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1. Introduction

The local index theorem has attracted much interest of analysts, geometers, and
physicists over the last two decades, rendering its proof more and more perspicuous.
All this work pertains to the smooth case whereas it is known that in the special case
of the signature operator much less regularity is required, at least for an “almost
local” signature theorem cf. [MoWu,CSuT]. Motivated by this, we study here the
differentiability requirements necessary to formulate and prove the local index theo-
rem for general Dirac operators. We will present a version for C''"! structures which
seems close to the minimum requirement. OQur proof relies on abstract heat kernel
estimates and is perhaps general enough to extend to other singular situations.

To formulate the results, we begin by recalling the setting of the local version of
the Atiyah-Singer index theorem for twisted Dirac operators. Let M be a smooth
compact spin manifold of dimension m = 2k. We fix a spin structure, F;,;, M, and
a smooth Riemannian metric, g, on M. Let S be a spin bundle over M, equipped
with the natural hermitian structure and unitary connection, V°, defined by ¢g. S
is a left module over the bundle of complex Clifford algebras C{M; the action of
o € C/M will be denoted by ¢(o). Choose a hermitian bundle of coefficients, F,
with unitary connection, V¥, and form the tensor product S @ E which inherits
naturally a hermitian structure and a unitary connection, V°9¥. The Dirac oper-
ator with coefficients in £, D¥, is then a first order elliptic differential operator on

C>(S @ F), defined by

DEF=3ele) VEPS, [ECH(S O B) (1)

where (¢;)™, is any (oriented) local orthonormal frame for TM. D is symmetric
and essentially self-adjoint in L?(S @ E); the unique self-adjoint extension will also
be denoted by D¥. To obtain a nontrivial index we bring in the involution on §

defined by

c(we) = \/—1kc(el) o...0c(€n) (1.2)
which splits S = Sy @ S_. Then p:=c(we) @ [ splits SO E =5, @ F® S_- @ F,

and we obtain a decomposition



0 DE
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Df is a closed Fredholm operator with adjoint D¥, and its index is given by the

celebrated formula of Atiyah and Singer [AS]:

Theorem 1.1 )
hﬂDf:/A@DAmE. (1.4)
M

Here A(M ) and chE are certain characteristic differential forms which can be com-
puted locally from the curvature of VI, the Levi-Civita connection defined by ¢,
and V¥. This “locality” of the index can be made more precise if one brings in the

heat kernel. As observed by McKean and Singer [McKS],

ind Df = trre(sen) [g e_t(DE)Z)] \ (1.5)

for all £ > 0. Since (D¥)? has discrete spectrum, ¢~ P is an operator with smooth
kernel,

O f(p) = [ Klp,a) (F(a)) volusla) . (1.6)

where volyr(q) = €8 A ... Ae(q) (with b : TM — T*M the ‘musical’ isomor-
phism defined by g¢) is the volume form and Ky(p,q) € End((S @ E),, (S @ E),).
Now it follows from a fundamental idea of Hadamard [H], further developed by Mi-
nakshisundaram and Pleijel [MiPl], Seeley [Se|, and Greiner [Gr| that we have an
asymptotic expansion

Ki(p,p) ~i—or S t"2Ui(p) , pE M . (1.7)

>0

In local frames and coordinates, the endomorphisms U; are recursively defined
as polynomials in the derivatives of ¢ and the data on E such that U; contains 2j
derivatives of the metric. Using this in (1.5) one finds

0, j<m/2,

[trser e Uspll volur(p) =4 | (1.8)
W JAM)Nch E, j=m/2.

The local index theorem now asserts that the identities (1.8) hold even pointwise.



Theorem 1.2 For all p e M,

0, j7<m/2,
trser(o U;(p)] = (1.9)

A

AM)Ach E(er,....en)(p), j=m/2.

Thus, ‘massive cancellations’ occur upon taking pointwise supertraces to the effect
that the final answer contains only two derivatives of all coefficients involved. The-
orem 1.2 has been proved by Kotake [Ko] for the case of Riemann surfaces and later
by Patodi for the Gau-Bonnet operator [P1] and the Hirzebruch signature operator
[P2]. Building on methods of invariant theory introduced by Gilkey [Gi], Atiyah,
Bott, and Patodi [ABP] proved Theorem 1.2 for twisted Dirac operators, thus yield-
ing also another proof of the full Atiyah-Singer index theorem. Their method did not
allow a direct identification of trsgr|o Un./2(p)] but only up to certain universal con-
stants which had to be computed from examples. Following ideas of the physicists
Alvarez-Gaumé [Al] and Friedan and Windy [FW], Getzler [Ge, BeGeVe] designed a
direct proof based on a scaling argument and Mehler’s formula. His proof has been
modified by many authors in order to clarify the subtleties of the analysis involved;
we mention only the approach of B. Simon [Si] which is somewhat close to what we
are going to present.

Our starting point in this paper is an apparent asymmetry in the statement of
the local index theorem: we require m derivatives to formulate it (i.e. to construct
U,./2) but the answer will contain only two. Thus it is natural to look for a (possibly
weaker) statement which requires less regularity. Clearly, if we allow C'-structures
everywhere then D¥ is still perfectly well defined, with the same properties as listed
before and the same index. But we also can present the index as an integral, starting
from (1.5), as follows. Choose a family {x:, |t € (0,1],p € M} C C(M) with the

following properties:

Xtp = 0 and supp xi,p, C B /5(p), (1.10a)
the map p — x:, is continuous, (1.10b)
]\ﬁxw(q) voly(p) =1 forallge M, t € (0,1], (1.10¢)
lim [ xep(q) volar(q) =1 for all p e M . (1.10d)

Such a family is easy to construct, cf. (2.6) below. Now the map

M3 pe oxe, e P e (IS0 E)),



where C, denotes the von Neumann-Schatten class of order p > 0), is continuous
P p 9
hence from (1.5)

ind Df

L2(S0E) [QXt,p e_t(DE)Z)] vola(p)
(1.11)
t

= [tr
M

=: [ FF(p) volu(p) .
M

In the smooth case, we have from Theorem 1.2 and the conditions (1.10), uniformly
inpeM, )
tlirg}l_ FE(p) = A(M)Ach E(eq,....en)(p) .

This leads us to the following definition: We say that the weak local index theorem
holds for D¥ if there is F'¥ € L*(M) such that

tlir&FtE = FF in LY(M), (1.12a)
such that
ind DF = /FE(p) volar(p). (1.12b)
M

It is fairly obvious that no local index theorem can hold if we require just C-
structures on the (compact smooth) manifold M. In particular, to identify F*
with the Atiyah-Singer integrand we have to make sure that the latter exists and is
integrable. Our main result thus reads as follows.

Theorem 1.3 Let M be a compact smooth spin manifold and £ a smooth complex
vector bundle over M. If we equip M with a CY' metric, and E with a C*' hermitian
structure and a unitary Lipschitz connection then the weak local index theorem holds
for Df. Moreover, for almost all p in M,

FP(p) = A(M)Ach E(es,. .. en)p) . (1.13)

The original motivation to investigate this problem was to design a proof of the
local index theorem a la Getzler which is general enough to carry over to stratified
situations like wedges; we will return to this question in a future publication.

