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F O R  C O N F O R M A L  C O M P L E X  C O N E S  

J .  B R U N I N G  AND M .  L E S C H  

1. I n t r o d u c t i o n  

In a recent publication [BL] we have introduced the notion of "Hilbert 
complex". By this we mean a differential complex of vector spaces, 

0 ) .Do Do .D1 D1 . . .  DN--)I .DN I 0 , (1.1) 

where "Di is dense in some Hilbert space Hi  and Di : "Di -*  H~+I is closed. 
This additional functional analytic structure proved to be quite useful, and 
we obtained a very general setting to deal with questions like weak and 
strong Hodge decomposition, L2-cohomology and L2-index, Poincar@ dual- 
ity, smooth cohomology, Kfinneth type formulas etc. Our main motivation 
for this study was the analysis of elliptic complexes on singular spaces; we 
hoped that  the notion of Hilbert complex would provide a convenient frame- 
work to compare the many results that  exist in special cases, and to guide 
future analysis. We have substantiated this hope somewhat in [BL, Sec. 4] 
where we studied the de Rham complex in various situations. Consider, 
e.g. an arbitrary Riemannian manifold, M, and the de Rham complex with 
compact support, 

0 --, f~~ do ~o~(M) d, . . .aN-)  12oN(M ) --, O. (1.2) 

Then we ask whether we can find closed extensions of the di (in the natural 
L2-spaces defined by the metric) which combine into a Hilbert complex of 
the form (1.1); every such choice will then be christened an "ideal boundary 
condition" (ibc) for (1.2) (inspired by the pioneering work of Cheeger on 
conical singularities). It turns out that this can always be done; e.g. by 
choosing D~ = di,min (the closure) or Di = di,m~x (the adjoint of the closure 
of d~); these two choices will be referred to as the "relative ibc" and the 
"absolute ibc", respectively. There may be, however, infinitely many other 
ibc's, with more or less pleasant features. So one is looking for further 
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criteria to select "good" ibc's, and, of course, the case where the relative 
and the absolute ibc coincide deserves particular interest; this we call the 
"case of uniqueness". 

The present paper at tempts  at further progress in this direction. Its 
main motivation is to incorporate the so called "L2-Ks package" (as 
introduced in [CGM]) into the framework of Hilbert complexes. Thus, as 
one of the main results (Thms. 5.6 and 5.8) we state rather simple func- 
tional analytic properties of the de Rham complex on an arbitrary K/s 
manifold in order for the L2-K/ihler package to hold. Notably, we require 
that  we have uniqueness of ibc's, which might be true for all projective 
varieties equipped with the Fubini study metric. This fact is beyond our 
reach, however, for the time being. Instead we look at the class of "con- 
formally conic Ks manifolds" for which we have uniqueness and where 
we achieve the most satisfying result (Thm. 5.9). Among these manifolds 
we find at least all (singular) algebraic curves and all complex cones. Thus 
we achieve a considerable extension of Cheeger's work in [C2], where the 
L2-Ks package for metrically complex cones was obtained under the 
additional assumption that  the complex structure J is conical [C2, p. 119]. 
Confonnally conic Ks manifolds in our sense are a considerably more 
general class than metrically conic KKhler manifolds, and we do not require 
any additional assumption on the complex structure. 

For general Riemann surfaces we do not have uniqueness. Nevertheless, 
we construct an ibc for the de Rham complex which always satisfies the L 2 
Ks package (Sec. 5). 

We remark that  other aspects of Ks geometry are of interest in 
this context, too. For a remarkable contribution one may consult Ohsawa's 
work on the so-called Cheeger-Goresky-MacPherson conjecture [O]. 

This paper is organized as follows. Sec. 2 introduces the analytic tools 
to deal with conformally conic manifolds. They are closely related to the 
methods developed in [BS]. The results also resemble those in the conic case; 
in particular, the case of uniqueness prevails only if the dimension is even 
(Thms. 3.7, 3.8). 

In Sec. 3 we investigate the relationship between unique ibc's and the 
Friedrichs extension of the corresponding Laplacians. This is a decisive tool 
in the uniqueness proof. 

Sec. 4 is devoted to new invariants associated to Riemannian manifolds, 
M,  of dimension 4k + 1, namely the deficiency indices, n+ (M),  of ~/-Z-]-*2k+l 
d2k. We show that these are invariant under quasi-isometries (Cor. 4.1) and 
that  they are nontrivial (Lemma 4.3). Particularly intriguing is the formula 

n+(M) - n_(M) = - s ign  (N) (1.3) 



Vol.3, 1993 K . ~ H L E R - H O D G E  T H E O R Y  F OR C O N F O R M A L  C O M P L E X  CONES 441 

if M is the infinite cone over the compact  manifold N.  We will discuss 
generalizations of (1.3) elsewhere. 

Finally, Sec. 5 contains the results on Ks manifolds sketched above. 
The work of bo th  authors  has been supported by the G A D G E T  pro- 

gram of the EC and by Deutsche Forschungsgemeinschaft .  

2.  T h e  M o d e l  S i t u a t i o n  

Assume tha t  M is a Riemannian  manifold of d im M -- m, with an open 
subset U C M such tha t  

M1 := M \ U is a complete manifold with compact  boundary  N,  (2.1) 

U is isometric to (0, c) • N ,  d i m N  -- m - 1 =:  n, with 

metr ic  g = h(x)2(dx  2 |  where gN(x)  is a family 
(2.2) 

of metrics on N,  smooth  in (0, ~) and continuous in [0, c), 

and h E C ~ ( ( 0 ,  e) x N)  satisfies 

sup [(xOx)J(x-Ch(x,p)  - 1)[ = O(x  ~) as x ---, 0, j = 0, 1 , (2.3) 
pEN 

and 

sup ][h(x,p)-ldNh(x,p)[[TSN,aN(x) = O(x  ~) as x ---, 0 ,  (2.4) 
pen  

for some $ > 0 and c :> -1 .  

Thus,  we do not  assume tha t  gN(x)  is smooth  up to 0. But  just  continu- 
ity is not enough so we have to introduce an assumpt ion  on the asympto t ic  
behaviour near  0. As in [B, Sec. 5] let 

g0 := dx 2 •x2  giv(O) , 

gl : :  h - 2 g  = dx 2 | X2gN(X) , 

and denote by V ~ V 1 the Levi-Civita  connections for gO, gl wi th  connection 
forms w ~ w 1. Then  our assumpt ion  is (cf. [B~ (5.2)]) 

sup([g1 o o - g I(~,p) + x[ ~a~ 1 o - = o(x ) , x - - .  o ,  (2.5) 
pEN 

where ~ is as above and  the superscript  0 refers to gO. 
If the Riemannian  manifold M satisfies (2.1) through (2.5) then  we will 

call it a conformally conic manifold.  
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Now denote by d the exterior derivative, by d t its formal adjoint with 
respect to the metric g, and by DaB : f~0(M) ~ f~0(M) the Gaufl-Bonnet 

r~ev/odd ~oV/Odd ~'~odd / ev operator; we also consider ~GB : (M) --~ (M). Of course, 
DcB = DcBev | D~dB d and ~'cB:tr~ev ~t = D~d~. These are closable operators in 
Le(A*M) with many closed extensions in general. The relationship between 
the closed extensions of Dct~, d ,d  t has been discussed in detail in [BL]: 
some further aspects will be given in the next section. The following fact 
is important for understanding the next theorem. From the weak Hodge 
decomposition [BL, Lemma 2.1] one easily derives that 

[ w  E L2(A*M) there is a sequence (0,,) C ~0(M) ] 
"D(DGB,min) = ~such that  0,~ ~ w and (dOn), ( fOn)  are Cauchy 

I, sequences in L2(A*M) 
(2.6) 

thus 
"D(DGB,min) C D(dmin) f3 D(dtmi.) (2.7) 

which is a proper inclusion in general, as we will see below. The aim of this 
section is to prove the following theorem. 

T H E O R E M  2.1. Let M be conformally conic. Then we have 

:D(dk,max) f'l D(d~_l,max) C :D(DGB,min) (2.8) 

for all k except possibly m/2 ,  (m 4- 1)/2. 
For k = m/2  or k = (m 4- 1)/2 it may  happen that D(DaB,min) N 

L 2 ( A k T * M )  is a proper subset of D(dk,min ) t-1 D(d~_l,mi n ). 

This theorem is the source of all assertions concerning ideal boundary 
conditions and Hodge theory in the rest of the paper. Among other things, 
we will easily recover Cheeger's results on the L2-Stokes theorem (cf. [C1]). 
But Theorem 2.1 above is much stronger than that,  since it has implications 
in the K/ihler case. 

