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L2-INDEX FOR CERTAIN
DIRAC-SCHRODINGER OPERATORS

JOCHEN BRUNING AND HENRI MOSCOVICI

1. Introduction. In [B2I a formula is given for evaluating the L2-index of a
Dirac-type operator D on a certain class of (noncompact) complete Riemannian
manifolds. Although in principle computable, especially in the Fredholm case, this
formula contains terms reflecting the contribution of the small eigenvalues, which
are difficult to evaluate. We show in this paper that the addition of a skew-adjoint
potential V, satisfying reasonable assumptions at infinity, has the effect of eventually
overcoming the influence of the small eigenvalues of D. Thus, the L2-index of the
"Dirac-Schr/Sdinger operator" D + 2V, for 2 sufficiently large, is given by an "adia-
batic limit" of r/-invariants and is therefore local at infinity. (See Theorem 3.2 below.)
This generalizes and at the same time explains index formulae of Callias type. (See
[C], [A].)
Due in part to the nature of the problem, but mainly because of the limitations

of the method we employ, the manifolds we are considering are subject to a number
of constraints at infinity. Some of these conditions have a clear geometric meaning,
but others do not. Thus, the class of manifolds to which our results apply is not easy
to quantify. It seems possible to enlarge it to encompass all complete manifolds of
strictly negative sectional curvature and finite volume; Theorem 3.5 below consti-
tutes an important step in this direction.
The L2-index theorem we prove in this paper can be used in conjunction with

vanishing type arguments, much in the same way as the standard index theorem
for Dirac operators and its relative version are employed in [GL], to gain informa-
tion about the scalar curvature. To illustrate this, we discuss in Section 4 a "version
with boundary" of the "conservation principle" for the scalar curvature ofperturba-
tions of the standard metric on the n-sphere, suggested by Gromov i-G1 and proved
in [L]. We wish to thank Maung Min-Oo for making us aware of these references
and for substantial help with the calculations in Section 4.

2. An abstract index theorem. In this section we recall the main facts from [B2I,
adapted to the following situation. Let M be a complete noncompact Riemannian
manifold, of odd dimension m 2k + 1, and let D be a generalized Dirac operator
acting on the smooth compactly supported sections ofa Clifford bundle E, equipped
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312 BRONING AND MOSCOVICI

with a Hermitean structure and a metric connection V compatible with the Clifford
multiplication (to be denoted by .). Thus, for any local orthonormal frame
{F1,..., Fro}, one has

Z
i=1

We also consider a skew-adjoint potential (i.e., a differential operator of order
zero), V V’: C(E) C(E), and form the one-parameter family of "Dirac-
Schr6dinger operators"

D:=D+2V, 2.

For simplicity we assume that

each D has a unique closed extension in L2(E). (2.1)

Note that this is automatically satisfied if 2 0 and the curvature of the bundle E
induces a bounded operator in L2(E). (See [GL, Theorem 2.8].) More generally, if
V and the commutator [D, V] also induce bounded operators in L2(E), then (2.1)
holds; moreover, the domain (Dz) is independent of 2 and in fact coincides with
9(0).
We will give sufficient conditions for the finiteness ofdim ker D and dim ker D’,

and then compute the corresponding LZ-index

L2-ind Dx dim ker D dim ker D’.

In what follows, the unique closed extension according to (2.1) will also be
denoted by Dx. Next, we assume that there is an open subset U c M such that

M1 := M\U is a compact manifold with boundary,

N := OM1
(2.2)

and that, on U, Dx has a nice representation in the following sense. There is a Hilbert
space H and an isometry

O: L2(Ej U) L2(+, H) (2.3a)

which induces an isomorphism

H(EI U) H(1+, H) c L2(+, Hx) (2.3b)



L2-INDEX FOR CERTAIN DIRAC-SCHRDINGER OPERATORS 313

for some dense subspace H1 of H. Moreover, there are smooth functions

+ e y S(y) e .L’(Ha, H),

+ e y- W(y) e .(H),
(2.4a)

such that for u e C(+, H1)

CD,O-au(y) -Oru(y) + (S(y) + 2W(y))u(y).

We also assume that

(2.4b)

S(y) is self-adjoint in H with domain Ha and discrete for all y > 0 (2.4c)

and that

W(y) is self-adjoint in H. (2.4d)

Then (S + 2W)(y) is also self-adjoint in H with domain Ha. In all applications,
S + 2W can be realized as a first-order elliptic differential operator on the compact
manifold N, which makes the following assumptions on (-functions (see [Gi, Lemma
1.10.1-1) reasonable.

If (+_ denotes the (-function of (S + 2W)(0)_+ (the positive and
negative part of (S + 2W)(0)), then _+ is meromorphic in C
and holomorphic in some right half-plane.

