Geometric and Functional Analysis 1016-443X/93/0300439-35%$1.50+40.20/0
Vol. 3, No. 5 (1993) © 1993 Birkhiauser Verlag, Basel

KAHLER-HODGE THEORY
FOR CONFORMAL COMPLEX CONES

J. BRUNING AND M. LESCH

1. Introduction

In a recent publication [BL] we have introduced the notion of “Hilbert
complex”. By this we mean a differential complex of vector spaces,

0—Dy2up, 2. ipy 0, (1.1)

where D; is dense in some Hilbert space H; and D, : D; — H;yy is closed.
This additional functional analytic structure proved to be quite useful, and
we obtained a very general setting to deal with questions like weak and
strong Hodge decomposition, L?-cohomology and L?-index, Poincaré dual-
ity, smooth cohomology, Kiinneth type formulas etc. Our main motivation
for this study was the analysis of elliptic complexes on singular spaces; we
hoped that the notion of Hilbert complex would provide a convenient frame-
work to compare the many results that exist in special cases, and to guide
future analysis. We have substantiated this hope somewhat in [BL, Sec. 4]
where we studied the de Rham complex in various situations. Consider,
e.g. an arbitrary Riemannian manifold, M, and the de Rham complex with
compact support,

0 — QM) 2o Qb (M) -4 D QN (M) — 0. (1.2)

Then we ask whether we can find closed extensions of the d; (in the natural
L%-spaces defined by the metric) which combine into a Hilbert complex of
the form (1.1); every such choice will then be christened an “ideal boundary
condition” (ibc) for (1.2) (inspired by the pioneering work of Cheeger on
conical singularities). It turns out that this can always be done; e.g. by
choosing D; = d; min (the closure) or D; = d; max (the adjoint of the closure
of d!); these two choices will be referred to as the “relative ibc” and the
“absolute ibc”, respectively. There may be, however, infinitely many other
ibc’s, with more or less pleasant features. So one is looking for further
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criteria to select “good” ibc’s, and, of course, the case where the relative
and the absolute ibc coincide deserves particular interest; this we call the
“case of uniqueness”.

The present paper attempts at further progress in this direction. Its
main motivation is to incorporate the so called “L2-Kahler package” (as
introduced in [CGM]) into the framework of Hilbert complexes. Thus, as
one of the main results (Thms. 5.6 and 5.8) we state rather simple func-
tional analytic properties of the de Rham complex on an arbitrary Kahler
manifold in order for the L?>-Kahler package to hold. Notably, we require
that we have uniqueness of ibc’s, which might be true for all projective
varieties equipped with the Fubini study metric. This fact is beyond our
reach, however, for the time being. Instead we look at the class of “con-
formally conic Kahler manifolds” for which we have uniqueness and where
we achieve the most satisfying result (Thm. 5.9). Among these manifolds
we find at least all (singular) algebraic curves and all complex cones. Thus
we achieve a considerable extension of Cheeger’s work in [C2], where the
L?>-Kahler package for metrically complex cones was obtained under the
additional assumption that the complex structure J is conical [C2, p. 119].
Conformally conic Kéhler manifolds in our sense are a considerably more
general class than metrically conic Kahler manifolds, and we do not require
any additional assurption on the complex structure.

For general Riemann surfaces we do not have uniqueness. Nevertheless,
we construct an ibc for the de Rham complex which always satisfies the L?-
Kéhler package (Sec. 5).

We remark that other aspects of Kahler geometry are of interest in
this context, too. For a remarkable contribution one may consult Ohsawa’s
work on the so-called Cheeger-Goresky—MacPherson conjecture [O].

This paper is organized as follows. Sec. 2 introduces the analytic tools
to deal with conformally conic manifolds. They are closely related to the
methods developed in [BS]. The results also resemble those in the conic case;
in particular, the case of uniqueness prevails only if the dimension is even
(Thms. 3.7, 3.8).

In Sec. 3 we investigate the relationship between unique ibc’s and the
Friedrichs extension of the corresponding Laplacians. This is a decisive tool
in the uniqueness proof.

Sec. 4 is devoted to new invariants associated to Riemannian manifolds,
M, of dimension 4k+1, namely the deficiency indices, n4 (M), of /=1%2x41
dak. We show that these are invariant under quasi-isometries (Cor. 4.1) and
that they are nontrivial (Lemma 4.3). Particularly intriguing is the formula

nt (M) —n_(M) = —sign(N) (1.3)
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if M is the infinite cone over the compact manifold N. We will discuss
generalizations of (1.3) elsewhere.
Finally, Sec. 5 contains the results on Kahler manifolds sketched above.
The work of both authors has been supported by the GADGET pro-
gram of the EC and by Deutsche Forschungsgemeinschaft.

2. The Model Situation

Assume that M is a Riemannian manifold of dim M = m, with an open
subset U C M such that

M := M\ U is a complete manifold with compact boundary N, (2.1)
U is isometric to (0,¢) x N, dimN = m — 1 =: n, with
metric g = h(x)%(dz? @ 22gy(z)), where gy(z) is a family
of metrics on N, smooth in (0, ) and continuous in [0, £),
and h € C*°((0,e) x N) satisfies

sup [(20z)) (z™°h(z,p) — 1)| = O(z®) asz — 0, j=0,1, (2.3)
pEN

and

(2.2)

sup ||h(z.p) " dnh(z, p)|
pEN

for some 6 > 0 and ¢ > —1.

TsNgn(x) = O(°) asz — 0, (2.4)

Thus, we do not assume that gy (z) is smooth up to 0. But just continu-
ity is not enough so we have to introduce an assumption on the asymptotic
behaviour near 0. As in [B, Sec. 5] let

¢ = da? &a2gn(0) |

g' == h"2g =dz’ @ z’gn(z) ,

and denote by V°, V! the Levi-Civita connections for g°, g* with connection
forms w®, w!. Then our assumption is (cf. [B, (5.2)])

sg}r;(lgl = 0y F 2’ =W, ) =0(2%), 2 -0, (2.5)
4

where 6 is as above and the superscript © refers to g°.
If the Riemannian manifold M satisfies (2.1) through (2.5) then we will
call it a conformally conic manifold.



442 J. BRUNING AND M. LESCH GAFA

Now denote by d the exterior derivative, by d* its formal adjoint with
respect to the metric g, and by Dgp : Qo(M) — Qo(M) the Gauf-Bonnet
operator; we also consider Dgg)dd : QSV/Odd(M) — did/ev(M). Of course,
Dgp = DYy ® D2 and (DEg)! = D24, These are closable operators in
L?(A* M) with many closed extensions in general. The relationship between
the closed extensions of Dgp, d,d' has been discussed in detail in [BL]:
some further aspects will be given in the next section. The following fact
is important for understanding the next theorem. From the weak Hodge
decomposition [BL, Lemma 2.1] one easily derives that

w € L3(A*M) there is a sequence (¢, ) C Qo(M)
D(DGBmin) = { such that ¢, — w and (d¢,,).(d'¢,) are Cauchy
sequences in LZ(A* M)
(2.6)
thus
D(DGB min) C Dldmin) N D(dy;,) (2.7)

which is a proper inclusion in general, as we will see below. The aim of this
section is to prove the following theorem.

THEOREM 2.1. Let M be conformally conic. Then we have
D(dk,maX) n D(d;c—l,max) C D(DGB,min) (2.8)

for all k except possibly m/2,(m £ 1)/2.
For k = m/2 or k = (m £ 1)/2 it may happen that D(Dgp min) N
L?(A*T*M) is a proper subset of D(d min) N D(d},_1 pmin)-

This theorem is the source of all assertions concerning ideal boundary
conditions and Hodge theory in the rest of the paper. Among other things,
we will easily recover Cheeger’s results on the L2-Stokes theorem (cf. [C1]).
But Theorem 2.1 above is much stronger than that, since it has implications
in the Kahler case.

Via the transformation

1
y(@) = 72 (2.9a)
the metric changes into
g = h*(dy* ® y*jn(y)) (2.9b)

which satisfies (2.1) through (2.5) with c=0. Thus § is quasi-isometric to a
conic metric. But we want to point out here that the inclusion (2.8) is not
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invariant under quasi-isometries; this will become clear in the proof below.