The assumptions of Theorem 1.3 are perhaps not optimal. It would be interesting
to find the precise minimal regularity condition under which the theorem remains
true.

The paper is organized as follows. In Section 2 we give the outline of the proof. In
Section 3 we compute the transformation of (D¥)? under the scaling map. Section
4 contains the main analytic facts needed in the proof of Theorem 1.3 which we
present in a more general version than actually needed here since we could not
find easy references in the literature. All assertions used in Sec. 2 are proved in
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Sec. 5 which deals with C,—estimates for heat kernels of certain elliptic systems of
second order. We avoid higher regularity essentially by employing throughout the
v.Neumann-Schatten scale of operator ideals, the crucial norm estimate being given
in Theorem 5.2

During the preparation of this work I have profited from conversations with Jean-
Michel Bismut and Henri Moscovici, and I am grateful for the hospitality of the
Ohio State University, the Université Paris-Sud, the Institut des Hautes Etudes
Scientifiques, and the Université Paris—Nord where this paper was eventually com-

pleted. This work has also been supported by the EU under the GADGET project.

2. Outline of the proof

From now on, we are dealing with a compact smooth spin manifold, M, equipped
with a P! metric, g. That is, the metricis a C! section of the bundle of symmetric
two-tensors and we can find a finite C? atlas, (U}, %’)ifl, for M with D(c,oi-c,oj_l) Lip-
schitz for all 7,7 and (p;')*g C!, with all partial derivatives of first order Lipschitz.
Similarly, we consider a smooth complex coefficient bundle, E. over M equipped
with a C'! hermitian structure and a Lipschitz unitary connection, V. Under
these conditions it is well known that the exponential map exp, : {s € T,M | |s| <
i(M)} — Bian(p) is a Lipschitz homeomorphism. We may assume that M has
injectivity radius larger than one, (M) > 1.

Our convergence proof for F; in (1.11) will make use of the “Getzler scaling”,
defined in (2.10) below. This requires two technical adjustments: first, we replace ¢
by ¢ := &% with &, € (0,1], and second, we replace the coefficient bundle £ by

E(p):=(MxS))@FE. (2.1)
The product bundle S7 := M x S} is equipped with the obvious hermitian structure
and the flat connection, E(p) carries the tensor product structures. Then, clearly,
FE(p) = 2_ktrL2(S®E(p)) [th,p e_t(DE(p))2]
(2.2)
= Q_kFtE(p) :
Next we give an explicit description of a family (x:,) with the properties (1.10).
Denote by dj; the Riemannian distance and define

expy(volyr)(s) =: O,(s)ds, |s] < 1. (2.3)
Then choose n € C§°(By/3(0)) with > 0, n(s) =n(]s|), and

/ n(s)ds = 1. (2.4)

RrR™



Then, with
ni(s) =t (s/ V) (2.5)
we define
Xep(q) 7= 1: (dar(p, ) (O4(expy'p))™" . (2.6)

The first step in the proof of Theorem 1.3 consists in a suitable transformation of
(DF®)? following Getzler. Fix p € M and ¢ € (0, 1], then we obtain the diagram:

1

q}E
LA(B(0),A; @ E,) —= L*(B.(0),C, © E,)

Lwz, (2.7)

3

L(B.0).5, © E(p)y) -2 LX(S @ E(p)|B.(p)

To describe the various maps in (2.7) we fix a local orthonormal frame, (¢;)™,

for TM in Bi(p) and write for any strictly ordered multiindex, I = {i1,...,4} C

{1,...,m},

w(l) = 1, (2.8a)
er(q) = ey ... e,(q) €TlM, (2.8b)
ebl(q) = 651 Ao A e?z(q) € AJM, q € Bi(p) . (2.8¢)

Here, again, b : T'"M — T*M is the ‘musical’ isomorphism definded by the metric.
Then

\I/;p(ebl(p) @ w)(s) = e"Der(p) @ w(s/e), we LA(B(0),E,) , |s| <e. (2.9a)
For the definition of \I/?p we recall the existence of a Cl,-equivariant isomorphism
ap:CgpMHSpQQS;.

Then
W2 g(s) 1= 0y © I )(o(s)), g € L(B0),C, 0 By, s <. (2.9)

Finally, we need the parallel transport along radial geodesics from p : it F' is any
complex vector bundle over M with C'''! hermitian structure and Lipschitz unitary
connection, V¥, then we get parallel transport

Pl(s): By = Fug (s, |8 <1,
with Lipschitz dependence on s. We define
W2, glexp,s) = PLo0)(s)(g(s)), g € L*(B(0), 5, @ E(p)y), |s| <e.  (2.9¢)
Finally, let



O, =02 W Ul . (2.10a)
We note the explicit formula

e p(€i(p) @ w)(exp,s)

- (2.10D)
= e DP 7 () (apler(p)) @ BY (s)(w(s/e)) -
Now, with (2.2) we arrive at
7~ - - —te2 (p)y2
th(p) = trA;®L2(Bl(0)7Ep) [CI)E; o d., CI)E; Xe2t,p € t=2(DFP) CI)EJ,] ) (2.11)

We examine next the transformed heat kernel. Formally, P. ,(t) := CI);; ete* (D)’ o, ,

solves the equation

9 ~ 0
0= [a + (I)EJID 52(DE(p))2 (I)s,p‘| Psyp(t) =: [a + 7'57p‘| vap(t) .

Tep is & second order elliptic operator on C§°(B1(0), Ay @ E,) but not symmetric in
general. In Section 3 we will prove

Lemma 2.1 We can write

Tp=— . Mzd]A” (2.12)

£,p?
BilvI<2
where My denotes multiplication by s°. Moreover,
0 . —
As}a = A;p = az}p” ]A;;@Ep (213&7)
and, for some A, Ay > 0 and uniformly in & and p,

)‘1|€|2 S Z az}pwfmfw S )‘2|€|27 (2.13&”)

Vi
and we have the reqularity assumptions
APV € CMI(B,(0),End A3 @ E,)  (the C? case) (2.131")
or, more generally,
Ctoifly[ =2,

Alve s Lip if ly[ =1, (2.13b7)
L if|y| =0 (the C'! case).



If we decompose the coefficients with respect to the basis (¢5) (as in (2.20) below)
then

[AZ]y =0 if |8l =[] = (D) = u(J)] < 2. (2.13¢)
Finally, we have a limit in the sense that, for f € C5(B1(0), A} @ L),

limTQp f=7, 1,

—0
where 1o, is the “Getzler operator”:

2

Top ==, s, —gzsj Qi;(p) ® Ig, +QF(p) . (2.13)
=1 2 7=1

If we denote by RM | RY the respective curvature tensors and by 'w' the operation
of wedge multiplication, then we have

Qij(p) = Z R%ijw(ei A eZ(p)) )

k=1

OF(p) = 5 3 wlel A es(p) @ RE, (7).

