
The local index theorem without smoothnessJochen Br�uningDedicated to Lars H�ormander1. IntroductionThe local index theorem has attracted much interest of analysts, geometers, andphysicists over the last two decades, rendering its proof more and more perspicuous.All this work pertains to the smooth case whereas it is known that in the special caseof the signature operator much less regularity is required, at least for an \almostlocal" signature theorem cf. [MoWu,CSuT]. Motivated by this, we study here thedi�erentiability requirements necessary to formulate and prove the local index theo-rem for general Dirac operators. We will present a version for C1;1 structures whichseems close to the minimum requirement. Our proof relies on abstract heat kernelestimates and is perhaps general enough to extend to other singular situations.To formulate the results, we begin by recalling the setting of the local version ofthe Atiyah-Singer index theorem for twisted Dirac operators. Let M be a smoothcompact spin manifold of dimension m = 2k. We �x a spin structure, PspinM , anda smooth Riemannian metric, g, on M . Let S be a spin bundle over M , equippedwith the natural hermitian structure and unitary connection, rS, de�ned by g. Sis a left module over the bundle of complex Cli�ord algebras C`M ; the action of� 2 C`M will be denoted by c(�). Choose a hermitian bundle of coe�cients, E,with unitary connection, rE, and form the tensor product S 
 E which inheritsnaturally a hermitian structure and a unitary connection, rS
E. The Dirac oper-ator with coe�cients in E;DE, is then a �rst order elliptic di�erential operator onC1(S 
 E), de�ned byDEf = mXi=1 c(ei) rS
Eei f; f 2 C1(S 
 E); (1.1)where (ei)mi=1 is any (oriented) local orthonormal frame for TM . DE is symmetricand essentially self-adjoint in L2(S 
 E); the unique self-adjoint extension will alsobe denoted by DE . To obtain a nontrivial index we bring in the involution on Sde�ned by c(!C) := p�1kc(e1) � : : : � c(em) (1.2)which splits S = S+ 
 S�. Then % := c(!C)
 I splits S 
 E = S+ 
 E � S� 
 E,and we obtain a decomposition 1



DE = 0B@ 0 DE�DE+ 0 1CA : (1.3)DE+ is a closed Fredholm operator with adjoint DE�, and its index is given by thecelebrated formula of Atiyah and Singer [AS]:Theorem 1.1 ind DE+ = ZM Â(M) ^ ch E : (1.4)Here Â(M) and chE are certain characteristic di�erential forms which can be com-puted locally from the curvature of rTM, the Levi-Civita connection de�ned by g,and rE. This \locality" of the index can be made more precise if one brings in theheat kernel. As observed by McKean and Singer [McKS],ind DE+ = trL2(S
E) h% e�t(DE)2i ; (1.5)for all t > 0. Since (DE)2 has discrete spectrum, e�t(DE)2 is an operator with smoothkernel, e�t(DE)2f(p) = ZM Kt(p; q) (f(q)) volM(q) ; (1.6)where volM (q) = e[1 ^ : : : ^ e[m(q) (with [ : TM ! T �M the `musical' isomor-phism de�ned by g) is the volume form and Kt(p; q) 2 End((S 
 E)q; (S 
 E)p).Now it follows from a fundamental idea of Hadamard [H], further developed by Mi-nakshisundaram and Pleijel [MiPl], Seeley [Se], and Greiner [Gr] that we have anasymptotic expansionKt(p; p) �t!0+ Xj�0 tj�m=2Uj(p) ; p 2M : (1.7)In local frames and coordinates, the endomorphisms Uj are recursively de�nedas polynomials in the derivatives of g and the data on E such that Uj contains 2jderivatives of the metric. Using this in (1.5) one �ndsZM trS
E [% Uj(p)] volM(p) = 8>><>>: 0 ; j < m=2 ;RM Â(M) ^ ch E; j = m=2 : (1.8)The local index theorem now asserts that the identities (1.8) hold even pointwise.2