Because of (2.9a,b), from now on we will assume ¢ = 0 and write again
g.h,gn instead of g, h,gn. As in [BS, Sec. 5] one constructs linear maps

Pr 1 C((0,€), QF"1(N) @ QF(N)) — QF(U) (2.10a)
which extend to unitary maps
P L2((0.€), LA (A*=IT*N @ A*T* N, gn(0)) — L} (A*T*U)  (2.10b)

such that

vindeoe= 17 [(§ %) 4 (st stu@)] ama

where .
dN k- -1 (k—n/2
S i :=( Vot ( )CgNk /)) (2.12a)

and Sf’k(x) is a family of first order differential operators on Q(N), smooth
in (0, €), and satisfying

185 p(@N i3~z = O(z®) , 2 =0, (2.13)
Taking adjoints we find

" - 0 0 _ ¢ ’
Yidi¥rsr = 7 [<(_1)k+13z 0) tz I(Sg,k + Sii,k(x))] (2.11b)

where

¢ d 0
dt o __ N,k—1
o= (oo ) (2:120)

and Sf:,c satisfies (2.13), too. Here we have used (2.3).
The 9, induce unitary operators [BS, (5.9a,b)]

Yevjoda : C5((0,), QN)) = Q54 (V) | (212b
and from (2.11a,b) we obtain immediately

w;ddDgB'wev = h_l [a:c + x_l(so + 51(13))] (2.11C)
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with ([BS, (5.10)])

Co d?V,O 0 e 0
'dN,o Cy dtN,l “ee 0
So = , k= (=1)Fk-n/2),
dN,n—2 Cn—-1 dtN’n_l
0 ... 0 AN -1 Cn

(2.12¢)
and Si(z) is a family of first order differential operators, smooth in (0, ¢€),
satisfying the estimate (2.13). Since Sy is elliptic, Dgp is a regular singular
operator in the sense of [B, Sec. 3]. The spectrum of Sy, which is essential
for the investigation of the closed extensions of Dgp, has been determined
in [BS]. Because of its significance for the proof, we restate the result. We
present it in a slightly different way, however, because we want to specify
explicitly those forms which correspond to eigenvalues between —1/2 and
1/2. Since N is compact, dy and d’ have unique closed extensions, which
we denote by dy and dY, too. Put ([BS, p. 699])

HY ca(N) == {w € Q¥(N) | Apw = dw,dly _; w =0}, (2.14)

the space of coclosed eigenforms of Ay with eigenvalue A. In particular,
H(’f’cc,(N ) = H¥(N) is the space of harmonic k-forms. Then we have an
orthogonal decomposition

L(A'N) = @ HAN) @ @ |H} ca(N) @ dH (V)] - (2.15)
= ASo

LEMMA 2.2. Let N be a compact Riemannian manifold of dimension n, and
consider with ¢ = (cg,-++,¢,) € C"*1, p = (py,--+,pn) € C" the operator
S :Q(N) — Q(N) defined by

Co pld(t) 0 ce 0 wo
pdy 1 pad 0
Pn—1dn_2 Cn—1 pnd:pq
0 PPN 0 pndn—-l Cn Wn

Then the decomposition (2.15) reduces S in the following sense:

SIHF(N) = cld ; (2.17)
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for p € H’;;ll(N) \ {0} consider the space V,, C L*(A*N) with basis
{n,\"Y%dy}. Then

_ k1 peAY?
San_(pk)\l/z o) (2.18)

Thus, from (2.18) we obtain eigenvalues

pa(N) = (chmr + c)/2% (1/2)3/(cemr — )2 + 4520 (2.19)
if A >0 and Hf;i,(N) # 0. In particular, if S = Sy in (2.12 ¢) we get

pr(N) = (=D*/24+ /(k=m/2)2 + ). (2.20)

Proof: The proof follows from a straightforward calculation. o

COROLLARY 2.3. 1. If m = 2v is even then spec(Sp) N (=1/2,1/2) # @ if
and only if

specA, 1.t N(0,1) #0 .

Eigenforms of Sy with eigenvalues in (—1/2,1/2) are in diy ,_,(Q"(N)) @
dn -1 (LN
2. If m = 2v + 1 is odd then spec(Sy) N (—1/2,1/2) # @ if and only if

(specA,_1 cet N (0,3/4)) U (specA, i N[0,3/4)) #0 .

Eigenforms of Sy with eigenvalues in (=1/2,1/2) are in df ,_,(2(N)) &
Q(N) @ dn o (Y (N)).

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1: We consider first the case k = 2j. Pick w €
D(dsj,max) N D(d5;_; max) and ¢ € C§°((—€,€)) with ¢ = 1 near 0. ¢ can

be viewed as a C°-function on M. Clearly, we have w € D(Dgp ., ), and
since 1 — p € C§°(M) also

(1 - <p)w € D(DSB,max) .

Put for t € (0,¢) U, := (0,t) x N. By assumption, M \ U, is complete and
for ¢ small enough (1 — ¢)|M \ Uy is 0 near the boundary {¢} x N. Thus we
conclude

(1 - ¢)w € D(DEp min) -
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Indeed, applying [Ch, Theorem 2.2] to the duplication of M \ U;, which
is complete and without boundary, we reach the conclusion. It remains to
prove that pw € D(Dgp ;, ) Put

¢ = (P2j-1,62;) = Yo (pw) € L*((0,¢), LAY T'T* NG AYT* N, gn(0)));
(2.21)

then by [B, Cor. 3.2] we have to show that
l¢(@)|l = o(z'?|logz|'/?) , z~—0. (2.22)

We would like to apply [B, Lemma 3.7]. But, unfortunately, we may
have specSp N (—1/2,1/2) # 0. We put for I >0
azjy1 1= (=1)(ezj| + 1) sgne;

a2j—1-1 = (—1)l(l02j—1| +1)sgncgj

and consider

D&Y = h71 (8, + 271(SE + Si(x)))

where S§ is the operator obtained by replacing ¢ by a in the definition of
So (2.12c¢). Since agj_1 = czj_1,a2; = cz; we have

DaG’eBV((p) = oddD wev¢
Using Lemma 2.2 it is now easy to check that
spec Sg N(—-1/2,1/2) =0

for 2j # m/2,(m £ 1)/2. Thus we deduce (2.22) from [B, Lemma 3.7 and
Lemma 3.2] and we are done in this case.

If k = 2j+ 1 is odd, we repeat the above argument with D28d in place
of DZp and everything goes through.

We prove the second assertion only in case m = 2v even; see also the
remark after Proposition 3.9 below, which yields a proof for arbitrary m.
We look at the conic metric

g = dz? GBngN .
For any ¢ > 0, g. is quasi-isometric to

ge = dz? @ 2%c’gy =: d2* D 2%gN . . (2.23)
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Denoting by A% the Laplacian on Q2(N) with respect to gy .. we clearly
have

Y =c AL . (2.24)

Thus, for ¢ large enough, we have
spec Ay 1,c0 N(0,1) # 0,

and by Corollary 2.3 there is an eigenform 7 € diy ,_,(QY(N)) =
AN y—1(QV71(N)) of Sy with eigenvalue p € (—1/2,1/2). With ¢ as above
we put

w =y, (xHen) .

Then by [BS, Lemma 3.2] w € D(Dgp ..) \ D(DEp nin) and since w
is of degree v = m/2 this implies (see also the proof of Theorem 3.8 below)

w € D(dymax) ND(dL_1 max) -

In Theorem 3.7 we will show that di max = dkmin for all k in this case
and we are done. o

3. Uniqueness of ideal boundary conditions

We now study the question of uniqueness of ibc’s. First we collect some
general results which will be applied to the de Rham complex on conformal
cones in Theorems 3.7 and 3.8 below.

We start with a general result on differential operators. Let E, F be
hermitian vector bundles over an arbitrary Riemannian manifold M, and d :
C$°(E) — Cg°(F) a differential operator. We denote by d'd” the Friedrichs
extension of the symmetric nonnegative operator d'd, with domain C§¢(E),
in L%(E).