[N

Next we have to introduce “boundary conditions”. It seems most natural in this
context to use the Friedrichs extension as defined by Kato [Ka, p.325]. The details
will be given in Section 4; let us thus define 7. , as the Friedrichs extension of 7., in
H := L*(By5(0), Ay @ E,) with domain C§°(Bys(0), Ay @ E,). Then 1., generates

an analytic semigroup, e~"T=#_which is a good replacement for P. ,(¢):

Theorem 2.2 Denote by C, the von Neumann-Schatten class of order p > 0 (such
that Cy is the trace class). Then, for x1,x2 € C5°(B1/2(0)) and N € N,

—iTep

[Ix1(e — P, (1)) xzllesmy < COnle, p, xas x2)t™ .

This result will also be proved in Section 4. To analyze e~'*» it is important to
have a good approximation. For this, somewhat surprisingly, the heat kernel of the
Getzler operator does not seem convenient. Instead, we look at the operator which
consists of the scalar principal part in (2.12),

=y, 9T ALL (2.14)
Inl=hezl=1
Its Friedrichs extension, Tgp, is defined as before and it turns out that the oper-

ators T, , and T all have the same domain. This is the basis for the following
representation by a Neumann series, also to be proved in Section 4.

8



Theorem 2.3 Introduce fort € (0,1]

RO ( ): -T2, 7 (215&)
t
RZ—I];I (t) = fRs p(t - u) > Mﬁa’yAﬁ’ye e rdu, v e T - (215b)
' 0 BilvI<1
Then we have
e”Ter = SRV (1), (2.16)
v>0

and the sum converges in operator norm, uniformly in t,e € (0,1] and p € M.
Next, a little calculation using (2.10b) shows that

Xertp Pep = Pepe™ i (o, (op € C(Bu(0)) (2.17a)
where, uniformly in s, e, p,

lii%@’p(s) =1. (2.17b)

Thus we obtain from (2.11) and Theorem 2.2 (with N = m/2 + 1), setting H :=
L*(B1(0), E,),

FE(p) = e tragom 021 0 ®up 1y Gop € To%] +0.(1) . (2.18)

It remains to deal with the involution ., := CI)Ep o ®.,. In preparation of the
relevant statement we introduce a matrix decomposition of A € L(A} @ K), K a
Hilbert space, via

Aleilp) @ x) = D elp) @ [Al(e), [Alsr € LK) - (2.19a)
Hence, with 17 : & +— €}(p) @ & we have [A];; = 13 At In particular, we write

[Altep = [Alpp - (2.19b)
Then we have the following variant of the Berezin-Patodi-Lemma.

Theorem 2.4 Fort,c € (0,1],p € M, we have

FE(p) = (=2v=D)" tey e Gop e T7] 4+ 0.(1) . (2.20)

top



Proof  With the notation (2.20) we have

5_mtrA;§®H [Qs,p m Cs,pe_tTayp] = ¢ " ZtrH [Qs,p] 17 [7715 C&p e_tTEVP]JI (221)
I,J

=: G.4(p) .

For any multiindex I C {1,...,m} we denote by ~ [ the (strictly ordered) com-
plementary multiindex and by sgn ([, ~ [) the sign of the permutation {/,~ [} of
{1,...,m}. Then we have

we - er(p) = (—=1)"D eg - we(p)
= (=)D /=T'es - eg-sgn(l,~ 1) ens(p)
_ /—_1k+ﬂ(1)(ﬂ(1)—1)sgn(I7N ]) GNI(p) 7

hence (2.10b) and the equivariance of o imply (with * the Hodge star operator)

et pu(1) (1) —
Qw(ebl(p) Quw) = c2ul)=m /T D) =1) ebj(p) ® w (2.22)
= (0 1)) 0w

Here 7 is the involution defining the signature operator on Q(M). (2.22) and (2.23)
yield

Gea(p) =e™™ ;trH[@s,p]m[m Cep €7 )ur g

=y e (1) mT I g (o 1 Dty [ G e ]
I ~ ?
= EI: Gg,t(p) .
(2.23)
Now observe that the theorem is proved if we can show that GZ,(p) = G2, (p) for

all I. To see this, we recall from the construction of 7., (cf. Section 3) that the
operators Bg; in (2.12) act on A% only through operators of the form

[Ile" w(ei(p)) —eie(p))] . T C{L....m},

el

where ¢ denotes interior multiplication, i.e. they act only through scaled Clifford
multiplication. In view of Theorem 2.3, the same is true for e7*7=» and we can write

e Tor = 3 T w(el(p) — cilei(p))] @ AL (1) -

J eJ

10



A contribution to (2.24) can arise only if J = {1,...,m}, and we obtain (with
obvious notation)

—tT. ]
& P
[ntCE,p ~IT

= (—1)HO 2D =msgn (~ 1, 1) [eo(e, I<p>>z'<ef<p>>]Numce,pA:%@)

= (= 1)HDFuDED =D 2ggn (0 [ T) 2D, AV (1)

The proof is complete. i

It is natural to expect convergence in (2.21) as ¢ — 0. However, 5, involves a factor
t="/% and we are taking traces. The estimate necessary to handle this problem is
the analytic core of the paper and will be given in Section 5 below. As a simple
consequence, also to be proved in Section 5, we obtain the following result.

Theorem 2.5 There is a function ¢ with lir% é(e) =0 such that

||77t [Cs,p e Ter — e—tTO,p] ||01(H)) < C(¢(€) + tl/z) ) (2'24)

top
uniformly int € (0,1] and p € M.

The final step in the argument uses again Getzler’s calculations based on Mehler’s
formula; it will be given in Section 4.

Lemma 2.6

(=2v/=1)" tey [ e or)  — A(M)Ach E(er,....en)(p)|  (2.25)

top

The preceding results now easily yield the
Proof of Theorem 1.3  Combining (2.21), (2.25), and (2.26) we find

| 52t( ) (M)/\Ch E(elv"'7€M)(p)|

< Cut + O(d(e) + 1) .

11



3. Scaling

We now want to prove Lemma 2.1. This calculation is essentially well known but we
have to redo it in our special context. So we fix p € M and a local orthonormal frame,
(e;),, for T'Byi(p) as before. We choose a canonically associated local orthonormal
frame (o,) for S|B;1(p) and a local orthonormal frame (75) for F|Bi(p); (¢) denotes
the dual frame for S*|Bi(p). The first important fact we need is the Bochner-
Lichnerowicz-Weitzenboeck formula [LM, p.164]:
( DE<p>)2 _

- - (3.1)
-y [VSS;X)E(Z?) VSS;X)E(Z?) _ vé?zl(p)] + /1/4 + 1/2 > c(ei)c(ej) R RZ .

i=1 : =1 ™
where V := VIM and x is the scalar curvature of M. It is apparent from (3.1) that
the main computation concerns VBS;X)E(p). Thus we choose w € C*°(B1(0), E,) and
observe that (2.10) implies

(3.2)

where a tilde denotes parallel translates i. e.

apler(p)exp,s) = Py (s) (apler(p))),

Wilexp,s) = P(s)(w(s/e)),
are parallel along radial geodesics from p. Hence we obtain
VI @y (e7 @ w)
= VEEW (1) 0, {er(p) © )
(3.3)

—e

= (9% 0T 0 F 4 Ta0)) © VES

=1 4+ II .