(2.5)

It is convenient to work with the Hilbert space

Jrt := L2(EIM) L2(+, H), (2.6)

the elements of which we denote as (u, Ub) refering to "interior" and "boundary"
parts.
We can conclude that D has a finite L2-index, in the sense that both dimensions

in

L2-ind D dim ker D dim ker D’ (2.7)

are finite but D is not necessarily Fredholm, if the situation just described is
"f-controlled". By this we mean the following: there is a positive function f e C(+)
with

lim f’(y)= a, 0 < a < 1, (2.8)
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such that the operator

S(y) := f(y)(S(y) + 2W(y)) =: S(y) + 2W(y) (2.9)

has bounded variation and no small eigenvalues. More precisely, we assume that

ISz(y)l Ca > 1/2, y > 0 (2.10)

and that with

(y) := IIS-’z(y)(I + IS-z(y)l)-Xlln (2.11a)

we have

(y)2 dy =: C2 < o. (2.11b)

If, finally, we assume that

(1 y/fl)Sa(y)= S:(O) for y near 0 (2.12)

where fl is a constant depending onf(given explicitly in [B2, (4.14)]), then we obtain
from [B2, Theorem 4.4] the following lemma.

LEMMA 2.1. Under the above assumptions, for 2 sufficiently large we have

L2-ind Dz -1/2r/(,z(0)) (2.13)

where r/(S(0)) is the rl-invariant of Sz(O).

Proof. In the notation of [-B2] we have Q(y) 0, y > 0, from (2.10). Hence, the
third and fourth contribution in [B2, (4.15)] vanishes. From [B2, Theorem 2.6 and
(2.28)] we derive ho hi 0; hence, we obtain (2.13). Finally, the Atiyah-Singer
integrand vanishes since m is odd [Gi, Lemma 1.7.4]. El

The main point of introducing the parameter 2 in S is that we obtain (2.10) and
hence the "clean" index formula (2.13) under simple assumptions on S and W, if 2
is large.
We now consider an operator of the form (2.9) and try to reduce the assumptions

(2.10), (2.1 lb)to more tractable conditions.

LEMMA 2.2. Assume that

0 < C < W(y)2 (2.14)
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and that (SW + WS)(y) is bounded in H with uniformly bounded norm

II(SW + WS)(y)Ii C. (2.15)

Then (2.10) holds for 2 > 20, with

C 2C3/2.

Proof. We compute

rS(y). r(y) + ,(sw + ws)(y) + (y)

> 22C32 2C4 > 22C32/4

if2 > 20. 121

With any choice off, conditions (2.14) and (2.15) impose restrictions on the choice
of the potential, the geometry entering through S. In order to clarify the nature of
(2.1 lb) in this spirit, we make an assumption on S which will be justified in Section
3. Namely, we assume that for some smooth positive function h we have good
control, not over S, but over

S(y) := h(y)S(y). (2.16)

Here, the idea is that h is "controlling the geometry of U" in the sense that, as it
will be further explained below, we can estimate

(y) :--IIS’(y)(I + Ig(Y)l)-Xll; (2.17)

thus, h is a datum, whereas f can be chosen.

LEMMA 2.3. Assume that for some f with (2.8) we have

f(Y)llW’(Y)ll 2 + f(y) - (y)(1 + II(y)ll2)dy

+ ffl2(y) 1 + -(y) + W(y)II 2 dy < C5

(2.18)

Then (2.11b) holds for 2 > 21 with a constant C2 depending only on C3 and C5.
Proof. We have

d((y)+2(y))s’(y)

g(y) + g,(y) + ’(y).



316 BRAINING AND MOSCOVICI

We estimate the right-hand side term by term. Using (2.17), we find

’g(y)(I + I,(y)l)-x (y)EII S(y)(I + IS(y)l)-Xll

+ II(y)(! + [S-(y)[)-x II-!

(y) 1 + 33 (y)ll

Similarly,

2
1[2W’(y)(I + IS(y)l)-

Finally,

f(y) IIS"(y)(1 + IS(y)l)-Xll fl(y)f(y)I1(I + Ig(y)l)(I +h y

,B (y) + 1 + (y)ll

The assertion now follows.

3. An index formula for Dirac-Schrfdinger operators. We now consider a com-
plete manifold M with decomposition M M1 w U, N 3M1 compact, as in (2.2).
In addition, we assume that U is "tame" in the sense that

U (0, oz) x N with metric g dy2 gy, where gr is a smooth
family of metrics on N, y > 0. (3.1)

Some of the assumptions in Lemma 2.1 already hold in this generality; they will be
verified first. Then we impose more restrictions on the geometry of U, requiring it to
be controlled by a simple function h, in a suitable sense. This will be further explained
in the second half of this section.
We also assume that M is equipped with a spin structure, and we denote the

corresponding spin bundle by S. Now S has a canonical Dirac connection induced
by the Levi-Civita connection on M. Consider next a Hermitian vector bundle E
over M with metric connection, and the associated Dirac operator, Do, with co-
efficients in E. We consider Do as an operator in L2(S ) E) with domain C(S (R) E);
then Do has a unique closed extension in L2(S (R) E) which will also be denoted by Do.
We introduce some convenient notation, rx: U (0, ) and r2: U N denote
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the natural projections associated with (3.1); for y [0, o) we write Nr := {y} x N,
No =: N, and it: N p (y, p) Nr is the natural imbedding. Now y also denotes
the global coordinate induced by nl; we put Fo := c3/Oy, the outward unit vector
field normal to Nr. The second fundamental form of Nr will be denoted by 1-Ir,

l-It(F) -VeFo, F COO(TNr), (3.2)

and the mean curvature by Hr,

Hr tr Hr (3.3)