Via the transformation 

1 
y(x) . -  - -  x c+1 (2.9a) 

c + l  

the metric changes into 

.q = h2(dy2 �9 y2gg(y))  (2.9b) 

which satisfies (2.1) through (2.5) with c=0. Thus ~ is quasi-isometric to a 
conic metric. But we want to point out here that  the inclusion (2.8) is not 
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invariant under quasi-isometries; this will become clear in the proof below. 
Because of (2.ga,b), from now on we will assume c = 0 and write again 
g, h, gN instead of ~, ]z, gN. As in [BS, Sec. 5] one constructs linear maps 

Ck: C~((0 ,  e), f~k-1 (N) @ ~k(N))  ~ ~tok(U) (2.10a) 

which extend to unitary maps 

g'k : L 2 ( ( O , c ) , L 2 ( A k - a T * N  | A k T * N ,  gN(O)) --'* L2(AkT*U)  (2.10b) 

such that 

tb~+ldk~Jk=:h-i [(00 (--X~kOqx) + (,_qdo,kaCSf,k(X)) ] ( 2 . 11a )  

where 
dN&-i  ( - 1 ) k ( k - n / 2 ) )  (2.12a) 

sd'k := 0 dg,k 

and Sdk(x )  is a family of first order differential operators on ~(N) ,  smooth 
in (0, e), and satisfying 

IISal,k(X)i[u,_n 2 = O(X~) , X ~ O . (2.13) 

Taking adjoints we find 

*kdk*k+l ----- ( _ _ l ) k + , 0  x "~- (SdOik "~ Se,k(X) ( 2 . 1 1 b )  

w h e r e  

N,k-1 
: =  a 

N,k 
d ~ and $1, k satisfies (2.13), too. Here we have used (2.3). 

The Ck induce unitary operators [BS, (g.9a,b)] 

ev/odd 
Cev/odd : C•((0, e), a ( N ) )  --* a o (U) , (2.12b 

and from (2.11a,b) we obtain immediately 

* * d d D ~ r  = h -1 [Ox -[- x- l ( s0  -4- Sl(X))] 

(2.12b) 

(2.11c) 
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with ([BS, (5.10)1) 

So  ~- 

N , 0  " " �9 

d ,o cl  d t 0 N , 1  " " " 

" . .  " . .  " .  �9 

dN,n-2 Cn-1 d t N , n - 1  
�9 �9 �9 0 dN,n-1 Cn 

, ck :=  ( - 1 ) k ( k -  n / 2 ) ,  

(2.12c) 
and S 1  ( X )  is a family of first order differential operators, smooth  in (0, e), 
satisfying the est imate (2.13). Since So is elliptic, DaB is a regular singular 
operator in the sense of [B, Sec. 3]. The spectrum of So, which is essential 
for the investigation of the closed extensions of DaB, has been determined 
in [BS]. Because of its significance for the proof, we restate the result. We 
present it in a slightly different way, however, because we want to specify 
explicitly those forms which correspond to eigenvalues between - 1 / 2  and 
1/2. Since N is compact ,  dN and d~v have unique closed extensions, which 
we denote by dN and d~v , too. Pu t  ([BS, p. 699]) 

7-l~,~d(N ) : =  {w e ~k(N) I Akw = Aw, d ~ 0}, (2.14) N , k - 1  02 --~ 

the space of coclosed eigenforms of Ak with eigenvalue A. In particular, 
n0kcd(N) = ~ k ( N )  is the space of harmonic k-forms. Then we have an 
orthogonal decomposi t ion 

L2(A*N) = @ ~ k ( N ) |  2o  [ ~ ' c c ' ( N ) |  " 
k>o 

(2.15) 

LEMMA 2.2. Let N be a compact Riemannian manifold of dimension n, and 
consider with c = (Co, , ca) E C n+l " ' "  , P = ( P l , " ' ,  f in )  E C n the operator 
S :  12(N) ---* i2(Y) defined by 

(co 1 o o)(!o) 
pldo cl p2dtl . . .  0 

w ~ " ".. ".. ".. " (2.16) 
t Pn-ldn-2  ca-1 pndn_l 

0 . . .  0 pndn-1 cn n 

Then the decomposition (2.15) reduces S in the following sense: 

SI~k(N) = c k I d  ; (2.17) 
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k--1 for T] 6 7/~,cd(N) \ {0} consider the space V, C L2(A*N) with basis 

{~], A-1/2d~}. Then 

Sly. = ( ok_, pk:~,/2 ) (2.18) 
k P k~1/2 Ck " 

Thus, from (2.18) we obtain eigenvalues 

#+(A) = (ck-t + ck)/2 + (1/2)r  -- ck) 2 + 4p2A, (2.19) 

k--1 i r a  > 0 and :Hx,cd(N ) # 0. In particular, i f S  = So in (2.12 c) we get 

p+(A) = ( -1 )k /2  4-- ~/(k - m/2) 2 + A .  (2.20) 

Proof: The proof follows from a straightforward calculation, o 

C O R O L L A R Y  2.3. 1. I f m  = 2v is even then spec(S0)N ( - 1 / 2 , 1 / 2 )  # @ if 
and only if 

specA~_l,ed n (0, 1) :~ @. 

Eigenforms of So with eigenvalues in ( -1 /2 ,  1/2) are in d t (~2"(N)) | N,v-1 
dN,~,_l(f~'-t(N)). 

2. I [ m =  2v + 1 is odd then spec(So)n ( -1 /2 ,  1/2) # 0 if and only if 

(specA._l,~d N (0, 3/4)) O (specAv,cd D [0, 3/4)) # @ . 

Eigenforms of So with eigenvalues in ( -1 /2 ,  1/2) are in dtN,~_l(~2"(g)) | 
Q'(N) �9 dm,,(f~'(N)). 

Now we are ready to prove Theorem 2.1. 

Proof of Theorem 2.1: We consider first the case k = 2j. Pick w 6 
D(d2j,max) n D(d~j_t,ma• and ~ 6 C~( ( - e , r  with ~ = 1 near 0. ~ can 

Dr D ~  be viewed as a C~176 on M. Clearly, we have w s ~ CB,m~x), and 
since 1 - ~ E C ~ ( M )  also 

~D/Dev ( 1 - ~ ) w E  ~ aB,m~• 

Put for t 6 (0, r U, := (0, t) x N. By assumption, M \ U, is complete and 
for t small enough (1 - ~ ) ] U  \ U, is 0 near the boundary {t} x N. Thus we 
conclude 

"DrD ev ( 1 - v ) ~ e  ~ CB,min) 
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Indeed, applying [Ch, Theorem 2.2] to the duplication of M \ Ut, which 
is complete and without  boundary, we reach the conclusion. It remains to 
prove that  Tw E D(D~VB,min). Put  

0 := (•2/-1, O2j) := Y)*v ( ~ )  e L2((0, r L2(A2J-IT*N| gN(0))) ; 
(2.21) 

then by [B, Cor. 3.2] we have to show that  

I1~(~)11 = o ( x ~ / 2 l l o g x l ~ / 2 )  , x ---, O . (2.22) 

We would like to apply [B, Lemma 3.7]. But,  unfortunately, we may 
have specS0 f3 ( -1 /2 ,  1/2) r 0. We put  for 1 > 0 

~ j + ,  := (-a)~(Ic~jl § l)sgn c 2 j  , 

a 2 j - ~ - t  := ( -1 ) t ( I c2 j -~ l  + l) sgn c ~ j _ ~  , 

and consider 
DG B -  o,ov := h -1 (Ox + x - l (S~  + Sl(x))) 

where S~ is the operator obtained by replacing c by a in the definition of 
So (2.12c). Since a 2 j - 1  = c 2 j - l , a 2 j  = c2 j  w e  have 

~ a , e v  at,* D e v  ~/, .~ 
D G B  ( ~ )  = ' .odd V B ' , ~ v ' ~  �9 

Using Lemma 2.2 it is now easy to check that  

spec S~ fq ( - 1 / 2 ,  1/2) = 0 ,  

for 2j ~ m/2,  (m 4- 1)/2. Thus we deduce (2.22) from [B, Lemma 3.7 and 
Lemma 3.2] and we are done in this case. 

If k = 2j + 1 is odd, we repeat the above argument  with D~dB d in place 
of D~vB and everything goes through. 

We prove the second assertion only in case m = 2v even; see also the 
remark after Proposit ion 3.9 below, which yields a proof for arbitrary m. 
We look at the conic metric 

g :m d x  2 0 x2  g N  �9 

For any c > 0, gr is quasi-isometric to 

gc := dx 2 ~3 X2C2gN =: dx 2 | x2gN,c . (2.23) 
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Denoting by A~v the Laplacian on Q(N) with respect to gN,c, we clearly 
h a v e  

A~ = c-2A~v . (2.24) 

Thus, for c large enough, we have 

specAu_l,ccl N (0, 1) ~ 0 , 

and by Corollary 2.3 there is an eigenform q E d t (Q~(N)) N,u-1 
dN,~,_I(fP'-I(N)) of So with eigenvalue # E ( - 1 / 2 ,  1/2). With ~ as above 
we put 

w := V~(x-"~rl) . 

ev \ D/Dev Then by [BS, Lemma 3.2] w ~ D(DaB,m~x ) \ t GB,min) and since w 
is of degree u = rn/2 this implies (see also the proof of Theorem 3.8 below) 

W E D ( d u , m a x )  t N/)(du_l,max) �9 

In Theorem 3.7 we will show that dk,m~x = dk,min for all k in this case 
and we are done. D 

3. Uniqueness of ideal boundary conditions 

We now study the question of uniqueness of ibc's. First we collect some 
general results which will be applied to the de Rham complex on conformal 
cones in Theorems 3.7 and 3.8 below. 

We start with a general result on differential operators. Let E, F be 
hermitian vector bundles over an arbitrary Riemannian manifold M,  and d : 
C~C(E) --* C ~ ( F )  a differential operator. We denote by dtd y: the Friedrichs 
extension of the symmetric nonnegative operator dtd, with domain C ~ ( E ) ,  
in L2(E). 

LEMMA 3.1. !. dtd J" t : d m a x d m i  n . 