We evaluate I, noting that the spin connection is given by the following formula for
any section o € C'*°(S|By(p)) which is parallel along radial geodesics from p [LM,
p.110]:

Vie = <VZMej, ek> clej-ep)o, e € C(TBi(p)). (3.4)

m
Jik=1

1
4.
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We will write '
Il = (VIMej e ) | (3.5)
and find, with 3, : A5 — Cl,, the canonical isomorphism:

———— —

[ = guD/ i I clej - ex) apler(p)) @ wF
k:

m . 1/e . .
= o, (i DY (F;k o expp) (5_171)(6?) — 5@(@)) (5_171)(6%) — 5z(ek)) e(p) @ w) :
We further evaluate this using the well known Taylor expansion

F;k(exppes) = —c/2 g:l Sg[<RM(e“ €r)e;, €x) + f%(p; 55)]
(3.7)
= —¢/2 3 se(Blfu () + Tipies)) -

with some continuous functions fﬁ € C(M x B1(0)) satisfying f%(p,()) =0. It
follows that

el =0, [ = 1/8 3 s RIfu(p) + Dii(pies)
- (3.8)

(w(eh) — e%i(e;))(w(ey) — e¥iler)) D w] .
To evaluate II we observe that
VE G (q) = VE(PE(woexp))(g)
= PE(exp,'q)(PE(exp,'q)™ VI PE(w oexp;')(q)).

Using the terminology introduced in [Br, Lemma 5.2] we obtain a unitary connection

(PEYVY = V¥ on C*>(B1(0), E,) with the property that

Vfi (;E(expps) = Pf(s) vE 1 w(s) . (3.9)

(Tsexpp) —le;

13



Writing €;(s) := (Tsexpp)_l(ei) e T,r™, it follows that

I =eDa,{erlp) @ VE &
(3.10)

= ., (eh(p) @ (VE w)Ve) .

Now we have in the normal coordinates defined by (e)™,

Z aij(s 65]

with a;; € C*(B1(0)),a;;(0) = 6;;. Thus we obtain, with certain
I € C*°(B,(0), End E,),

(VE) () == Zam (25) 22 (5) + [ (e )uo(s)
or
ell = <I>5,p<el (Za}]/fa— +( FZ)”E)) (3.11)
Combining (3.8) and (3.11) we now find
cB7L VICED) ¢, = ]2_: a;;(£s) i +elar @ I(es)
(3.12)
185 SR + T 01 29)) () — e ) (w(eh) — <¥i(e) © i,

The calculation of 7., is thus almost complete, in view of (3.1). Only the last
term deserves some further attention:

LY e ) @ RE @, (¢h(p) @ w)(exp,s)
2,7=1 J
= grll) % 2 cleire) @ Rgej ap(er(p)) @ w(exp,s)

= D L 5 PSOEO)(s) (a,B,((wlel) — ifen)(w(el) — ife))) ef(p) @
= (3.13)

®((Pf)_1 Rgej Pf)l/sw) (expps) )
From (3.1), (3.12), and (3.13) one now easily reads off the proof of Lemma 2.1. U
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4. Off-diagonal decay of heat traces

We begin this section with some abstract results which are often used in the spectral
analysis of elliptic operators, and which will lead to the proof of Theorem 2.2 and
Lemma 2.6 ; many special versions are, of course, well known. But the point here
is to use as little regularity as possible which forced us to present the treatment
below. We work with the resolvent and transfer the results to the heat semigroup
via Cauchy integrals.

Let H be a Hilbert space, D a dense subspace, and T': D — H a closed m-sectorial
operator in H. By definition [Ka, p.280] this means that the numerical range (and
hence spec T') is contained in a sector

{zecC]|arg(z —7) <0}, YyER, 0SO<7/2, (4.1)
and that we have the resolvent estimate [Ka, p.490]
T+ A +9)7 < ColA™, A2 1 Jargd] > 0 > 0. (12)
In what follows we assume for simplicity that
v>1. (4.3)
We introduce the resolvent
Gz):=(T+2*)" 2€Zs:={z€C||z| =6 argz| < (7 —0)/2},

2

where 6’ > 6, and we use ‘z*’ in view of our applications to differential operators of

second order. The class of closed m-sectorial operators is natural since it contains
eg. the Friedrichs extension of second order elliptic differential operators with scalar
principal symbol.

To imitate the usual cut-off procedure we introduce a subspace, S, of L(H) with
the following properties (the “cut-off axioms”):

(CO1) Forall g €S8, ¢(D) CD.
(CO2) For all ¢ € S, the operators

TV gL [T, ¢ T2 D — H
extend to H by continuity.

(CO3) There is a transitive relation * <’ on & such that ¢; < ¢ implies
P102 = $201 = o1, (4.4a)
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and

there is ¢3 € S with ¢ < ¢3 < ¢3 and (4.4b)

TPT, 1)1 — 63) = (1 — 63)[1, &y]T~/?
= T7V2T, 6] b5 = [T, o] T™V* = 0.

(CO4) If Iy ¢ S, then for all ¢ € S there is ¢’ € S with ¢ < ¢'.

(CO5) S§*=S8.

We remark that in view of (4.3) and [Ka, Ch V, §3.11] the operators T~% « €
(0,1), are well defined bounded operators in H. We use again the von Neumann-
Schatten classes of compact operators which we denote by C,(H),p > 0, with norm

I

Lemma 4.1 Assume that a subspace S of L(H) satisfies the assumptions (CO1)
through (COb), and that in addition

oI~ € Cp(H), for €S and some py > 0 .
Then, for all ¢1,éy € S with ¢y < ¢y and all p > 0 we have
n1G(z) — @) € Cp(H), z€ Zs .
Moreover, we have the norm estimate
161G (2)(I = 6], < O, 62,0, N)J2| 7V,
valid for =z € Zs and all N € IV.

Proof Using (4.4b) we determine ¢; € S,7 < j < 4, such that ¢1 < ¢3 < ¢4 < 9.
Since ¢G(z)u € D for u € H, ¢ € S,z € Zs, we obtain from

(T + 2%)63G(2) (1 = 62) = [T, $s]G(2)(I — ¢2)

and (4.46) the representation

31 G(2) I = ¢2) = (TN (IPG(2) T T T, 65]) 4G (2) (1 — 62) . (4.5)

Now we observe the easy estimates

1G]] < Clel . (1.6a)
TG T = (|1 = 2G| < C (1.6b)
16G()l, < 6T, + 16T 22G()l, < ClI6T 1, (1.6¢)
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where we have used the resolvent equation in (4.6¢). Next we combine the integral
representation [Ka, p.281]

_1/2_L -1/2 172
T = / G e (4.7)

where " is (e.g.) the wedge |arg z| = ', §' > 0, traversed upward, with the interpo-
lation inequality

Al < |JAI 22 Al (4.8)
valid for A € C,(H) and all p’ > p > 0. Then we deduce that for p; > 2pq
16G((=" )y < ClEP Mo IR < Clefn
which gives with (4.7)

o1~ € C,p\(H) . (4.9)
Using (4.9) (with p; = 3po), (4.6b), (CO2), and (4.6a) in (4.5) we derive
|1 G(2) (L — d2)]|zp, < C(¢17¢2)|2|_2,Z € Zs . (4.10a)

Next we use the Hoélder inequality for C,-norms in (4.5) to prove by induction on
LeN

161G (2)(1 = &2)ll3pesr < C(61, 62, L)]2[ 7%,
i.e. for p >0
161G (2)(1 = @2)llp < C(61, 2, p)|2] 7%, 2 € Zs . (4.10Db)

Finally, we rewrite (4.5) as

01G(2)(1 = 62) = GG () TVHT T, 62)) 4G (2) (1 — 62)

and use the estimate

|GETV <Ol 2 € Zs (4.10¢)

which follows from (4.7) and the resolvent equation by a straightforward estimate.
Then another induction will prove the assertion. i

By symmetry, the same reasoning also proves the following statement.

