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A Hilbert complex is just a complei

0_,@0_&@1_0'_,...&-_1,@”__,0,

where the D; are closed operators between Hilbert spaces with domain 2, and
D;, 1o D;=0. Although this is a fairly simple object, it reflects surprisingly mujch of
the structure known from elliptic complexes on noncompact manifolds, the main
application we have in mind. In this paper we undertake a systematic study of
Hilbert complexes and their relationship with elliptic complexes. It turns out that
this perspective gives a common structure to various known theorems along with
generalizations and extensions. We apply the abstract machinery to the de Rham
complex in several singular situations.  © 1992 Academic Press, Inc.

1. INTRODUCTION

The purpose of this work is to advertise the notion of “Hilbert complex,”
to prove some abstract results, and to demonstrate their usefulness for
global analysis on singular spaces. By a Hilbert complex we simply mean
a (differential) complex formed with closed operators on Hilbert spaces.
Though this notion has been implicit in the literature for some time, we do
not know of any systematic treatment. It turns out that the functional
analytic structure has interesting and useful consequences, mainly stem-
ming from the possibility to use the spectral theorem. In Section 2, we
begin to develop a general theory, largely in the spirit of homological
algebra; special features (among others) are the notions of “Fredholm
complex,” “Poincaré duality,” and “discreteness.” We then examine the
variation under complex isomorphisms of various invariants that can be
associated to a Hilbert complex, like Betti numbers and Laplace spectrum.
As a technically very convenient fact, we find that one can always define a
“smooth” subcomplex with the same homology (Theorem 2.12).
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In Section 3 we apply the abstract notions to Hilbert complexes arising
from elliptic complexes on arbitrary Riemannian manifolds, by choosing
closed extensions in the respective L?-spaces of the given differential
operators. Any such choice we will call an “ideal boundary condition”
(following Cheeger who apparently introduced this notion). The main
feature here is that ideal boundary conditions are stable under quasi-
isometries and, moreover, in many interesting cases more easy to classify
than the closed extensions of the elliptic operator obtained by “rolling up”
the complex; this fact became apparent already in Cheeger’s fundamental
work on conical singularities [C1, C3]. Elliptic complexes are in some
sense a very simple application, however. A wealth of new examples arises
from restricting an elliptic complex to a subcomplex, cf. Theorem 3.12.

Section 4, finally, examines the de Rham complex in various situations:
on compact Riemannian manifolds equipped with Lipschitz metrics, on
compact Riemannian manifolds with boundary, on compact Riemannian
manifolds minus a “small” subset, and (its counterpart) for Riemannian
foliations. Here we put the emphasis on the common perspective of all
the;xgi “singular” complexes, introduced by our abstract framework. Thus,
among other things, we give a simple and natural characterization of the
so-called absolute and relative boundary conditions for the GauB—Bonnet
operator on a manifold with boundary, and we show that in this case one
can always find an ideal boundary condition satisfying the Poincaré duality
(which is not Fredholm, however). Many other interesting cases exist
which we want to deal with in the future.

2. HILBERT AND FrREDHOLM COMPLEXES

We will work in the following abstract setting. Consider (mutually
orthogonal) Hilbert spaces H,, 0<i< N, Hy,,:= {0}, and for each i a
closed operator D;e ¥(H;, H; ), the set of all closed operators with
domain in H; and image in H,, ,. We put @,:=2(D,), the domain of
D;, R, :=D;(2), the range of D;, and with D} the adjoint operator,
DF =D (DF), RF :=D¥(2}¥). We then assume that

R D, (2.1a)
and
D, °oD,;=0. (2.1b)
Thus we obtain a complex -
0— 925 9,24 ... 20, g ¢ 22)
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in the sense of the homological algebra, but with additional functional
analytic structure, which we refer to as a Hilbert complex. If, moreover, the
homology of this complex is finite, i.e., if the spaces

H#,:=ker D,/im D;_, (2.3)

are all finite dimensional and if %, is closed for all i, then we call the
complex a Fredholm complex. We will abbreviate the complex (2.2) as
(2, D); we put

B;:=dim i, (2.4a)

(such that 0 < f,< o) and, in the Fredholm case,

N
ind(2, D):= Y (—1)B,, (2.4b)
i=0 .

and we call these quantities the geometric Betti numbers and the geometric
index of the complex (2, D), respectively.

For each Hilbert complex (2, D) we can introduce a dual complex,
(2*, D*), as follows. It is immediate from (2.1) that the adjoint operators
satisfy

R¥c D} (2.5a)
and
D} +D¥=0 (2.5b)
so (2%, D*) is the complex
00—, B gs KL Dit g (2.6)

~ The i th homology group_of the dual complex is
HF=ker D¥_,_,/im D%_ . (2.3%)

Maps are defined in the obvious way: if (2, D) and (2’, D) are Hilbert
complexes and g;: H;— H] is a bounded linear map for each i with

&:(D;)= Dy, ' ‘ (2.7a)
Diogi=g;.1°D;, (2.7b)

then g := @ g,: (2, D) - (2', D') is called a map of Hilbert complexes. The
induced map on homology will be denoted by g4 It is readily seen that the
dual map g*= @ g defines a complex map (2'*, D'y (9*, D*).
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Each Hilbert complex (2, D) defines a natural orthogonal decomposi-
tion on each Hilbert space H; which we will refer to as the weak Hodge
decomposition. To describe it we introduce

#:=ker D;nker D¥ ,, O<i<N. (2.8a)

For the dual complex we obviously have

HF= .. (2.8b)

LemMma 2.1. Let (2, D) be a Hilbert complex. Then for each i we have
an orthogonal decomposition

H=#0%_,®RF. (2.9)

Pro/o/). Note first that ker D, is closed in H, since D, is closed. Thus we
can decompose

H,= (ker D,)* @ ker D,
=(ker D) ®R,_,Dker D;n R} _,. (2.10)

Now for any closed operator D e ¥(H, H'), we have the relation

(ker D)* = Z(D¥). (2.11)

Applying this to (2.10) the proof is completed. ||

To deal with the Fredholm properties of a Hilbert complex (2, D) it is
enough to study a single closed operator, D, defined as follows. Put

Hev :=® H2ia Hodd :=® Hﬁi+1,

iz0 iz0

9 = @ 92i{j‘@’2'=i—-lcl’{ev7

iz0
and define De 4 (H,,, H,qq) by

Du = (D0u0+Diku2, Dzu2+D§ku4, ...)eHodd,

(2.12)
Y == (uo, Uy, ...) € 9.
From the complex property we derive
1Dul frge= 2. (ID2stiaill 2y, + D% w1421 2l 3y, s (2.13)

iz0
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which shows that D is in fact closed with domain 2. Hence we can
associate with D three self-adjoint nonnegative operators, namely

Ao, :=D*D, A, :=DD*
A=Ay, @ Aygq.

(2.14a)

Note that D @® D* is also self-adjoint and that
A= (D@®D*)>
Yet another family of self-adjoint operators is of interest: we write

4=P D;,_ D @D D¥D,=: D A?(”B@ A?

izl iz0 izl iz0

=A@ 42 : (2.14b)

Then the weak Hodge decomposition can be interpreted in terms of the 47
as follows (recall that the support, s(T), of a self-adjoint operator T is
defined by s(T) := (ker T)").

LEMMA 2.2. We have
H=ker A H,=ker A nker 4>~ H,,
Hi_y=s(4")n H,
R¥=s5(4*>)nH,.
Moreover, s(47) reduces 4 and A| =47, j=1,2.

Proof. This is obvious in view of (2.12) and ker 4' n H;=ker D¥* |,
ker 4>~ H;=ker D,. |

We observe next that, in fact, no information is lost by going from the
Hilbert complex to the closed operator D, obtained by “rolling up” the
complex.

LemMa 23. The Hilbert complex (2, D) can be reconstructed from the
closed operator D defined in (2.12).

Proof. We have
DN D%_ =D (D)n Hy, (2.15a)
Dris1 N D5=D(D*) N Hyyy. (2.15b)

We claim next that D D3;_, is dense in %,; with respect to the graph
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norm of D,;. This can be shown directly but a very easy proof will follow
from the discussion after Lemma 2.11 below: & in (2.31) is a core for D,
and D} . If P, denotes the orthogonal projection in H onto H; we thus
obtain

Dy, = closure of Py, ;o (Dl 20y £y (2.16a)
A very similar argument gives |
DY,y =dlosure of Pye (D*|gpey ). N (2.16b)
We turn to a description of the Fredholm property. ‘
THEOREM 2.4. Let (2, 'D) be a Hilbert complex. The following conditions

are equivalent.

(1) /(@, D) is a Fredholm complex.

(2) dim s < o0 for all i

(3) D is a Fredholm operator.

(4) Denoting by spec, the essential spectrum, we have 0 ¢ spec, 4.

If any of these conditions is satisfied, we have
ind D =ind(2, D).

Proof. (1)=(2). This follows from the definition.

(2)=(3). If # has finite dimension for all i then %,_, is closed in
ker D, hence closed in H,. Thus we obtain from (2.9) and the closed range
theorem

H=FDR_,DRF. (2.17)
Since ker D,=#®AR,_, we conclude
H o~ A - (218)
From (2.13) we infer that
ker D= @ 4, (2.19)

iz0

hence ker D is finite dimensional.
Since #; is closed for all i, the decompositions (2.15) imply that the
operators :

Dyi: B350 Dy > Ry,

£ . * *
D3 iR "D > RE_,
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are bijective. On the other hand, the weak Hodge decomposition implies

imD=@ (2@ %%.1), (220)

iz0

im D is closed. ‘
SOTo complete the proof, it is enough to show that D* has finite

dimensional kernel. An easy calculation_ gives

D*: @ @2i+1n9;i_>Heva

iz0

u=(uy, Us, ..) = (DFu,, Dyu; + D¥u,, ..).
Hence the analogue of (2.19) is

ker D*=@ #,. ., (221)

iz0

which is finite dimensional by (2.18).

i d its analogue for D* show

3)=(1). If Dis Fredholm then (2.20) an Y

that (gt’) anc(l R} are closed for all i. From (2.19) and (2.21) we see thzaiggi’;
is ﬁnité dimensional for each i. As before we then reach (2.17) and (2.18).