2. The map associating to each dosed extension, D, old the sdf-adjoint 
extension D*D of dt d is injective. 

Proof: 1. Since both operators are self-adjoint, it is enough to prove that 
t : " ~ ) ( d m i n )  E u D(dtd ~) C ~)(dmaxdmin ) {u E I du D(dtmax)}. if E D(d'd y)  

then, by definition, u E 7)(dmin) and u E D((dtd)max) which, obviously, 
t implies du E 79(drnax ). 

2. It follows from the polar decomposition, D = U(D*D)�89 [K, p. 334], 
and f rom the fact  tha t  79(D'D) is a core for I)((D*D)�89 = 7)(D) [K, p. 281], 

that D = dmax I/) ((D* D) �89 This implies the assertion. 
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Consider now an arbitrary elliptic complex on the Riemannian mani- 
fold M,  

0 ~ C~(Eo)--~%C~(Et)  d l . . . d N - r  ) ~ O, (3.1) 
N 

which we denote by (C~(E) ,  d), E = | Ek. For the corresponding Lapla- 
k=O 

cian on C ~ ( E ) ,  
N 

A = ( d T d ~ )  2 = :  | A k ,  (3.2) 
k=0 

we obtain from Lemma 3.1 

A :r = (d + dt)m~x(d + dr)rain , (3.3a) 

in particular 
D ( / X ~ )  C ~) (d i ,min)CI  ~) (d~_l ,min)  . (3.3b) 

Various other self-adjoint extensions are derived from ibc's for 
(Cg'(E),  d). For example, with k E l +  U {cr we may define 

f di,min , i _< k -  1, 
D~ 

"~k d i ,m a x ,  i _> k. 

This defines an ibc, (D k, Ok), for ( C ~ ( E ) ,  d) as in [BL, Lemma  3.1]; 
in particular, for k = 0 and k = or we obtain the absolute and rela- 
tive boundary condition, respectively. ( C ~ ( E ) ,  d) admits  a unique ibc iff 
dk,min = dk,m~• for all k. We now give some conditions which imply this 
equality. 

LEMMA 3.2. dk,max = dk,min i f f  Akk = A ~ .  

Proof: We have 

t (3.4a) A~ = dk_l,mind~_x,ma x + dk,mindk,max , 

t . (3.4b) / k ~  = dk_ l ,m ind t k_ l ,max  Jr- dk ,maxdk,min 

t t oo T h u s ,  dk,max = dk,min implies dk,ma x = dk,mi n h e n c e  A~ = /X k . 

Conversely, if A~ = A ~  then from [BL, Lemma  2.11] we infer that  
D(A~) is a core for dk,max whereas D(A~) = D(A~ ~ C •(dk,min). o 

LEMMA 3.3. Assume that, for some k E 7+,  

:D(dk,max) V1/)(d~_l,max) C V((d + dr)rain) . (3.5) 

Then 

dk,max = dk,min , (3.6a) 
d t -- d t (3.6b) k - l , m a x  w k - l , m i n  , 

t . ( 3 . 7 )  / k ~  k = A k = dk_ l ,m ind tk_ l ,m in  + dk ,mindk ,min  
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Proof: We prove first the equality (3.7). It is clearly enough to show the 
inclusion D(Aff)  D D(&~): for u E D(A~) we have, using (3.4), 

u E 7)(dk,max)O 7)(d~_l,max) C 7)((d-t-dt)min), 

hence u e D((d+dt)m~• = D(AJ=), by Lemma 3.1. This proves 
the first equality in (3.7); the second follows from the first, (3.3b), and 
(3.4a). 

Now if (D, D) is an arbitrary ibc we find 
t 7)((D*D + DD*)k) D 7)(dk,mindk,mi n + dk_l,mindtk_l,min) -= 7)(A~k ), 

hence again (D*D + DD*)k = Aft. Here D is the operator obtained by 
"rolling up" the complex (7), D), cf. [BL, (2.12)]. Choosing in particular 
Di = D~ we obtain (3.6) from Lemma 3.2. D 

We also have a partial converse to Lemma 3.3 

LEMMA 3.4. Let (79, D) be an ibc for (C~~ d) such that 

(DD* + D*D)j = A~  , O < j < k . (3.8) 

Then we have 

Dj = dj,min , j < k ,  (3.9a) 
* t Dj = dj,mi n , j _< k - 1 ,  (3.95) 

in particular, 
dj,min = dj,max , j < k - 1 . (3.10) 

Moreover, 

D((d+d~)min)NL2(Ej) =D(dj,rn.,n)flD(d~_l,min) , j < k ,  (3.11) 

D((d + dt)m~x) fq L2(Ej) = D(dj,min) nD(d~_l,min) , j < k - 1 (3.12) 

Proof: Since 79((00* + D*D)j) is a core for Dj and O9_1, we obtain 
* 

(3.9a,5) from (3.35). (3.10) follows from dj,m~ x = (dj,min) �9 
To prove (3.11) we observe that,  by (3.9), for the closed operator T = 

D + D* we have 

7)(T)f'IL2(Ej) = 7)(dj,min)CID(dj_l,min) D 7)((dq-dt)min)CIL2(Ej), j <_ k .  

On the other hand, T 2 = DO* +D*D and 7)((T2)j) = 7)(AT) is a core for 
D(T) fl L2(Ej); thus the definition of the Friedrichs extension implies 

7)(T) f'l L2(Ej) C 7)((d + dr)rain) fl L2(Ej) , 

hence (3.11). Using the dual complex we also obtain (3.12). D 
We state an important  consequence of this lemma. 

COROLLARY 3.5. There is an ibc (7), D) with (DD* + D*D)j = A~  , for 
all j, iff ( d + d t ) is essentially self-adjoint. 
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Proof: If (DD* + D*D)j = A f  for all j then (3.11) and (3.12) imply 
(d + dr)max -- (d -F dt)mln. If, conversely, (d + d t) is essentially self-adjoint 
then we have, for an arbitrary ibc (7), D), D+D* = (d+dt)m~x = (d+dt)min 
and hence by Lemma 3.1 

DD* + D * D  = (d+dt)max ( d +  dt)min = A ~- . o 

The identities (3.11) and (3.12) are not independent. In fact, denote by 
D r and D a the closed operators in L2(E) for the relative and absolute 
boundary condition, respectively (corresponding to D | D* with D from 
[BL, (2.12)]), and by pj : L2(E) - .  L2(Ej) the orthogonal projection. Then 
we have four closed extensions of d+d ~, namely D r , D a , Dmin : =  (d+d t )rain, 
and Dmax :---- (d + dr)max . They axe related as follows. 

LEMMA 3.6. There are inclusions 

pffD(Dmin) C / ) ( D  r/a) Cl L2(Ej) , (3.13r/a) 

pjT)(nmax) D I ) (D r/a) V1L2(Ej) . (3.14r/a) 

Moreover, if equality holds in (3.13 r /a)  for j - 1 and j + 1, then also for j 
in (3.14r/a), and vice versa. 

Proof: Note that 

D(D ~/~) Cl L2(Ei) = pjD(D ~/~) = ~)(dj,min/max) fl D ( d } _ l , m a x / m i n )  (3.15) 

which implies (3.13r/a) and (3.14r/a). 
Assume next equality in (3.13r/a) for j :t: 1, and pick w E D(Dmax), 

rlj-1 E ~)(dj-l,min/max). Then the weak Hodge decomposition [BL, Lemma 
1.2] for (D ~/~, D r/a) implies that we can write 

l I t  I I f  
r l j -1  ---- r]j_ 1 + r / j _  1 , r]j_ 1 E k e r , j - l , m i n / m a x  , r / j_ 1 E kerdj_2,max/mi n , 

hence 

r]j_ 1 E ~)(dj-l,min/max) N ~)(dj_2,max/min) C p j - l D ( D m i n )  C ~)(Dmin)  , 

and 

This implies 

" = D " / a  . dj-l,min/max rlj-1 r/j-1 = Dminqj_ 1 �9 

](dj_l,min/maxrlj_l, coj)] -- I(Dminr] l 1, co)] 

DmaxCZ) ] 

_< II 
_< c,,,IITs_I[I, 
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thus wj E /)(d:  a max 'rnin) A similar argument gives wj E T)(dj,min/max), 3 -  , / " 
hence wj E I)(D ~/~) n L2(Ej). 