Corollary 4.2 Assume that all the assumptions of Lemma 4.1 hold with the only
change that now

T_1¢ € CPO(H) 9
for o € § and some py > 0. Then, for ¢1,¢09 € S with ¢ < @9 and all p > 0 we

have
(I — $2)G(2)d1 € Cp(H), 2 € Zs

with norm estimate

(1 = $2)G(2) 1], < C1, 62, p, N)J2| TV,
z € Zs, N € N.
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We will actually need the consequences of Lemma 4.1 for the heat operator,

T L / (T — €)7VdE . (4.11)

27
r

Here we can choose I' as in (4.7) but, by holomorphy, we can replace it by I';, the
path obtained from T' by traversing the circle |£| = ¢~! outside T, and then T' for
|£] > ¢, This gives

Lemma 4.3 Under the assumptions of Lemma 4.1 or Corollary 4.2 we have for
t€(0,1] and p> 0

|61 (1 — 69|, < C(¢1, 2, p, NIV (4.12a)

and
||(] - ¢2)6_tT¢1||p S C(¢17 ¢27p7 N)tN 3 (412b)

respectively.

Now we turn to the class of operators which will be the main object of study
in the remainder of this section, and to which we will apply the abstract results
above. These are certain second order elliptic operators on Riemannian manifolds
which are sectorial. Thus, consider a (smooth) connected Riemannian manifold M
of dimension m, a (smooth) hermitian bundle F' of rank k over M, and a differential
operator, 7, on C3°(F). We assume that, in a bundle chart ¢ with local coordinates
s =(81,...8m) € B1(0), we have

T,i=@oTop l=— > JIB], (4.13)

lv|<2

where the coefficients B satisfy the assumptions (2.13a) and (2.13b”).
These conditions are independent of the choice of . The following facts are proved
by standard arguments.

Lemma 4.4 Let 7 satisfy the conditions (4.13).

1) 7 has a formal adjoint on C3(E), 7", which is also elliptic of second order on
CS(E) and satisfies (4.13).

2) For ¢ € C(M) and u € C§(FE) we have

éulli () < Ca(d)(Re (ru,w) + |[ul]?) (1.14)

where Cy also depends on a choice of norm in H'(E|supp ¢).
3) For ¢ € C*(M) with supp d¢ compact and u € C5°(E) we have

[(réu, u)| < C(d)(Re (ru, u) + [[u]]*) . (4.15)

18



With 7 we associate the following sesquilinear forms on Cg°(FE):

tu, v] = (Tu,v), t{u] = tu,u], (4.16a)
hlu,v] := <%(T + Tt)u,v> =: (R7u,v), hlu] := plu,u], (4.16b)
tlu,v] = <%(T — Tt)u,v> =: (Ztu,v), tu] := tu,u], (4.16¢)

such that
t{u, v] = blu, v] + itfu, v] .

Observe that Z7 is a differential operator of first order.
To ensure sectoriality of t (in the sense of [Ka, p.310]) we require, in addition to
the conditions (4.13), the estimates

hlu] = ylull*, (4.17a)

[tull < ( tg 0)(b[u] —llul]*), 0 € [0,7/4), (4.17b)

for all u € Cg°(F). Without loss of generality we may assume that v > 1. Then
is also sectorial and symmetric. So we can form the Friedrichs extension of both t
and b, to be denoted by T" and H, respectively (cf. [Ka, p.325]). The forms t and
are closable, with closures t and §, and it follows from (4.17b) that

D(t) = D(h) .

Note that the estimates (4.14) and (4.15) extend to D(h) by continuity.
In the setting just described we now have to verify the assumptions (CO1) - (CO5)
for T', the Friedrichs extension of 7 in L*(F'). We put

S = C(M), (4.18)

acting on L*(F') by multiplication.
For (CO1), we observe that by [Ka, p.322] we have

D(T) = {u e DE) | |(u, )] < Cl|v]| for all v € CZ(F)} . (4.19)

For u € D(T) we can thus find a sequence (u,) C C§(F) such that u, — u in
L*(F) and lim t[u, — u,] = 0. For ¢ € S we obtain ¢u, — du in L*(F') and,

from (4.15),
[t{o(un — un)]| = [(T0(un — ), G(un — um))|

< CO)(Jtun — unll + [|un = wnllfory) =0, n,m—o0.
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Hence ¢u € D(t). Next, for v € C§°(F') we get

(du, ') = (u,[d, 7']v) + (T'u,v) ;

since [¢, 7] is a compactly supported differential operator of order at most one on
C*(F), we obtain from (4.14) the estimate

[(du, 7'0)| < Cul[o]],

as desired.
(CO2) we prove first for H='/? in place of T='/2: for u € D(h) = D(H'/?) we
have in view of (4.14)

N7, éJul* < CllullF e aupp oy < CUH 2l +[ul?)

supp ¢

Setting u := H~'/%v gives the boundedness of [T', | H /% applying the same argu-
ment to T gives the boundedness of H=2[T, ¢]. To relate H='/? to T~/2 we choose
Y € Cg°(M) with ¢ = 1 in a neighorhood of supp ¢ and note that v D(T') C D(H),
in view of (4.14) again and the identity

(u, Ho) = (Tu + iTrou, v) |

valid for v € D(T') and v € C§°(F). Then we derive the representation

(T =N =(H =N+ ([ ] —iZre)(T = A)7)

(4.20)
= (H =N+ AN) .
The arguments given above show that
|HY2AN)|| < CIA™Y, |A| > 1 and Red < 0. (4.21)

Using the representation (4.7) we deduce from (4.20) and (4.21) that
STV = HV2B |

for some bounded operator B. This gives the boundedness of [T, ¢]T~'/? =
[T, ¢]spT~"/2; applying the argument to 7™ gives the boundedness of T[T, 4].

