canonical bundle isomorphism

q: #U /*U (5.8a)

with the property that for a cgeU, F TU,

(F’a) F ^ if(a) F t__ (a) (5.8b)

where, is Clifford multiplication, t__ interior multiplication, and : TU T*U the
"musical" isomorphism (with inverse ). If I {i, ip}, 1 < i < < ip < 4k, is
a strictly ordered multi-index of length p, then we write F1 := F, "... "Fp; the set of
all such multi-indices will be denoted by 14k. We define an involution on %eU by
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multiplication with

(5.9)

where (Fi)i_> is any local orthogonal and oriented frame for F-. If cge_+ U denotes
the __+ 1 eigenspace of this involution, then Ds transforms under ff unitarily to

D-s Fi Vv C Cde+ U) C e_ U
i>O

Here, V denotes the canonical Dirac connection for the Dirac bundle cgeU induced
by the Levi-Civita connection vM; i.e., with (Fi)_>l as above and F e C(TU), we
have

1
V F, E F, V,.

j<k

1
)<k <VF, Fk> ad(F Fk)Ft.

(5.11)

Finally, we introduce the subbundle cg(’U with fiber (cgeNr), at (y, p). Then we
find the following lemma.

LEMMA 5.1. Ds" f+,o(U) - f-,o(U) is unitarily equivalent to the operator

Vvo + Dr + At: C(e’ U)--+ C(Cde’ U). (5.12)

The operators appearing in (5.12) are defined as follows. If (Fi)i>_ is a local orthonor-
mal and oriented frame for Fo, then, with Vr the canonical connection (corresponding
to (5.11)) on cgeNr,

Dr --o9" Fi’V.,. (5.13)
i>l

Ar is a smooth family of zero-order differential operators on ce’U characterized by
the fact that, if (Fi)i>_ diagonalizes IIr at (y, p) with eigenvalues (2i(y, P))i>_, then
(Fi)it4k diagonalizes Ar at (y, p) with eigenvalues

-2,(y, p)"= 2(y, p). (5.14)

Proof. Note first that the maps

induce unitary maps with respect to the natural L2-structures.
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We now choose a local orthonormal and oriented flame (Fi)i>_l as above, which
we also assume to be parallel along normal geodesics. Then we compute, noting
that F. co’ ca" F if F +/- Fo,

i>o

1 ( 1

1
(Fz + co’Fz)’F’Fk)

1

=: V_(Dy + Ay)F,

where D-y is the Dirac operator on (dd(N) induced by VNy.
Next, we choose f C(U) and compute

Ds V+fFt fDs V+Ft + Vf" V+Ft

V_(fDvF + A,(fF,)) + <Vf, Fo>Fo V+F

+ v_VV.F,

V_(Dy + Ay)fF + V_(-(Fof)o" F)

V-(-o’Vvo + Dy + A,)fF,.

It follows that

and it only remains to verify the assertion on Ay := -co’. Ay. Thus, we now assume
in addition that (Fi)_> diagonalizes II at (y, p). Then we compute, with (5.16) and
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(_Dt2 1,

1

(F, + ’FI)’Fo’Fk (y, p)

--2(y, p) F’Fo’Fi’(F + ’F)

.( + o."o. (, p

)-(, pI (" o"i

V_ p) (-o"F (- 1)11’’ F" Ff" F)(y, p).

Thus, we have

A,(F)(y, p) , 2(y, p) (F + (- F.F.F)(y, p)

2 (-x(, pe,(, p.

Next, we want to achieve the form necessary for the application of Theorem 4.4.
To do so we introduce a unitary map

V: L2(I+, L2(dN))- L2(Cgve’ U) (5.17a)

by

Vtr o v o(y)Pva(y) Przo’(y). (5.17b)

Here, Pr: Coo(cgN) COO(Nr) denotes parallel transport in rgdU along the geode-
sics normal to N; hence, Pra(y) C(N, eNr). The function a(y) Coo(N) is given
as follows: if cor denotes the volume form on Nr, then

i* o9r z(y)-2o. (5.18)
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Then it is easy to see that is unitary:

293

(5.19)

Next, we compute the transformation of the various terms in (5.12). For the first
term we find

VeoWa(iy(p)) lim e-x [_Ps,/._Wa(iy+(p))-

lime-x [Pr(a(y + e,)(p)- a(y)(p))]
e--*O

where’ stands for the application of O/cy. Thus,

V- Vvov =:y + gvo log (y). (5.20a)