Conversely, if equality holds in (3.14r/a) we pick wj E ~)(dj,min/max) n 
d t ~)( j--l,max/min)" Then for I/ E/)(Dmax) we find ~]j4-1 E l)(dj:t:l,min/m~x)M 
d ~ 79(jil--l,m~x/min) by assumption, hence 

t 
] ( n m a  x ~,0.)j)]  = I(dj_l,min/max 7]j_ 1 -{- dj,max/mi n ~ j + l , 0 2 j )  I 

= dj_l,max/mi n wj)  q" (rlj+l,dj,min/ma x ~)j) l  

<__ C lloll �9 

Thus, ~j E ~)(Dmin) N L2(Ej) = pjT)(Dmin). D 

Remark: For ~ E C ~ ( E )  we have, writing wj := pj~z, 

+ 

/>o 

This implies easily that 

pj~D(Dmin) T ) ( O m i n ) N L 2 ( E j )  C D ( d j , m i n )  t = f'l 7 9 ( d j _ l , m i  n)  , ( 3 . 1 6 )  

where equality does not hold in general. 
On the other hand, for aJj E LZ(Ej) and ~ E 79(Dmin) we have by (3.16) 

t 
(a~j, Drn in  r]) -..= (co j ,  d j_  I ,min r / j_  1 -I- d j ,mi  n r / j+  1 ) �9 

This implies that  

pjT)(Omax) D D(Dmax) M L2(Ej) D(dj,max) t ---- M T)(dj_,,max) , (3.17) 

where, again, equality does not hold in general. 
So far we have dealt with arbitrary manifolds and arbitrary elliptic 

complexes. Specializing to conformally conic manifolds and the de Rham 
complex we obtain the main results of this section. It is convenient to 
distinguish two cases according to whether m = dim M is even or odd; we 
put 

:= fro/2] .  (3.18) 

T H E O R E M  3.7. Let M = M1 U Ube a conformally conic manifold of even 
dimension m = 2u. Then we obtain the following facts for the de Rham 
complex on M, ([2o(M), d). 

a) (ao(M) ,  d) has a unique ibc, say (79, D), which is Fredholm. 
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b) For the associated Laplacians we have 

Ak = D~Dk + Dk_ID~_ 1 = A ~  i l k  # v.  

c) The closed extensions of d + d ~ are restricted by the relations 

D((d + d t ) m i n  ) CI L2(AkT*M) = 79(dk,mi  n ) N 7 9 ( d ~ _  i ,min ) , k ~- /] , 

(3 .19)  
and 

pk79((d+ de)max) = 79(dk,min) VI79(d~e_l,mi n) , Ik - vl # 1.  

d) For the Gaut3-Bonnet operator associated with (7), D), 

D e v  GB :---- 0 (D2j -I- D* j > 0  2 j - 1  ) , 

we have 
D ~  = { (d + d t)~,vx , 

(d + d t)e~in , 

DaB is a Fredholm operator and 

J" ind (d  + d t )eVax, 
X(79, D) = ]. ind (d + d t ~eV,,min ' 

(3.20) 

(3.21) 

v e v e n  , (3.22) 
v odd.  

v even , 
v odd .  (3 .23)  

Proof: It follows from Theorem 2.1 that (3.5) holds for k # v. Hence we 
obtain from (3.6a,b) 

thus 

I t dk,max = dk,min , dk_l,max = dk_l,min for k • v,  

dk,max = dk,min for all k. 

This implies a) except the Predholm property, which follows from d) which 
we prove below. Assertion b) follows similarly from Theorem 2.1 and (3.7), 
and (3.19) follows from Lemma 3.4 applied to (ft0(M), d) and its dual com- 
plex. (3.20) is a consequence of a) and (3.19), in view of Lemma 3.6, (3.15), 
and (3.16). 

For the proof of d) we observe that, by definition, 

79r De ; GBJ = O 79(d2j,min) ffl 79(d~j_l,max). 
j>0 

Hence, (3.22) follows from a) and c). The Predholm property follows 
from [B, Theorem 3.4] (cf. 2.11c) and (3.23) is a consequence of (3.22). D 
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T H E O R E M  3.8. Under the assumptions of Theorem 3.7 but with 

m = d i m M  = 2u + 1 , 

we have the following. 
a) dk,min ---"= dk ,max if  k 7s V, whereas 

D(dv,max)/V(dv,min) "" H~R(N ) , (3.24) 

the uth de Rham-cohomology of the cross-section. 
b) If (D, D) is any ibc for (f~0(M), d) then the corresponding Laplacians 

satisfy 
A k = A ~  i f k # u , u + l .  

c) The closed extensions of d + d t are restricted by the re/ations 

~((d+dt)m.~n)nL2(hkT*M) = D(dk,min)ClD(d~_l,mi~) i fk  # u, u + l ,  
(3.25) 

and 

pkD((d+dt)max) = D(dk,min)ND(dtk_l,min) i lk  r [ v - l ,  v+2 ] .  (3.26) 

Proof: It follows from Theorem 2.1 that  (3.5) holds for k # v, u + 1. Hence 
we arrive at all assertions except (3.24) as in the proof of Theorem 3.7. 

Now (3.24) is invariant under quasi-isometries. Hence, by (2.9) we may 
assume that the metric g in (2.2) has the form 

g = d x  2| o n U = ( 0 ,  e) x N ,  

with c 2 as small as we please. Now let w E D(d~,,m~x); the weak Hodge 
decomposition for the relative ibc implies a decomposition 

02 = 021 '-i t- CO2, a) 1 E D ( d v , m i n )  , 

a)2 C "~(dt, , ,max) t " ~ ( ( d  -4- d r ) m a x )  C1 " D ( d v _ l , m a x )  C 

where we also used (3.17). Now we invoke (the easy adaption of) [BS, 

Lemma 3.2]. With ~r E C ~ ( - e ,  e) ,  ~ = 1 near 0, this gives for ~w2, the 
transformation of r under (2.11), 

s E s p e c S  0 

isl<�89 
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where (in the terminology of [BS, Section 5]) So is given by (2.12c), e~ is an 
eigenform of So with eigenvalue s (counted with multiplicity), c~ is a con- 
tinuous linear functional on D((d + d*)m~x), and 7r~ : U --~ N is the natural 
projection. Moreover, we have 0J3, (1 - r  E pvD((d+d*)mi~) C D(d,,min). 
Choosing c 2 small enough we may assume that  specS0 M ( - 1  1 = { 0 } .  
Hence we can write 

where ~V(N)  denotes the space of harmonic u-forms on N. Thus we obtain 
a map 

a :  D(d.,max) --+ ~ ' ( N )  

which is easily seen to be linear and surjective. It is also clear by construc- 

tion that k e r a  C D(d~,min). But  r = ~brc~a(w) E D(d.,min) only if 
a(w) = 0 since (cf. (2.11) and (2.12)) 

(dv,maxr ' ,M~37r~(,N~(tz)) ) (r ' t * - -  * dr,max *M r ---- 

Thus ker a = ~)(dv,min) completing the proof. [] 

PROPOSITION 3.9. In the situation of  Theorem 3.7 or Theorem 3.8 the 
equality in (3.19) t'or k = u or in (3.25) for u and u + 1 is equivalent to the 
essential self-adjointness of  (d + d~). 

Proo]: If (d + d ~) is essentially self-adjoint, then by Corollary 3.5 we have 
A k = A~ for all k and the assertion follows from (3.11). The converse 
follows immediately from Lemma 3.6. 

Remark: Now we can give a more general proof of the second statement in 
Theorem 2.1. We consider M as above with N such that H~R(N ) = 0 and 
with a conic metric 

dx 2 -}- x2 c2 g g 

on U. If c is large enough, then So has eigenvalues in ( - 1 / 2 ,  1/2), thus 
(d+d ~) is not essentially self-adjoint and hence we have that pkD((d+dt)mln ) 
is a proper subset of ~)(dk,min) CI ~)(d~:_l,min ) for some k E {u, v + 1}. 

Also, even though we have a unique ibc for the de Rham complex, the 
corresponding Laplacian is not given by the Friedrichs extension. 
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4 .  P o i n c a r 6  D u a l i t y  

Consider an ibc (D, D) of the de Rham complex (f~0(M), d) where M is an 
arbitrary oriented Riemannian manifold. In [BL, Sec. 3 and Lemma 4.3] we 
have introduced the notion of Poincard duality for (D, D): it holds if the 

maps gi := v/Z--]-Z(i),i induce a complex isomorphism (D, D) --+ (/)*, D*); 
here fl(i) is chosen in such a way that 

d~_i_  1 o gi = gi+l o di on f t , (M)  . (4.1) 

In [BL, Lemma 3.7] we have shown that  such ibc's do always exist if m is 
even. If m = 2u + 1 is odd then, since the gi above are unitary, the existence 
of an ibc with Poincar6 duality is equivalent to the existence of self-adjoint 
extensions of the operator 

t : = ~ L - i  -z(') { 2 ,  m - - 3 m o d 4 ,  
- -  *V-t-1 d .  , f l ( u )  = 1 , m - -  1 m o d  4 , (4.2) 

with domain ~ ( M )  in L 2 ( A " T * M ) .  This leads us to introduce the defi- 
ciency indices of t, 

n+(t)  := dimker  (t* :F x/L-f) E Z+ U {(x~} . (4.3) 

If m =- 3 rood 4, t is real and hence has equal deficiency indices, but if m - 
1 rood 4 we meet an obstruction. Thus, one might hope to find interesting 
invariants of general Riemannian manifolds. The following simple fact is 
the key to such results. 

LEMMA 4.1. Let M be a Riemannian manifold, E --* M a hermitian vector 
bundle, and t a densely defined symmetr ic  operator in L2(E). 

a) train 4- V/'-Z-] - is a semi-Fredholm operator in L2(E) with 

ind ( t m i n  -[- V f ~ - i  -) ~-~ - - ~ - b ( t )  �9 (4.4) 

b) Consider, for s 6 [0, 11, a family ( , )s of  continuous scalar products 
on L2(E), equivalent to one another, and a family t ~ of densely de- 
fined operators, symmetr ic  with respect to ( , )~, and with domain 
independent of s, D( t  ~) = D(t~ 

I f  we have an estimate 

I le 'u-  t ' = u l l , ~  < s ( l S l  - s21)lle=ull,= , 81,82 e [ 0 , 1 ] ,  u E D ( t  ~ , (4 .5 )  

with s e C(R+), s(O) = O, then the deficiency indices are independent of 
s e [0,1], 

n•  ~) = n•176 . (4.6) 
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Proof: Write Do := D(t  ~ = D(ts),  then we have for s E [0, 1] 

U 2 I I (e  + vrc i )~, l l~  >_ II I1,, u e vo  �9 

Since the norms I1" L on L2(E) are equivalent by assumption we obtain for 
T~: := % .  + v ~  

D(T~:) = D(T~ = : / ) ,  

and the est imate 
s 2 I IT iu l l ,  _> I lu l l~ ,  - e v .  (4.7) 

It follows that T~: is a semi-Fredholm operator with 

ind T~: = - n + ( t ' ) ;  

this proves a). 