Since n is a Riemannian submersion, we have

exptr,p) tFo (y + t, p). (3.4)

It follows that the vector fields defined by

E(i,(p)) "= Tir(p)(E), E TpN, (3.5)

are Jacobi fields along the normal geodesic starting at p, with initial value E and
initial velocity -Ho(E). The given orientation on M defines an orientation on each
Nr; if C0M and cor denote the respective volume forms, then we require that

cou Fo ^ cor (3.6)

Next, we recall the explicit form of the Dirac connection V on S (R) E" if Vu denotes
the connection on S, induced by the Levi-Civita connection on TM, and V the
given metric connection on E, then

V---- VM() 1 + IV. (3.7a)

Moreover, if we choose a local orthonormal flame (Fi)i>o for U (with Fo d/cOy as
above) and denote by (S) the corresponding frame for S, then (see, e.g., [LM, Chap.
II, Thm. 4.14]) for F COO(TU),

1W < > (3.7b)

here,, denotes the Clifford multiplication and also the left action of the Clifford
bundle ceM on S.

Consider next C(End E) which is pointwise self-adjoint, *, and set

V := x/- 1I (R) 6 Coo(End S (R) E). (3.8)
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We call

o .= o + v: cg(s (R) ) cg(s (R) ) (3.9)

the Dirac-Schr6dinger operator with potential V.
The abstract machinery of Section 2 can be brought to bear on the present setting

by separating variables. This will be carried out next, leading to the representation
(2.4) for Dirac-SchrSdinger operators.
Note that, since m is odd, Sr := SINr is a spin bundle over Ny with grading given

by v/- 1Fo =" z. We compute with local orthonormal frames (Fi), (S) for TM and
S (as above) and (E#) for E, all assumed parallel along normal geodesics:

Oo(& (R) G) Y, ,. v,(& (R) G)

1 E <v;., 6, F>(F,’6"F" &) (R) E + y (5" &) (R) V,2 i>1 i>1
j<k

1 E=: D)(S (R) Ea) +
i,k>l

<V, Fo, Fk>(F’Fo’F’S) (R) Ea (3.10)

1 E (n(F,), 5,)(,o,, &) (R) E,

=: (D) + AY)(S (R) E).

If we assume that (Fi)i>l diagonalizes rIr at (y, p) with eigenvalues (2i(y, p))>l,
we obtain

1
AY(S (R) E)(y, p) - 2,(y, p)Fo" S (R) E(y, p)

i>

or

A -1/2HrFo’. (3.11)

With f C(U) one has

Do(fS (R) E) gradu f S (R) E + fDo(S (R) E)

(Fof)Fo.S (R) Ea + grads f.S (R) Ea
+ fD(S (R) E) 1/2fHrFo.S (R) Ea
(Fo" Vo + D) 1/2HyFo’)(fS (R) E),
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arriving thus at

DO --Fo" Vvo + D- 1/2HyFo (3.12)

To apply the results of Section 2 we need to trivialize the Hilbert bundle
L2(S ( El U). To this end we introduce the function a C(U) - Coo(R+, Coo(N)) by

i*cov -: a(y)-2O0o (3.13)

Next, we denote by Pv the parallel transport in S (R) E from N to Nv along normal
geodesics and set Ev := E[Nv. Then we define the trivialization by

q: Lz([+, LZ(S (R) E)) ---, L2(S (R) El U),

Wa o v := a(y)Pvcr(y).
(3.14)

Proceeding as in [B2, Sec. 5], we now obtain the following lemma.

LEMMA 3.1. The Dirac-Schr6dinger operator D DO + V in (3.3) is, on U, equiva-
lent in the sense of (2.3) to the operator

(Do(y) + A(y)) + zW(y)

=:-Or + S(y) + W(y)
(3.15)

actinn in L2(R+, L2(S (R) E)) with domain C((O, oo), Coo(S (R) E)), where z :=
x/- 1Fo" is the grading of SO (R) E.