Theorem 1.2 For all p 2M ,trS
E[% Uj(p)] = 8><>: 0 ; j < m=2 ;Â(M) ^ ch E(e1; : : : ; em)(p); j = m=2 : (1.9)Thus, `massive cancellations' occur upon taking pointwise supertraces to the e�ectthat the �nal answer contains only two derivatives of all coe�cients involved. The-orem 1.2 has been proved by Kotake [Ko] for the case of Riemann surfaces and laterby Patodi for the Gau�-Bonnet operator [P1] and the Hirzebruch signature operator[P2]. Building on methods of invariant theory introduced by Gilkey [Gi], Atiyah,Bott, and Patodi [ABP] proved Theorem 1.2 for twisted Dirac operators, thus yield-ing also another proof of the full Atiyah-Singer index theorem. Their method did notallow a direct identi�cation of trS
E [% Um=2(p)] but only up to certain universal con-stants which had to be computed from examples. Following ideas of the physicistsAlvarez-Gaum�e [Al] and Friedan and Windy [FW], Getzler [Ge, BeGeVe] designed adirect proof based on a scaling argument and Mehler's formula. His proof has beenmodi�ed by many authors in order to clarify the subtleties of the analysis involved;we mention only the approach of B. Simon [Si] which is somewhat close to what weare going to present.Our starting point in this paper is an apparent asymmetry in the statement ofthe local index theorem: we require m derivatives to formulate it (i.e. to constructUm=2) but the answer will contain only two. Thus it is natural to look for a (possiblyweaker) statement which requires less regularity. Clearly, if we allow C1-structureseverywhere then DE is still perfectly well de�ned, with the same properties as listedbefore and the same index. But we also can present the index as an integral, startingfrom (1.5), as follows. Choose a family f�t;p j t 2 (0; 1]; p 2 Mg � C(M) with thefollowing properties:�t;p � 0 and supp �t;p � Bpt=3(p), (1.10a)the map p 7! �t;p is continuous, (1.10b)RM �t;p(q) volM(p) = 1 for all q 2M; t 2 (0; 1] ; (1.10c)limt!0+ RM �t;p(q) volM (q) = 1 for all p 2M : (1.10d)Such a family is easy to construct, cf. (2.6) below. Now the mapM 3 p 7! %�t;p e�t(DE)2 2 C1(L2(S 
 E)) ;3



(where Cp denotes the von Neumann-Schatten class of order p > 0), is continuoushence from (1.5) ind DE+ = RM trL2(S
E) h%�t;p e�t(DE)2i volM(p)=: RM FEt (p) volM (p) : (1.11)In the smooth case, we have from Theorem 1.2 and the conditions (1.10), uniformlyin p 2M , limt!0+FEt (p) = Â(M) ^ ch E(e1; : : : ; em)(p) :This leads us to the following de�nition: We say that the weak local index theoremholds for DE+ if there is FE 2 L1(M) such thatlimt!0+FEt =: FE in L1(M); (1.12a)such that ind DE+ = ZM FE(p) volM (p): (1.12b)It is fairly obvious that no local index theorem can hold if we require just C1-structures on the (compact smooth) manifold M . In particular, to identify FEwith the Atiyah-Singer integrand we have to make sure that the latter exists and isintegrable. Our main result thus reads as follows.Theorem 1.3 Let M be a compact smooth spin manifold and E a smooth complexvector bundle overM . If we equipM with a C1;1 metric, and E with a C1;1 hermitianstructure and a unitary Lipschitz connection then the weak local index theorem holdsfor DE+ . Moreover, for almost all p in M ,FE(p) = Â(M) ^ ch E(e1; : : : ; em)(p) : (1.13)The original motivation to investigate this problem was to design a proof of thelocal index theorem �a la Getzler which is general enough to carry over to strati�edsituations like wedges; we will return to this question in a future publication.The assumptions of Theorem 1.3 are perhaps not optimal. It would be interestingto �nd the precise minimal regularity condition under which the theorem remainstrue.The paper is organized as follows. In Section 2 we give the outline of the proof. InSection 3 we compute the transformation of (DE)2 under the scaling map. Section4 contains the main analytic facts needed in the proof of Theorem 1.3 which wepresent in a more general version than actually needed here since we could not�nd easy references in the literature. All assertions used in Sec. 2 are proved in4