(3)=>(4). This is a well known fact. |

As a corollary we single out the strohg Hodge decomposition (2.17).
CoROLLARY 2.5. If (9, D) is Fredholm then we have the decomposition
H=%0R_,®R* ’
Moreover,
H~ H,
and for the geometric index we have

ind(2, D)= Y (—1)'dim . (2.22)

iz0

Note that (2.17) holds whenever ; is closed. for all i>0. As another
consequence we note

COROLLARY 2.6. The Hilbert complex (2, D) is Fredholm if and only if
the dual complex (2%, D*) is. In this case we have

3?,* ~ ¥ 2”N_i:]?N—i' (2.23a)

- second complex map it follows that hio 8,= (ho
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Moreover, if D and D denote the operators defined by (2.12) for (2, D) and
(2*, D*), respectively, then we have

N even,

- (D, '
D= {D* ¥ odd (2.23b)

and
ind D= ind(2*, D*) = (—1)Yind D= (—1)Yind(2, D). (2.23c)

Proof. 1f (2, D) is Fredholm then (2.3*) and the Hodge decomposition
imply s£* ~ #y_,. Thus (2*, D*) is Fredholm by (2.19), (2.21), and
Theorem 2.4, 2. The converse follows from (2%*, D**) = (9, D). Now
(2.23a) is a consequence of (2.8b).

The remaining statements follow from straightforward applications of
the definitions. ]

We observe next that com

plex maps also induce maps between the
spaces 7.

Lemma 2.7, Let g:(2,D)— (2',D') be a map of Hilbert complexes,
and denote by B{"), PI') the orthogonal projections in H'") onto # and

S(A"YNH, j=1,2. Then g induces functorial homomorphisms for all i,

Ay e .,
gi-—Pi“gil_;‘r,--%_’”is
—_—

1. .
g = gils(dl)nH,-' Ri_ =R,

2._ pa “GF _, T
8; '=P; Ogils(dz)r\H,-"@;k_)'%;*'
If g, is unitary then so are £ 81, and g2,

Proof. The assertion concerning g! is obvious from the definition. For
the functoriality of &: we have to show that with A: (2',D')~>(2",D") a

g):- But this is an easy
consequence of the fact that g; maps ker D, to ker D} and %,_ | = s(4 H

to #;_,. Finally, if &: 1S unitary it respects orthogonality, and

- 8(Z_1)=R_,. The proof for gZ is very similar. |

In particular, the dimension of # is invariant under complex

isomorphisms. In case -that all # have finite dimension we call (2,D) a
weak Fredhoim complex. The numbers

B;:=dim # ‘ (2.24)
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are called the analytic Betti numbers of (2, D), 0< f:< . In the weak
Fredholm case, we define the analytic index of (2, D) as

0d(@,D):= Y (—1)6;

iz0

=dim ker D — dim ker D*, (2.25)

where we have used (2.19), (2.21). Note that D need not be Fredholm for

the analytic index to be well defined. . o
It is o};ten necessary to compare the homologies of (2, D) and (2, D).
This can be done by means of a homotopy operator.

DeriNiTiON 2.8. Let g, h: (2, D)— (2',D’) be maps o_f Hilbert co;n—
plexes. A homotopy operator for g and h is a collection of linear maps, 4,

A D, - D, (2.26) .
' such that on D;
gi—hi=D;_ A;+A4;; D:. (2.27)
From (2.27) we obtain for x eker D,
g:(x)=h;(x)+ Dj_ (4;x).
Thus we have

LemMMA 29. Given a homotopy operator, t_hen the induced maps coincide
on homology, g, =h,. We also have g = h.

The following observation is useful in redus:ing homolc;gy Z:;mg;tz‘;:gn:
lexes. Suppose we are given a Hilbert complex (2, D) I
::(())nsl;ll):: rrrrlxlzlp h: (@,I;)) — (2, D) which is homotopic to the identity; ie.,
we have linear maps 4,;: 9, — &;_, such that

h;=idg+D;_1A;+ A4, D:. (2.28)
Now if (2° D) is a linear subcomplex of (2, D..) such that for all i
h(2)c 2] (2.29a)

and, moreover, _
4,90 <)), (2:29b)

. . -, 0
then the homologies coincide. More precisely, if j: (2° D)— (2, D)
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denotes the natural inclusion then # induces a compléx map
k:(2, D) - (2° D) with jok = h. Thus (2.28) and (2.29) simply mean that

j*ck*=idx, k*oj*zidxo_

Ir (2° D) is a Hilbert subcomplex then it is easily seen that jok =id 7
k°j=id_;?o, and

J: #° s A is the natural inclusion,
k: # - #°is the orthogonal projection.
Hence 5##° = #. Thus we have

LEMMA 2.10. Let (2° D) be a linear subcomplex of the Hilbert complex
(2, D) and h: (2, D) - (2, D) a map of Hilbert complexes with the proper-
ties (2.28) and (2.29). Then hy induces an isomorphism #° ~ .

If, moreover, (2°, D) is a Hilbert subcomplex then #° =

As an application of this construction we are going to associate to each
Hilbert complex (2, D) a smooth subcomplex (9%, D). The terminology is
justified by the fact that (2%, D) consists of smooth sections if (9, D) is
generated by an elliptic complex, cf. Section 3.

In preparation, we need the following result on cores. (Recall that a -
linear subspace EcP(D) is called a _core for the closed operator
De%(H, H') if € is dense in (D) with respect to the graph norm.)

LEMMA 2.11. Let (9, D) be a Hilbert complex with Laplacian A. If
€= ,506 is a core for A then

&= J%@Di—1£i—1 @D,y (2.30)
is a core for D, for all i >0.

Proof. By construction, & u FCDnD}_ . Let x€ P, be orthogonal

1

to % with respect to the graph scalar product. Then we find for yeé,, |
0=(x, D}y)+(D,x, D; D}y)
= (Dix7 (Ai+l + idHiH)y)’

hence D;x =0 since &1 18 a core for 4, ,.
Similarly, we find for yeé,_,

0=(x> Di—ly)=(Dz*—1x’ y),

hence also D} x=0, ie., xe #. Thus x =0, i
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A convenient choice for & is

E= 1) 2(4%)=: 9~. (2.31)

kz1

This is a core for 4 =: [ 1 dE,, since for x e D(4)

lim Jn dE,;x=: lim x,=x
0

n— oo n— oo

in the graph norm, and x, e 2(4*) for all k, ne N.
Hence, by Lemma 2.11,

%:%@Di_léi—l®Dt*gi+l

is a core for D;. Now we observe that for xe & and ke N
D¥  Aix=4% D} x, (2.32a)
Af. 1 Dix=D, Afx. (2.32b)
Hence we conclude
Fc &, (2.33)
D& =&y (2.34)

Thus also =2 is a core for D;, and we see that (2%, D) is a sub-
complex of (2, D), the smooth subcomplex referred to above.

THEOREM 2.12. The natural inclusion
J: (9*,D)— (2, D)

induces an isomorphism on homology.

Proof. According to Lemma 2.10 we want to construct a complex map,
h, homotopic to the identity in the sense of (2.28) and (2.29). To do so we
pick ¢ € C°(R) with ¢ =1 near 0 and define

hi=—(d+id) [ gy ar (2.35)

Then, clearly, # maps H; into &,. Moreover, (2.32) implies that
D:hix=h;, D;x, X€&,

HILBERT COMPLEXES ‘ 99
hence 4 is a complex map since & is a core for D,. Next we note that
-~ . c©
Fi=—(4 +1d)-1f o(t) e~ dt
0
maps H; into 9(4,). We compute for xe &,
’ > . @ 0
Alix= (4 +1d)“f o(t) = e~"x dt
0 or

= —(4+id)""x+ hx
=hx—x+4(4+id) " 'x,
or, using again (2.32),
hix=x+D,_ D¥ \(h;—(4,+id)~")x
+DF(hiy 1~ (4;4 +id)~Y) D,x. (2.36)

Thus we are led to the homotopy operator
A= —D¥ (4, +id)~! (id+f o(t) e dt). (2.37)
0

It is clear that (2.36) holds for xe H,, and that A4, maps 9, to 9,_, and &
to & _,. Thus the assertion follows from Lemma 2.10. §

Since Hilbert complexes are chain complexes we can expect that there
is a product theory and a Kiinneth Theorem. In the special case of
L?cohomology on singular spaces (with simple singularities like warped
products) a Kiinneth Theorem has been proved by Zucker [Z], whose
method has been the model for our approach. Apparently, this was also
known to Cheeger who proves a Kiinneth Theorem for Riemannian
pseudomanifolds in [C1].

The main technical difficulty is that tensor products of Hilbert spaces are
completions of algebraic tensor products, and tensor products of closed
operators need not be closed. In the sequel, we denote by ® the algebraic
and by ® the Hilbert space tensor product.

Consider two Hilbert complexes (2', D’), (2", D") with P, H],
9; < H{, H], H! Hilbert spaces. We define the new Hilbert spaces

H:>= @ Hi®H!, H'= @ H, ® #7, (2.38a)
k+i=i k+l=i
and subspaces
F:= @ (2:QH "H,® 9])=H,. (2.38b)

kti=i
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Put
o H,—»H, HQ®H>3xQy~(—1/x®y,

k+l=i

(2.38¢)

and let D, := Dz,- be the closure of D;, with domain %,. Moreover, let

2} =2,nH],  D}:=D|zp. (2.38d)

(2, D) and (2° D°) are Hilbert complexes, and (2°, D°) is a Hilbert
subcomplex of (2, D); this is proved as Lemma 3.1 below.
Denote by P, the orthogonal projection in H; onto H}. We have

P= ©® idH,; ® P/, (2.39)
k+i=i
where P; is orthogonal projection in H;' onto ). If we endow D,
with the Hilbert space structure induced by the graph norm
Il == lx]> + | Dicx|| it is easy to check that

= @ 2.8 #/, (2.40a)
k+l=i
D= @ D.®id, (2.40b)
k+i1=i
and
ker D°= @ ker D, & #;. (2.40¢)
k+1=i

Lemma 2.13. @D, P; is a map of Hilbert complexes (2, D) — (2°, D°).
Proof.- We have to show that
P(2)<=2?,
and
DoP,=P,, D, on 2,. ‘ (2.41)
Note first that from (2.38b), (2.39), and (2.40a) we get
P(D)=%,nH.