The operatorfunctions S and Wsatisfy (2.4) and (2.5). They are explicitly given by

Do(y Fo F. Av) (3.16a)
j>l

where Tiv(F(y)(p) "= Pv(F(p)) and Vv "= tg*vv, Vv the canonical connection on
Sv (R) Ev;

A(y) (F(y), Vu log a(y))Fo" F.; (3.16b)
j>l

W "= W-I(I (R) )qJ. (3.16c)

Proof. The proof coincides with the proof of Theorem 5.3 in [B2], mutatis
mutandis. For the convenience of the reader, we repeat the main steps. Observe first
that multiplication by Fo is unitary and that by (3.12)

Fo’Do -Vvo + Fo’D + 1/2Hv. (3.17)
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Under W the various terms in (3.17) transform as follows. From [B2, (5.20a)-I we
obtain

The operator D is just the canonical Dirac operator on Sr (R) Er; so we obtain from
the analogue of [B2, (5.20d,e)]

tP-1Fo’DW i-Fo F. ’Ar + (F(y), Vs log a(y))Fo’F" ]
j>l

This completes the proof.

Note that the map p: TN End S (R) E, p(F)(s (R) e) := (F0" F" s) (R) e, induces a
representation ofeN on S (R) E. Thus, Do(y) is a Dirac-type operator; the connec-
tion Vr is, however, not a Dirac connection, and the vector fields (F(y))j> do not
form an orthonormal frame for TN in general.

It follows from [B2, (5.39)] that for y 0 we have o= V(R) 1 + 1 (R)V,
F(0) F, a(0) 1; hence,

S(0) Fo.5-vj (3.18)
j>l

is the Dirac operator on N with coefficients in E.
For simplicity we will assume in what follows that

M has the product metric near N, (3.19a)

W is constant in a neighborhood of y 0. (3.19b)

Then the condition (2.12) reduces to an assumption on f

(1 y/)f(y) f(0) 1 near y 0. (3.20)

This will also be assumed from now on.
Returning to the assumptions of Lemma 2.1, we see that in the geometric setting

(3.1) we only have to find smooth positive functions h and f such that

f If(y) (y) + ffl2(y) 1 + -(y) dy < . (3.21)

If this holds, then the potential W has to satisfy the conditions (3.19b), (2.14), (2.15),
and

f: f(Y) ’(y)ll 2 dy < (3.22)
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for all such potentials we then obtain the index formula (2.13). However, this formula
can be made more precise by evaluating the adiabatic limit in (2.13). To do so, we
note that W(0) is invertible in view of (2.14); so E splits as E E+ q) E into the
eigenspaces of W(0) with positive and negative eigenvalues, respectively. We project
the connection VE to connections V -+ on E+_ and obtain from Do(0) two Dirac
operators on N"

COO(S+ (R) E+) Coo(S (R) E+)

and

og c s+ (R) eo __, coo(so (R) Eo ).

With this notation we can prove the following theorem.

THEOREM 3.2. Assume (3.1), (3.19a,b), and the existence of smooth positive func-
tions h and f satisfying (3.20) and (3.21). Then for any potential V satisfying (3.19b),
(2.14), (2.15), and for 2o sufficiently large, we have

1
lim r/(S(0) + 2W(0))L2-ind(Do + 20 V)= -- ;t

(3.23)

-ind D-+

--f A"(N) ^ ch E+.

Proof. Combining Lemma 2.1 with [BC, (2.45)], we obtain

LZ-ind(Oo + 20 V)= -1/2[ind D-+ ind O--].

Since N is spin cobordant to zero, we also find

0 ind D ind D-+ + ind D--.
The proof is completed using the Atiyah-Singer formula.

We will show below and also in the next section that the assumptions ofTheorem
3.2 are satisfied in cases of interest. We now proceed to define the notion of
"h-control".
M is said to have h-controlled geometry at infinity for some positive function

h e C(E+) if (3.1) holds and we can find a smooth positive function f with (2.8)
such that (3.21) holds for every Dirac operator on M canonically associated with
the metric. Note that the operator enters only through the function defined in
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(2.16). To make this work, it.is necessary to obtain estimates of/ in terms of h, which
in turn must be well adapted to the geometry of M near infinity.
The simplest case arises for warped products. If U (0, oe) x n N with metric

dyZ (y)2g, then the separation of variables yields (see I-B2, Sec. 5])

1
(3.24)

with S(0) a Dirac operator on N, given by (3.18). Note that the representation (3.24)
for the Dirac operator does not contain a term involving f’ if, e.g., the coefficient
bundle together with its metric and connection are pulled back from N via the
natural projection. (This is false in the general case; see [B2, Sec. 5].) Hence, the
choice of h is now very simple: taking

h(y) := (y),

we find

/(y) =_ 0.