The remaining properties, (CO3) - (COb), are easy to see if we make the obvious
choice for the relation © <’:

1 < @9 iff ¢ = 1 in a neighborhood of supp ¢ . (4.22)

To apply Lemma 4.3 to T, it only remains to show that ¢7T~' € C,(L*(F)) for
¢ € CF(M) and some p > 0. So choose a compact manifold with boundary,
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My C M, such that supp ¢ CZ\O41. Denote by Hyy, the Friedrichs extension of Rt in
L*(F| My); then it is well known that

Hyt e Cp(L*(F ]\21)) for all p > m/2.
But ¢T~! maps into D(H,y, ) and
Hyp T = [T, 0T + ¢ — 17Tt

is bounded in view of the arguments proving (CO2).
We have proved:

Lemma 4.5 If T is the Friedrichs extension of a second order differential operator
with the properties (4.13) and (4.17) then the estimates (4.12) hold, for all ¢1,¢2 €
Ceo (M) with ¢ =1 in a neighborhood of supp ¢;.

With these preparations we are ready to prove Theorem 2.2 and Lemma 2.6.

Proof of Theorem 2.2  Choose x1, x2 € C5°(B1/2(0)) with x1 > x. By elliptic
regularity, we have for u € D(1.,)

X1 Pep(t)x2u € D(1L,),
and an easy calculation gives

(O + Tep)x1 Pep(t)xou = [T py xa] P p(B)xou =2 0(1), ¢ >0, (4.23a)
tl—i>%r-l|- X1 P-pxa2u = xau. (4.23b)

Now, for fixed ¢ and p we may write, in view of (CO2) above,

o(t) = A[(DPO)? e PPV ((DPWNY? 4 1)1 g, (4.24)

Y

for some bounded operator A : L*(S @ E(p)|B:(p)) — L*(B1(0),A} @ L), some
function y; € C5°(B.(p)), and some @ € L*(S @ E(p)). The spectral theorem then
readily shows that v is Holder continuous in [0, 1] with exponent 1/2; thus we can
apply [Ka, Thm. IX, 1.27] to conclude the representation

11
XlPs,p(t)X2 = e_tTE’pXQ + /0 e (e [Ts,pv XI]PE,p(u)Xﬂlu
11
= oy o [T L, T )T = ) Pep )

for any y2 with x1 > y3 > x2 (cf. (CO3)).
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Now we deduce from the Cauchy-Dunford representation analogous to (4.11) the

estimate
e Ter, M2 < et —u) ™2,

whereas the second factor in the integral is bounded by (CO2). The third factor
can be written as

_ ~ —e2y(DE(P)2 ~ _
(] - X3)P5,p(U)X2 = o, 1((] - XS,E)G =) X2,:Qep = De le,pq)s,pv

with Ya. < Yz in C®(M). Since the self-adjoint operator (DF®)? equals its
Friedrichs extension from C*(S @ F(p)) and satisfies (4.13) and also (4.17), by

self-adjointness, we get from Lemma 4.5
17 = x3) Pep(u)xalley < (@™ | @epllC (e, p N
The proof is complete. i

Proof of Lemma 2.6  This proof is achieved by exactly the same arguments
as above for Theorem 2.2, with only a few modifications. In Lz(Rm,A; @ FE,) we
introduce the integral operator, P(t), with kernel

P(t;51,85) i= (4mt) "2 P(Qp)t) Po(QF (p)t) Pa(QUp)t; 1, 52), (4.25)
B 20(p)t
Pi(t) = (detm) , (4.26)
Py(t) :=exp (—% < %(31 — 83),81 — 2 > +4it < Q(p)si, s2 >)) ,
(4.27)
Pa(t; 51, 59) := exp(—QF (p)t), (4.28)

where Q = () and QF are defined in Lemma 2.1. Then, for y; € C§5°(By/2(0)),
it is easy to see that 1 P(?) maps into D(Ty,). Moreover, it follows from [BeGeVe,
Ho] that P(%) solves the heat equation associated with 79, so we derive the analogue
of (4.23).

The explicit formula (4.25) ensures Holder continuity and off-diagonal decay so
we arrive at

Ixa(e™7 = P(t)xalle, < CN. xa, x2)t™,

for all N € .
The proof of the lemmais completed recalling (2.20) and observing that [P(%; s, s)]top
is actually independent of ¢, hence can be evaluated at ¢t = (27y/—1)7% i
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5. Estimates for ¢ '7=r

It remains to prove Theorems 2.3 and 2.5 which is the goal of this final section.
The main point is to find a suitable representation of e~*'=» which allows to read off
the uniform estimates (and continuity properties) required in the proof of Theorem
2.5. This is achieved by comparing 7., with the Friedrichs extension, Tgp, of the
principal part, 72, (cf. (2.15)). The advantage of this operator over Tp, lies in the
fact that it is diagonal with respect to A7; the corresponding Neumann series has
enough structure to carry through the estimates we need.

Thus we have to consider the operators 7. , and Tgp in the coordinate Hilbert space
H = L*(By3(0),A; @ E,), the Friedrichs extension of the differential operators 7.,
and 70, defined in (2.12) and (2.15), respectively. It follows from standard elliptic
theory and the definition of the Friedrichs extension (4.19) that

D(T.,) = D(12,) = H*(Bys(0), Ay @ I,) N Hy(Bys(0), A7 @ Ep). (5.1)
Thus we obtain for v € ‘H
(0 + T57p)e_tTEOqu =— > Mg@ZAg’;e_tTgqu, (5.2a)
Byl
%ing e Tory = u. (5.2b)

Since Tgp generates a holomorphic semigroup, the standard a priori inequality for
u € D(T2,) (cf. Lemma 4.4) gives for |y| < 1

[

n < Ct7PI2 (5.3)

(with C independent of ¢ and p) such that we obtain, as in the proof of Theorem
2.2,
e Mer = =120 4 > /t e_(t_“)TWMgazAf;e_“Tfodeu. (5.4)
Bt O 7
This leads us to define, as in Theorem 2.3,

0 - TEOP
Rs,p(t) = ¢ e, ) (55&)
¢ 0
RZ:IZ;I (t) = Z o Rg,p(t - U)MﬁazAg’;e_tTg,Pduv (55b)
B, vl<L1

one expects that the resulting Neumann series converges, as expressed in Theorem

2.3.

Proof of Theorem 2.3  The theorem follows if we prove that for positive con-
stants Cp, (', independent of ¢ and p, we have the estimate

IR ()] < CoCy (w22 1> 0,0 <t < 1. (5.5)
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This is obvious for v = 0, from (5.5a) and (5.3).
If the estimate holds for some v > 0 then (5.5b) and (5.3) give

IR Dl < Co [ 1R — ) o

13
- CQCch(V!)_l/Q/ (t —w)"u=du

0

2wy L(/2+ DI(L/2)
[(v/2+3/2)
< CoCYCCs((v + 1)!)‘1/2t(”+1)/2,

IA

C()CQC{/(Z/’)

where we have used the asymptotics of the I'-function. The assertion follows with

C, := (CyC5 and ||e_tT507P =: (. D

We will need trace estimates, however, to achieve the proof of Theorem 2.5. In

what follows we work with the von Neumann Schatten classes of compact operators
in H; we denote them, as before, by C,(H) and write || - ||, := || - ||¢, (), for ¢ > 0.
In particular, we use || - || := || - [|%-

Lemma 5.1 There are positive constants Cy, Cs, independent of ¢ and p, such that
1RZ, (1)l < CaCy (v + 1Y~/ 2mm/2, (5.6)