Next an easy computation using Lemma 2.1 shows that (2.41) holds on 15,
Since D, is dense in 9, with respect to the graph norm of D;, the assertion

follows.” ]
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Now we assume in addition that D} has closed range for all I. This will
allow us to construct a homotopy operator for P, in the sense of
Lemma 2.10. Let B/: H/ - H}_, be given by

0, if xeim D;_,*,
X ) ) 242
{(D;’_1 ko 0)7'%  if xeim Dy, (2422)
and
Bii= @ idy,®B]. (2.42b)

k+i=i

Thus B} is a generalized inverse for D; and B; is a bounded operator
H;— H;_,. Obviously,

Bi(gi)cgi—la BiPilgfzo- (2.43)
For ye 9/ one computes that the Hodge decomposition is given by
y=P/y+D{ B/y+Bj,, D}y (2.44)

From this equation one easily derives the following representation for
ue9;,
u=Pu+D; (0, Bu)+ac,B,, (Du). (2.45)

Defining 4,:=0,_,B,: H,~ H,_, we can prove

THEOREM 2.14. If D[ has closed range for all | then P; induces
isomorphisms P;,: #,— H'). Moreover, = #°.

Proof. To apply Lemma 2.10 we have to show that

4,(D)<D,_,, Ai(@?)c‘@?—l’

and that (2.45) holds for ue 9,. By definition, we find for u e 9, a sequence
(4,) = 2, such that u,—>u and D,u,— D,u. From (2.43) and (2.45) we
obtain that 4,u,eD,_, and that D,_, 4,u, converges. Thus A,ue9,_,,
and (2.45) holds for u. Moreover, we have A Piu=lim, , A;Pu,=0,
hence 4,(2?)< 2?_, and we are done. |

COROLLARY 2.15. Assume that D} has closed range for all .
(1) We have

= @ #,& . (2.46a)

k+I=i
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: 1
(2) If (2", D") is Fredholm then

H~ P H.QH]. (2.46b)

k+l=i¢

(3) D; has closed range for all i if and only if D), has closed range for
all k. In this case we have

K D HL HL. (2.46¢)

k+l=i

Here ® is with respect to the natural Hilbert space structures on #)
and #;.

Proof. From (2.40a)-(2.40c) we derive

H= @ #,Q#). (2.47)

k+i=1i

From Theorem 2.14 we then obtain (1). If (2", D") is Fredholm, # r e~
is finite dimensional and (2) is an immediate consequence of Theorem 2.14
and (2.40c).

(3) Since DOP,=P,, D, and because of (2.40b), we see that if D, has
closed range then Dj has closed range, too. If D, has closed range for all
'k we obtain from (240a)-(240c), #?~ #?, and hence from (2.47),
Theorem 2.14, and (1), # ~ #,. Thus D, has closed range by Lemma 2.1.
Equation (2.46c) is now clear. |

Next we want to introduce the notion of Poincaré duality for Hilbert
complexes. We say that a Hilbert complex (2, D) satisfies Poincaré duality
if there is an isomorphism of Hilbert complexes, g, from (2, D) to the dual
complex (2*, D*).

LeMMA 2.16. The Hilbert complex (2, D) satisfies Poincaré duality if
and only if there are invertible bounded linear maps g,;: H,—~ H N Satisfying

8.(2)=9%_._,, (2.48a)
D} _,_1°8i=g,:°D,. (2.48b)

g induces isomorphisms i
g K-> Ky, (2.49)

If, moreover, (D, D) is Fredholm g induces also isomorphisms

Zix: ”;_"WN;P
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Proof. The first assertion follows immediately from the definitions (2.6)
and (2.7a), (2.7b). The second assertion is a consequence of Lemma 2.7 and
(2.8b). The last assertion follows from Corollary 2.6. ||

It is clear that, for a given Hilbert complex (2, D), the spectral proper-
ties of 4 provide very interesting invariants. Since in practice complex
isomorphisms are a rather flexible tool it is useful to investigate how spec-
tral properties of 4 transform. We present here only a rough comparison
result for the Laplacians in case of a discrete spectrum which, however,
already has some useful consequences. Certainly, subtle properties (like
eigenvalues imbedded in the continuum) are not preserved under quasi-
isometries but it seems that this question deserves further study.

To prepare our result, consider a complex isomorphism g: (2, D) —
(2’, D’) and the corresponding map

@ &P ®gHH-H, (2.50)

iz0

which preserves the weak Hodge decomposition according to Lemma 2.7.
Then observe that h:=(g~')*:(2*, D*) - (2'*, D’*) is also a complex
isomorphism. Hence we obtain maps

g RFND~AF N9,
hy R \DE >R ADE.
Now the bilinear form generated by 4{” on 2{" ~ 2\)% is simply
Ci 0w, u) = | D ul|® + | D% u)|?
= | D" uy|1? + | D% uy )2,
fu=ug+u,+u,e £OORY A DV @A* A D). But the map

k= gi@hjzv_i(@gf:@im@;“_l—*g,{ﬁ@;f1

- is bijective; it follows that

Cilki(v), k;(0)) = | Digiv,)> + |D}* (g7 )*v, ||?
= gis1 Di”2“2+“(gi:11)* D¥_,v,% (2.51)

since g is a complex isomorphism. This situation calls for an application of
the max-min-principle for which we have to assume, however, that 4 has
a discrete spectrum,; i.e., all spectral values are isolated eigenvalues of finite
multiplicity, equivalently spec, 4= (. In this case we call the Hilbert
complex (2, D) discrete. Thus we arrive at
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LeMMma 2.17. Discreteness is invariant under complex isomorphisms.
- More precisely, if (2,D) is a discrete Hilbert complex and g:(2, D) -
(2', D') is a complex isomorphism then we have for the eigenvalues 1, A., of
A and A4’

C2,<<Ch,, n=1, (2.52)

with some constant C independent of n.

As a useful consequence we note the invariance of trace estimates for the
heat kernel.

COROLLARY 2.18.  Assume that the Laplacian A of (9, D) satisfies
tre” < Cr

Jor 0<t< 1. If there is a complex isomorphism g: (9, D) — (D', D'), then
we have also

tre ' < C't% 0<r<l.

We summarize the more important invariance properties of Hilbert
complexes as follows. :

COROLLARY 2.19. Let (9, D) be a Hilbert complex. Then any isomorphic
Hilbert complex, (2',D'), has the same analytic and geometric Betti

 numbers as (9, D).
Also, Oespec, 4’ or spec, 4’ = & iff the same property holds for A.

3. ELripTiC COMPLEXES

Elliptic complexes on arbitrary Riemannian manifolds are, of course, the
first application of the abstract results derived in the previous section. We
will concentrate on these examples in this section since they already reveal
some interesting phenomena. Thus we consider a Riemannian manifold M,
hermitean vector bundles E; over M, 0 <i< N, and a family of differential
operators, d;: C3(E;) — CF(E;, 1), such that

0— CP(Eg)—> CF(E) D - =L CP(Ey)— 0 (3.1)
0 0

is a complex. The complex .is called elliptic if the associated symbol
sequence

00— n*Ey 2, prp o), W), axp 0 (32)
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1s exact in each fiber; here n: S*M — M denotes the natural projection
from the cosphere bundle onto M. An elliptic complex will be denoted by
(CP(E), d).

Our first task is to find Hilbert complexes associated to each elliptic
complex. To do so we start from the natural Hilbert spaces

H,:=IXE),

and we recall that each operator d; has a formal adjoint
d;: CP(E;, ) > CP(E,;) which is a differential operator, too. Hence d; has
clgs§d extensions in ¥(H;, H,,,); they all lic between the closure or
minimal extension, d; ..., and the maximal extension, d; ..., given by

di, max = (dl )*

i, min
In particular, we can always form a second elliptic complex,

. d’__ - - 1_ 1
0— CP(EN) —2=5 CR(Ey_ ;) —22 .. %, copy— 0 (3.3)

which we refer to as the adjoint complex to (3.1).
_Any choice of closed extensions 4 min ©D;<d; oy that produces a
Hilbert complex (2, D) will be called an ideal boundary condition.

LE.M.MA 3.1. Let (CQ(E), d) be an elliptic complex. Then ideal boundary
conditions exist. For example, if we put H,=L*(E,) and
@i = g(di,min)’ -Di = di,min7 (34) .
or
‘@i = ‘@(di, max)’ Di = di, max»> (35)
then (2, D) becomes a Hilbert complex.
Proof. Consider (3.4) first. We have to show that
Di(@i)c'@i+l: D;,D;=0.
For ue 9, we can find a sequence (u,) < C°(E;) such that u, - u in L¥(E,)
and d;u, —» D,u in L*(E,, ,). But then d;,1(du,)=0, thus Dueker D, ,.
For (3.5) we only have to note that the adjoint complex (3.3) generates

a .Hilbert complex, (2., D...), with (3.4). The dual complex is the
Hilbert complex satisfying (3.5). 1

The main example of an elliptic complex on M is the de Rham complex,
(20(M), d),

00— QYM)—2s ... 2=ty Ompry 0, (3.6)
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where Q§(M) denotes the smooth p-forms with compact support and d,
the exterior derivative. Then the Hilbert complex associated to the maximal
extension of d, (3.5), defines the L2-cohomology of M. In this case, the weak
Hodge decomposition of Lemma 3.1 is due to Kodaira [K, Chap.Il,
Sect. 4]. It is, of course, of interest to relate the L?-cohomology groups to
the L?-harmonic forms on M. Let us define, with é :=d",

H (M) =ker d; po./imd;_ | ., (3.7a)
H(M) =Ker d, o O ker(d;_ | max)*

=ker d; max NKEr 6;_ 1 min» (3.7b)
M) i=Ker d; may OKEE 8, 1 s (3.7¢)
H(M) :=ker A; oy (3.7d)

Then we obtain the following inclusions (cf. [C2]).