It follows from standard arguments in Riemannian geometry that

Vr’o log (y)= 1/2Hr (5.20b)

We have next, denoting by Fi the parallel extension of a local orthonormal flame
(F) for TNo, diagonalizing IIr at it(P),

A,Wa(ir(p) -o(y)(p) a,(y)(p)2I(ir(p))i(ir(p)

=" WAra(ir(p)

where

ArFi(p) 2i(ir(p))Fi(p) =: (- 2I(y)FI)(p) (5.20c)
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if (F) diagonalizes IIr at it(P)" This representation allows us to control Ar in terms
of IIr.

Finally, we consider

Drq/o.(ir(p) -’. ffV V,(pro.(y o i; )(ir(p)).
i>_1

(5.21)

To deal with (5.21) we need the following general fact.

LEMMA 5.2. For 1, 2, let N be a Riemannian manifold and St a hermitian vec-
tor bundle over Ni with projection ni. Assume that f: Nx N2 is a diffeomorphism
and F: Sx - $2 a bundle map such that 7r, 2 0 F f o n x. In addition, assume that F
is an isometry in each fiber. Finally, let V be a metric connection for $2. With
tI): C(S1) - C($2), O.- F o O. o f-x, we define for X C(TNx), O. C(S1)

(O*V)xa "= - (5.22)

Then tI)*V is a metric connection for

Proof. We compute with 9 e C(Nx)

(tI)*V)xgo. -x Vrf(x)9 o

g(tI)*V)xo. + Tf(X)(g o f-x)o.

g((I)*V)xr + (xg)r.

Thus, O*V is a connection. Next, we compute

X(ax, 0"2) X((Po.x, a2) o f

(Tf(X) (Oo.x, o.2 )) o f

(VTf(X)()O’I, (90"2) 0 f + ((90.1, VTf(X)00.2) 0 f

(((I)*V)xO’I, 0"2) -[- (0"1, ((I)*V)xo.2).

This proves that *V is metric.

To continue our calculations, we let

El

(I)ro. :--- Pro" o i-1, o" C(CN), (5.23a)

r := ti)r,Vr" (5.23b)
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Then we find

V,,(Prao’(y) o i )(ir(p))

P(PV, ro(y)o i)(p)
(5.24)

where we have put

Fi(y)(p) (Ti,(p))- i(i,(p)). (5.25)

It follows now from (5.21) that

DrWa(ir(p)) Pr(-o9’ _> Fi" rv,tr)a(Y)) (p)

W(-e(Y)-X9’ _> F’,(r)a(Y)) (it(p))"

(5.20d)

Finally, we write

’(Y) := (Fi(y), Vs log o(y))F e C(TN).
i>_l

(5.20e)

Then we obtain from (5.20a, b, c, d, e) the following theorem.

THEOREM 5.3.
equivalent to

Under the assumption (5.1), Ds" f+,o(U)--* f-,o(U) is unitarily

=.-y + s(y)
(5.26)

with domain C(N+, C(ceN)) in L2(+, L2(veN)). This equivalence has the prop-
erties (2.2), (2.3’), and (2.7).

Proof. If we put := x//- 1W with q defined in (5.17), then (5.26) follows from
the identities (5.20) and Lemma 5.1. From this construction, (2.2) and (2.7) are obvious.
For later purposes we note the explicit form of x" L2(Cge+ U) L2((0, o), L:(c(N)):
if (Fi)_>o is a local orthonormal frame for TU as above with parallel translates
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(ffi)>_o in the y-direction, then we obtain from (5.17) and (5.15) that, for a

L2((0, ), L2(eN)), a(y) r at(y)F,

1
-[ a(i,(p)) ---_e(Y)(P)Z a(y)(p)(1 + )-r(i,(P)). (5.27)

To verify (2.2) we only have to put H := L2(ogdeN) and Ha := H (Cg(N), the Sobolev
space of sections with square integrable first derivatives; then all assertions are
readily checked. Also, (2.7) is obvious. S(y) in (5.26) is clearly a first-order differential
operator, and for its principal symbol we find

rsr)()(r/) co" (i o Pr)-(). q,

Hence, S(y) is also elliptic. To see the symmetry we observe that replacing Fo by
-Fo in the above calculation gives the unitary representation of D: f-,o(U)--*
f+,o(U). Thus, we derive

+ S(y)* + S(y).