Sec. 5 which deals with Cq{estimates for heat kernels of certain elliptic systems ofsecond order. We avoid higher regularity essentially by employing throughout thev.Neumann-Schatten scale of operator ideals, the crucial norm estimate being givenin Theorem 5.2During the preparation of this work I have pro�ted from conversations with Jean-Michel Bismut and Henri Moscovici, and I am grateful for the hospitality of theOhio State University, the Universit�e Paris-Sud, the Institut des Hautes EtudesScienti�ques, and the Universit�e Paris{Nord where this paper was eventually com-pleted. This work has also been supported by the EU under the GADGET project.2. Outline of the proofFrom now on, we are dealing with a compact smooth spin manifold, M , equippedwith a C1;1 metric, g. That is, the metric is a C1 section of the bundle of symmetrictwo-tensors and we can �nd a �nite C2 atlas, (Ui; 'i) Ni=1 , forM withD('i �'�1j ) Lip-schitz for all i; j and ('�1i )�g C1, with all partial derivatives of �rst order Lipschitz.Similarly, we consider a smooth complex coe�cient bundle, E, over M equippedwith a C1;1 hermitian structure and a Lipschitz unitary connection, rE. Underthese conditions it is well known that the exponential map expp : fs 2 TpM j jsj <i(M)g ! Bi(M)(p) is a Lipschitz homeomorphism. We may assume that M hasinjectivity radius larger than one, i(M) > 1.Our convergence proof for Ft in (1.11) will make use of the \Getzler scaling",de�ned in (2.10) below. This requires two technical adjustments: �rst, we replace tby ~t := "2t with "; t 2 (0; 1], and second, we replace the coe�cient bundle E byE(p) := (M � S�p)
 E : (2.1)The product bundle S�p :=M �S�p is equipped with the obvious hermitian structureand the at connection, E(p) carries the tensor product structures. Then, clearly,FEt (p) = 2�ktrL2(S
E(p)) h%�t;p e�t(DE(p))2i=: 2�k ~FEt (p) : (2.2)Next we give an explicit description of a family (�t;p) with the properties (1.10).Denote by dM the Riemannian distance and de�neexp�p(volM )(s) =: �p(s)ds; jsj < 1: (2.3)Then choose � 2 C10 (B1=3(0)) with � � 0; �(s) = �(jsj), andZRm �(s)ds = 1 : (2.4)5



Then, with �t(s) := t�m=2 �(s=pt) ; (2.5)we de�ne �t;p(q) := �t (dM (p; q)) (�q(exp�1q p))�1 : (2.6)The �rst step in the proof of Theorem 1.3 consists in a suitable transformation of(DE(p))2, following Getzler. Fix p 2 M and " 2 (0; 1], then we obtain the diagram:L2(B1(0);��p 
Ep) 	1";p�! L2(B"(0); C`p 
 Ep)# 	2";pL2(B"(0); Sp 
E(p)p) 	3";p�! L2(S 
 E(p)jB"(p)) (2.7)To describe the various maps in (2.7) we �x a local orthonormal frame, (ei)m,for TM in B1(p) and write for any strictly ordered multiindex, I = fi1; : : : ; i`g �f1; : : : ;mg, �(I) := ` ; (2.8a)eI(q) := ei1 � : : : � ei`(q) 2 C`qM ; (2.8b)e[I(q) := e[i1 ^ : : : ^ e[i`(q) 2 ��qM; q 2 B1(p) : (2.8c)Here, again, [ : TM ! T �M is the `musical' isomorphism de�nded by the metric.Then	1";p(e[I(p) 
 !)(s) := "�(I)eI(p)
 !(s="); ! 2 L2(B1(0); Ep) ; jsj < " : (2.9a)For the de�nition of 	2";p we recall the existence of a C`p -equivariant isomorphism�p : C`pM ! Sp 
 S�p :Then 	2";pg(s) := (�p 
 IEp)(g(s)); g 2 L2(B"(0); C `p 
 Ep); jsj < " : (2.9b)Finally, we need the parallel transport along radial geodesics from p : if F is anycomplex vector bundle over M with C1;1 hermitian structure and Lipschitz unitaryconnection, rF , then we get parallel transportPFp (s) : Fp ! Fexpp(s); jsj < 1 ;with Lipschitz dependence on s. We de�ne	3";p g(expps) := PS
E(p)p (s)(g(s)); g 2 L2(B"(0); Sp 
E(p)p); jsj < " : (2.9c)Finally, let 6