LEMMA 3.2. We always have natural injections
H(M) s H(M) (38)
and
H(M) s H(M) 5 (M) (39)

Relation (3.8) is an isomorphism iff d;_ | max has closed range.

The first map in (3.9) is an isomorphism if d; yax =d; min for all i, ie., if
(3.6) has a unigue ideal boundary condition.

The second map in (3.9) is an isomorphism if A4 with domain Qy(M) is
essentially self-adjoint.

Proof. The assertions concerning (3.8) follow from Lemma 2.1.

1t is obvious that the first map in (3.9) is an isomorphism if (Q(M), d)
has a unique ideal boundary condition. If 4, is essqntial]y self-adjoint then
all self-adjoint extensions of d;d;+d;_; d;_, on (M) coincide. Thus we
find

Ai, max — 51‘, min di, max + di— 1, max 6i—1,min = Zh
so (M) = F(M). 1 )
It is useful to note the following fact which, together with Lemma 3.2,

yields a well-known result of Andreotti and Vesentini [AV] (cf. Lemma 3.8).

LemMma 3.3. If Aq:=0d+db is essentially self-adjoint on Qy(M) then
(2o(M), d) has a unique ideal boundary condition. This is the case, in
particular, if M is complete.
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Proof. Let (9, D) be an ideal boundary condition for (24(M), d) with
Laplacian 4(D)=D*D + DD*. Then 4(D) is a self-adjoint extension of 4,,,
and it is not difficult to see that the map D A(D) is injective. But D
determines (2, D) by Lemma 2.2, hence essential self-adjointness of 4
implies the uniqueness of ideal boundary conditions.

The remaining statement is due to Gaffney [Ga]l. |

Whereas essential self-adjointness of 4 is, generally speaking, a rare
phenomenon in the presence of singularities, ideal boundary conditions for
(R20(M), d) are very often easy to classify or even unique. We want to
illustrate this phenomenon and its consequences in the next section. It
seems that in case of uniqueness the L2-cohomology is the most natural
analytic cohomology associated with (24(M), d).

In analogy with Section2 we introduce complex maps for elliptic
complexes. Let (CP(E), d), (CL(E'),d’) be elliptic complexes over a

-Riemannian manifold M. A complex map g: (CP(E), d)— (CP(E'), d") is

then a collection of bundle maps

g E;— Ej, (3.10a)

which induce bounded linear maps
g LA(E,) - L*(E}) (3.10b)
such that

di'ogiz gi+1°di' (3.100)

We call g:=@ g; a complex isomorphism if all g; in (3.10a) are bundle
isomorphisms and all maps in (3.10b) have bounded inverses. If only all g,
in (3.10a) are bundle isomorphisms we will refer to g as a weak complex
isomorphism. Clearly, for isomorphic complexes there is a one-to-one
correspondence between ideal boundary conditions.

That g is a complex isomorphism is equivalent to the inequalities

C,-“IH &: ()l e S 11 ey S Cill g (N LAE})» (3.11)

with certain constants C, Inequality (3.11) follows always from the
pointwise estimate

Crlige)l g, <lels, <Cilgie)l s, (3.12)

valid for e€ E; , and pe M, with constants C, independent of p. Thus we
call g= P g;a quasi-isometry if (3.12) holds for all i. An important example
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arises for the de Rham complex and two quasi-isometric Riemannian metrics
hy, hy on M ie., for some C>0 and all Xe C*(TM) we have

C™hy(X, X) <hy(X, X) < Chy(X, X). (3.13)

It is then easy to see that the two Hilbert complex structures induced by
hy and h, on the de Rham complex are quasi-isometric in the sense
of (3.12).

For an elliptic complex, (C(E), d), with an ideal boundary condition,
(2, D), we can form the smooth subcomplex (2%, D) according to (2.31).
Then, by Theorem 2.12, the cohomologies coincide; i.e., we can compute
the cohomology of (2, D) from smooth sections since

22 =) VL)<= C=(E)nD,=: &, (3.14)
k=1

by elliptic regularity. However, in this case there is a more natural choice
of “smooth subcomplex,” namely (&,d) with & in (3.14). To extend
Theorem 2.12 to this case we need a simple lemma.

LemMA 3.4. Let 4 be a bounded below self-adjoint operator in the
Hilbert space H, and let B;e $(H), j=1, 2, satisfy
B(2(4%)) = 2(4%), keZ ., (3.15)
4'B, A™B,: D(4'*™) > H
extends to a bounded operator in H, for all, me Z ., . (3.16)

Then, if fe C*(R ) admits an asymptotic expansion of the form

S~ Y S35 weR N —oo, (3.17)
j=z0
as x— o, 4'B, f(4)B, also extends to a bounded operator in H, for all
leZ,.

Proof. We may assume 4 > 1. Then it follows from complex interpola-
tion that (3.15) and (3.16) hold for all k, ], me R . Moreover, if [+ u, <0
we have

A'B, f(4)B, = (4'B,47')(4' f(4)) B, e ZL(H).
Sincg
4'B, % f;4¥B,e £ (H)

for all Ne N, we can complete the proof with (3.17). |
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The lemma applies in particular to the resolvent and the heat operator,
with f(x)=(x+4)"% 2> 1, or f(x)=e"", t=0. In our case we want to
apply it, in view of (2.37), to the function

1= (1407 (14 [ oty e

=(1+x)"! <1 +x! foo ) (£> e"a’t)
0 X
~(1+x)"'(1+x7Y as x— 0, (3.18)

since @ =1 near 0. We find

THEOREM 3.5. Let (9, D) be an ideal boundary condition for the elliptic
complex (C*(E), d), and consider the smooth subcomplex (&, d) of (2, D)
defined by (3.14).

Then the natural inclusion induces an isomorphism on homology.

Proof. By Lemma 2.10, we see that it is enough to prove the following:
defining /4 and 4 for (9, D) by (2.35) and (2.37), respectively, then

D) c &, (3.19)
and
A(&) <&, _,. (3.20)

Since 2° < &, (3.19) follows from the proof of Theorem 2.12.

Next we pick @, x, Y € C3(M) such that ¥ =1 in a neighbourhood of
supp x and x =1 in a neighbourhood of supp ¢. Since 4, maps %, to D4,
it is enough to prove that ¢4,fe C*(E,_,) for fe&. But Yfed?, so
QAYfeD? <& _, and we are left with the proof of

A (1—y) fe C*(E,_,). (3.21)
This in turn will follow if we prove that
oA, (1-y):H, > 22 .

Now we have from (2.37)

041 —¥) =~ [0, DF-,] x(4,+id)~* (id+j0°° o(1) e dt) (1—y)

—D¥ (4, +id)~* <id+f0°° o(t)e " dt> (1—y).
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Since 4 is a differential operator, we have x4*(1—y)=0. Thus the
assertion follows from (3.18) and Lemma 3.4, applied to B,=(1—4y) and
Bi=¢or By=[¢,DF 11 1|

For the de Rham complex (Q4(M), d) and the ideal boundary condition
defined by we have '

dmax 3

&= {0 QM) n LANT*M)| doe L\ T*M)).

In this special case, Theorem 3.5 is due to Cheeger [C2, Sects. 1 and 8]
who uses constructions introduced by de Rham and Gaffney. Our proof
seems to be more general and more perspicuous. '

We turn to the product theory for elliptic complexes. The case of

L?-cohomology, ie., the maximal complex associated to the de Rham
complex, has been treated by Zucker [Z] with very similar techniques.
Thus, on the Riemannian manifolds M, I=1,2, we consider elliptic
complexes (C(E’), d'), and we want to associate to these data an elliptic
complex (C3(E), d) over M. In view of (2.38) we define (with the
‘exterior tensor product)

E:= @ E'RE (3.222)

JHk=i
&= @ CP(E)RCF(E}), (3.22b)
k=i
di= @ (d@id+(-1)5id®d2): &~ &, ,. (3.22¢)
Jtk=i

Since the d J’ are differential operators, (3.22c) defines a differential operator

on CP(E;) (note that this would not work for general pseudo-differential

operators). Moreover, this operator is uniquely determined by (3.22¢) since
& is sequentially dense in Cy(E;) if both spaces are equipped with

the usual LF-topology (cf. for this [Tr, Sect.13.6 and Theorem 39.27).

Moreover, an easy calculation and a density argument show that
d;y1°d;=0 on CP(E,). Finally, it is well known that the symbol sequence
of the complex (C§’(E), d) is elliptic [P, Chap. IV, Sect. 8]. Thus we obtain
an elliptic complex in a canonical way, which we will call the product
complex associated with (CP(E'), d') and (CP(E?), d*). We observe next
the relation between the minimal and maximal complexes.

Lemma 3.6. Let (CP(E"), d') be an elliptic complex over the Riemannian
manifold M,, 1=1, 2, and denote by (CZ(E), d) the product complex over
M, xM,. If (2',D") denotes the Hilbert complex with D'=d'. or

D'=dl . for 1=1,2, then the product complex associated to (2', D"
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according to (2.38) is the Hilper
with D=d_. or D=d

m

t complex, (2, D), obtained Jrom (CP(E), d)

in

f}:oof. Clearly, the adjoint complex to (CP(E),
adjoint complexes to (C(E"), dY), so, as in the

proof of Lemma 3.1,
only have to prove the assertion for D'=g!  J— 1, 2. This will followwift:'
we show thzit 9;, defined i }

. n (2.38b), is contained in D(d; in) for all i
(l)lbwouslz, @;@(d& max)s apd a standard regularization ar’gument shows
that ze 9, is in 9(d, if suppz is compact. But, by construction,

A min)
elements with compact support are dense in ; with respect to the graph
max»> and the assertion follows, ]

norm of 4,
ncaré duality. In view of Lemma 2.16 we
E), d) has weak Poincaré duality if there

d} is the product of the

We turn to the discussion of Poj
say that an elliptic complex (CP(
"are bundle isomorphisms

g8 E—E,_, (3.23a)
which induce invertible bounded linear maps
8 LYE)— LYE, _ 2 (3.23b)
such that
d;\l—i—logi=gi+1°di, (3.23¢)
This definition raises the question whether we can associa

his question has been dealt with by Cheeger [C3]
singularities.