LEMMA 3.1. 1. dtd¥ = d},,, dmin-

2. The map associating to each closed extension, D, of d the self-adjoint

extension D*D of dtd is injective.

Proof: 1. Since both operators are self-adjoint, it is enough to prove that
D(dtd}_) c D(d:naxdmin) = {u € D(dmin) |du € D(dfnax)} fue D(dtd}—)
then, by definition, u € D(dpin) and v € D((d'd)max) Which, obviously,
implies du € D(d},,, )

2. It follows from the polar decomposition, D = U(D*D)% (K, p. 334],
and from the fact that D(D* D) is a core for D((D*D)z) = D(D) [K, p. 281].

that D = dp.x |D((D* D) 7). This implies the assertion. o
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Consider now an arbitrary elliptic complex on the Riemannian mani-
fold M,

0 o0 1 d -1 o0
0 — C(Ep) 250 (B2 - .- X3 CP(EN) — 0, (3.1)

N

which we denote by (C§°(E),d), E = k@ E. For the corresponding Lapla-
=0

cian on C§°(E),

N
A= (d+d)* = 8 A, (3.2)
=0
we obtain from Lemma 3.1
AT = (d+ d)max(d + d)min (3.3a)
in particular
D(A?) € D(dimin) N D(d}y min) - (3.3b)

Various other self-adjoint extensions are derived from ibc’s for
(C&°(FE),d). For example, with k£ € Z4 U {co} we may define
d; mi i<k-1
k. 1,min » = )
Di .— {di,maxa 1 2 k.

This defines an ibc, (D¥, D¥), for (C$°(E),d) as in [BL, Lemma 3.1J;
in particular, for £k = 0 and kK = oo we obtain the absolute and rela-
tive boundary condition, respectively. (C§°(E),d) admits a unique ibc iff
dimin = dk,max for all k. We now give some conditions which imply this
equality.

LEMMA 3.2. di max = dk,min iff AF = AP,
Proof: We have

A’Ig = dk—l,mindfc—l,max + d;c,mindk,max ’ (3-4a)

AP = dk—1,mindk—1,max + Dk, maxDk,min - (3.4b)
Thus, di,max = dk,min impliesd} . =d} . hence Ak = AP,
Conversely, if A¥ = A{® then from [BL, Lemma 2.11] we infer that

D(Af) is a core for di max Whereas D(A'g) = D(AL) C D(dk,min)- o
LEMMA 3.3. Assume that, for some k € 1,
D(dk,max) N D(di_1 max) C D((d + d")min) - (3.9)
Then
dik,max = dk,min , (3.6a)
o1 max = k—1,min - (3.6b)

Ak}- = Az = dlc——l,mindz—l,min + d}c,mindk,min . (37)
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Proof: We prove first the equality (3.7). It is clearly enough to show the
inclusion D(Af) D D(AF): for u € D(AF) we have, using (3.4),
u€ D(dk,max) n ,D(d;c—-l,ma.x) C D((d + dt)min) )
hence u € D((d + d*) max )(d+ d)min) = D(AT), by Lemma 3.1. This proves
the first equality in (3.7); the second follows from the first, (3.3b), and
(3.4a).
Now if (D, D) is an arbitrary ibc we find
D((D*D + DD*)’C) . ,D(dgc,mindk,min + dk—l,mind;c-l,min) = D(A{) ’

hence again (D*D + DD*), = A]. Here D is the operator obtained by

“rolling up” the complex (D, D), cf. [BL, (2.12)]. Choosing in particular

D; = D¥ we obtain (3.6) from Lemma 3.2. o
We also have a partial converse to Lemma 3.3

LEMMA 3.4. Let (D, D) be an ibc for (C§°(E),d) such that

(DD*+D*D); =AT, 0<j<k. (3.8)
Then we have
DJ = dj,min ) ] S k ’ (393.)
* t .
D,) = dj,min y ] S k - 1 5 (3-9b)
in particular,
djmin = djmax » J<hk=1. (3.10)

Moreover,
D((d + dYumin) 0 L(B}) = D(djmin) N D(dl—g in) » 3< b, (311)
D((d + d)max) N L*(E;) = D(djmin) N D(d}_; min) » < k—1(3.12)
Proof: Since D((DD* + D*D);) is a core for D; and D?_;, we obtain

-D
(3.9a,b) from (3.3b). (3.10) follows from d% ., = (dj min)*-
To prove {3.11) we observe that, by (3.9), for the closed operator T =
D + D* we have
D(T)NL*(E;) = D(djmin)ND(d}_1 min) D D((d+d")min)NL*(E;), j < k.
On the other hand, T? = DD* + D*D and D((T?);) = D(A]) is a core for
D(T) N L%(E;); thus the definition of the Friedrichs extension implies

D(T)N LQ(E]') C D((d+ dt)min) n Lz(EJ') )

hence (3.11). Using the dual complex we also obtain (3.12). o
We state an important consequence of this lemma.

COROLLARY 3.5. There is an ibc (D, D) with (DD* + D*D); = AT | for
all j, iff (d + d*) is essentially self-adjoint.
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Proof: If (DD* + D*D); = A7 for all j then (3.11) and (3.12) imply
(d+ d")max = (d+ d')min. If, conversely, (d + d?) is essentially self-adjoint
then we have, for an arbitrary ibc (D, D), D+D* = (d+d")max = (d+d")min
and hence by Lemma 3.1

DD* + D*D = (d + d")max (d + d)min = AT . o

The identities (3.11) and (3.12) are not independent. In fact, denote by
D" and D°® the closed operators in L2(E) for the relative and absolute
boundary condition, respectively (corresponding to D @ D* with D from
[BL, (2.12)]), and by p; : L?*(E) — L%(E;) the orthogonal projection. Then
we have four closed extensions of d+d', namely D", D® , Dpip := (d+d")min.
and Dyax := (d + d*)max- They are related as follows.

LEMMA 3.6. There are inclusions
p;iD(Dmin) C D(D™*) N L*(E;) , (3.13r/a)
2;D(Dmax) D D(D™/*) N L2(E;) . (3.14r /a)

Moreover, if equality holds in (3.13 r/a) for j — 1 and j + 1, then also for j
in (3.14r/a), and vice versa.

Proof: Note that
D(Dr/a) N LZ(E]) = pJD(Dr/a) = D(dj,min/max) n D(d;—l,max/min) (315)

which implies (3.13r/a) and (3.14r/a).

Assume next equality in (3.13r/a) for j + 1, and pick w € D(Dpax),
Mj-1 € D(d;—1,min/max)- Then the weak Hodge decomposition [BL, Lemma
1.2] for (D™/2, D™/) implies that we can write

Nj—-1 = 77_;'..1 +77_;"—1 s 77;’-1 € ker 3j—1,min/max > 7’;’—1 € kerd_tj—z,ma.x/min ’

hence

N1 € D(dj—1min/max) N P(d)_3 max/min) C Pi-1P(Dmin) € D(Dmin)
and
-suminfmax s = D15y = Doty
This implies
[(dj-1,min/maxMj—1,w;)| = [(Dminj-1, W)l

= |(nj-1> Dmaxw)|
< Cwlln§-’_1ll
< Collmj-all



Vol.3, 1993 KAHLER-HODGE THEORY FOR CONFORMAL COMPLEX CONES 451

thus w; € ,D(d_tj—l,max/min)' A similar argument gives w; € D(d; min/max)s
hence w; € D(D™*) N L2(E;).