We want to apply Theorem 4.4 to Ds in the situation just described. Then we have
to verify in addition the conditions (2.9) through (2.11), (2.13), and (4.14). This means
that we have to find a positive function f C(R+) such that limroo f’(y) a with
0 < a < 1 and such that S(y) fS(y) satisfies the conditions on spectral concen-
tration ((2.9), (2.10)) and on bounded variation ((2.13)). This will be illustrated below
for multiply warped products; we hope to return to this in greater generality at
another occasion.
To give (4.14) a simple form we introduce the assumption

gN(Y) gN(0) for y near 0 (5.28)

in (5.1); i.e., we assume that M has the product metric near OM. Note that this
means no restriction if Ds is Fredholm. Then an easy calculation shows that

S(y) S(O) oJ’. Z F" Vv,, y near 0, (5.29)
i_>l

where V is the canonical connection on CgYN. Thus, (4.14) reduces to

f(y) f(0)(1 y/s(O)f(O))- y near 0. (5.30)

It is also clear from (5.29) that S(0) corresponds to T, T the operator introduced
in lAPS, Thm. (4.14)], under the isomorphism (5.28). Hence, r/(So) -r/(N). We
summarize these remarks.
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THEOREM 5.4. Assume (5.3) and (5.28) and assume that we can find a smooth
positive function f with (2.11) and (5.30) such that S(y) :- fS(y) fulfills spectral
concentration ((2.9), (2.10)) and bounded variation ((2.13)).

Then

L2-sign M sign(Ml, OM1) + sign QS(O)Q + ho + hi dim Q (5.31)

Proof. Since the assumptions imply the assumptions of Theorem 4.4, we need
only remark that

dim Q
1
dim ker ,(0) dim ker((0) s)

-1/2 < < 0

1
dim ker((O)- s)

2 o < Isl 1/2

1 1
sign Qs(o)Q sign QS(O)Q

and that, by lAPS, Thm. (4.14)],

fM Lk + rl(N) sign(M1,

The signature formula (5.31) is explicit as it stands only if we can calculate hi.
For example, if Ds is Fredholm, then hi 0 by Lemma 2.7. One might expect that
in the Fredholm case the second and third term add up to zero, but we cannot prove
this for the time being. It is true, however, in the case of multiply warped products,
as shown below.
Another nice case occurs if Q 0. This will, however, not even be the case for

simple finite-volume manifolds like quotients of hyperbolic space; see [B, Sec. 5].
It has been shown in lAPS, Cor. (4.11)-] that a nice formula can also be obtained

if U is a cylinder. We will now generalize this result. To do so we keep the
assumptions of Theorem 5.4 and introduce "extended solutions" for Ds and D as
follows. Put

og"t’) "= {co f+ (M)I(d + 6)09 0, 0-leo L2(/*M)}
(-)

g kern(,)x"S, O, max,

(5.32)

then and ’ are finite-dimensional, and forms in og"t’) will be called extended
solutions of Dts’). We now prove that :Ut’) consists of closed forms.

LEMMA 5.5. For o 3( u 3(’ we have do O.
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Proof. Consider only, the arguments for ’ being similar.
We show first that o 3g implies

(fg)-1 o9 L2(/*M). (5.33)

If a > 0 in (2.11), we have nothing to prove; so we may assume limy_f’(y)
0. Now pick C(M) with supp ff c U and 1 near . Then we have
t-03 (Ds,o, max); hence, we can find v (/S,max) such that

,po- - o W(v).

From (3.25), (3.26), and Gronwall’s inequality applied to Qv, we obtain

x (0, So), (5.34)

for some , 0 < < 1/2. With q C(0, ) we then find

q,(of)-o - o ’e((u,f-) o s- v),

and it only remains to show thatf- o s-v L2((0, So) L2(/*N)). We estimate with
(5.34) and Lemma 2.1

(f o s-l(x))-2 II(x)llw*)dx C (f o S-I(x))-2X-2t dx

But for e > 0 and y _> T T(e), we have

f(y)-2 f(T)-2 exp -2
f(u)

du < Cev.