LEMMA 3.7. Ler (CP(E), d) be an elliptic complex with weak Poincaré

duality. If N=0 (mod 2) we put

‘91':= @(di,min)’ » Di :=di,min’0<i<N/2’ (3243)
and

‘@i = (di,max), Di:=di,max’ N/2<Z<N (324b)

Then (9, D) becomes a Hilbert co

mplex with Poincaré dualirty.
If N=1 (mod 2) we put with v g

i=(N—1)2

‘9i:=‘@(di,min)a Di :=di,min’0<i<v:

(3.25a)




112 BRUNING AND LESCH

and

D =Dy max)y Dy =0d; mars v+ 1<i<N. (3.25b)

Then, with every closed extension D, of d, satisfying
D;kogv=gv+1°Dv, (326)

(9, D) beomes a Hilbert complex with Poincaré duality. If g, is uni'ta‘ry
with g, = g¥, then (3.26) is equivalent to the exisience of self-adjoint
“extensions of g,,,°4d,.

Proof. Assume first that N=0 (mod 2). That (2, D) forms a HilbeFt
complex follows as in the proof of Lemma 3.1. From (3.23c) we obtain

immediately

Ay it min® &= 8i+1° D min> 0<i<N/2, (3.27a)

and
;V—i—lmaxogi:gi-i-lodi,max’ N/2<1<N’ (327b)

thus
D"A‘I—i—logi=gi+loDi’ 0<1<N, (328)

and we are done by Lemma 2.16. .

Consider next the case N=1 (mod2). Since D, ;=d,_; p, and
D, =d, | max, it is clear that (2, D) forms a Hilbert complex for any
closed extension D, of d,. As above we get

DY _i_1°8=8i+1°Ds [#v. (3.29)
Hence (3.26) is the only condition on D,. The last assertion is obvious. ||

We will illustrate this result by some examples in Sectiqn 4. 1t is
interesting to note that one can always achieve Poincaré duality for the
de Rham complex unless dim M =1 mod 4, cf. Section 4.

For an elliptic complex (Cy(E), d) it is readily seen that by the
prescription (2.12) we obtain an elliptic operator

d: C3(Ee,) > C3(Eoqa), (3.30)

where E,., = @50 F2 Fosa :=Piso Ez,-+1: For the correspfmding
elliptic differential operator (2.14) we will continue to use the notation 4,

A=d'd+dd': C2(E) - CZ(E), (3.31)

E = Eev @ Eodd'
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In the general case of a noncompact Riemannian manifold we have to
expect many different closed extensions of d. Besides the minimal and the
maximal extensions, d_;, and dmax> Lemma 3.1 gives two more geometri-
cally significant closed extensions. For the de Rham complex on a manifold
with boundary, these extensions correspond to the relative and absolute
boundary conditions; this will be explained in Section 4. Therefore, we call
them the relative and absolute extensions, to be denoted by d, and d,.

It is important to note that there are closed extensions of d which do not
come from an ideal boundary condition. One would, however, expect that
the geometrically most significant closed extensions of d are those arising
from an ideal boundary condition satisfying Poincaré duality. In general,
even this class will be very complicated and hard to characterize. So it will
be useful to find conditions under which one has uniqueness of the ideal

. boundary condition (with Poincaré duality) or even of the closed extension

of d.

The most simple case certainly occurs if there is a unique closed
extension of d. Then, by Lemma 2.2, there is also a unique ideal boundary
condition (given by (3.4) or (3.5)). In this case we have d,=d, and
Poincaré duality follows automatically if weak Poincaré duality is fulfilled.

The closed extensions of d are often more conveniently studied via the
self-adjoint extensions of A. Thus, to a closed extension, D, of d we
associate the operator

A(D) := D*D @ DD*, (3.32)

This operator is clearly a symmetric extension of 4 and self-adjoint, by a
well known result of von Neumann. Moreover, it is easy to see that the -
map

D 4(D) (3.33)

is injective. We thus obtain from the above mentioned special closed
extensions of d corresponding self-adjoint extensions of 4 , to be denoted by
Ains 4y5 gy Ay A very simple situation occurs, of course, if 4 is
essentially self-adjoint, ie., 4 has only one self-adjoint extension, which
then equals its closure in L?(E) and also coincides with A*.

_LemMa 38. If the (syminetric nonnegative) elliptic differential operator
4, associated to the elliptic complex (C§(E), d) by (3.31), is essentially
self-adjoint then there is a unique Hilbert complex (9, D) associated to
(CS°(E), d); ie., the elliptic complex has a unique ideal boundary condition.

In partiular, the operators d; min and d; .., coincide for all i. Moreover,
ue P(4*)n H; satisfies A*u=0 if and only if ue DD min) N D(A]_ | in)
and diu=d!_ |u=0,
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Proof. Any Hilbert complex associated with (C(E), d) defines a closed
extension, D, of d which gives a self-adjoint extension, 4(D), of 4 via
(3.19). Since this map is injective, all closed extensions of d must coincide
with the closure, D=d. Since D determines the Hilbert complex, by

Lemma 2.2, there is only one.
In particular, the complexes defined in (3.4) and (3.5) have to coincide

which means precisely that d; i, =d; .y, for all i.

Finally, for the (unique) complex given by d; i, (=d; max) We have by
(2.19), (2.21), and (2.8)

ker D@ ker D*= P 9?,-= @ kerd; pa.nkerd? | pax-

iz0 iz0

On the other hand, 4* =4 =DD*@® D*D, so
ker 4* =kérD(—Bker D* 1
Of course, it is necessary to find conditions ensuring essential self-

adjointness of 4. The following result is convenient in applications and well
known (for a nice proof cf. [Ch]).

LemMA 3.9. Let (CP(E), d) be an elliptic complex with
a )& =11%  EeS*M, (3.34)
where o(A4) denotes the principal symbol of A. If M is complete then 4 is
essentially self-adjoint.

Essential self-adjointness of 4 is a rather restrictive condition. Below we
will give examples where 4 has many closed extensions but, nevertheless,
there is a unique ideal boundary condition. An easy but useful criterion for

this to happen is
Lemma 3.10. Let (CP(E), d) be an elliptic complex. If
g(dZi, max) N @(dlm— 1, max) = 9(dli, min) N 9(dtZz— 1, min) (3353)
orb ‘
9(dZi+ 1, max) N g(d;x, max) = @(d2i+ 1, min) N ‘@(d;z, min) (335b)

Jor all i, then there is a unique ideal boundary condition, i.e., the relative and
absolute extensions coincide.
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Prqof. We assume condition (3.35a), the proof for (3.35b) is similar.
Consider .

dy = 690 dyi: C3(Eey) = CE(Eogq) (3.36a)
and

doaa = P dyiv1: C3(Eoaq) > Co(E,,). (3.36b)

iz0

Then one easily checks that

dr = dev, min @ dédd, max (3373.)

and
d,= ey, max ® d;dd, min* (3.37b)

From (3.35a) we obtain

D) = D(dey, min) N D(d], )

odd, max

= Ddev, max) N DA a4, in) = D(d,), (3.38)

hence d.’ =.d‘" By Lemma 2.3, the Hilbert complexes defined in (3.4) and
(3-5) coincide, and the assertion follows, |

If we are given an elliptic complex (C3(E), d) on a compact Riemannian
mz‘mlfold then there is always a unique ideal boundary condition: in fact
elh‘pgc _regularity implies that 4 with domain CP(E) is essentiajllly self:
adjoint in L*(E). In various applications (cf. Section 4) one is interested in
subcomplexes of (CP(E), d) and the corresponding Hilbert corriplexes.
Thc?refore, we add a few remarks concerning this situation in general. The
main feature that emerges from this discussion is a close connection
between nonuniqueness of ideal boundary conditions, Fredholm properties
and regularity questions. ,

'Thus we consider an elliptic complex, (CP(E),d), on the compact
Rlemannlan manifold M. Assume that we are given a subcomplex (&, d);
Le., we have subspaces & c C§(E;) with di(&) <&, |, i>0. We denote b};
&, the closure of & in L*(E,); then we have

scén Cy(E)c CP(E).

In. many applications we have equality for one of these inclusions, so we
will assume that either

ENCT(E)=6, (3.39)
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or
&N CF(E)=CP(E). (3.40)

As in the proof of Lemma 3.1 we then see that (&, d) admits ideal boundary
conditions. The analytic difficuity encountered in dealing with this subcom-
plex consists in the fact that, in general, d’ does not restrict to the adjoint
operator or, in other words, the adjoint complex does not restrict to &. For
clarity, we write

dyi=d|,,
and we denote by 4 the (formal) adjoint operator, i.e.,
(d:fw’ 7]) = (CO, d&n) = (CI), di”)

for w,ne&. That is, di is the projection of d' to &. Very often, however,
the following is satisfied:

there is a differential operator, d‘: CP(E;, ;) = CP(E,),
such that &%, ,= 1| . (3.41)

For our purposes it is more convenient to assume a slightly stronger
condition, namely

there is a first order elliptic differential operator,
[:CP(E)> CP(E),suchthatf| ,=d,+ds=:1 (3.42)

Note that we do not assume 7 symmetric (which is in fact not satisfied in
interesting cases). We identify 7 with its closure since this is the unique
closed extension.

LeMMA 3.11. Denote by t,,;, the closure of t in &. Then R(t,;,) is closed
and ker i, has finite dimension.
Thus, if also ker t,,,, has finite dimension, where t,,, :=t*,, > toin, then
_all closed extensions of t are Fredholm operators. '

Proof. We only have to note that ¢, =7| 5., ,- Thus the assertion on

tmin follows from the ellipticity of 7, Rellich’s compactness theorem, and

e.g., [H, Lemma 19.1.3].

Since every closed extension, i, of ¢ satisfies 7,,,, cf<1,,, the second
statement is obvious if we know that 7,,;, and ¢, are Fredholm operators.
Since t,.,=t*., we only need to know in addition that
dim ker 7,,,, <o0. |
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In the case (3.39) we may ask whether we have a smooth Hodgé decom-
position in the sense that
G=H7Dd,_,6_,®d.6,,, (3.43)

where

HP ={we&|dw=d!_ 0=0}, (3.44)

and decomposition is with respect to the scalar product in &. Then we
would have a very close analogy to the case of the full complex,
&=Cy(E;). We have the following result.