Proof For v = 0, we recall that Tgp is actually scalar and hence satisfies the
kernel estimate, for 51,5, € By/5(0),

|e_tTEOvP(31,32)| < Ot 2=/t (5.7)
again with C,C" independent of ¢ and p (cf. eg. [Da, p.89]). This implies the
estimates
—15p Ct=m?, (5.8a)
_t/2T507p 2 < Ct_m/Q, (58b)

e
e T

IA A

e

and with (5.3), for |y| <1,

|07 et |y < ||07e /212 —t/2T2p||, < Ot (mthD/2, (5.8¢)

| lle

Hence the case v = 0 is settled by (5.8b).
If the assertion is true for some v > 0 we use (5.5b) again, now splitting the
integral in order to avoid nonintegrable singularities:

IR )] < 02{/ IRY (= )| yu1du

24



t 0
4, CoCH ™o = w207 )
t/2

Co(n) P a2 DRk By f2 41, 1/2)
+CoCyt =229k By /2 4 1,1/2) )

tH=m2(() L 1)) T202K[C3CLCY + CoCsC
CoCE (v + 1)) A,

IA

IAIA

if Uy, Cs is chosen appropriately. i

From Lemma 5.1, we derive the interesting consequence that

o 2 v/2
< cam 3 e (59)

1 v>N

< 2 (5.10)

m Z Rg,p(t)
v=N

if N > 2m. Consequently, the proot of Theorem 2.5 depends on properties of only
finitely many R”. To examine those, we will now heavily invoke the weight structure
of 7., as expressed in (2.13c). To use it, we will have to rewrite the basic recursion
(5.5b) in a more complicated fashion. It has to incorporate the multiplication oper-
ators M,,, a cut—off in the t—variable, and also 'retarded arguments’. More precisely,
we propose to estimate inductively the ¢-norms of the operator family

R (u)M,, 0<u<t<lee(0,1],pe M,a€Z},veiy, (5.11)

where we have written 5, =: 77/25);, i.e. 5:(2) = n(x/V/1).
We will prove:

Theorem 5.2 There are positive constants C,, independent of € and p, such that
1R () Mo D5 ]l S Coagt MO 7HIHD( frgym e, 1172, (5.12)

Jor 0 <u <t <1lee€(0,1],pe Ma,o € Z7, || < 1,1,J C{l,...,m}, and
0<qg<o0.

Let us remark that (5.11) does not follow from (5.5) in the case u =t,a =0,¢ =
co. Moreover, with Lemma 5.1 we have the following interesting estimate for the
heat kernel.

Corollary 5.3 For 0 <u <t <1,a,0 € 27, || <1, we have
||[ﬁt€_uT£’PMa3?/]U||1 < Cat(|M(I)—M(J)+|O‘|)/2(t/u)m/2u—|0‘/|/27 (5.13)

and, in particular,
||[nte—tT57P]top||l S C (514)
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For the proof of Theorem 5.2 we need several lemmas to which we turn now.

The presence of the factor M, on the right of (5.10) creates the operators 8ze_tTfovaa
in the recursion, and we are forced to move M, to the left. Thus we want to write
(suppressing the dependence on ¢, p in the right hand side for simplicity)

e T M, = Y MsS2(t), (5.15)

§<a
such that SO(¢) = e~T=r = S2(#). Clearly, S(#) is an integral operator with kernel

(s1— 89)° e tT”’(51,52) (5.16)
which allows to estimate the C,—norms for 2 < ¢ < oo, in view of (5.7). To incor-

porate derivatives, we argue as often before to derive the representation

Moe™Tr = &M, + / =0T [20 M= 0 dy

€,p?

t
_+7T0 o 0 ] _
= ¢ tTEVPMa — Z € (¢ u)Tavaa_,y// C,y,y/az AEW uT? &P du

Bul=h <2721 70
with certain constants C.,./, or for 6 < «
sey= % / S (= w) O AP T du, (5.17)
Boy=y"+" " [>1

With this notation established, we now obtain from (5.5b) the following recursion:

e oy, =

= 5 [ = ) Mol M) [ AL 55 (00l
Bi|vI<1,6,K

= [ R (= ) (M7 + (5.18)
ﬁ,|’y|§1,5,f( 0
<76 > M) e [AZ355 (0)0 ]y lv. (5.19)

Thus we have to establish estimates on S¢(v)d2" first.

Lemma 5.4 We have the estimates, uniformly in ¢ and p,

185 ()0 oo < Copllo=?I=le/2 (5.20)
7655 (0)0 |lg < Cagt!™™ 5'/2<t/v>m/2qv—'“'/2, (5.21)
758 (0)02 (L= i)|ly < Cogtl ™oV 2102, (5.22)

Here 0 < ¢ < o0, 6,0/ € 277 with § < a and |o/| < 1,0 <v <t <1, and ' >y
in the sense of (4.22) .
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Proof (5.18) for a = 0 follows from (5.3) by taking adjoints, and in general it
follows easily, by induction on |a], from (5.16).

(5.19) and (5.20) are proved together by induction on «a.

For (5.19) with o = 0 we prepare the estimates

e e, < Ctfu)™/?, (5.23a)

e il < lriee ™/ ool Eri
< C(tfu)™?, (5.23b)
e er (1 =)l < Cn(u/H)N, Nem, (5.23¢)

which are easy consequences of (5.7). To proceed we write the commutator [7;, e_“Tfovp]

in the now familiar way to obtain the representation

e e (1 — i)

== 5 [ e[ A e (1 = i} )dv (5.21)
B.v<2
N U— U, s e ~
= 5 [ e MY AL (e e (1 — i o
B.v<2
§<B, ' 1<1

where < n? < n® < n' and
AT ()l (8, mangem,y < CHPI2/2, (5.25)
Next we get from (5.21a) by interpolation

u—v)/QTEOVP

lom < C(t)(u —v))M™ (5.26)

[772e™
Using (5.24), (5.21c), (5.18), and (5.23) together with the Holder inequality for

Schatten norms in (5.22) we arrive at

™ 2 (1 = 1) |am 1y < Cnvlu/t)™. (5.27)

Upon iteration we see that the same estimate holds for the norm of order
2m/(m + L), L € N, hence, for all ¢ > 0,

liee™ T (1= i)y < Cnglu/D)N (5.28)

Thus, with (5.21b),

||77t€_uT50’p

Iy < C(t/u)™?. (5.29)

Now we can iterate as in the derivation of (5.21b), using the Holder inequality for
Schatten norms, to derive (5.19) and (5.20) with o = o’/ = 0.
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Next, from (5.19) (with o = o/ = 0) and (5.3) we get
A P

< e |
< (t/u)m/mu—la’l/?7

which is (5.19) for a = 0.
For (5.20) with a = 0, we use the representation following from (5.22) again,
starting this time with the estimate

e T2 02 |5 < C(t /) 21112,

This leads to
0™ 002" (1 — i) || < Cu11V2,

which gives (5.20) by iteration.