Thus, (3.21) is certainly satisfied with

f(y) := h(y);

so we only have to assume that h satisfies (2.8).
To derive the result of Callias, we let

U :- {x e mIlxl > 1}

with metric dy2 yZgo, where go the standard metric on N Sm-1. We choose
O<a<landput

h(y) := ay =: f(y), y > 1,

such that

D_-t?r +yy ai>l’ F Fj + z(y)

Clearly, the factor a does not affect the index formula (3.23).
Next, we examine the assumptions on

W(y) ayW(y).
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Except for the initial condition (3.19b), we have to require

C23 < a2y2l/V(y)2 (3.25a)

IIS(O)W(y) + W(y)S(O)II C4/ay, (3.25b)

yll(yW(y))’ dy < . (3.25c)

This means essentially that W(y), y-lW(1), i.e., the potential has to decay at
infinity.
Though this is an interesting condition, too, it does not give the original result

of Callias. To obtain it, we have to observe that the choice off in our setting is by
no means unique. In fact, we could also choose, e.g.,

f(y) :_ 1,

in which case (3.21) reduces to

Then the conditions on W become

W y)

IIS(0)W(y) + W(y)S(O)ll c,

IIW’(y)ll dy < .
Keeping this in mind, we obtain the following generalization of the Callias theorem
I-C, Theorem 2].

COROLLARY 3.3. Let M satisfy (3.1) with U {x llxl > 1}, m odd, equipped
with the standard metric. If f is a smooth positive function on [ 1, az) satisfyin9 (2.8)
and

f’ 1 z
f(y) --;(y) dy <

J

and if the potential V satisfies the conditions (2.14), (2.15) (with W(y) fW(y)), then
D + V has a finite L2-index 9iven by

L2-ind(D + V) -fs,-, ch E+.
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In view of (3.24) we can immediately obtain analogous results for manifolds with
more general ends which are warped products.

COROLLARY 3.4. Let M satisfy (3.1) with U (0, oo) x , N, m odd. Iff is a smooth
positive function on [0, co) satisfyin9 (2.8) and

f(Y)
2

dy<

and if the potential V satisfies the conditions (2.14) and (2.15) (with W(y) fW(y)),
then D + V has a finite LZ-index 9iven by

L2-ind(D + V)= -;v (N) ^ ch E+.

Remark. N. Anghel [A, Theorem 0.4] has proved a generalization of the Callias
Theorem to warped ends as above but imposing the conditions

h(y) oo, y- ,
and (essentially) W(y):= W(y), i.e., f(y)= 1. This does not follow directly from
Corollary 3.4 as it stands, as can be seen from the example h(y) ey. However, the
representation (3.24) does not involve f’; hence, the Fredholm results given in [A,
Prop. 4.2] allow us to deform/ to the function h(y) y without changing the index.
Thus, after this deformation, the above corollary applies.

If we consider more general metrics than warped products, e.g., asymptotically
Euclidean metrics as in [B1, Sec. 2], then fl may no longer vanish and (3.21) is not
so easy to deal with. The following result will allow us, however, to extend the
index calculation to a large class of complete noncompact manifolds, e.g., with
finite volume and pinched negative curvature. This will be the object of a future
publication.

THEOREM 3.5. Let M satisfy (3.1) and the followin9 conditions.
(a) The curvature transformation 1 of the Dirac bundle S (R) E has uniformly

bounded norm

(b) The second fundamental form of Nr is uniformly bounded in y,

IlI-I,,(i,(p))ll c8, y>O, peN.

(c) Thefunction a(y) e C(N), introduced in (3.13), is constant on Nfor all y > O.
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Then, with h =- 1 in (2.17), we have for fl in (2.16) the estimate

(y) C9 (3.26)

Remark. The proof ofTheorem 3.5 will be broken up into a sequence oflemmas.
Before embarking on it, we want to mention the following application. Assume
again (3.1) but require in addition the following special properties.

TN has a global orthonormal frame (Fi)i>l such that[F/, F] CFk
k

with c constant on N

(3.27a)

the parallel translates Fi in the y-direction satisfy

[ffi,/] [F, F] Z Ck (3.27b)

and

I-Fo, F] 2F with 2i constant on U. (3.27c)

This can be satisfied, for example, if N is a nilpotent Lie group with a left invariant
metric, and 2i + 2j 2k if C 4: 0. The metric on U is then defined by requiring that
(e’Yff o iy)> is an orthonormal frame for all y > 0 and p N; the assumptions
(3.27) will imply that ff(ir(p) e’rffi(ir(p)). It is then easy to see that the assump-
tions of Theorem 3.5 are satisfied for all Dirac operators canonically associated to
the given metric. In particular, we can apply Theorem 3.5 to all locally symmetric
spaces of rank one with finite volume.

We now start the proof of Theorem 3.5 with a simple geometric lemma.

LEMMA 3.6. Let A(y) := Ti2 o Pr Coo(N+, Coo(End TN)). Then we have

c3- A(y) A(y)P n,e,. (3.28)

Proof. For G e C(N+, Coo(TN)) observe that

G(y) Ti- [Fo, Ti, G(y)]. (3.29)

This implies for F Coo(TN) that

A(y)F Ti; [Fo, if] Ti; n,P,F

A(y)P- II,Pr(F).
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With the vector fields F(y) A(y)F, associated to the local orthonormal frame
(Fi)i> for TN, we now define a family ofquadratic forms on C(S (R) E) as follows:

Y 0"2Qr(0") :-- 2 Ie,(r) volv.
i>1

(3.30)

This is clearly independent of the choice of frame. It follows from Lemma 3.6 that

F[(y) := yy Fi(y) Ti;t [Fo, (3.31)

A(y)p; np(,);

the corresponding family of quadratic forms will be denoted by Q’r:

fv -y 0"12
i>l

(3.32)

Now recall from Lemma 3.1 that, in view of assumption (c) in Theorem 3.5, we
have

S(y) Fo "’’,(r) (3.33)
i>1

LEMMA 3.7. Under the assumptions of Theorem 3.5 we havefor 0" C(S (R) E)

IIS’(y)oll 2 2n2(1 + C7)(Q’(0") + Iio I).