THEOREM 3.12.  Assume (3.39) and (3.42). Then the following conditions
are equivalent.
(1) (&, d) admits the smooth Hodge decomposition (3.43).
(2) t with domain & is essentially self-adjoint in &.
(3) 12 with domain & is essentially self-adjoint in &.
(4) keri,.,cé&.

Proof. (1.}) =(2). Assuming (3.43) we want to prove the inequalities

dim ker t,,,, <dim # * < dim ker tnin - (345)

Here the second inequality is obvious, so consider ker Lnax = Rl )T It is
enough to show that 2(¢) is dense in H Pt = i—16,1®di6 ., by (3.43).
But if ned, ,&_,®d!&,, we can write n=d; {;_+di{;,,, further-
more

lioi=d; 50, ,+d!_,0, limi=dio+dl, 0,

hence

n=d;_,d;_,0;+d;dw,=1d!_,0,+dw),.

Thus we have established (3.45) which implies

dim ker ¢,,,, = dim ker ¥, = dim ker trnin-

As in the proof of Lemma 3.11 we now conclude that Lin and ¢, are
Fredholm operators with

ind ¢, =ind ¢, =0.
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But this implies 2,5, = #,yin, i€, ¢ With domain & is essentially self-adjoint
in &.

(2)=(3). Since £ admits self-adjoint extensions, it is enough to
show that the equation **w = iw has no nontrivial solution. Thus assume
that we are given w € 9(¢**) with **w = iw. Any € & can be written as
n=mn,+tm, with n,eé& for i=1,2 and #,eker t,,;,, |1.] < C ||ty,]. This
holds, since fy,=1|4,,., is a self-adjoint Fredholm operator and 7 is
elliptic. Thus we find

(@, ) = (w, 1) = (P*w, 1,) = i(o, 1,)
hence

[(w, m)| < ol lIn2ll < Clleol lmall < Cllell nl.
" This implies w € 9(t,,;,). Again with 5 e & we then find
(tminw> f’?) = (CO, tzﬂ) = i(Cl), T])

which implies 7, € D(1,,). Thus we D(¢2,,) hence w =0.
(3)=(4). For wekert,,,,neé we find

0= (tmax @, 1) = (w, £°1)

hence w eker ** =ker t2, =ker t,;, = &, by (3.39) and (3.42).

(4)=(1). If ker t,,,, = & then we obtain as before ker 7,,,, =ker .,
and the essential self-adjointness of ¢, moreover, ¢, is Fredholm. Thus the
complex (&, d) has a unique ideal boundary condition which is Fredholm.
Consider the corresponding strong Hodge decomposition according to
Corollary 2.5,

E=HDR_ ®R}. | (3.46)

Then @;,o#&=kert,,, and any weé& can be decomposed as
W=+ ;. By elliptic regularity and (3.39) we conclude that
w;€ &, j=0, 1. But then we have a representation of the form (3.43) which
is unique in view of (3.46). ||

We obtain only a partial result in the case (3.40).
THEOREM 3.13. Assume (3.40) and (3.42). If
ker t ., = CF(E),

then all closed extensions of t are Fredholm operators.
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Proof. Let weker t,,, = C3(E) then for €& we find
0= (o, m)= (o, i) = (o, n).

Since & is dense in &= L*(E) (which follows from (3. 40)) we conclude
that 7*w = 0. Hence the ellipticity of 7* implies

dim ker ¢, < dim ker 7* < o0.

Then it follows as in the proof of Lemma 3.11 that all closed extensions of
t are Fredholm. |

~We will give examples for interesting subcomplexes in Section 4 below. It
is interesting to note that Fredholmness appears closely linked with
regularity properties in the above theorems.

4. SOME APPLICATIONS

In this section we want to illustrate the somewhat abstract results of the
preceding sections in concrete geometric situations. For simplicity, we will

» focus our attention on the de Rham complex, (2,(M), d), on an oriented

but otherwise arbitrary Riemannian manifold, and look also at some
closely related complexes with Poincaré duality. For convenience, we
summarize the properties which this complex enjoys on any Riemannian
manifold.

(2¢(M), d) always admits ideal boundary conditions (by Lemma 3.1)
which may be unique or not, some of them may be Fredholm, others not.
The cohomology of any ideal boundary condition can be computed using
smooth forms only (by Theorem 3.5). If N is a second Riemannian
manifold and f'e C*°(M, N) then the pull back /* may give rise to complex
maps; we will mainly look at various metrics on Q4(M), e.g., pull backs
under smooth maps, such that the identity map becomes a quasi-isometry
in the sense of (3.12). Considering the adjoint complex as in (3.3) we are
led to the question of Poincaré duality. Of course, the (slightly modified)
Hodge *-operator satisfies (3.23) so weak Poincaré duality always holds.
We will indicate that the condition in Lemma 3.7 cannot always be
satisfied; i.e., there is not always an ideal boundary condition with Poincaré
duality.

To start the discussion let us recall that, by standard elliptic theory, for
M compact there is a unique ideal boundary condition which is Fredholm
and satisfies Poincaré duality. The cohomology is isomorphic to the
de Rham cohomology, and Theorem 3.7 implies the smooth Hodge
decomposmon
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To obtain a Hilbert complex it is, however, not necessary to start with
a smooth structure. Thus we can envisage a compact Lipschitz manifold as
in [T]; this is a very general class since any topological manifold with
dimension different from four admits a unique Lipschitz structure [S]. The
work of Teleman contains the essential steps to establish the Hodge
theorem and Poincaré duality also in this case: the Lipschitz structure is
used to define the complex of L-differential forms, and an easy regularity
result [T, Lemma4.1] shows that the exterior differentials are closed
operators in this Hilbert space structure; i.., we are dealing with a Hilbert
complex. The Fredholm property of the complex follows from the analogue
of Rellich’s theorem [T, Sect. 7] which establishes then the strong Hodge
decomposition. Poincaré duality follows since the operator d, introduced in
[T, (4.1)] equals d* |, in view of the regularity lemma. Of course, to
identify the homology additional information is necessary. '

Next we consider the case of a compact manifold, M, with boundary
N:=0M# . This case (which is well understood in many respects)
already differs rather drastically from the situation without a boundary.
The two ideal boundary conditions introduced in (3.4) and (3.5) will not
coincide in this case but, nevertheless, they are a good substitute for the
unique ideal boundary condition in the compact case. For reasons which
will become clear below we introduce the notion (2’, D") and (2%, D?) for
the ideal boundary conditions corresponding to (3.4) and (3.5), respec-
tively, calling them the relative and absolute ideal boundary conditions
henceforth. The following result relates our point of view to the standard
approach (cf. [Gi, Sects. 4.1, 4.27).

THEOREM 4.1. Let M be the interior of a compact Riemannian manifold
M with boundary N.

(1) The relative and absolute ideal boundary conditions are Fredholm
complexes. The corresponding closed extensions of the Gauf—Bonnet operator
are given by the elliptic boundary value problems defined by relative and
absolute boundary conditions (in the sense of [Gi]).

(2) The homology of the relative and absolute boundary conditions can
be computed from the smooth subcomplexes (2" N Q(M), d) where

D N\Q(M)={weQ(M)| w |N=0}, (4.1)
D° QM) = Q(M). (4.2)
* In particular,
H(D° D*)~ H*(M;C), (4.3)
H(9', D)~ H¥(M, N; C). (44)
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(3) We have

ind(2°, D*)= y(M)

~| we] s (45)

(where the last equality holds only if m is even) and
ind(2", D") = ind(2°, D*) — y(N). (4.6)

Here y(M), x(N) denote the Euler numbers, wep the Chern—-Gauf—Bonnet
form, and oagy the transgression of Wgp t0 some metric which is a
Riemannian product near N.

Proof. Let us remark first that it is enough to prove all statements for
any special metric on M. Thus we introduce the compact double, #, of M
with the natural involutive diffeomorphism o interchanging the two copies
of M. Then we choose a metric, g, on A such that o*g= g and there is a
collar, U, of N isometric to (—1, 1) x N with the product metric, dx*@® g .

It will be useful to recall the separation of variables in U (cf. [B,
Sect. 2]); writing w € Q(U) as
0 = wo(x) + w,(x) A dx, W€ C°((—1,1), Q" /(N))for j=0,1, (4.7)
we find

d;0 = dywo(x)+ ((—1)'wo(x) + dyw(x)) A dx, (4.8)

di_ 0= (dywo(x)+ (—1)wi(x)) + dyw,(x) A dx, (4.9)

Ao = (—wg(x) + 4 y0o(x)) + (—0{(x) + 4 yo,(x)) A dx. (4.10)

Here we have used the notation dy, 0y:=d', 4, for the intrinsic
operations on N.

(12 We bring in the unique ideal boundary condition, (9, D), for
(R2(M), d). Then o induces a complex map, a*, on (%, D) which is an
involution, too, and we can decompose

(9,D)=(7", D" & (9°, D, - (411)

corresponding to the —1 and + 1 eigenspaces of a*, respectively. Then we
claim that

D=9 |M, 9°=9°|M. (4.12)
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To prove the first identity it is enough to show &’ | M< 9. So pick
weP"| M_ with extension ®e%’. Then we can find a sequence
(@,)= QM) D" with &, > d, dd,— D& in L% Thus we may assume
DeQ(M)nD"; then, on U, we have

B =wy(x)+w(x) A dx

with @,(—x)=(~1)*'w,(x), xe (—1,1). Now pick e CP(—1,1) with
@ =1 near 0 and put ¢,(x) := @(nx),

c‘E’)n = (1 - (P,,)QN)

Then &,-»& in L and d&,=(1—9,)dd— e, dx A wo(x) =:
(1—¢,)dd+1,. So we have to show that #, — 0 in L? which follows easily
from wy(0)=0. '

The second identity in (4.12) will follow from 9° < ¢ | M. Pick we 2°¢
and denote by & the extension to M with a*® = &. To show that & e §°
we verify that

N, d'DI<CI7l,  feM)nF. (4.13)

By assumption, this holds for all 7 which vanish in a neighborhood of N,
yvith C independent of 7. Thus it is enough to prove that d*(1 — ¢,,)5 — d'F
in L% for all 7eQM)nD° It i=no(x)+%,(x) A dx then we have
11(0) = 0; moreover, with L denoting interior multiplication,

= (1 _(pn) dlﬁ+ﬁn
As before we see that %, » 0 in L2

Since we have complex maps (&, D) — (&%, D"'*) which are surjective
on homology and since the restriction maps (97, D"%) — (9", D"/} are
complex isomorphisms, the Fredholm property follows.