Choosing e (1 2)/2, we conclude that

Next, we claim that

r/"= do9 whenever o 6 3t (5.35)
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We compute

ztl, zdco,_l (-1)k+p(p-1)/2 * dcop-1

(-- 1)k+pt’-l)/2 * d(zco),_l

(-- 1)k+p(p-1)/2+k+(4k+l-p)(4k-p)/2 * d 0)4k+l_p

--((..04k+1_p dco4k+l_p 1,14k_p.

Next, we choose q 6 C(M) and compute

Ilcpg-Xr/ll 2 -(#920-2 do, dico)

-(d(p2g-2 A dco, co)

2(dip ^ tpg-lr/, g- co) + 2(tp2g- 3 dg ^ dco, co)

2(do ^ qg-1 r/, g-1 co) + ((/9 2 d log g2 A g-1 r/, g-1 co).

But from (2.15) we have, for large y,

f’+ld log g2(y) __(y) dy;
f

hence, we find with (5.33) that

Since we can make cp 1 with IIq011L and Ildg01lLOO uniformly bounded, (5.35) is
proved.
Now we put dc := dlo*’, 5 "-61o*’, and we denote by d the adjoint with

respect to the scalar product

(col, co2)o,’ :--" (g- co, g- co2)L2(A*n)

Using (5.33), one readily computes

d} -dc + (V log g2)L_ =: -dc + a, (5.36)

t__ denoting interior multiplication. Since

(d})2 d a2 0,
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we find

dr + dr 0;

hence,

(d}dr)z drdrdr -dd2 O,

and thus

dr =0. 121

We turn to the generalization of the above mentioned result in lAPS, Cor. (4.11)].
Note first that Theorem 4.3 applied to Ds,o gives

dim Q ind Os, o, ind Os,/,min

dim ker Os, o, dim ker Ds, o, mi

+ dim ker Ds*,o, min dim ker Ds,* o,max

(dim ker Ds,o, dim ker Os,o, min)
(5.37)

+ (dim ker O,0,ma dim ker D,o, min)

=:k + k’.

In general, we cannot say more about k and k’. For the signature operator, however,
the precise calculation is possible.

THEOREM 5.6. Assume the hypotheses of Theorem 5.4. Assume in addition (2.20)
and assume that OQLZ(dN) is invariant under *N (with in (5.8)). Then

k k’= 2x-dim Q.

Proof. We show that k < 1/2 dim Q; by an analogous argument one finds k’ _<
1/2 dim Q; so the assertion follows with (5.37).
Now we define a linear map

j: r a -- QO- (ico) e C(CgdN)

where io" N M is the natural inclusion and q the isomorphism in (5.8). We know
that 3f g ker Ds,o, max, and we want to show that

ker j 9 ker Ds,o,mi (5.38)
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If we show also

dim im j < 1/2 dim Q, (5.39)

the proof will follow from (5.38) and (5.39).
For the proof of (5.38) we pick 0) e 3( and write g-1 o91U q o O-l(u) for some

u e HI(+, L2(cg:N)); recall that (I)- was given explicitly in (5.27). It follows that

Then we decompose

J0)
g(O)

Qu(O).

g-10) o o-l(Qu + (I Q)u) =" g-l(0) + 0)).

It follows from Lemma 3.4 that g- 0)2 e (Ds,g, min), whereas the proof of Theorem
2.6 shows that

g-10) (Os,a,min if and only if Qu(O) O.

Hence, we deduce (5.38).
To prove (5.39) we claim slightly more, namely that

im ,j c , im Sj {0}. (5.40)

Since $QL2(C:N) is *s invariant by assumption, (5.40) implies (5.39).
Now, for 0) e 3U we have $j0) i’0)1 =: r/for some 0)1 e 3( since Q is indepen-

dent of y. Assume that ,st/= /,j& =: i’0)2, too, with 0)2 e 3(. Then

11/112 fo / / *Nr/ f0 i0)1Ai0)2
M1 M1

;t d(0)1 ^ 0)2) 0

in view of Lemma 5.5. The proof is complete.

We can present the announced generalization of Cor. (4.11) in I-APS].

THEOREM 5.7. Under the assumptions of Theorem 5.6, assume that ho h’o 0
(where’ denotes the quantities defined by D’s in place of Ds). Then

L2-sign M sign(M1, c3M1) + 1/2 sign QS(O)Q. (5.41)
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Proof. In view of (5.31) and the assumption we only have to show that
ha 1/2 dim Q in this case.