Proof. Let 0"j 6 C(S (R) E), j 1, 2. Using Lemma 3.1 and denoting the paral-
lel transport by the superscript , we compute-- (S(Y)0"1, 0"2) -f i>lZ (Fo’Fi’VF(y, 1, 0"2

c3y j>

(Fo(Fo ’V,51, )) o r
i>1

Z (Fo" ff" V’oVff, e2} o r
i>l

[(Fo i’(Fo,/)5, 52 > o r + (Fo ffi. Vtvo.p,15,, 5z > o
I>1
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+ (Fo’F’Vr;tro.,a, 2)].

Hence, in view of (3.31), S’(y)tr is of the form

S’(y)t7=: EFo F ~"-vr + eo e ,(Fo
i>l

The assertion follows.

(3.34)

El

The next lemma allows us to compare Q’r(tr) and Qr(tr).
LEMMA 3.8. Under the assumptions of Theorem 3.5 we havefor tr C(S (R) E)

Proof. We write B(y):= Pr-1 HrPr and

A(y)Fi =: aij(y)F, B(y)Fi =: b,k(Y)Fk,

a(y) "= (aj(y)),

Then we find with (3.31)

b(y) := (bo(y)).

hence with

cij(y := (V,tr, c(y) .= (cdy)),

LQ,(tr) tr(baca’b’)(y).

Now c is a matrix of Gram type and thus > 0. Hence, we obtain

Q’r(tr) f tr(cl/2atb’bacX/2)(y)

< IIb(y)ll 2 fs tr acat(y)

< CQ,(a). r-1
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Finally, we have to estimate Qr(a) by IlS(y)all which amounts to an argument
of Weitzenb6ck type.

LEMMA 3.9.
that

Under the assumptions of Theorem 3.5 there is a constant Clo such

IIS(y)ll 2 Q()I Cxo(G()x/2 I111 + c711112).

Proof. We compute, for tre C(S (R) E) and p e N,

IS(y)a(p)l 2 (S(y)2a(p), a(p))

.. (Fo’ffi’V,Fo’ff’VjG )o iy(p)

[-(Fo ffi" H()"" Vgjt?, t) o

,J

+ (Fo’Fi’Fo’Vp,F" Ve, e5 o iv(P) (3.35)

+ (Fo’F’Fo’F" V,Ve, e) o iv(p)]

=: Av(a)(p) + Bv(o’)(p)- (V,V,t, c) o iv(p)

+ E [<, (,, ), > o ,(p) + <,.. vt,,.,,a, a> o

i<j

=: Av(a)(p) + Bv(a)(P) + Qv(a)(p) + Cr(a)(p) + G(a)(P).

We estimate the terms in (3.35) one by one.
Clearly, the assumptions of Theorem 3.5 imply

/ 1/2

Iar(a)(p)l < Clla(P)ll II,tva(P)ll 2 (3.36a)

Moreover, since S(y) is independent of the choice of local orthonormal frame, we
may assume that

V,, G(P))= 0 l < i,j < n.
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Dr(a)(p) 0 (3.36b)

Vp,F(ir(p) (V.,F, Fo )Fo(ir(p)

(F, IIr(F))Fo(ir(p)).

Hence, we also find

Finally, we have

)1/2IBr(a)(P)l < C lla(P)ll II,tr)a(p)ll (3.36c)

n(n 1__)iio.(p)ll2" (3.36d)Cy(o)(p)l C7 2

This implies the assertion, but with Qr(a) replaced by

(r(’) := --fr i (V,V,t, 8) o irogo.

To complete the proof, we need an integration by parts. Recall from (3.13) that the
volume form c% on Nr was related to COo by it*cor a(y)-2COo, with a(y) constant on
N by assumption. Thus, we find

To calculate Er(a we define a vector field V e C(TNr) by

(v, w5 := (Vw, e), W e C(TN).
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Then it follows that

Er(a) fl a(y)2 div V

f, div(a(y)2V)

The proof is complete.

Proof of Theorem 3.5. The assertion of the theorem amounts to showing that

IIS’(y)(I + IS(y)l)-x C9 (3.37)

for some constant C9, independent of y. Combining Lemmas 3.7, 3.8, and 3.9, we
obtain for a C(S (R) E)

IS’(y)rll 2 C(llS(y)ll 2 + I1112) (3.38)

with C independent of y and tr. Then (3.38) holds for all tr @(S(y)) since S(y) with
domain Coo(S (R) E) is essentially self-adjoint. Substituting a (I + IS(y)l)-lr/,
q L2(S () E), we obtain (3.37).