Conversely, if equality holds in (3.14r/a) we pick w; € D(d; min/max) N
D(d}_y max/min)- Then for n € D(Dpax) we find 7j41 € D(dj41,min/max) N
D(d}41_1 max/min) DY assumption, hence

|( Dimax 777""]')' = |(dj—1,min/max -1+ d;',ma,x/min Nji+1,w;)|

= |(nj—1’d;'—1,max/min wj) + (nj*l'l’dj,min/max UJj)|
< Colnll -

Thus, wj € D(Dm'm) N L2(EJ) = ij(Dmin)- D
Remark: For w € C§°(E) we have, writing w; = pjw,

1Dminwll? = 3~ (I jo 17 + 1y ;) -

320
This implies easily that

ij(Dmin) = D(Dmin) N LQ(EJ) - ,D(dj,min) n D(dt ) ) (3'16)

j~1,min

where equality does not hold in general.
On the other hand, for w; € L?(E;) and 7 € D(Dmin) we have by (3.16)

(wjs Dimin) = (wjs dj—1.minMi—1 + 45 minMi+1) -

This implies that
P;D(Dmax) O D(Dmax) N L*(E;) = D(d; max) N D(d;_l‘max) ,  (3.17)

where, again, equality does not hold in general.

So far we have dealt with arbitrary manifolds and arbitrary elliptic
complexes. Specializing to conformally conic manifolds and the de Rham
complex we obtain the main results of this section. It is convenient to
distinguish two cases according to whether m = dim M is even or odd; we
put

v:=[m/2]. (3.18)

THEOREM 3.7. Let M = M, UUbe a conformally conic manifold of even
dimension m = 2v. Then we obtain the following facts for the de Rham
complex on M, ((M), d).

a) (Qo(M),d) has a unique ibc, say (D, D), which is Fredholm.
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b) For the associated Laplacians we have
Ar=D}Dp+ D1 D;_, = AL ifk #v.
c) The closed extensions of d 4+ d' are restricted by the relations
D((d + dmin) N L*(A*T* M) = D(dkmin) N D(dl_y i) » k# v,
(3.19)
and
ka((d + dt)max) = D(dk,min) N ’D(dZ-l,min) ) |k - Vl # 1. (320)

d) For the GauB8-Bonnet operator associated with (D, D),

o = @& (D2 + D3;_,) . (3.21)
320
we have ( t)
ev _ Jd+d)5 ., veven,
GB = { (d+d). ., vodd. (3-22)
Dgp is a Fredholm operator and
_ [ind(d+d"e.., veven,
x(D, D) = {ind (d+d) . v odd. (3.23)

Proof: It follows from Theorem 2.1 that (3.5) bolds for k # v. Hence we
obtain from (3.6a.,b)

i —_
dk,ma.x = dk,min s dk—l,max = dk—l,min for k :,é v,

thus
dk,max = dk7min fOI' all k .

This implies a) except the Fredholm property, which follows from d) which
we prove below. Assertion b) follows similarly from Theorem 2.1 and (3.7),
and (3.19) follows from Lemma 3.4 applied to (€9(M).d) and its dual com-
plex. (3.20) is a consequence of a) and (3.19), in view of Lemma 3.6, (3.15),
and (3.16).

For the proof of d) we observe that, by definition,

D(Dg'B) = ngOD(de,min) N D(déj-—l,max) .

Hence, (3.22) follows from a) and c). The Fredholm property follows
from [B, Theorem 3.4] (cf. 2.11c) and (3.23) is a consequence of (3.22). ©
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THEOREM 3.8. Under the assumptions of Theorem 3.7 but with
m=dmM=2v+1,

we have the following.
a) dimin = dimax if k # v, whereas

D(dymax)/D(dymin) ~ Hir(N) , (3.24)

the vth de Rham-cohomology of the cross-section.
b) If (D, D) is any ibc for (Qo(M),d) then the corresponding Laplacians
satisfy
Apr=A7 ifk#v,v+1.

c) The closed extensions of d + d' are restricted by the relations
D((d+d")min ) NLA(A*T* M) = D(dkmin ) ND(dh_) min) ifk #v,v+1,

(3.25)
and

PeD((d+d ) max) = D(dkmin)ND(df_q min) ifk & [v—1,v42]. (3.26)

Proof: 1t follows from Theorem 2.1 that (3.5) holds for k # v,v + 1. Hence
we arrive at all assertions except (3.24) as in the proof of Theorem 3.7.

Now (3.24) is invariant under quasi-isometries. Hence, by (2.9) we may
assume that the metric g in (2.2) has the form

g =dx?®2%c*gn(0), on U = (0,6) x N,

with ¢? as small as we please. Now let w € D(d, max); the weak Hodge
decomposition for the relative ibc implies a decomposition

w=w +twz, w € D(du,min) 3

wy € D(dymax) N D(d}_1 max) € D((d + d")max)
where we also used (3.17). Now we invoke (the easy adaption of) [BS,

el

Lemma 3.2]. With v € C§°(—¢,¢),¥ = 1 near 0, this gives for yws, the
transformation of Yw under (2.11),

Ywe =: W3 + Z Yes(we)z ™ w3 (es)
s€specSy

lsi<¥
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where (in the terminology of [BS, Section 5]) Sy is given by (2.12¢), e, is an
eigenform of So with eigenvalue s (counted with multiplicity), ¢, is a con-
tinuous linear functional on D((d 4 d*)max), and 7y : U — N is the natural
projection. Moreover, we have w3, (1—¢)ws € p, D{((d+d")min) C D(dy,min )-
Choosing ¢? small enough we may assume that specSy N (—3,3) = {0}.

2r3
Hence we can write
Yws = &3 + Yrja(w), alw) € HY(N),

where H” (V) denotes the space of harmonic v-forms on N. Thus we obtain
a map

@ : D(dy,max) — H*(N)

which is easily seen to be linear and surjective. It is also clear by construc-
tion that kera C D(dy min). But Y7l (w) = Ymia(w) € D(dy min) only if
a(w) = 0 since (cf. (2.11) and (2.12))

(du,maxd"nga(w)? *M"/)W;(*Na(w))) - (¢7T§04(W), df/,max *M ¢7r;(*1\’a(w))) =

_“a(w)”%v(jv) .

Thus ker o = D(d, min ) completing the proof. D

PROPOSITION 3.9. In the situation of Theorem 3.7 or Theorem 3.8 the
equality in (3.19) for k = v or in (3.25) for v and v +1 is equivalent to the
essential self-adjointness of (d + d?).

Proof: If (d + d) is essentially self-adjoint, then by Corollary 3.5 we have
A = A] for all k and the assertion follows from (3.11). The converse
follows immediately from Lemma 3.6. o

Remark: Now we can give a more general proof of the second statement in
Theorem 2.1. We consider M as above with N such that Hj,(N) = 0 and
with a conic metric

dz® + 22c%gy

on U. If ¢ is large enough, then Sy has eigenvalues in (—1/2,1/2), thus
(d+d!) is not essentially self-adjoint and hence we have that pr D((d+d*)min)
is a proper subset of D(d min) ﬁ’D(d}c_l’min) for some k € {v,v + 1}.

Also, even though we have a unique ibc for the de Rham complex, the

corresponding Laplacian is not given by the Friedrichs extension.
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4. Poincaré Duality

Consider an ibc (D, D) of the de Rham complex (Qo(M),d) where M is an
arbitrary oriented Riemannian manifold. In [BL, Sec. 3 and Lemma 4.3] we
have introduced the notion of Poincaré duality for (D, D): it holds if the
maps g; := v—1 ﬁ(l)*,- induce a complex isomorphism (D, D) — (D*, D*);
here 3(%) is chosen in such a way that

iy 0gi=gip10d; on QH(M) . (4.1)

In [BL, Lemma 3.7] we have shown that such ibc’s do always exist if m is
even. If m = 2v+1 is odd then, since the g; above are unitary, the existence
of an ibc with Poincaré duality is equivalent to the existence of self-adjoint
extensions of the operator

=T dy s = {7 I )

1, m=1mod4,

with domain Q¥(M) in L2(A*T*M). This leads us to introduce the defi-
ciency indices of t,

ny(t) := dimker (t* F v=1) € Z U {0} . (4.3)

If m = 3 mod 4, t is real and hence has equal deficiency indices, but if m =
1 mod 4 we meet an obstruction. Thus, one might hope to find interesting
invariants of general Riemannian manifolds. The following simple fact is
the key to such results.