But ho h 0 means by definition that

V Ds,o,min Ds,o,v’ Ds,o, min

hence,

Dl,g, max, (Ds,g, V,)* Ds, o,

Since

dim ker D(st!max dim ker

we obtain from (2.34) and Theorem 5.6

ha h 1/2 dim Q. (5.42)

We add some further comments. In the cylindrical case treated in lAPS], we have
S(y) S(0), and we may choosef f(0), Q ker S(0). (See [B, Sec. 5].) Then clearly
ho h 0, and (5.41) gives

L2-sign M sign(M, 3M), (5.43)

which, therefore, is indeed a special case of Theorem 5.7.
If we know for some reason that Ds is also Fredholm, then (5.42) and Lemma 2.7

show that Q 0. Thus, (5.43) also holds in this more general setting. We expect,
however, that sign QS(O)Q does not always vanish, but at the moment we do not
know of any example.

If we apply the proof of Theorem 5.4 to the operator D, then we obtain

-L2-sign M -sign(M1, c9M1) 1/2 sign QS(O)Q + (h’o + h’ 1/2 dim Q); (5.44)

so together with (5.31)

ho+h;+h+hi=dimQ. (5.45)

One may conjecture that for hi h 0 we should have

ho h; 1/2 dim Q, (5.46)

but this turns out to be wrong in general; a counterexample is provided by a
noncompact finite-volume quotient of complex hyperbolic space. We will return to
this example at a later occasion.
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To conclude this section we treat a specific geometric example, the case of
multiply warped products.
By this we mean that N in (5.3) is a product

N N1 x x Nt (5.47a)

of compact manifolds N with dim N =: n, 1 < < e, and that the metric (5.3) takes
the form

gc(y) f (y)2gl fe(y)2 gc. (5.47b)

Here, each f e C(E+) is positive, and g is a Riemannian metric on N, 1 < < e.
To calculate the L/-signature of M in this case, we have to verify the conditions

of Theorem 5.4. We start with making (5.26) more explicit. We calculate first that

o(y)-" H fi(Y)-n’/2, (5.48a)
i=l

y(y) 0, (5.48b)

1 n,f’
2
Hy

,=1 (y). (5.48c)

Next, we choose local orthonormal frames (F/)
the frames defined by

for TN, and we observe that

](i,(p)) := f(y)-X Ti,(F](p)) (5.49)

are parallel along normal geodesics by the Koszul formula. Thus, we obtain

V/(y) f,(y)- F?.
Also,

IIr(]) V{Fo Vvo] + IFo,

(y);
hence from (5.20c) and (5.14), with obvious notation,

(5.50)
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It remains to calculate the connection r. We find for F C(TNm), 1 < m < e,

1 E /vN, fly ad(fff fffl)~ ff(ir(p)
p<q

F )Fi, .... F[(i,(p))
j<k

(5.51)

1 s.<k (VF, Fj ) ad(F"’Fjm)FiX,’... "F(p)

where V denotes the canonical connection on eN. Thus, we can write in (5.26)

S(y) := S(y) (5.52a)
i=l

where

(5.52b)

=: S,o(y) + s,(y)

and

ni

Di := E Fj’V (5.52c)
j=l

is the canonical selfadjoint Dirac operator on ceNi. Here, @i denotes decomposi-
p>0

tion with respect to degree in eN. We collect the crucial properties of the operator
family S(y).

LEMMA 5.8. Each S(y) is a symmetric elliptic differential operator of first order
on ofteN. If H denotes the domain of the unique selfadjoint extension of S(y) in
H LE(CeN), then H1 is independent of y and the map + y- S(y) &P(HI, H) is

strongly smooth. Finally, on C(cgeN)

S,o(y) S,o(y). (5.53)
i=1 i=1
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Proof. By Theorem 5.3 we only have to prove (5.53). We compute for :/: j, using
that co’ is parallel and a central involution, that

S,o(Y)Sjo(y) + Sjo(Y)S,o(y) F_F],. Vej,(F, Vr,) + F,
k,k’

=0. I-’I

Next, we have to find a suitable function fand the spectral projections Q(y). Now
(5.52) suggests the following choice of Q" we define

Q span{r/1 "...’rltlDirli 0, 1 < < re}. (5.54)

THEOREM 5.9. Assume that we can find a positive function f C(E+) satisfying
(2.11) and in addition

f(y) > C7 max f(y), y > 0, (5.55a)
l<i<

(y) _< c8, y > o, (5.55b)