We turn to the inductive step and note that (5.19) with ¢ = oo follows easily from
(5.16) and the induction hypothesis. For general ¢, we use again (5.16) splitting it
by writing AZY = ((1 — 77) +77)AZ7. The g—norm of the first integral is estimated
using (5.19) and the induction hypothesis for (5.20). The second integral is split at
u/2, using (5.20) on the first and (5.18) on the second factor in the integral from
0 to u/2, and the other way around in the integral from u/2 to u. This, clearly,
completes the induction for (5.19).

An entirely analogous estimate gives (5.20). D

With these preparations we can give the

Proof of Theorem 5.2  The proof is by induction on v, using the recursion
(5.17), the induction hypothesis is formed by the estimate (5.11) and the parallel
estimate

[, MaB (1= )] lly < gt WO 22 (5.01)

For v = 0 we write
B (W) Ma0] = 32 Mo ()0
§<ar
Since T7, is scalar, (5.11) and (5.11") follow in this case from (5.19) and (5.20).
To establish the assertion (5.11) for v 4+ 1, we insert 1 = 1 — 5} + 7} in (5.17)
in front of Aﬁ;,n > 7, and estimate the two resulting terms separately. For the
g-norm of the first term we obtain the bound

/ Ot B =RUHIBHD/2 ) _ ) =l/2, (a=s1-la) /2,

Bvs<aK
< Z O o D) =nU)+15+81)/2), (jo=8|= | = |7I+2)/2
Bvs<aK
< Z O o t D) =uE) [+l +15]=h1+2)/2, ~a’]/2
Bvs<aK

< D=l /2, ~lol/2,
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since in a nonzero term in (5.17) we have, by (2.13c),

1Bl = 17|+ 2 = [u(K) — u(J)],

hence
(1) = (K + 18] = W[ + 2 = [u(]) = u(J)].
In the second term we split again the integral at w/2, using the ¢g-norm on the

factor whose norm remains integrable. For the integral from 0 to u/2 the ¢-norm is
bounded analogously by

Cra Z / u(K)|+16+8]) /2(t/( ))m/Zq(u _ U)_M/Qtla_&'/?v"a"/?dv
B,7v,6,K
< C,q Z t(|M(I)—M(I{)|+|a|+|ﬁ|)/2(t/u)m/2qu(2_M_|a,|)/2
Byv,8,K

< O tURD= D2 (g gyl 2ay =112,

The second integral is estimated analogously by the same quantity; this establishes
(5.11) for v + 1.

The splitting with 7} leads, by the same arguments, to (5.117). This completes
the proof. i

It remains to discuss the continuity properties of R  as a function of . This we
do first in the C? case; then an approximation argument will handle the C'1! case.
We now use the fact that we have obtained estimates for all ¢-norms with ¢ > 0.
Thus we obtain from (4.8) and Theorem 5.2

‘tr 7715 sp Ry )( )]top

< Tl RY, — Ry )OI 7(RE, — Ry ) (DI
< C||m(RY, — RS )12, (5.30)

It is, therefore, enough to prove continuity in the operator norm of R at & = 0;
more precisely, we need

Lemma 5.5 Under the regularity condition (2.13b°), there are positive functions
Cuale),v € 27,¢ € (0,1], with lim._o Cyn(e) = 0 and

(R — RE @M oo € Conle)tBOsitiadz 2 (531)
Joro<u<t<l,pe M,I,JC{l,....,m}, and o' € Z} with |o/| < 1.

Proof A straightforward estimate of the right hand side in (5.17), using the
smoothness assumption (2.13b), shows that the lemma follows inductively from the
following facts:
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(1) the estimate (5.19) with v =0,
(2) the estimate
1055 (50) = 5503 0))85 ||oo < Cale)ollom?7 DI, (5.32)
where the function C,, satisfies 11_{% Co(e) =0.

Using induction on |a| as before, we see that (5.29) follows readily from (5.16)
once it is proved for a = 0. To achieve this we invoke once more the solution of the
inhomogeneous heat equation to obtain the identity

(e_uTEOW _ e—uTgyp)asoz'

-y /0 eI, (AT — A e TEn 02 d. (5.33)

Iv|=2
Since A7 is C' in € and since the operators
(15,07 30 03(Az, = A3,) and - 3 91(A7, = A3,)(12,)™
|v|=2 lv]=2

are bounded, we obtain the desired estimate by splitting again the integral at u/2.
It remains only to prove (5.29) for v = 0. We have

(e e — e TR ML 0) = 3 Miiie(S¢ (5 u) — S2(0:))3y

§<a
so that the estimate follows from (5.30). The lemma is proved. D
We conclude this section with filling the last gaps in the proof.

Proof of Theorem 2.5 in the C? case
From Corollary 5.3 we get

(G = D™ gl < € sup IGe(s) = 1 =+ 61(2),

with lir% #1(e) = 0. Furthermore, using (5.9) and (5.29) we find

—Her e_tTO’p)]top||1

[[:(e
2m
<Y (R, = B ) (D))ol + O
v=0
< sup C,, (g) + C1Y/?

v<2m

—: ¢y(e) + C1Y/2

This completes the proof. i
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We remark that in this case the convergence is even in L™ (M).

Finally, we deal with the C''"! case using an approximation argument. For this, it is
useful to rephrase the results of this section a little bit. So we look at all operators,
7, satisfying the conditions (2.13) in L*(Bs3(0), F'), for some finite dimensional
complex vector space F'. We denote this set by 7 and introduce the norm

PI B
||T||1,1 = Z ||@ABW(S)HL00(B2/3(O)) + )\1 L + A (5.34)

By, 6 <y

For 7 € T, we let T again be the Friedrichs extension.
Then we have, actually, proved the following facts.

Corollary 5.6 (1) For 7 €T we have an estimate

I[nie™ liopllt < C = C(||7]l11), uniformlyin ¢ < 1.

(2) For any constants € > 0,C7 > 0 we can find 6 > 0 such that
N7llig + 17 < Ch

and
|7 — 7'y <6

imply, uniformly int <1,

Hme(e™ = el < e

top

Proof We simply have to go through the proofs of Theorem 5.2 and Lemma 5.5
to see that they work literally in this situation, too. i

This allows us to give the

Proof of Theorem 2.5 in the C'"! case

We choose a C'? approximation of all data which locally approximates in the norm
(5.32). This leads to functions F}¥, F™¥ according to (1.11) and also ', F'™E where

0

FE(p) = FP(p;t) = tr[nie”Tor]iop,

and F'E(p) is defined similarly. Then we derive from Corollary 5.6 that, for given
e >0,
[EP(p) — F/H(p)| < e, (5.35a)

if n > n(e) and t < t(e), uniformly in p. Next, it follows from the first case of
Theorem 2.5 that
lim |[FF(p) — FF(p)| =, (5.35b)

t—0
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uniformly in p but not necessarily in n. Finally, another application of Corollary 5.6
shows that
[FE(p) = F™E(p)] < C

for some constant €', uniformly in n and a.e. in p, and

lim [F7(p) — £ (p)] = 0

n—oo

for almost all p. Thus we derive from Lebesgue’s theorem

lim [|[F* — F™" | 11 = 0. (5.35¢)

n—oo

The estimates (5.34) together yield

lim ¥ = FF in LY(M)

t—0
as desired. D
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