LEMMA 4.1. Let M be a Riemannian manifold, E — M a hermitian vector
bundle, and t a densely defined symmetric operator in L?(E).
a) tmin £ v—1 is a semi-Fredholm operator in L?(E) with

ind (tmin £ V—1) = —n4(t) . (4.4)

b) Consider, for s € [0,1], a family ( , )s of continuous scalar products
on L*(E), equivalent to one another, and a family t° of densely de-
fined operators, symmetric with respect to ( , )s, and with domain
independent of s, D(t°) = D(t%).

If we have an estimate

69w = t7ull,, < elsy — saDllE2ulls, 5 51,52 €[0,1], ue D), (4.5)

with ¢ € C(R4), €(0) = 0, then the deficiency indices are independent of
s €[0,1],
ne(t®) = ny (%) . (4.6)
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Proof: Write Dy := D(t°) = D(t*), then we have for s € [0, 1]
I £ V=Dull > lullf, u€Do.
Since the norms || - ||s on L?(E) are equivalent by assumption we obtain for
T ==t £vV-1
D(Ty)=D(TY) =D,

and the estimate
ITSull? > Jlull? , ueD. (4.7)

It follows that T3 is a semi-Fredholm operator with
ind T§ = —n4(t°);
this proves a).

Observe next that T3 may be considered as a closed operator in the
Hilbert space (L2(E), (-,-)s,) for all s, s2, to be denoted by T5*?. Then we
obtain from (4.7)

ITE*ull?, > C(s, s2)l|ull?, . weD. (4.8)
Moreover, v € ker (T{)* is equivalent to
0= (Tiu,v), = (Ty*?u,Bs 5,v)s, » u€D,

with some bounded invertible operator B,,, : (L*E),(, )s) —
(L2(E),( , )s,). Thus, T3** is a semi-Fredholm operator, too, with

ind T** = ind T3 . (4.9)
Now the estimate (4.5) implies
(T = T8 )ulls, < e(ls1 — s2DITL ulls,-

Hence, assertion b) follows from (4.9) and [K, Ch. IV, Thm. 5.17 and
Thm. 2.14], since ¢ is continuous with £(0) = 0. o

If go and g, are quasi-isometric metrics on M and g; := (1 —t)go + g1,
with Hodge—operator ;, then we easily see that

%, = *1, llL2(aspmg,,) < Clta — tal.

Hence Lemma 4.1 implies the following interesting fact.
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COROLLARY 4.2. Let M be a Riemannian manifold of dimension m =
1 mod 4. Then the deficiency indices of the operator \/—1 x,41 d,, with
domain Q4(M) in L2(A*T* M), are invariant under quasi-isometries.

We will now show that the deficiency indices of
t,:=v-1xd, (4.10)

-~ which we denote by n..(M) - on a Riemannian manifold M of dimension
m = 4k + 1 depend nontrivially on the metric; thus Corollary 4.2 provides
interesting invariants of the quasi-isometry class for these dimensions. We
look at M = (a,b) xy N where —ooc < a < b < x, N is compact, f €
C*(a,b) is positive, and M is equipped with the warped product metric

g=dz* 3 f(z)’gn . (4.11)

with some metric gy on N. We assume N oriented with volume form wy;
M will be oriented by the volume form dz A 73wy, 72 the projection onto
the second factor.

LEMMA 4.3. a) Ifa= —o0, b=oc then ny(M)=n_(M)=0.

b) If —oc < a < b < oo and f is continuous and positive in [a.b]. then
ny(M)=n_(M) = occ.

c) If a =0, b= o0, and both ends are in the limit point case for the
differential operator L = —92 + X/ f(x)?, for X > X, then

ny(M)—-n_(M)= —sign N .
In particular, this is the case for f(z) = x with Xy = 3/4.

Proof: We use the separation of variables as introduced in [BS, Sec. 5], mu-
tatis mutandis. It is based on the unitary map (v = 2k, I :=(a,b). ¢ =
(7 =)
Yyt C(L Q" THN) & QV(N)) = Q5 (M)
(Pv—1,00) = f(x)¥1 150, _1(z) Ade + f(x)*m50,(2) .
A straightforward calculation gives

0 =1 4n dn
RV duwu:\/""l( US N)-

f@)™ ay dy N g

(4.12)

hence we have to look for solutions of the system

0 0\ 0 I —f(z) Vdly*xn Mo—1 ) _
(B 2 g+ (roraen ™) () =0
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in L?({a,b), L%2(AY~'T*N @ A*T*N)). Eliminating 7,—; from the system,
and decomposing 7, 1= N1, =: & + &2 + & according to the Hodge de-
composition

L*(AYT*N) = HY(N) @ dyQ-1(N) @ di Q*+1(N) , (4.13)

we are left with the equations

((% - *V) £1(z) =0, (4.14 a)

[(é ?>%*<f<z)-2dsv3N*N+*N 0 )] (§§)<w>=0- (4.14b2)

Since the decomposition (4.13) reduces Ay, (4.14b) decomposes ac-
cording to the decomposition

dyQ=1Y(N) & di, QV+1(N) = @ Ex\® *xNE),
A€specAn,, \{0}

where Ey = ker (An, — A) NdQ¥~1(N). This leads finally to the system

b 1o (erer o)) (F) @0 @ins

A > 0. Now we study the cases listed above separately.

a) If a = —oo, b = oo then M is complete. Since the symbol of
V=1 *,41 d,, 18 uniformly bounded on the cosphere bundle of M, the method
of Chernoff [Ch] proves essential self-adjointness in this case (alternatively,
analyze (4.14 a) and (4.15) as done below).

b) The second assertion is clear from standard theory applied to (4.15).

c) We split H(IN) =: H{ (N)@&HY (N), according to the 1 eigenspaces
of *n . Denoting their dimensions by b, (V)4 we get

by (N) = b,(N)s + b,(N)—, signN =b,(N); — b,(N)-.

Obviously, the L?-solutions of (4.14 a %) form a space of dimension b, (N )z;
thus, our assertion follows if we can show that the system (4.15,, +) admits
no L?-solutions for any A > 0, under our assumptions.

Let us consider the system (4.15,, +); the other case is reduced to this
one by the transformation (¥)(z) = (f‘))( —z). Assuming the existence of an
L?-solution (!), we obtain

—u"+ 1+ M f(2))u=0,
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ie.
L'y =—u. (4.16)

Scaling the metric as in Sec. 2 and using Corollary 4.2 we may assume
that specA y ,N[~Ao, Ao] C {0}. Thus L is essentially self-adjoint and hence
L* = L is positive. Then (4.16), of course, has no L2-solutions. o

Lemma 4.3 is only a very special case of a fairly general “odd index
theorem” to which we will return in a subsequent publication. Among other
things this index theorem will imply that Lemma 4.3, 2) and 3) hold for
any complete manifold with compact boundary and any conformally conic
manifold, respectively. It will also provide a powerful tool for further study
of the invariants ny (M).

5. Kahler Manifolds

Now we consider the case of a Riemannian manifold of dimension m = 2v
which carries a complex structure on the (real) tangent bundle TM. It
induces a decomposition of the complexified tangent bundle, CQr TM =
TeM =T'M @& T"M, and corresponding decompositions
CRRAT*M = AT¢M = & ANT*MQANT"M= & A™M,
r,s 20 r,62>0
CRr Qo(M) =: QC,O(M) = D QE?O(M) .

r,s20

We assume next that M is a complex manifold (of complex dimension
v), and that the Riemannian metric is induced from a hermitian metric on
T'M, with positive definite (1,1)-form w € QEI(M ). Then we can form the
corresponding L?-spaces, with decomposition

LYATEM) = @ LAA™T*M @ A*T"* M)

r,520

= @ L}A™M). (5.1)

r,820

If we denote by n™° : L2(AT¢M) — L?*(A™* M) the natural projections we
can further decompose

drp |2 (M) = 77 0 dyy JOR (M) + 77 0 dpy o |QR° (M)
= (Brs + 0 )| QR (M) .