Observe next that  T~ may be considered as a closed operator in the 
ni lber t  space (L2(E), (-,-),~) for all s, s2, to be denoted by T~: ''~ . Then we 
obtain from (4.7) 

I ITs  > C ( , , , 2 ) l l u l l ] ,  , u c v .  (4.8) 

Moreover, v E ker (T~_)* is equivalent to 

0 = ( T i u ,  v)s = (T~:"=u,B,, ,~v)~ , u e D ,  

with some bounded invertible operator B,,,= : ( L 2 ( E ) , ( , ) , )  --* 
(L2(E), ( , ),2). Thus, T~_ ''= is a semi-Fredholm operator, too, with 

ind T~: 's= = ind T~: . (4.9) 

Now the est imate (4.5) implies 

I I (Tg  ''2 - T 2 ) u l I , ,  < d i s ,  - s21)l lTg,-, l l ,2. 

Hence, assertion b) follows from (4.9) and [K, Ch. IV, Thm. 5.17 and 
Thin. 2.14], since e is continuous with e(0) = 0. o 

If go and gl are quasi-isometric metrics on M and g~ := (1 - t)go + tgl, 
with Hodge-operator  .~, then we easily see that 

It * , ,  - *,~ IIL=(A'M,g,=) < C l t l  - t~l. 

Hence Lemma 4.1 implies the following interesting fact. 



Vol.3, 1993 K.~HLER-HODGE THEORY FOR CONFORMAL COMPLEX CONES 457 

COROLLARY 4.2.  Let  M be a Riemannian manifold of dimension m =_ 
1 rood 4. Then the deficiency indices of the operator x/-ZT *~+1 d~, with 
domain f ~ (  M )  in LU( A ~ T * M ) ,  are invariant under qu~si-isometries. 

We will now show tha t  the deficiency indices of 

t~ := v/-ZT, d ,  (4.10) 

-- which we denote  by n ~ ( M )  - on a Riemannian  manifold  M of dimension 
m = 4k + 1 depend  nontr ivia l ly  on the metric;  thus Corol lary 4.2 provides 
interest ing invariants of the quas i - i sometry  class for these dimensions.  We 
look at M = (a,b) x f  N where -cx~ <_ a < b < cx~, N is compact ,  f E 
C a ( a ,  b) is posit ive,  and M is equipped with the warped  p roduc t  metr ic  

g = dx 2 ~ f (x )2gN , (4.11) 

with some metr ic  gg on N.  We assume N oriented with volume form ~T  
M will be or iented by the volume form dx A 7r~wN, 7r2 the  projec t ion  onto 
the second factor.  

LEMMA 4.3. a) I ra  = --oc, b = ~c then n + ( M )  = n _ ( M )  = O. 
b) I f  - o c  < a < b < oc and f is continuous and posit ive in [a. b]. then 

= n _ ( M )  = 

c) I f  a = 0, b = cx~, and  both ends are in the l imit  point case for the 
differential operator L = - 0  2 + )~/ f (x)  2, for/~ >_ ~o, then 

n + ( M )  - n _ ( M )  = - s i g n  N . 

In particular, this is the case for f ( x )  = x with A0 = 3/4.  

Proof: We use the separa t ion  of variables as in t roduced  in [BS, Sec. 5], mu- 
tatis mutandis .  It  is based on the un i t a ry  map  (u = 2k, I := (a, b), dj := 
(j - ~')) 

(4.12) 
(0~,-1,4)~,) ~-~ f ( x )  e~-~ 7r~(b~,_l(x) A dx 4- f(x)e~zc~O,~(x) . 

A st ra ightforward calculat ion gives 

e~-lv/-~*u+ 1 d,,'t~, = x/-L--f f(x) -1 *N dN *N~x ' 0 ' 

hence we have to look for solutions of the sys tem 

[ ( 0  0 ) G~ ( =~=_]" --f(x)-id~r*N)] (rl~_l) : 0 
0 *N -~x -b f ( x ) _ l d t N , N  :{=I \ r h, 
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in L2((a, b), L2(A~'-IT*N �9 A"T*N)).  Eliminating r/._~ from the system, 
and decomposing ~-. := *Nq, =: ~1 + ~2 + ~3 according to the Hodge de- 
composit ion 

L2(A"T*N) = ~ " ( N )  �9 d g f t " - l ( N )  �9 dtg~"+l(N) , (4.13) 

we are left with the equations 

(o )  
~ :F *,  ~l(x) = 0, (4.14 a+) 

[(1 ~ 01)o ( o ~ T I(x)_2a~aN ,N  + , s  0 ~3 (x) = o. (4.145+) 

Since the decomposit ion (4.13) reduces AN, (4.14b) decomposes ac- 
cording to the decomposit ion 

dN~t"- l (N)  �9 dtNf~"+l(N) = | E~ �9 *NE)~, 
)~EspeCAN,~\{0} 

where E~ -- ker (AN,,  -- )~) n d ~ , - l ( N ) .  This leads finally to the system 

[ 000( 0 
l Ox T I + AIS(x) 2 0 v 

> 0. Now we s tudy the cases listed above separately. 
a) If a = -oo ,  b = oo then M is complete. Since the symbol of 

x/-ZT,,+I d ,  is uniformly bounded on the cosphere bundle of M,  the method  
of Chernoff [Ch] proves essential self-adjointness in this case (alternatively, 
analyze (4.14 a) and (4.15) as done below). 

b) The second assertion is clear from standard theory applied to (4.15). 
c) We split ~/"(N) =: ~ .  ( N ) O ~  ~ _ (N),  according to the -4-1 eigenspaces 

of *N,,. Denoting their dimensions by b,(N)+ we get 

b,(N) = b,(N)+ + b , (N)_ ,  s i gnN = b,(N)+ - b , (N)_ .  

Obviously, the L2-solutions of (4.14 a 4-) form a space of dimension b , (N)~;  
thus, our assertion follows if we can show that  the system (4.15~, +)  admits  
no L2-solutions for any )~ > 0, under our assumptions.  

Let us consider the system (4.15a, +); the other case is reduced to this 
one by the t ransformation ( : ) (x)  = (~) ( -x) .  Assuming the existence of an 
L2-solution (v~), we obtain 

--u" q- (1 q- A/f(x)2)u = O, 
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i . e .  

L*u = - u  . (4.16) 

Scaling the metric as in Sec. 2 and using Corollary 4.2 we may assume 
that specAN,~n[--Ao, )~o] C {0}. Thus L is essentially self-adjoint and hence 
L* = L is positive. Then (4.16), of course, has no L2-solutions. o 

Lemma 4.3 is only a very special case of a fairly general "odd index 
theorem" to which we will return in a subsequent publication. Among other 
things this index theorem will imply that  Lemma 4.3, 2) and 3) hold for 
any complete manifold with compact boundary and any conformally conic 
manifold, respectively. It will also provide a powerful tool for further study 
of the invariants n+ (M). 

5. K/ ih le r  M a n i f o l d s  

Now we consider the case of a Riemannian manifold of dimension m = 2u 
which carries a complex structure on the (real) tangent bundle T M .  It 
induces a decomposition of the complexified tangent bundle, C @a T M  = 
T c M =  T ' M  | T " M ,  and corresponding decompositions 

C @ R A T * M = : A T ~ M =  | A r T ' * M @ A ~ T " * M = :  | Ar '~M,  
r,s~_O r~.s > 0  

c |   0(M) =:  c,0(M) =: �9 
r ~ 8 ~ 0  

We assume next that  M is a complex manifold (of complex dimension 
u), and that  the Riemannian metric is induced from a hermitian metric on 

1 1  T ' M ,  with positive definite (1,1)-form w E ~ (M). Then we can form the 
corresponding L2-spaces, with decomposition 

L2(AT~:M) = | L2(A'~T'*M @ A~T"*M) 
r ,s>O 

= | L2(Ar '~M).  (5.1) 
r,s>O 

If we denote by 7r ~'" : L 2 ( A T ~ M )  --* L2(A~'~M) the natural projections we 
can further decompose 

r,s  7~r-I- 1 ,s r ,s  7rr,s-b 1 r,s  d~+~l~ c ( M ) =  od~+~l~c ( M ) +  od .+~l~c  (M) 
-- r ~  

=: + o , )lnc ( M ) .  

Then the de Rham complex, (~c,o(M),  d), splits into the subcomplexes 

(gtc,o(M),O) and ( c , o ( M ) , O ) ,  
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0 <_ r, s < v. Thus, on ~ : , 0 ( M )  we can define three Laplace-type operators: 
Ad, Aa, and AO, the subscript indicating the defining complex. Now, 
in general these operators are quite unrelated, but  a close relation exists 
for Kiihler manifolds and, in fact, characterizes this class. So we assume 
from now on that  M is Ks in the sense that  the positive (1,1)-form 
defining the metric is closed; w is called the Ks form. Then we have 

Ad = 2Aa = 2A~ . (5.2) 

More precisely, with A r'~ o := A o l a ~ : 0 ( M ) ( r e s p .  /~o := A ~ l n ~ 0 ( M ) )  we 
have 

r,~ ~,~ (5.3) ~ := ~ 1 ~ :  0 ( M )  = 2 ~ ~ o  = 2 �9 % . 
" r + s = t  r + s = t  

Now we may ask whether these identities persist to hold for suitably chosen 
ibc's of (12c,0(M), d). 