(y) dy < , (5.55c)

f(y) f(O)(1 y/s(O)f(O))- near y 0. (5.55d)

Assume, moreover, that

fi(Y) =- fi(O) 1 for y near 0 and 1 < <_ re. (5.56)

Then, if C7 is sufficiently large and C8 sufficiently small, Ds has a finite L2-index given
by

L2-indDs= Lk + rl(N) + ho + h -- dim Q

sign(M, aM) + ho + h } dim Q

(5.57)
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Proof.
(5.3), (5.28), (2.11), and (5.30) are clearly satisfied. We define as before

i=1 i(y) o9’. D, + f’(Y)
,_>o
@’ p

f(y)[S,o(y) + S, (y)]
i=1

such that

Then

We have to verify the assumptions of Theorem 5.4. The assumptions

1
S(y) (y).

S(y)Q= f (y) -p Q; (5.58)
i-I

so (2.9) follows from (5.55b) if Csn < 1.
Next, we estimate for r/ C(ffe(N), using (5.53),

((y)Z,, rl) > f(y)Z (So,(y)r/, r/) C (y) (r/, ,)
i=1

(5.59)

Expanding r/in products of eigenforms of the Dirac operators D on N, we easily
see that

(Dq, Dirl) >_ i], (rl, q) for some

if Q/= 0; here,
2 min (spec D/2 \{0}) > 0.

l_<i_<v

Hence, we obtain (2.10) if 2C7 > 1.
It remains to check the condition (2.13a) on the bounded variation. We compute,

with S,o(y) := f(y)S,o(y),

=" I(y) + II(y) + Ill(y).
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The condition (2.13a) is clearly satisfied for the terms II(y) and III(y) by assump-
tions (5.55c) and (5.55b).
To deal with I(y), we observe that (5.53) implies

i=1 i=1

hence, we find

o(y)2 C(I + I(y)12).
i=1

To verify (2.13a), in view of (5.55c) it is therefore enough to estimate

I(y) I + Z o(Y)2

i=1

I + Z io(Y)2 (y) ,o(y)2 1 + E ,o(Y)2
i=1 i=1 i=1

<_ (y)- (y)
i=1

Thus, Theorem 5.4 applies and gives the formula (5.31) for L2-sign M.
It remains to prove that

sign QS(O)Q 0. (5.60)

Observe that this result will follow if we can find a bounded invertible operator
B: QH QH that anticommutes with QS(y) in (5.58). Now an easy calculation
shows that B "= *N has this property. The proof is complete. 121

Theorem 5.8 generalizes Theorem 3 in [Stl] where all N are assumed to be flat
and the warping functions are subject to further assumptions.

If, again, Ds is known to be Fredholm, then ha h 0, from (5.46), ho + h
dim Q. The argument leading to (5.60) then shows that ho h; so we obtain again
(5.43). We expect an additional contribution in the non-Fredholm case, but we have
no example for the time being; note that this would need 0 < ho < 1/2 dim Q and
h - h.
The r/-invariant of a Riemannian product can be easily evaluated; see i-D].
Typically, if f(y) e-’,r, 0 < <... < , then our assumptions are satisfied

with f(y) := Ce-, at least for large y. If we change f to f (y) 1, however, then
(5.55a) and (5.55c) cannot be satisfied together. Thus, we can deal essentially with
rank-one situations only.
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It is of some interest to single out the case f fl for 1 < < , i.e., the case of
warped products. Special cases have been treated in [Stl] and [B]. We obtain the
following corollary.

COROLLARY 5.10.
and assume that

Assume that fl f in (5.47b). Moreover, assume (5.56)

lim f(y) 0 (5.61a)

and

ffx"(Y)2 dy < . (5.61b)

Then

LZ-indDs= L, + rl(N) + ho + hl -- dim Q

Note that the more general approach taken in this investigation yields a weaker
result than [B, Corollary 5.4] if specialized to that case. In fact, condition (5.61a)
does not imply (5.61b) as can be seen from the function

fx (Y):= f t-a(2 + sin 2) dt, 0 < a < 2/3.

If condition (5.61a) is replaced by (2.11) with 0 < a < 1, then the situation is more
complicated. Following the outline [B, Corollary 5.2], one can derive results also
in this case.
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