Then the de Rham complex, (2¢ 0(M ), d), splits into the subcomplexes
(QE,SO(M)v 6) and (QETO(M)’ 5)7
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0 < r,s < v. Thus, on Qg ,(M) we can define three Laplace-type operators:
Ay, Ay, and Ay, the subscnpt indicating the defining complex. Now,
in general these operators are quite unrelated, but a close relation exists
for Kéhler manifolds and, in fact, characterizes this class. So we assume
from now on that M is Kahler in the sense that the positive (1,1)-form w
defining the metric is closed; w is called the Ké&hler form. Then we have

Ag =205 =27y . (5.2)

More precisely, with A® 1= Ap|Qg (M) (resp. Ag 1= Aj|Qg (M) w
have

Ap=AdQoo(M)=2 @ AP =2 & AF. (5.3)

r+s=t r4s=i

Now we may ask whether these identities persist to hold for suitably chosen
ibc’s of (Qco(M),d).

DEFINITION 5.1:  Let M be a Kéhler manifold and let (D, D) be an ibc for
(Qco(M),d), with Laplacian Ap. We say that the Kdhler-Hodge Theorem
(KHT) holds for (D, D) if the decomposition (5.1) reduces Ap, i.e.

D(Ab)= @ D(AL)NIHA™M). (5.4)

Of course, KHT holds for compact Kahler manifolds. In this case,
however, various other important assertions are true which are collectively
known as the Kahler package (cf. [CGM, p. 303]). To describe it we need
some more structure. We write the Kahler form in terms of a local orthonor-
mal frame, (;), for AYOM,

\/_—ng Ag; . (5.5)
i=1
Hence |w(p)|> =v/4 for all p€ M and
L := wedge multiplication by w (5.6)
extends to a bounded operator in L2(AT¢M). Put
A:=L", H:=[AL], (5.7)

then

— t t.__ 7,8
H= Z(V -tHrt , w= Hf:tﬂ , (5.8)
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[H,L]=-2L , [H,A]=2A. (5.9)

Hence we obtain a representation of sl(2,C) on AT, M, p € M, hence also
on L2(ATEM), from

01 00 1 0
(O O)HA, (1 O)HL, (0 _1)|——+H. (5.10)

This representation gives rise to the “Lefschetz decomposition” of L2(AT¢M)
and of the cohomology of a compact Kahler manifold. Finally, we introduce
the unitary operator

Ji= @ V=1 "z (5.11a)

r,s20
for a linear operator, T', in L?(ATE¢M ) we then put

T, :=J"TJ, (5.11b)
with D(T,) = J*D(T).
DEFINITION 5.2: Let M be a Kahler manifold. We say that the L?-
Kahler package holds for M, if we can find ibc’s (D, D) for (¢ 0(M),d)
and (D", D") for (¢, d) such that the following assertions are true ( for

simplicity of notation, we suppress the dependence on the ibc’s in the for-
mulas below).

a) Hodge decomposition

Ag= & 2AL°, (5.12a)
r+s=t

1t = A T8 = 7S .

Hy :=kerA,; = r+@“37=tker Aj r+s=tH3 . (5.12b)

Hy =HY" . (5.12¢)

b) Poincaré duality If % denotes the Hodge star operator, *; =
Srgs=1 *r s then @y(—1)"x, is a complex isomorphism from (D, D) onto its
dual complex, (D*, D*). In particular, we have isomorphisms

% Hy > HPT, (5.13a)
trs D HE® — HETVTO (5.13b)

c) Hard Lefschetz If all ibc’s involved are Fredholm then L induces
isomorphisms X X

LF:Hy™F —HYF D 0<k<y. (5.14)

d) Hodge signature If v = 2k is even, if b) holds, and if all ibc’s are

Fredholm, then we have the L?-signature theorem

L2signM = Y (-1)"dimH}° . (5.15)
r+s=0(2)
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Remarks: One usually includes the Lefschetz hyperplane theorem into the
Kahler package of which, however, no proof by L?-methods is known as
far as we know. Therefore, we refer to the properties listed above as the
“L2-Kahler package”, with abbreviation L?-KP.

The L2%-signature of M is defined as the index of the elliptic operator
Dg, arising from restricting the canonical operator, D, associated to the ihc
(D, D) for (Q¢o(M),d) to the +1-eigenspace of the involution

ci= ?(\/_——1)”"'“’_1)*1,

which anticommutes with D in view of b). Note that (5.15) continues to
hold if the ibc is only weakly Fredholm in the sense of [BL, (2.24)].

Note also that in the view of (5.12a) (D, D) is Fredholm iff all (D". D")
are. In this case, (5.12b) implies the usual relation between the de Rham
and the Dolbeault cohomology.

Now we want to establish some simple properties of ibc’s for (Q¢ o (M ). d)
which imply L2-KP. We start with an observation involving KHT.

LEMMA 5.3. Let M be a Kahler manifold and let (D,D) be an ibc for
(Qco(M),d).
a) If KHT holds then

A =TAL =AL , 0<t<m. (5.16)
b) If the ibc is unique then (5.16) is equivalent to KHT.

Proof: a) Note first that (J*D, D.) is a Hilbert complex with Laplacian
Ap, = J*ApJ; thus the second equality in (5.16) is always true.

To prove the first it is enough to show that JD(A") C D(AY) since
Al is self-adjoint and [A%,, J] = 0 on a dense subspace. But this is obvious
in view of KHT and (5.11a).

b) Since [A},, 7] = 0 on QF ((M) it is enough to prove that

T D((AD)?) C D(AD) . (5.17)
To do so, we use the following easy principle: if w = 3w, is such that
wr,s # 0 implies wr41,s31 = 0, then w € D(dy max) N D(d}_; n.x) implies
Wr,s € D(d ¢,max) N D(d{_| max) for all 7, s.

Then we see that
Wev fodd = %(w v _1th) € D((AtD)z) >
dtwev/odd € D(AtDJrl) C D(dt+1,max) n D(d:,max) ’
df:._lwev/odd € D(Atﬂl) C D(dt—l,max) A D(d:—Z,max) .
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Applying the principle to wey /094 We find, from the uniqueness of ibc’s,
wrs € D(D)ND(D;_,) .

Next we apply the principle again to diwey/oda £ \/——1t+l.]d,wev Jodd and
df_ Wev/odd £ \/—-1t_1Jd$_1wev/odd to conclude
thr,s € D(Dt+1) N ,D(D:)v D:—lwr,s € D(Dt"l) n D(D:—z) . 0

The next step on the road to L2-KP is the definition of natural ibc’s
on all the complexes (QETO, 0). For any operator T' we write

D>(T) = [ | D(T*) .
k>1
LEMMA 5.4. Let M be a Kahler manifold and (D, D) an ibc for the de
Rham complex with KHT. Then, for each r € Z, the differential complex

;7,1 ar,v—1

ayp° ] ]

0 D=(ap) 2 pe(agh 2, B (A s, (s8)
with 07" := 77*%1 0 D, ,|D®°(AT), has essentially self-adjoint Laplacian.
This defines an ibc for (Q¢, 0) such that the Laplacians satisty the condi-
tions (5.12).

Proof: 1t follows from [BL, Lemma 2.11} that
DD(AY) C D=(AYY), DI, D=(Ab) C D=(A%Y) .
This together with KHT implies
OpD®(AT) c DAY, (5.19a)
and since (Op)*[D®(AFH) = 77 0 Di, D= (AH) we also get
(Op)* D=(A) c DA™Y . (5.19b)
(5.19a) says that the complex is well defined, and with (5.19b) we find
AL = 2Ag’; on D*(AY), (5.20)

§ince this holds on Qg% (M). Hence Ag’; is essentially self-adjoint since Ap
is.