DEFINITION 5.1 : Let M be a Ks manifold and let (~D, D) be  an ibc for 
(f~r d), with Laplacian AD. We say that  the Ks Theorem 
(KHT) holds for (:D, D) if the decomposition (5.1) reduces AD, i.e. 

7)(AtD) = �9 I)(AtD) N L2(A~'SM) . (5.4) 
r + s = t  

Of course, KHT holds for compact Ks manifolds. In this case, 
however, various other important  assertions are true which are collectively 
known ms the Kiihler package (cf. [CGM, p. 303]). To describe it we need 
some more structure. We write the Ks form in terms of a local orthonor- 
mal frame, ( ~ ) ,  for AI '~ 

- -5 2.. ,  ~ A ~ .  (5.5) 
i = 1  

Hence I~(p)l 2 = v/4  for all p e M and 

L :-- wedge multiplication by w 

extends to a bounded operator  in L2(AT~M). Put  

A : = L * ,  H : = [ A , L ] ,  

(5.6) 

(5.7) 

then 
m 

H = E ( v - t ) v  t , r t : =  | 
r + s = t  

t = 0  

~.r,S (5.s) 
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[ H , L ] = - 2 L  , [ H , A ] = 2 A .  (5.9) 

Hence we obtain a representation of sl(2, C) on ATpM, p E M, hence also 
on L2(AT~M), from 

1 (~ (~ (10 
This representation gives rise to the "Lefschetz decomposition" of L 2 (ATOM) 
and of the cohomology of a compact Ks manifold. Finally, we introduce 
the unitary operator 

J := G V~--l~-~Tr~'S; (5.11a) 
r,s_>O 

for a linear operator, T, in L2(AT~M) we then put 

Tc :-- J 'T J, (5.11b) 

with D(Tc) = J*D(T). 
DEFINITION 5.2: Let M be a Ks manifold. We say that the L 2- 
Ks package holds for M,  if we can find ibc's (D ,D)  for (Dc,0(M),d)  
and (DL D ~) for (De,0, 0) such that the following assertions are true ( for 
simplicity of notation, we suppress the dependence on the ibc's in the for- 
mulas below). 

a) Hodge decomposition 

A ~ =  Q 2A~- '~ , (5.12a) 
r-k-s-~t 

~'~ ^ ~'~ , (5.12b) 7 : / ~ : = k e r A ~ =  | ke rA 0 =: �9 7-I 0 
r+s=t rTs----t  

= (5.12c) 
b) Poincard duality If * denotes the Hodge star operator, .~ = 

~+s=~ *~,~ then Ot ( -1 ) t .~  is a complex isomorphism from (D, D) onto its 
dual complex, (D*, D*). In particular, we have isomorphisms 

�9 t :  ~/~ --* ~ y - ~ ,  (5.13a) 

^ ~'s ^ "-~'~-~ (5.13b) �9 ~,~ : 7-I 0 ~ 7-/~ 

c) Hard Lefschetz If all ibc's involved are Fredholm then L induces 
isomorphisms 

Lk :  7:/~ -k  ---, 7:/~ +k , 0 < k < u .  (5.14) 

d) Hodge signature If u = 2k is even, if b) holds, and if all ibc's are 
Fredholm, then we have the L2-signature theorem 

L2-s ignM = E (-1)~ dimT:/o '~" (5.15) 
rTs----O(2) 
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Remarks: One usually includes the Lefschetz hyperplane theorem into the 
Ks package of which, however, no proof by L2-methods is known as 
far as we know. Therefore, we refer to the properties listed above as the 
"L2-Ks package", with abbreviation L2-Kp. 

The L2-signature of M is defined as the index of the elliptic operator 
Ds,  arising from restricting the canonical operator, D, associated to the ibc 
(D, D) for (f~c,0(M), d) to the +l-eigenspace of the involution 

C : :  G d ) ( ~ ' ~ ) P - t ' t ( t - - 1 ) * t ,  
t 

which anticommutes with D in view of b). Note that (5.15) continues to 
hold if the ibc is only weakly Fredholm in the sense of [BL, (2.24)]. 

Note also that in the view of (5.12a) (D, D) is Fredholm iff all (DL D '~ ) 
are. In this case, (5.12b) implies the usual relation between the de Rham 
and the Dolbeault cohomology. 

Now we want to establish some simple properties of ibc's for (~c,0 (M), d) 
which imply L2-KP. We start with an observation involving KHT. 

LEMMA 5.3. Let M be a K~hler manifold and let (D, D) be an ibc for 
(~c,o(M),  d). 

a) If  K H T  holds then 

AtD J'AiD J = A t 0 < t < m (5.16) 
V r  , �9 

b) H the ibc is unique then (5.16) is equivalent to KHT. 

Proof: a) Note first that  ( J ' D ,  Dc) is a Hilbert complex with Laplacian 
ADo = J*ADJ;  thus the second equality in (5.16) is always true. 

To prove the first it is enough to show that  JD(A~)) C :D(A~) since 
A~  is self-adjoint and [A~9, J] = 0 on a dense subspace. But this is obvious 
in view of KHT and (5.11a). 

b) Since [A~), 7r ~'*] = 0 on ~t~:,0(M ) it is enough to prove that 

7r~'~D((Ab) 2) C Z)(A~)) . (5.17) 

To do so, we use the following easy principle: if w = )-:~,~ w~,~ is such that 

w~,~ r 0 implies W~• = 0, then ~ E D(d,,,,~x) A Z)(d[_l,max) implies 
OJr, s ~ Z)(dt,max) 1"7 Z)(d/_l ,max) for all r, 8. 

Then we see that  

w~/odd = �89 :t: VrL-T ̀ Jw) e D((Ab)2)  , 

dtWev/odd e ~ ) ( A ~  1) C ~) (d t+ l ,max)n  ~)(d~,max) , 

d~_l~v/odd e D ( A ~  -1) C ~)(dt-l,max)N ~)(d~_2,max) . 
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Applying the principle to 03ev/odd w e  find, from the uniqueness of ibc's, 

w~,8 e D(D,)  N D(D~_I) . 

Next we apply the principle again to dtwev/odd :1: x/r '~t+lgdt~ev/odd and 
t - -1  t 

d~_lWev/odd -I- ~ ' ~  Jdt_l~aev/odd to conclude 

Ptw~,, e/)(Dr+l) n D(D~), D~_lwr, s e D(Dt-1)  n / ) (D~_2)  . o 

The next step on the road to L2-Kp is the definition of natural  ibc's 
on all the complexes (f~,*0,0). For any operator T we write 

/ ) ~ ( T )  := N D(Tk) " 
k > l  

LEMMA 5.4. Let M be a Kiihler manifold and (7), D) an ibc for the de 
Rham complex with KHT. Then, for each r E Z+, the differential complex 

- r ,O  - r , 1  - r , v - - I  

0 -~ ~ ( A ~  ~ o o  z ) ~ ( A ~ l )  o o . . .  oo , ~ ( z ~  ~) -~ o ,  (5.18) 
OO r~8 with 0 ~  := 7r ~'~+~ o D~+8[D ( A D ), has essentiaJly self-adjoint Laplacian. 

This defines an ibc for (f~c,o, O) such that the Laplacians satisfy the condi- 
tions (5.12). 

Proof: It follows from [BL, Lemma  2.11] that  

D,D~ C ~)~176 D* D~176 ~ ~ ~-1 ~ v j  c / ~ ~  . 

This together with KHT implies 

OD~D~176 s) C ~ ) ~ 1 7 6  s q ' l )  , (5.10a) 

It* q'~~ ~nd since ( O v ) * I ~ ( A Z  ~+1) = ~ , ~  o ~ + ~  ~ , . ~  , we also get 

(0D)*D~ ~) C D~176  8-1) �9 (5.19b) 

(5.19a) says that  the complex is well defined, and with (5.19b) we find 

z ~  ~ = 2zx"'~o on D ~ ( ~  ~) , (5.20) 

since this holds on f~ ,o (M) .  Hence A ~-'~ is essentially self-adjoint since AD 
0o 

is. 
Now we can take the closure of the operators in (5.18) which defines a 

Hilbert complex and hence an ibc for ~'* (~c ,o ,0)  (cf. [BL, Lemma 3.1]). In 
1 A r , s  view of (5.20) the corresponding Laplacian is ~'-*D, so we obtain (5.12a), 

and (5.12b) is an easy consequence. Finally, since for w e f~ :0 (M)  

s r -  A D 0d, 

we obtain this identity also for D ( A ~ ) ;  this implies (5.12c). [] 

Before we proceed we note that  (5.18) gives rise to the following ab- 
stract concept which seems useful enough to be singled out. 
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DEFINITION 5.5: A differential complex of vector spaces 

�9 . . d m - r  
0 ~ s do s --* 0 (5.21) 

will be called a pre-Hilbert complex if the following is true: 

s is a dense subspace of a Hilbert space Hi, 0 < i < N, (5.22a) 

d*, the Hilbert space adjoint of di : s --" H~+I, satisfies (5.22b) 

s C / ) (d* )  and d*(s C s 

Thus every elliptic complex on compactly supported smooth  sections is a 
pre-Hilbert complex. Note that  the operators Di in (5.21) are closable in 
view of (5.22b). Hence we can introduce ibc's for pre-Hilbert complexes, 
and we easily obtain abstract  analogues of many  results in [BL, Sec. 3]. 