Next we introduce

Q(FT) = Q1) ~ G,  (414a)
Q7 M) := Q") | M. (4.14b)
Note that for we Q7%(if) we will have w;(—x)=(—1)/THV0g (x) in

(4.7), for j=0, 1, where u(a)=0, u(r)=1. Now we claim that Q7Y M) is
dense in 2(DY3) with respect to the graph norm, where D% denotes the
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closed extension of the GauB-Bonnet operator associated with (274, D'/*)
according to (2.12). Thus consider w e 2(D3) such that

0= (D¢, DEgn) + (o, 1),  neQIHM).
Since DE%(Q7*(M)) <= Q74 (M) we conclude that
0=(a, (4+1)n), neQlHi),

if @ is the extension of w in L?*(A*M)"7* It follows that w =0. We observe
next that the graph norm of D% is equivalent to the norm of H*(A'T*M)
(cf. [H, III, Appendix B] for the definition) on Q7%(M). Thus, if we show
that Q7(M) is also dense in the space

{0e AN A“T*M) | B,y = ©,,,(0)=0in (47)},  (4.15)

then we conclude the equality of this latter space with 2(DY%). Here
(Dgps B,/,) is the elliptic boundary value problem on Q%(M#) defined by
relative and absolute boundary conditions, respectively (cf. [H, Sect. 20.1]
and [Gi, Sect. 4.27]).

To see this latter density we pick w e H(A¥T*M) with B,o = w,(0)=0.
We denote by @ the “even” extension of w (with components &) in
LY (A™M); with M,:={pe M |dist(p, N)=¢} and neQ4A) (with
components ') we then compute

(Dgsd, ’1)1?15_ (&, DGB”)]VIE
=2 ) (=YL&}, nid(e)+ <D n5 ' De)]. (4.16)

iz0

‘Since w;: [—1,0]— L*N) is continuous with w,(0)=0, by assumption,

we infer that @€ D(Dgp max) = H' (A M). Hence we can find a smooth
approximation in 2(M)®. The argument for relative boundary conditions is
completely analogous.

(2) We study the homology of (22, D?) first. In view of Theorem 2.12 we
want to show that, with T:=DZ,® (D&,)*, we have forall keZ

D(T*) < B(A*M).

This, in turn, follows if we show that we 2(T), Twe B*(A*M) implies
we H**Y(A*M). But the arguments above show that 2(T)c H'(4*M)
hence the assertion follows from [H, Theorems 20.1.2 and 20.1.7].

Thus we can use Theorem 3.5 to obtain a subcomplex (3(#), d) of
(R2(M), d) such that the inclusion in (2¢, D*) induces an isomorphism on

homology. The same will be true for (Q(M), d) if we show that the
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inclusion 8: (2(8), d) - (2°, D?) is injective on homology. Thus consider
w € Q'(M) with » = dy, for some ne 9% It is easy to see from 9°=%° | M
that we may assume 7€ Q(M). Near N, we write 5= Ao(x) +1,(x) A dx,
@ = @o(x)+0(x) A dx = dyno(x)+ ((— 1) 'no(x) + dwni(x)) A dx. We
use the smooth Hodge decomposition on N to write

Mo(x)=ng(x) + dy{ _(x) + 650, (x),
where ng, {_,{, are smooth in (—1,0). Then we deduce from
@y (x)=dp(n,(x) + (= 1) LL(x) + (= 1) ) (%) + 650, (%))

that #4 and 8 ,(, are smooth in (—1,0]. We may also assume that { _
smooth in (—1,0] replacing, if necessary, y by 5 —4#, where with
0eCy(—1,1), =1 near 0,

flolx) = @(x) dn{_(x),  fi(x):=(=1)(¢'(x) {_(x)+(x) {_(x)).

But then, again from the smooth Hodge decomposition, we may also
assume that #,(x) =0,y (x) and dyy, (x)=0, without affecting dy = w.
But then 5 € Q(M), as requested.

To compute the homology of (2% D?) we observe that H, (M, R)~

(M R)#, where the Z,-action is given by a. It follows that H* (7, R) ~
H *(M R)%, and the deRham theorem implies easily that the latter
cohomology coincides with the cohomology of the complex (Q(#1)%, d)
hence with that of (94, D?) and (2% D%).

We turn to the relative boundary condition (2", D"). Then we see from
the discussion above that

QM) D" = QM) D(D}yy)={we Q)| ©|N=0},

as claimed. That the inclusion into (2", D") induces an isomorphism on
homology is proved along the same lines as above: if w=dy, ne2’,
then we can achieve ne %" N Q(M), hence the inclusion is ll’l_]CCthC on
homology.

The homology computation in (4.4) is now an easy consequence of our
calculations which imply the fact that the following sequence of complex
maps is exact:

0— QM) 9" —Ls Q) i, Q(N)— 0, (4.17)

where j is the natural inclusion, iy: N — M the embedding.

(3) The first equality in (4.5) follows directly from (4.3), and (4.6) is a
consequence of the long exact homology sequence assoc1ated with- (4.17)
and (2).
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If m is even then we obtain from (1), Corollary 2.6, (4.5), and the
GauB-Bonnet theorem for M7, using the special metric again,

1 1 ~ =~
Wep== =-ind(2, D
JM GB szwGB 21n ( )

1 - -
=5 (ind(&*, D*)+ ind(Z", "))

% (ind(2*, D*) +ind(2", D"))
=ind(2°, D*) = y(M).

Now (4.5) in general follows by transgressing the Euler form from any
given metric to the special one. |

The material presented in Theorem 4.1 deserves some further comments.
Let us elaborate first on the restrictions imposed by the special choice of
metric: the absolute boundary conditions depend on the metric, and our
statement proves equality only for the special metric, whereas the relative
boundary condition is obviously independent of the metric. But the Hodge
operator *: 2o(M) — 2,(M) induces a complex isomorphism

(27, D") 5 (9%, D**). (4.18)

Combmlng this with Corollary 2.6 it is easy to see that the domain of D¢y
is given by the absolute boundary conditions for any metric. This argument
works in general if (2', D") is Fredholm, so we find

LEMMA 4.2. Let M be an arbitrary orientable Riemannian manifold and
denote again by (2%, D"°) the relative and absolute (ideal) boundary
condition for the de Rham complex (Q,(M), d).

Then (2', D") is Fredholm if and only if (2°, D°) is, and we have in this
case

H(D, D)~ H,_ (D, ba), (4.19)
ind(2", D") = (—1)"ind(2, D). (4.20)

If M is compact with boundary then (4.19) is usually referred to as
Poincaré duality for manifolds with boundary. Returning to this situation we
may ask, however, whether we can find another ideal boundary condition
satisfying Poincaré duality, in the sense of Lemma 3.7, induced by the
Hodge operator.
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LEMMA 4.3.  Let M be the interior of a compact manifold with boundary.
Then one can always find an ideal boundary condition, (9, D), Sor the
de Rham complex which satisfies Poincaré duality.

(2, D) is not Fredholm; in fact, the de Rham complex.admits infinitely
many different non-Fredholm ideal boundary conditions.

Proof. Let us remark first that we have to choose in (3.23b)

g=K/ -1,  piez, (4.21a)
where (3.23c) is satisfied if and only if
Bli+1)—=B)=2(i+1). (4.21b)

If m is odd then we also want the relation
g&+1=8 vi=(m—1)72,
which can be satisfied if we require in addition

2, m= 3 mod 4,
1, m=1mod4,

BOY) :={

and then determine all other B(i) from (4.21b).

Thus it follows from Lemma 3.7 that we can find an ideal boundary
- condition with Poincaré duality induced from (4.21) if m is even.

If m=3 mod 4 then the operator T:=g,  od,= (/= 1)+ V% . d, =
— #*,,,4d, is real, hence admits self-adjoint extensions by a well-known
result of von Neumann. This settles the question in this case, by Lemma 3.7
again.

If m=1mod4 then we have to determine a self-adjoint extension in
L*(A"T*M) of the symmetric operator Ty :=./—1 *, +1 d, with domain
Q4(M). To do so we observe that for w,, w, e Q2"(M)

(Thw,, w;)— (o, Tow2)=\/ —1(w; | N, %y (0, ] N))LZ(A*N)- (4.23)

We write @ :=w|N for weQ'(M) and decompose d=w, +w_,
according to the +1 eigenspaces of the involution =, E’ (N), on
L*(A’T*N). We can construct an isometry I: E' (N)— E (N), eg., by
defining I somehow as isometry E”, (N)n H'(N)— E* (N) H*(N) (note
that this is possible since sign N=0); then, if (¥;),_, denotes an ortho-
normal basis for d,Q"~Y(N) consisting of closed eigenforms of 4%, we
require I(Y; + * ;) =, — * y/,. Now we introduce

QM) ={weQ(M)|d_=1d,}. (4.24)
It is immediate from (4.23) that T:=./—1x*d| QY(M) is a symmetric

(422)
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- extension of T,; we want to show that T is essentially self-adjoint. To do

so it is enough to show that any solution weP(T*) of
T*o=+ ./—1w (4.25)

is already in 2(T). To prove this we will assume first that the metric is
nice, i.e., a product in some neighborhood of N, say in U= (—2¢q, 2¢5) X N.
As before we use separation of variables and write @ = wo(X)+ w,(x) A dx
for a solution of (4.25). It is not hard to see that 4., +1)w=0, so

;€ C*((—2g, 2¢0), 2"~ (N)), and that (4.25) is equivalr::zt to the initial
value problem

@g(x)= (4 + 1) wy(x),
wo(€e) = +(dy On+ 1) *y wo(eo), (4.26)
0(x)= =% % dywo(x).