Now we can take the closure of the operators in (5.18) which defines a
Hilbert complex and hence an ibc for (Qg7,0) (cf. [BL, Lemma 3.1]). In

view of (5.20) the corresponding Laplacian is A7, so we obtain (5.12a),

and (5.12b) is an easy consequence. Finally, since for w € QE?O(M )
Ho=AYw,

we obtain this identity also for D(A’); this implies (5.12¢). o

Before we proceed we note that (5.18) gives rise to the following ab-
stract concept which seems useful enough to be singled out.
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DEFINITION 5.5: A differential complex of vector spaces

0= & 2. . D ey 0 (5.21)
will be called a pre-Hilbert complex if the following is true:

&; is a dense subspace of a Hilbert space H;, 0 < i< N, (5.22a)
d;, the Hilbert space adjoint of d; : & — H;;, satisfies

(5.22b)
Eip1 C D(d;‘) and df(€i41) C &

Thus every elliptic complex on compactly supported smooth sections is a

pre-Hilbert complex. Note that the operators D; in (5.21) are closable in

view of (5.22b). Hence we can introduce ibc’s for pre-Hilbert complexes,

and we easily obtain abstract analogues of many results in [BL, Sec. 3].
Now we are ready to deal with the full Kahler package.

THEOREM 5.6. Let M be a Kahler manifold and assume that

the de Rham complex on M has a unique ibc,

(D, D), which is Fredholm, (5.23)

and that
[J,Ap]=0. (5.24)

Then L?-KP holds for M.

Proof: Introduce the ibc’s for (¢, 0) defined in Lemma 5.4. We deal with
the various parts of L2-KP separately.

a) We know from Lemma 5.3, 2. that KHT holds for (D, D), hence the
assertion follows from Lemma 5.4.

b) Since d%,_, _; o (e%)x = (e%)k4+1 0 dx on Q¢ o(M), where e|QF(M) =
(—1)(k=Dk/2  we see that we must have

m—k—1 = (€%)k+1 0 Di 0 (€¥)m—k ,

since the adjoint complex has an unique ibc, too. It follows that (e%),0AY =
A’g"k o (e*), which implies Poincaré duality.

c) The Hard Lefschetz Theorem follows from the representation theory
of sl(2,C) once we know that A and L map @, ﬂ’D into itself and that all
7:(}) are finite-dimensional, cf. [GH, p. 122]. Thus we want the relations

L(D(AD)) C D(Ap), [L7AD] =0, (5.25a)
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and

A(D(Ap)) C D(Ap), [A,Ap]=0, (5.25b)

which hold on Q¢ o(M). Since L is bounded and A p is self-adjoint, (5.25a)
implies (5.25b). Also, it is enough to prove only

L(D((Ap)?)) c D(Ap) . (5.25¢)

Now on Q¢ (M) we have the Kéhler identities [d, L] = 0 and [d', L] = —d,
[W, p. 192]. It follows that

[dmaxv L] =0, [dminaL] =0 5 (526&)

hence by uniqueness of ibc’s
[D,L]=0; (5.26b)

moreover, evaluating (Lw, Dn) for w € D(Ap) = D(Ap,) and 5 € Q¢ (M)
gives

[D*,L] = —-D. on D(Ap) . (5.26¢)

Thus, for w € D((A%)?) we have Lw € D12 N Dj,,, by (5.26b) and (5.26¢),
and

Diy9Lw = LDyw € Djy,,
by (5.26¢), since Dyyaw € D(AF?), as well as

Di Lw=LD; w— Dw € Diyy ,

since D;_,w € D(Ap) and D.w € D(Ap,) = D(Ap).

d) The Hodge signature theorem is a consequence of the representation
theory of sl(2,C), the Kahler geometry and a)-c) (since we have (5.25a,b)).
The arguments in [W, Sec. V.6] or [GH, Sec. 0.7] carry over literally. One
only has to be careful with domains; but (5.25a,b) guarantee that everything
goes through. The proof is complete. o

Remarks: 1. We have in fact shown that (5.25a) holds for A}, if the ibc is
unique and A}, = A}, for j =t,t4 1.
2. Note that (5.24) is a commutator of an unbounded operator with

a bounded operator. Because of its significance for our considerations we
emphasize that [J, Ap] = 0 means

JD(Ap) C D(Ap)
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and

JApw = ApJw for w € D(Ap).

Since J and A commute on smooth forms with compact support, for proving
[J, Ap] = 0 it suffices to check the inclusion JD(Ap) C D(Ap).

Let us observe that (5.23) and (5.24) are automatically satisfied if all
AYQE o(M) are essentially self-adjoint in L*(A*T¢M) and the unique ibc
is Fredholm. The Fredholmness is equivalent to saying that 0 is not in the
essential spectrum of any AY), cf. [BL, Theorem 2.4]. Thus we find

COROLLARY 5.7. Ifall A'|Q% (M) are essentially self-adjoint in L*(A'T¢ M)
and 0 & U;spec, A then L?-KP holds on M.

In particular, A*|QF (M) is essentially self-adjoint for every complete
Kahler manifold [Ch].

We now proceed to the main result of this section which will give th.
conclusion of Theorem 5.6 under a weaker condition than (5.24); this will
be crucial for the applications we have in mind.

THEOREM 5.8. Let M be a Kidhler manifold with (5.23) and
[J,AL] =0 fort<v. (5.24')
Then L%-KP holds for M.

Proof: Note first that Poincaré duality holds for M since this uses only
(5.23). Then we have (e#)r Ak = ATF(ex),, so (5.24') implies

[J,AL] =0 for t#v. (5.24")

We want to show that (5.24") already implies (5.24). To do so we proceed
in two steps.

In the first step we start from the Lefschetz decomposition of
L%(AYT¢M). Denote by PM := ker A the subbundle of AT¢M consist-
ing of primitive elements, then

PM = & PMNA'T¢M =1 ¢ P'M .
>0 >0

The representation theory gives

NTeM ={ @ L'P"2 M@ PPM (5.27)
v—2120
1>0
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and the corresponding L2-decomposition

L*(A*T*M =[ @ g LY(L'P*~2 M) 4 L*(P*M) . (5.28)
1>0

Now we show that the decomposition (5.28) reduces both Af, and AY, .

The key observation is that we have unitary isomorphisms (cf. [W. p. 182,
(3.16)])

Ul . Pl/——?lM N LlPu—2lM ’
U=ay LY U =a,A a,; >0, 1>0. (5.29)

From (5.25) we derive that the orthogonal projection onto LZ(P“~2!M)
reduces A‘b‘ﬂ = A‘L’):ﬂ if I > 0. Hence we find with (5.29) that also the

orthogonal projection onto L2(L'PY=2'M) reduces AY, with intertwining
relations

ooy [L2(LIPYTHM) = U(AG 2P M) U 1> 0,

where we also use that [J, L] = 0. Since A'I’)_Czl = A%72 by assumption, we
conclude in particular that

AGILHLIPY 2 M) = AY, |L2 (L'P2'M) , 1>0.

Thus we see that (5.28) reduces A'D,,, and that A% = A%, coincide on the
first summand of (5.28).
In the second step we show that A% |[L*(PYM) =: Q. extends

AY|L?(P¥ M) =: Q implying equality since both operators are self-adjoint.
It is enough to show that D>(Q) C D(Q.) since Q@ = Q. on C§*(P"M).
Thus pick w € D®(Q) C D®(A%) and observe that H|L*(AYTEM) = 0,
implying
0=Hw=ALw,
hence from [W. p. 181] also
0=Lw.

It follows, using more Kahler identities [W, p. 193] that

dw = [L,d"\w = Ld'w € L*(A*T'T¢M)
dlw = [d,AJw = =Adw € LE(A*"'TEM)
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hence w € D(D,,,) ND(D?,_;) by uniqueness of ibc’s. Moreover

did.w = d'Ld'w = [d., L}d'w + Ld'd'w
= dd'w + Ld'd'w € L*(A*TeM) |

since d'w € D®(AY!) = D*(A%'). Finally,

dediw = —d Adw = —[d,, Ajdw — Ad.dw
= d'dw — Ad.dw € L*(A"T¢M)

since dw € D®(A%M) = D“(A”Dtl). The theorem is proved. !
We are now in the position to establish the L2-Kahler package for
conformally conic Kahler manifolds.

THEOREM 5.9. Let M be a conformally conic Kahler manifold. Then the
L?-Kahler package holds for M, and all ideal boundary conditions involved
are Fredholm.