Of course, it is not difficult to estimate C9 explicitly in terms of C7 and C8.

4. An example. We shall now illustrate our results in a simple but interesting
case. Let M be 2k+1. We consider various metrics, notably the fiat metric ,
and for each e (0, 1/2] a "comparison metric" 9, 9 := dY2 O) h(y)29s; here, y is
the Euclidean length function, 9s the standard metric on S2k, and h Coo(R/) is
positive on (0, o) which satisfies

h,(y)={silnY O<y<rc/2,nearoe
(4.1)

as well as, for y > r/2

Ih(y)- 11 e, (4.2a)

Ih(y)l e, (4.2b)

h’’(y) < e. (4.2c)

Thus, (R2k+x, 9) looks like the standard hemisphere $2+k+ with a cylinder attached.
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Now consider a metric g on 2k+l which coincides with g on y > n/2 and
satisfies

9 > 95 everywhere; (4.3)

then our manifold will be M "= (2k+l, g). To link this to the notation of Section 3
we put

U := (r/2, oe) x S2k, (4.4)

which satisfies (3.19a) by construction. Denote by S So the spin bundle on M,
constructed with the metric g. As a coefficient bundle, we choose E := S#, the spin
bundle on M constructed with the flat metric. These data define the Dirac operator
Do with coefficients in E.

Finally, we define the potential V by

V(p)s (R) e := s (R) F(p) o e, s e Sv, e e Ep, (4.5)

where "o" denotes Clifford multiplication in the flat metric (whereas "." is Clifford
multiplication in the metric /) and F is the smooth vector field on M given by

F(y, o) := p(y)
c3y" (4.6)

Here, p e C(N+) is odd near zero (i.e., p(2J)(0) 0, j ) 0) and p(y) 1, y > /2. It
is a routine matter to check the assumptions of Theorem 3.2: we choose h := h and
f such that (3.20) holds and f near infinity. In the representation (3.15) we easily
find

S(y) Do(Y) Fi’Vv,, the canonical Dirac operator
i>l

on S2k with coefficients in EIS2k (4.7a)

and

W(y) (o)(s (R) e) s (R) o) o e, o e S2k, s e S e e E (4.7b)

Hence, the remaining conditions (3.19b), (2.14), (2.15), (3.21), and (3.22) are all
satisfied.

Thus, Theorem 3.2 gives (see [Gi, Lemma 3.8.9]) the following lemma.

LEMMA 4.1. For 2 sufficiently larTe we have

L2-ind(Do + 2V)= 1. (4.8)
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It is fairly easy to discuss the Fredholm properties of this special Dirac-
Schr6dinger operator. We need the following lemma.

LEMMA 4.2. On U we have the estimate

IIDol12. IlVqll2= + [(- k)2 k/2 + O(e)] 11112, q C(S (R) El U). (4.9)

Proof. We have DD (D 2V)(D + 2V) D2 + 2[D, V-! 22V2. It follows
from the Lichnerowicz Theorem (see, e.g., [LM, Thm. 8.8]) that

D2 V*V + xg/4 (4.10)

where xg denotes the scalar curvature of g. A well-known formula (see [LM, Chap.
IV (6.16)]) gives, in view of (4.2),

x,(x) > 2k(2k- 1) + O(e), x U. (4.11)

Moreover, from (4.6) we see that

V2(x) -id, x U. (4.12)

Hence, it remains to compute the commutator. We find, with Fo "= O/Oy and (F)>
a local orthonormal frame on S2k, with parallel translates (/)> in the y-direction,
for a C(S), 0 C(E),

[o, v] (R)o E (R) o 0)- go o v ,0]
i>0

i>0

i>l i>l

For the last equality we have used the second fundamental form (see (3.2)) and

Voffo 0. Now observe only that A y-2 Ilffll, which implies IIh, 1. Hence,
we find

lIED, V]ll 2ky- I111 2k. (4.13)

With (4.10), (4.11), and (4.12), we derive the assertion. U!

We obtain now easily the following. (See I-GL, Sec. 3].)

LEMMA 4.3. (1) D has a unique closed extension with domain independent of 2,
2(Dx)- (Do).

(2) If 2 [k x + O(e), k + x//2 + O(e)], then D is a Fredholm operator,
depending continuously on 2.
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Proof. (1) This assertion is obvious since Do has a unique closed extension [GL,
Thm. 1.171 and I/is bounded in L2(S (R) E).