Using the basis (,),.n introduced above and denoting by w! the
harmonic part, we write :

wo(x)=wg(x) + Z Lo(ox) Y+ Bix) #p 0,1,

iz1
wg(x) == wg(x) + _ZLZI Lo (X + Bi(x) * 4 0,1,
o1(x) =% %y dyo§(x),
o’ = w§(x) + wk(x) A dx.
Then, if w solves (4.25) so does w”. Moreover, from (4.23) we derive
(@, %3 1) p24emy =0,  neQ)M),
which easily implies, with ¢ € CP(—2s,, 2¢,),
_pw" e Qy(H).

Since pw* - @w in L*(A*T*M), an easy approximation argument now
proves that we 2(T).

To deal with a general metric we remark first that QM) depends only
on the metric induced on N. For a given metric g1 on M we can construct
a “nice” metric g, which coincides with g, on N. We introduce the complex
(d, @(M)) where

QY(M), 0<i<y,
QM) = QuH), i=v, (4.27)
QAM), i>w.
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Then we obtain Hilbert complexes (%7, D/) by taking the closure with
respect to the Hilbert structure induced by g;, j=1,2, and (22 D?)
satisfies Poincaré duality by the arguments above and Lemma 3.7. But
the identity induces a complex isomorphism k: (2!, D') - (22, D?), so
(92, D') satisfies Poincaré duality, too.

We turn to the Fredholm property. Note that we can construct an ideal
boundary condition with Poincaré duality from (4.27) also in the case
m=3mod 4, and for this specific Hilbert complex, (2, D), we show that
dim #,(2, D)=o0. To do so we may again assume that the metric is
“nice,” ie., a neighborhood U of N is isometric to (—gy, 0] x N with the
product metric. Choose ¢ € C°(—¢,, &) With @(0)=1; then

A ={d, \(p(x)a)| xeQ"~(N)}

is contained in Q}(M)nker d, but not in d,_ (2}~ '(M)) unless dya=0.
The same construction proves non-Fredholmness in case m is even, and
shows, in fact, that there are infinitely many ideal boundary conditions for
(20(M), d) which are not Fredholm. |

Remark. Note that we can always, for arbitrary M, construct an ideal
boundary condition with Poincaré duality if m =3 mod 4.

Thus a manifold with boundary already provides a very rich variety of
* ideal boundary conditions. This makes it a good source of counterexamples
like the following.

ExaMpLE. It is possible to have two different ideal boundary conditions,
(27, D), for (2¢(M), d) such that 2! < 9? and the inclusion induces an
isomorphism on homology.

In fact, pick 0<i<m—1 and we P(d; .,) With dw | N#0. Then we
put (2!, D'):= (2", D") and

2;, J#ELI+],
P? =< P} +span o, =1,
D, +spandw, j=i+1.

A routine check shows that this construction fulfills our claim. It is not
clear, however, whether there is a counterexample with (2%, D')=
(2, D7), (27 D?)=(2° D). This would be of great interest in the discus-
sion of uniqueness for ideal boundary conditions.

As another remark we note that in the proof of Lemma 4.3 we have used
that the signature of a compact oriented manifold N with even dimension
vanishes if N bounds. Thus one may conjecture that sign NV.is an obstruc-

tion to self-adjoint extensions of ./ —1 * d on a suitable singular manifold
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M, with m=4k + 1, and boundary N. In fact, one can construct such an
M, noncompact and with conic singularities, such that the deficiency
indices, n ., of ./ —1 * d satisfy the relation

n, —n_ =sign N. (4.28)

We will return to this example in a future publication.

In the above discussion we have viewed a compact manifold M with
boundary N as contained in the compact double A7; for most questions we
could even assume that the metric on M is the restriction of a reflection-
invariant metric on A7. Thus we obtain in particular the fact that the ellip-
tic complex (2¢(#\N), d) has infinitely many ideal boundary conditions.
This leads to the following problem: Let A7 be compact Riemannian and
Z < M closed and of measure zero. Under what conditions do we have a
unique ideal boundary condition for (24(M), d) if M :=M\X? For this
question we have the following partial answer.

THEOREM 4.4. Let M be compact, m=dim M >2, and let < M be a
closed subset which is a finite union of submanifolds with codimension at least
two.

Then (2y(M), d) has a unique ideal boundary condition, M := M\Z.

Proof. Denote by D, the GauB-Bonnet operator on Q(AM). Since Dy
has a unique closed extension (which we also denote by D) it is enough
to prove that (M) is a core for Dsp. Since 2(Dgp) = H'(A*M), we only
have to show that Q2,(M) is dense in H'(A*M).

Now we introduce the set function “capacity” as

Cap 2 :=inf{|u|%: | ue C*(M), u=1 near X'}, (4.29)
following [M, Chap.9]. A straightforward adaption of the arguments

given in [M, pp. 396, 3977 shows that Q,(M) is dense in H'(A*M) if and
only if Cap 2'=0. As in loc. cit. we consider also

cap X :=inf{|ull?: | ue C*(M),u>10on Z}. (4.30)

If ue C*(M) and u>1 near X then i := —(1~u), satisfies #ie H'(M),
i@} X=1, and '

lall 2 < C llull g1,
where C does notdepend on u. Hence Cap 2 =0 is equivalent to cap X' =0,

and if X'=(J{_, X, is any finite decomposition then cap X =0 if and only
ifcap X,=0, 1<i<L.
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But then we may assume 2 < R™, and the proof of cap 2 =0 follows
from [M, p. 3587. 1

We can reformulate the above result as follows: if the Hausdorff dimen-
sion of 2’ is at most m — 2 then there is a unique ideal boundary condition
whereas this is certainly wrong for Hausdorff dimension >m — 1. It seems
interesting to investigate the behavior for dimensions in (m—2, m—1).

In the case just discussed we are in the situation for Theorem 3.13, ie.,
(3.40) holds. We want to conclude this section with an example for the
situation (3.39), namely the complex of basic forms associated to a
Riemannian foliation. To describe it we consider a compact Riemannian
manifold M together with a foliation &, ie., an exact sequence of vector
bundles '

0-L—>TM—Q—0, ’ (4.31)

where L is an involutive sﬁbbundle of TM. The rank of Q, g, is called the
codimension of #. Then we can introduce the basic forms with respect to
F by

QM) :={weQ(M)| XL o=XL do|=0forall Xe C*(L)}; (4.32)

note that in a distinguished open set U = M with distinguished coordinates
(X15 woes X g» V15 s ¥,) the restriction of a basic form, w, satisfies

@ U)x y)=Y @, (y) dy,.

Whereas this description has a global counterpart in the case of a simple
foliation (generated by a submersion), Q,(M) becomes finite dimensional if
Z has a dense leaf. But, in any case, (2,(M), d) is clearly a subcomplex of
(2(M), d). Next we denote by L+ the orthogonal complement to L in TM,
with respect to the given metric g, and by n': TM — L* the orthogonal
projection. Then & is called a Riemannian foliation if the 2-tensor g=,
defined by g*(x, y) := g(ntX, n1Y), satisfies

Legt=0 forall XeC*®(L); (4.33)
in this case g is called the transverse metric of #.
We assume that & is Riemannian and that TM and L' are oriented.

Then with any local oriented and orthonormal frame, (F;)7_,, for L* we
can form

vi=F3 A - AFP, (4.34)

HILBERT COMPLEXES 131

the transversal volume form. Since % is Riemannian, ve QI(M). We assume
that the orientations are chosen in such a way that w:=v A v is the
volume form on M; y, :=x*v is called the characteristic form of F.
Moreover, we can define the basic Hodge operator, *,, by

#p0:= (=)D (@ A yy), aeQUM). (4.35)

Then it can be computed (cf. [KT]) that with d2 :=d | Q7(M) we have for
ae QLYY M)

o5t o= (d)ou=(—1)"P+D+ g (d,—k A )%, q (4.36)

where « is the mean curvature form of the leaves of %. It follows from
(4.35) that (3.42) holds for (Q,(M), d,)s (2(M), d). Moreover, the rela-
tion (3.40) has been proved in [KT, Corollary (4.14)]. Thus Theorem 3.12
applies. It seems that one of the equivalent conditions in this theorem (or
some other conditions which is easily seen to be equivalent, too) has been
proved by several authors: cf. [KT] and the work quoted there, [NRT].
However, since the smooth Hodge decomposition is equivalent to the
essential self-adjointness of :

lyi=dy+0,: Qy(M) - Q,(M), (4.37)

it seems desirable to give a proof of this latter fact along the lines

- developed above. We will return to this problem in a forthcoming

publication.
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Hardy’s inequality and the subsequent improvement by McGehee, Pigno, and
Smith are generalized from the positive integers to sets of dimension 0, dimension
1, and in between. The asymptotic estimate obtained for the Fourier transform of
fractal measures is much in the spirit of recent work by Strichartz.  © 1992 Academic
Press, Inc.

1. INTRODUCTION

An interesting problem in Fourier analysis is to extend the classical
inequalities of the Fourier transform, or what Hardy and Littlewood refer
to as the theory of Fourier constants [5], to tempered distributions that
correspond to lower-dimensional sets. Particularly important theorems
are the L' inequality known as Hardy’s inequality with the McGehee—
Pigno-Smith (henceforth M.P.S.) generalization [7], the Plancherel
theorem for L? and Payley’s theorem [12] with the Pitt-Stein [8]
generalizations for L7, 1 < p< 2. Extensions of the Plancherel theorem for
measures supported on manifolds in R” have been established by Agmon
and Hormander [1], and more recently by Strichartz [9] for measures on
R" of dimension 0 <a < n, a not necessarily an integer. This paper proves
a generalized Hardy inequality (henceforth gh.i.) for fractal measures on
R of dimension a, 0 << 1. This result includes the M.P.S. version as the
periodic case for « =0. Each of the results above for o« < # involves a limit
on the Fourier transform side and provides information in the form of an
asymptotic growth estimate for the transform.

Some regularity will be required of the support of the fractal measure.
Classically, Hardy’s inequality and the M.P.S. version hold only for
measures supported on a well-ordered set of integers, which means the
transform of the measure is in H' of the unit circle, at least up to a multi-
plicative factor of ¢™". The well-known inequalities above, in which p> 1,
are rearrangement-invariant, while Hardy’s inequality is not. This implies
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