Proof: The given Kahler metric on M is conformally conic in the sense
of Sec. 2, by assumption. Hence we can apply Theorem 3.7, and it only
remains to show that

AL, J]=0if t#£v. (5.30)
But A}, = (AY)F for t # v, so w € D(AL) iff w € D((ALINL o(M))*) and
we can find a sequence (wy )neN C QE,O(M) such that, with wp;, 1= Wy, —wy,

Wn = w in L2(A'TEM), n — oo,

(Afiwnmawnm)Lz + ”an”2L2 -0, m>n—o00.

Since [A}, J] = 0 on Qg (M) and J is unitary, it follows from a routine

check that J maps D((A4)%) into itself. But this implies (5.30) and com-
pletes the proof. o

We also have the following interesting consequence on uniqueness of
ibc’s for the Dolbeault complexes.

COROLLARY 5.10. Under the assumptions of Theorem 5.9, the operators 9
and 0 on Qg% (M) have unique closed extensions in L*(A™*M) if r + s #
v—1,v.
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Proof: Denote again by (D, D) the unique ibc for the de Rham complex.
Then (D, D) induces ibc’s on the Dolbeault complexes by the prescription
of Lemma 5.4. Now we know from Theorem 3.9 that KHT holds for (D, D),
and Theorem 3.7 gives A}, = (A})” for t # v. It then follows from the
characterization of the Friedrichs extension above that 7™* maps D(AY)
to itself for t # v, so the corresponding Dolbeault Laplacians also coincide
with the Friedrichs extension if r + s # v. Now the assertion follows from
Lemma 3.4 and Poincaré duality. o

To conclude this section we add a few remarks on the case of Riemann
surfaces, i.e. v = 1. So let M be any Riemann surface; then every Rie-
mannian metric on M is Kahler. If M C CP" is e.g. an algebraic curve
equipped with the Fubini-Study metric, then the assumptions of Theorem
5.8 are satisfied, as shown in [BPS]. However, 0 : Q%?O(M ) — Q%}O(M ) in
this case may have many closed extensions showing that Cor. 5.10 cannot
be improved in general. We want to discuss now a special ibc which satisfies
L?-KP on any Riemann surface.

From the de Rham complex

0 — 0% o(M) 2 QL o (M) 25 Q% (M) — 0
we derive the ibc

0 = Do 22" D, L D, -0, (5.31)
which obviously satisfies Poincaré duality. Here Dy := D(dg min). D1 :=
D(d1,max), D2 := L2(A?T, ¢ M); the corresponding Laplacians will again be
denoted by A%, 0<t<2.

From the corresponding Hodge diamond

we want to derive closed extensions for ™* and d™* as possible candidates
for a Hodge decomposition compatible with (5.31). In each step we will



470 J. BRUNING AND M. LESCH GAFA

consider only 877 Jmax ©OT s Jmax; the corresponding Laplacians will be

denoted by Ag’:, e OT ATS , 0<r, s <1. We introduce

ma amin/mnx

DX := DP(AL) = ﬂD((AtD)’“), 0<t<2,
k>1

(~)
DX:=D®(A, ), 0<rs<1.

9min
LEMMA 5.11. The complex

d min - d max
0— D 2 D, @ Doy~ D — 0 (5.32)
is a pre-Hilbert complex with essentially self-adjoint Laplacians. In partic-

ular, the unique ibc of the de Rham complex generated by (5.32) satisfies
KHT.

Proof: First we have to verify the conditions of Def. 5.5. Clearly, the various
spaces are dense in the respective Hilbert spaces, so (5.22a) holds.

Next we verify that Dg° = Dg% = 53? o C D¢ — which is obvious — and
domin(D§°) C DY @ —’5871. Now on Qg ;(M) we have

do = 80 @ §°°

implying _
Do C /D(agl’lon) n D(ar(:;lon) .
(=)
Thus our assertion follows from [BL, (2.34)] applied to 8% .
For the middle term, we have to show that

Dlo?o 8Y 2_)8?1 - D(dl,max) n ’D(dé,max) ’ (5333)
dl,max(Df?O B 238?1) C DQOO s (533b)
dg max(P5o © D55) C Dg° . (5.33¢)

To see this, we use the following relations between the Laplacians:
Bomn =B+ Do = Doy - (5.34)

In fact, the Kéhler form equals volys and we have L = *7°, A = %72, hence
the Kahler identities [W, p. 193] imply on Q¢ o(M)

(0% = V=1[A, 8] = V=1 %, ', (5.35a)



Vol.3, 1993 KAHLER-HODGE THEORY FOR CONFORMAL COMPLEX CONES 471

= V-1[L,8" = —V~=1(6"%)! %o . (5.35b)
Thus, after taking closures

AL = ()T = (B2,)" %o %2012

min min max max

= AL

amax
The second relation in (5.34) follows by complex conjugation.
Now we can argue as before (using [BL, (2.34)]) to obtain (5.33). The
same reasoning gives the result for the third term:
DZ C D(dtl mm) dl min (Dgo) C Df?O EB ﬁg?l . (536)

Turning to the Laplacians we observe that the Kahler structure implies

that
Ap =28y =2A3"  on DF, (5.37a)
Ap =245 ®2A%'  on D@D, (5.37b)
Ah =245 = 2A(1§iin on D . (5.37¢)

Since the domain is, in each case, a core of the self-adjoint operator on the
right hand side, the Laplacians are all essentially self-adjoint. Hence (5.37)
also implies KHT. o

We note some corollaries.
COROLLARY 5.12. We have
Ap =2450 =243° =(A)”
1 — 2(A1.0 A%,lm) ;
A =24, =245
COROLLARY 5.13. Putting
HYO =W N LA(AYO M), HO = H' N L2(AOT M),

n

we have
H'O = ker (90 )" = ker Oy, =t HY® (5.38)
HO = ker (3% )* = ker 8%L, = HO' (5.39)
HLO = HOL (5.40)
H =H"OC RO . (5.41)

Moreover, if dy min has closed range then this is true for 9y min and govmin,
too, and

H > HY ~ L2(AY M)/ im0 @ ker 8%L (5.42a)
~ LAH(A®' M)/ im 82 ®ker L2, . (5.42b)
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Proof: In view of our previous results we only have to verify the asser-
tion on domains; thus assume that imdo,min is closed, such that df ;) =
— %9 dg min*o also has closed range. Then we have the strong Hodge decom-

position:
LEHAYOM) @ LH(A® M) ~ ~H' @ im do,min & 1m d1 min -

Now pick w € L2AYM)N ﬂiL,o? we can find £ € D(do.min),n € D(d!

1. mm)

with w = dominé + di ian. But & € D(A%Y) and dominf = Opiné, and
since di max|D(d max) N L2(AMY M) = 0},12,( we also get d1 minl = (a,lngx)* .

Using (5.35) we find (010, )* = \/—lagﬁn*z, hence
w = 8?,;&(5 +V-1x7).

So im 80’.n is closed, and by complex conjugation im Bmm is also closed. ©

COROLLARY 5.14. (D, D) is a Fredholm complex if and only if OSmOH is a
Fredholm operator. In this case,

ind (D, D) = 2 ind 8y i

IfM C CcPV is an algebraic curve with normalization  : M — M then
ind Op,min = %X(M), x{(M) the Euler characteristic of M, so

ind (D, D) = x(M) . (5.43)
In this case, the L%-cohomology coincides with the cohomology of M.

Proof: The Fredholm property is equivalent [BL, Thm. 2.4] to the fact that
0 is not in the essential spectrum of Ap. Thus the assertion follows from
Cor. 5.13 observing that AL Oin and AO 1. are unitarily equivalent. From
Cor. 5.13 we also derive the index formula (5.43).

Finally, (5.44) follows from the main result in [BPS]. D

We remark that Nagase has obtained Corollary 5.12, Corollary 5.13
and Corollary 5.14 in the special case of algebraic curves, using heavily the
conformally conic structure [N1], [N2]. Both proofs of Corollary 5.14 have
the same source since his proof is an adaption of the method in [BPS] to
the Gaufi-Bonnet operator. We emphasize that in the case of Riemann
surfaces the L?-Kihler package always holds for our special ibc, and that
the cohomology calculation reduces to the calculation of ind 531’&.
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