Now we are ready to deal with the full Kghler package�9 

T H E O R E M  5.6. Let M be a Kgihler manifold and assume that  

the de Rham complex on M has a unique ibc, 
(/), D),  which is Fredholm, 

(5.23) 

and that 
[Z, AD] = 0 .  (5.24) 

Then L2-KP holds for M.  

Proof: Introduce the ibc's for (~c ,0 ,0)  defined in Lemma 5.4. We deal with 
the various parts of L2-Kp separately. 

a) We know from Lemma  5.3, 2. tha t  KHT holds for (D, D), hence the 
assertion follows from Lemma  5.4�9 

t o (~*)k = (c*)k+l o dk on f tc ,0(M),  where ~tgtk(M) = b) Since din_k_ 1 
( -1 )  (k-1)k/2, we see that  we must  have 

D *  m - k - - 1  = ( 5 " $ ) k + 1 0  D k  o (e*)m-k , 

since the adjoint complex has an unique ibc, too. It follows that  ( e . )koA~ = 
A ~  -~ o (e*)k which implies Poincar~ duality. 

c) The  Hard Lefschetz Theorem follows from the representation theory 
^ 

of sl(2, C) once we know tha t  A and L map  Ot 7-/~ into itself and that  all 
^ 

7-/~) are finite-dimensional, cf. [GH, p. 122]. Thus  we want the relations 

L(/:)(AD)) C /:)(AD), [L, An]  = 0 ,  (5.25a) 
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and 
A(/)(AD)) C / ) (AD) ,  [A, AD1 = 0 ,  (5.25b) 

which hold on ~c,0(M).  Since L is bounded and AD is self-adjoint, (5.25a) 
implies (5.25b). Also, it is enough to prove only 

L(/)((AD)2)) C / ) (AD)  �9 (5.25c) 

Now on 12c,0(M) we have the Kghler identities [d, L] = 0 and [d t, L] = -de  
[W, p. 192]. It follows that 

[dmax, L] = 0, [drain, L] = 0 ,  (5.26a) 

hence by uniqueness of ibc's 

[D, L] = 0 ; (5.26b) 

moreover, evaluating (Lw, Dr/) for w E / ) (AD)  = ~)(ADo) and r 1 E 12r 
gives 

[D*, L] = - D e  on / ) ( A n )  . (5.26c) 

Thus, for w E/)((A~)) 2) we have ico E/)t+2 M/)t*+i, by (5.26b) and (5.26c), 
and 

Dt+2Lw = LD~w E/)t*+2, 

by (5.26c), since D,+2~ E / ) ( A ~ ) ,  as well as 

D~+lLco = LD~_lw - D~co E / ) t"}- I  , 

since D~_,w E / ) ( A n )  and Dcaa E/)(AD~) = / ) ( A n ) .  
d) The Hodge signature theorem is a consequence of the representation 

theory of sl(2, C), the Kghler geometry and a)-c) (since we have (5.25a,b)). 
The arguments in [W, Sec. V.6] or [GH, Sec. 0.7] carry over literally. One 
only has to be careful with domains; but (5.25a,b) guarantee that everything 
goes through. The proof is complete, m 

Remarks: 1. We have in fact shown that (5.25a) holds for A~9 if the ibc is 
unique a n d A ~ = A  j f o r j = t , t + l .  Dc 

2. Note that (5.24) is a commutator  of an unbounded operator with 
a bounded operator. Because of its significance for our considerations we 
emphasize that [J, A D ]  -~ 0 means 

JD(AD)  C D(AD)  
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and 
JADw = A D J w  for w E D(AD). 

Since J and A commute  on smooth  forms with compact  support ,  for proving 
[J, AD] = 0 it suffices to check the inclusion J:D(AD) C :D(AD). 

Let us observe tha t  (5.23) and (5.24) are automatical ly satisfied if all 
At l~=,0(M) are essentially self-adjoint in L2(AtT~M) and the unique ibc 
is Fredholm. The Fredholmness is equivalent to saying that  0 is not in the 
essential spec t rum of any A~9, cf. [BL, Theorem 2.4]. Thus we find 

COROLLARY 5.7. I f  all A t I f~ ,  o ( M)  are essentially self-adjoint in L 2 ( AtT~ M) 

and 0 ~ UtspeceA t then L2-Kp holds on M.  

In particular, t t A ]ftc,0(M ) is essentially self-adjoint for every complete 
K~hler manifold [Ch]. 

We now proceed to the main result of this section which will give the' 
conclusion of Theorem 5.6 under  a weaker condition than (5.24); this wilt 
be crucial for the applications we have in mind. 

T H E O R E M  5.8. Let M be a Kiihler manifold with (5.23) and 

[J, A S ] = 0  for t < u .  (5.24') 

Then L2-Kp holds for M.  

Proof: Note first that  Poincar~ duality holds for M since this uses only 
(5.23). Then we have (S*)kA~) = A~-k(E*)k SO (5.24') implies 

[J ,A~] = 0 for t r ~,. (5.24") 

We want to show that  (5.24") already implies (5.24). To do so we proceed 
in two steps. 

In the first step we start  from the Lefschetz decomposit ion of 
L~(A 'T~M) .  Denote by P M  := kerA the subbundle of ATOM consist- 
ing of primitive elements, then 

P M  = | P M  NA*T~:M =: | P t M  . 
t>o t>o 

The representation theory gives 

A ~ ' T c M  = [v-~>0 LtP~' -2ZM] • P ~ ' M  , 
l>o 

(5.27) 
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and the corresponding L2-decomposition 

L2(A~T*M)  = [~-~>o L2(LIp'-21M)] �9 L 2 ( p ' M )  �9 (5.28) 
I>o 

Now we show that the decomposition (5.28) reduces both  A~  and A v De"  
The key observation is that we have unitary isomorphisms (cf. [W. p. 182, 
(3.16)]) 

Ut : P~'-2tM ---* LtP~'-2IM , 

Ui = c~.,z L z, Ul* = a,,,, A t, a.,t  > 0, I _> 0 . (5.29) 

From (5.25) we derive that the orthogonal projection onto L 2 ( p ~ - 2 t M )  
reduces A~) -2t = A "-21 if l > 0. Hence we find with (5.29) that  also the 

De 

orthogonal projection onto L 2 ( L t p ' - 2 1 M )  reduces A ", with intertwining 
relations 

AD(c)]n (L P M )  -~ T v-21 2 v-2l  �9 

where we also use that  [J, L] = 0. Since A ~-2z = A~) -2z bv assumption, we 
D c 

conclude in particular that 

A~DIL2(Lzp~-2tM) A ~ r2 = D~ ~ (L tPv -2 IM)  , l > O .  

Thus we see that  (5.28) reduces A~ D(c) and that A~) = A ~ Dc coincide on the 

first summand of (5.28). 
In the second step we show that A ~ IL2(p 'NI)  =: Qc extends Dc 

A"DIL2(p~M ) =: Q implying equality since both operators are self-adjoint. 
It is enough to show t h a t / ) ~ ( Q )  c D(Qc) since Q = Qc on C ~ ( P V M ) .  
Thus pick w E D ~ ( Q )  C D ~ ( A ~ )  and observe that HIL2(A~T~:M) = O, 
implying 

0 = H ~  = AL~ , 

hence from [W, p. 181] also 

O ~ L ~  . 

It follows, using more Ks identities [W, p. 193] that 

dcw = [L, dt]w = Ld tw  e L2(A +IT M) , 

= [d,  AI.  = -Adw e L2(A~-IT~M), 
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hence w E 79(D~,u) fq 79(Dc,._1) by uniqueness of ibc's. Moreover 

dt~dr = dt Ldtw = [d t~, L]dtw + Ldtfltw 

= ddtw + Ldt~dtw e L2(A"T~M) , 

since dtcd E 7 9 ~ ( A 5 - 1  ) z~ v-1 = 79 (ADr  Final ly,  

d~dtdz = -d~Adw = -[d~, A]dw - Adr 

= dtdw - Ad~dw E L2(A~'T~:M) , 

since dw E D ~ ( A ~  +1) oo uq-1 = 79 (AD~).  The theorem is proved. D 
We are now in the position to establish the L2-Ks package for 

conformally conic Ks manifolds. 

T H E O R E M  5.9. Let M be a conformally conic Ks manifold. Then the 
L2-Ks package holds for M, and all ideal boundary conditions involved 
are Fredholm. 

Proof: The given Ks metric on M is conformally conic in the sense 
of Sec. 2, by assumption. Hence we can apply Theorem 3.7, and it only 
remains to show that  

[A~, J] = 0  if t # v .  (5.30) 

But A b = (A~) >- for t ~ u, so w e 79(Ab) iff w E 79((A~[f~:,0(M))* ) and 
we can find a sequence (wn)neN C O~,o(M) such that, with Wnm := Wm--Wn, 

w~ ---* w in L2(AtT~M),  n ---+ ec, 

Since [A~, J] _- 0 on 9/~:,0(M ) and J is unitary, it follows from a routine 
check that J maps t ~- D((Ad) ) into itself. But this implies (5.30) and com- 
pletes the proof, o 

We also have the following interesting consequence on uniqueness of 
ibc's for the Dolbeault complexes. 