(2) The Fredholm property is easily derived from [H, 19.1.3]: if(f) is bounded
in @(Do) with respect to the graph norm and (Df) is convergent in L2(S (R) E),
then (4.9) implies that (f) converges in L2(S (R) EI U), provided that 2
[k x//2 + O(e), k + + O(e)]. The estimate in Lemma 4.2 then implies that
(f)j is bounded in the Sobolev space HI(S (R) ElM\U). Thus, the Rellich theorem
implies the existence of a subsequence convergent in L2(S (R) E).
We conclude that both D and D’ D_ have a finite-dimensional kernel and

closed range. The continuity in 2 is obvious. 121

We proceed to show that the innocent-looking operator D in fact loses
Fredholm-ness for some 2 [k x/-/2 + O(5), k + x/-/2 + 0(5)]. We use the
Bochner-Lichnerowicz technique to prove that ind Dx 0 for 2 sufficiently small.

LEMMA 4.4. In M\U we have the estimate

r
sup tlp’(y)l+[D, V] IL2(S(R)EIM\U) Zk :---- (2k + 1) o<y<n/2

P(Y__)) p’ (y)
Y

(4.14)

Thus, for 2 < min{minlvt\vxo/4zk, k x//2 + 0(5)} we have ind Dz 0.

Proof. Consider a local orthonormal flame (F)z=o for the metric 9. We
decompose

V,=V,, +F?

and compute

[D, V] (a (R) O) F" a (R) (V,P) o 0
i>0

p’(y) .o Fi’a F,- -y O O

+ P(Y) Fi’a (R) F o 0
y i>o

P’(Y)i>o Fi’a(R) FioO+ (P) P’(Y)) i>o
Fi" a (R) F- o O.
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To complete the proof of (4.14) we observe that we have, for y [0, n/2],

1 < y/sin y < n/2.

Hence, since (F)>o is g-orthonormal,

2

thus,

II[D, V-]]]LZ(S(R)EIM\U) T,k.

Now assume 2 < min{minM\v xo/4zk, k x/c/2 + 0(5)}. It follows from Lemma
4.2 and (4.14) that in this case

for some 6 > 0, hence the assertion.

We can now derive some interesting geometric consequences.
First, if 2 > k + x/-k-/2 + O(e), we know that the estimate

xo(x) > 4zk2 > 4"ck(k + + 0(5))

cannot hold for all x e M\U. Hence, for at least one Xo e M\U, we obtain

n
sup (’P’(Y)’+ P(Y)-P’(Y)I)xo(Xo) < 4(k +x + O(e))(2k + 1) O<y<n/2 -- (4.15)

To derive a good bound, we use our freedom in the choice of p: we may consider
any p C [0, n/2], which is odd at 0 and satisfies p(n/2) 1, p’(n/2) 0. Construct
now p(y) as follows. Let the graph consist of two pieces: a small circular arc
tangent to 1 at (n/2, 1) and the tangent to that arc through (0, 0). If the point of
tangency has abscissa Yo (0, n/2), then we have

P(Yo) P(Y)
p’(y) =- y e [0, Yo],

Yo Y

0 < p’(y) < P(Y--) < P(Yo__), Y [Yo, n/2].
Y Yo

(4.16)
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Since P(Yo)/Yo can be made arbitrarily close to 2In, it follows that

x(Xo) < 2(2k + v/)2k + 0().

PROPOSITION 4.5. Let gs be the standard metric on $2+k+l. For any metric g on
$2+k+1 such that

(i) g extends to a metric >g on 2k+1,
(ii) g gs on t?S2+k+l,

and
(iii) g > g on $2+k+1,

one has

inf x < 2(2k + )2k + O(e).

Proof.
Remark.

This is an immediate consequence of the above discussion.

M. Llarul ILl proved a sharp version of this result, namely,

inf xo < x0s (2k + 1)2k

but for metrics on S2k+l satisfying the condition g > gs on the whole sphere.

Another consequence of the preceding discussion is the following "semiglobal"
estimate.

PROPOSITION 4.6. With the same assumptions as in Proposition 4.5, given > 0
and 2 > k + x///2, either

inf xo(x < 42(Zk- 26)
p(x)>

or

inf xo(x) < 42"ck
p(x) < 5

In particular, choosing 2 26 := T,k/52, one obtains that, if

inf xo(x > 40-2 2

p(x) < t

then

inf xo(x) < O.
p(x) >

Proof. Since ind Dx 1 if 2 > k + x/--/2, the statement follows from the follow-
ing estimates for the Dirac-Laplacian.
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(i) On U one has

k
D’Dz > V*V + (2 k)2 - + O(e);

(ii) on M6+ {x e S+2k+1 Ip(x) > 6 } one has

DDx > V*V + 1/4xg- Zk2 +

(iii) on Ma- {x e s2+k+llp(x < 6} one has

DDx > V*V + 1/4xg- Zk2.

Remark. The above results can be extended to spin manifolds (M, g) with
boundary tOM admitting 1-contracting maps f: (M, g) ($2+k+l, g) such that
flM: OM- S2k has nonzero A-degree. (Cf. [L, Thm. 4.1].) In particular, similar
estimates hold for even-dimensional hemispheres.
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