C O R O L L A R Y  5.10. Under the assumptions of Theorem 5.9, the operators 0 
and 0 on f~c,o(M) have unique closed extensions in L2(A~'~M) i f  r + s # 
u - l , u .  
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Proof: Denote again by (D, D) the unique ibc for the de Rham complex. 
Then (29, D) induces ibc's on the Dolbeault complexes by the prescription 
of Lemma 5.4. Now we know from Theorem 5.9 that  KHT holds for (29, D), 
and Theorem 3.7 gives A~) = (A~) 7 for t # v. It then follows from the 
characterization of the Friedrichs extension above that ~r ~'s maps D ( A ~ )  
to itself for t # v, so the corresponding Dolbeault Laplacians also coincide 
with" the Friedrichs extension if r + s # v. Now the assertion follows from 
Lemma 3.4 and Poincar6 duality. D 

To conclude this section we add a few remarks on the case of Riemann 
surfaces, i.e. v = 1. So let M be any Riemann surface; then every Rie- 
mannian metric on M is Ks If M C C P  N is e.g. an algebraic curve 
equipped with the Fubini-Study metric, then the assumptions of Theorem 

0,0 0,1 5.8 are satisfied, as shown in [BPS I. However,  c,0(M)  c,o(M) in 
this case may have many closed extensions showing that Cor. 5.10 cannot 
be improved in general. We want to discuss now a special ibc which satisfies 
L2-KP on any Riemann surface. 

From the de Rham complex 

0 --* 12~:,o(M ) do f~:,o(M ) d l  f~:,o(M ) --, 0 

we derive the ibc 

0 --+ 290 do,m~n 291 dl,m~x 292 "-+ 0 , (5.31) 

which obviously satisfies Poincar6 duality. Here D0 :=  29(d0,min), 291 :---- 
29(dl,max), 292 :---- L2(A2T~M); the corresponding Laplacians will again be 
denoted b y A ~ ,  0 < t < 2 .  

From the corresponding Hodge diamond 

1,0 
~c ,o (M)  

/f J "---41,~ 

' "  ~c,0(M) 

0,1 ~c,0(M) 

we want to derive closed extensions for c9 r's and (~r'* as possible candidates 
for a Hodge decomposition compatible with (5.31). In each step we will 
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07"~$ OP,,$ . consider only min/max or min/max' the corresponding Laplacians will be 
denoted by A "'~ A ~-'~ 0 < r, s < 1. We introduce Omin/max o r  Omin/max , - -  - -  

k ) l  

(-) 
n ~176176 *) ) ,  O < _ r , s _ < l .  

Omin 

LEMMA 5.11. The complex 

0 ---+ ~ ) ~ )  d~ ~/~(x) --OO d 1 . . . .  
1,0 O"DO, 1 ) n ~  a ---+ 0 (5.32) 

is a pre-Hilbert complex with essentially self-adjoint Laplacians. In partic- 
ular, the unique ibc of the de Rham complex generated by (5.32) satisfies 
KHT. 

Proof: First we have to verify the conditions of Def. 5.5. Clearly, the various 
spaces are dense in the respective Hilbert spaces, so (5.22a) holds. 

n O O  --OC Next we verify that  n ~  = 0,o = no,0 c no - which is obvious - and 
do,mi  n ( D ~ )  C D ~176  - - o o  1,o | n0,1" Now on ~ : , 0 ( M )  we have 

do = 0 ~176 | 0 ~176 

implying 
0~0 -0 ,0  

Do C n(Omi.) f'ln(Omin) �9 

( - )  
0,0 Thus our assertion follows from [BL, (2.34)] applied t o  Omi n , 

For the middle term, we have to show that 

/)oo 7~o~ 1,o �9 0,1 C n(dl,max) n ~)(d~,max) , 

dl,max(n~,o 0 ~ c 

t oo d0,m x(nl,0 �9 c 

To see this, we use the following relations between the Laplacians: 

A 1 ,  0 - -  AI_, 0 A 0 , 1  = A 0'1 
Omin Om~x ~ Omin Omax " 

(5.33a) 

(5.335) 

(5.33c) 

5.34) 

In fact, the Ks form equals volM and we have L = *Tr ~ A -- ,u2, hence 
the Ks identities [W, p. 193] imply on ~c ,o (M)  

(0~176 t = v/-~[A, 0] = Vf: - l .2  01'~ , (5.35a) 
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(5.35b) 

that 

we h a v e  

Since the domain is, in each case, a core of the self-adjoint operator on the 
right hand side, the Laplacians are all essentially self-adjoint. Hence (5.37) 
also implies KHT. D 

We note some corollaries. 

COROLLARY 5.12. We have 
= 2 o, o = 2 xo_, o = 

0min Omin 

m~ 9 1,o A0,1 ) 
= 2(A0m~.  O Om~. ' 

A ~  = 2 A  1'1 = 2 A  1-d 
0min Omln " 

COROLLARY 5.13. Put t ing  

~ , o  := ~1 n L2(M'~  7~ ~ := ~1 n L2(A~ 

= ((9 ~176 )* = ker (51'~ "1,o (5.38) ,~1,0 ker ,--rain, --max ----: "~0 , 

-o o ), o,x ^0,1 (5.39) ~ o a  = ker (Ore'in = ker Omax __. "~t~O , 

~1,o = ~o,1 , (5.40) 

~.~l : ~.~1,0 ~ ,~0,1 . (5 .41)  

Moreover, i f  do,mi n has closed range then this is true for O0,mi n and C~O,min, 
too, and 

0,1 ~t[1 ~__ ~ 1  ~__ L 2 ( A l , O M ) / i m O O ,  O n �9 ker  Omax , (5 .42a )  

~_ L 2 ( A O a M ) / .  ao,o -1,o lmOmi n 0 ker Om~ x . (5.42b) 

~ C ~)(d~,min), t oo ~ ) ~  - . d l ,min (~2  ) C 1,0 O ~ , 1  (5.36) 

Turning to the Laplacians we observe that  the Ks structure implies 

A ~ = 2 A  ~176 = 2 A q  '~ 
0rain 0rain 

~ = 2 ~  1,~ 2~~ 1 
Omin ~ ~min 

A ~ = 2 A  1'1 = 2 A  ~a 
~min ~min 

on / ) ~ ,  (5.37a) 

on D ~162 /5 ~162 (5.37b) 1,0 0 0,I , 

on D~. (5.37c) 

0 ~176 = VrL-f[L, ( 0t] = --~/r-~((01'0) t *0 �9 

Thus, after taking closures 
A1,0 = 90,0 (90,0 ]. (~1,o ~. -1,o 

Omi a --min~--min/ ~ ~--max/ *0 *20max 
AI_, 0 

Om~x " 

The second relation in (5.34) follows by complex conjugation. 
Now we can argue as before (using [BL, (2.34)]) to obtain (5.33). The 

same reasoning gives the result for the third term: 
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Proof: In view of our previous results we only have to verify the asser- 
tion on domains; thus assume that  imd0,mi, is closed, such t h a t  d~,mi n = 
- *2 do,mln*O also has closed range. Then we have the strong Hodge decom- 
position: 

L2(AI"~ ~ L2(A~ "~ 72l I ~ im do,mi  n 5s) im d t - -  1,min " 

A . l . .  Now pick ~v E LZ(AI'~ fq ~L~I, O, we can find ~ E ~ ) ( d o , m i n ) ,  r/ E D(d~,mi n ) 
t with ~ = do,min~ "4 -d l ,m in r ] .  But ~ 6 D(D~176 and do,min~ = 0min~,0,0 and 

since dl,max[~)(dl,max) CI L2(AI'~ -1 ,0  t ( h l , O  ]* ---- 0 m a  x w e  a l s o  get d l , m i n r / =  , - - m a x ;  r/. 

Using (5.35) we find (c91'~ ~* r--~-~o,o x--maxl  = ~ / - - I O m i n * 2 ,  hence 

0,0 
= 0mi n ( ~  -~- ~ *2 r]) . 

S o  " o 0 xm 0m'in is also closed. D lm 0re'in is closed, and by complex conjugation " -o o 

COROLLARY 5.14. (D, D) is a Fredholm complex  if and only " -o o i f  Om'i, is a 
b3:edholm operator. In this case, 

ind (D, D) = 2 ind (~0,min. 

/ f  M C C P  u is an algebraic curve with normalization 7r : M --, M then 
indcg0,min = �89 x(M)  the Euler characteristic of  ~Vl, so 

ind (D, D) = ~((/k/) . (5.43) 

In this case, the L 2-cohomology coincides with the cohomology of .~ .  

Proof: The Fredholm property is equivalent [BL, Thm. 2.4] to the fact that 
0 is not in the essential spectrum of AD. Thus the assertion follows from 
Cor, 5.13 observing that A~':i" and A ~ Omio are unitarily equivalent. From 
Cor. 5.13 we also derive the index formula (5.43). 

Finally, (5.44) follows from the main result in [BPS]. D 

We remark that  Nagase has obtained Corollary 5.12, Corollary 5.13 
and Corollary 5.14 in the special case of algebraic curves, using heavily the 
conformally conic structure [N1], [N2]. Both proofs of Corollary 5.14 have 
the same source since his proof is an adaption of the method in [BPS] to 
the Gaufl-Bonnet operator. We emphasize that  in the case of Riemann 
surfaces the L2-Ks package always holds for our special ibc, and that 

-0 ,0  the cohomology calculation reduces to the calculation of ind 0mi .. 
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