�";p := 	3";p 	2";p 	1";p : (2.10a)We note the explicit formula�";p(e[I(p) 
 !)(expps)= "�(I)P S
S�pp (s)(�p(eI(p)) 
 PEp (s)(!(s=")) : (2.10b)Now, with (2.2) we arrive at~FE"2t(p) = tr��p
L2(B1(0);Ep) h��1";p % �";p ��1";p �"2t;p e�t"2(DE(p))2�";pi : (2.11)We examine next the transformed heat kernel. Formally, P";p(t) := ��1";p e�t"2(DE(p))2�";psolves the equation0 = " @@t + ��1";p "2(DE(p))2 �";p#P";p(t) =: " @@t + �";p#P";p(t) :�";p is a second order elliptic operator on C10 (B1(0);��p 
Ep) but not symmetric ingeneral. In Section 3 we will proveLemma 2.1 We can write �";p = � X�;jj�2M�@sA�";p; (2.12)where M� denotes multiplication by s�. Moreover,A0";p =: A";p = a12";p I��p
Ep (2.13a')and, for some �1; �2 > 0 and uniformly in " and p,�1j�j2 � X1;2 a12";p �1�2 � �2j�j2; (2.13a")and we have the regularity assumptionsA�";p 2 C jj(B1(0);End ��p 
 Ep) (the C2 case) (2.13b')or, more generally, A�";p 2 8><>: C1 if jj = 2;Lip if jj = 1;L1 if jj = 0 (the C1;1 case): (2.13b")7



If we decompose the coe�cients with respect to the basis (e[I) (as in (2.20) below)then [A�";p]IJ = 0 if j�j � jj � j�(I)� �(J)j < �2: (2.13c)Finally, we have a limit in the sense that, for f 2 C10 (B1(0);��p 
 Ep),lim"!0 �";p f = �0;p f ;where �0;p is the \Getzler operator":�0;p = � mXi=1 24 @@si � 18 mXj=1 sj 
ij(p)
 IEp352 + 
E(p) : (2.13)If we denote by RM ; RE the respective curvature tensors and by 0w0 the operationof wedge multiplication, then we have
ij(p) = mXk;`=1RMk`ijw(e[k ^ e[̀(p)) ;
E(p) = 12 mXi;j=1w(e[i ^ e[j(p)) 
REei;ej (p) :Next we have to introduce \boundary conditions". It seems most natural in thiscontext to use the Friedrichs extension as de�ned by Kato [Ka, p.325]. The detailswill be given in Section 4; let us thus de�ne T";p as the Friedrichs extension of �";p inH := L2(B2=3(0);��p 
 Ep) with domain C10 (B2=3(0);��p 
 Ep). Then T";p generatesan analytic semigroup, e�tT";p, which is a good replacement for P";p(t):Theorem 2.2 Denote by Cp the von Neumann-Schatten class of order p > 0 (suchthat C1 is the trace class). Then, for �1; �2 2 C10 (B1=2(0)) and N 2 N ;jj�1(e�tT";p � P";p(t))�2jjC1(H)) � CN("; p; �1; �2)tN :This result will also be proved in Section 4. To analyze e�tT";p it is important tohave a good approximation. For this, somewhat surprisingly, the heat kernel of theGetzler operator does not seem convenient. Instead, we look at the operator whichconsists of the scalar principal part in (2.12),� 0";p := � Xj1j=j2j=1 @s A";p: (2.14)Its Friedrichs extension, T 0";p, is de�ned as before and it turns out that the oper-ators T";p and T 0";p all have the same domain. This is the basis for the followingrepresentation by a Neumann series, also to be proved in Section 4.8



Theorem 2.3 Introduce for t 2 (0; 1]R0";p(t) := e�tT 0";p ; (2.15a)R�+1";p (t) := tR0 R�";p(t� u) P�;jj�1 M�@sA�";pe�uT 0";pdu ; � 2 Z+ : (2.15b)Then we have e�tT";p = X��0R�";p(t) ; (2.16)and the sum converges in operator norm, uniformly in t; " 2 (0; 1] and p 2M .Next, a little calculation using (2.10b) shows that�"2t;p �";p = �";p"�m �t �";p ; �";p 2 C1(B1(0)) ; (2.17a)where, uniformly in s; "; p;lim"!0 �";p(s) = 1 : (2.17b)Thus we obtain from (2.11) and Theorem 2.2 (with N = m=2 + 1), setting H :=L2(B1(0); Ep), ~FE"2t(p) = "�mtr��p
H h��1";p % �";p �t �";p e�tT";pi+O"(t) : (2.18)It remains to deal with the involution %";p := ��1";p % �";p. In preparation of therelevant statement we introduce a matrix decomposition of A 2 L(��p 
 K);K aHilbert space, viaA(e[I(p)
 x) =: PJ e[J(p)
 [A]JI(x); [A]JI 2 L(K) : (2.19a)Hence, with  I : x 7! e[I(p)
 x we have [A]JI =  �JA I. In particular, we write[A]top := [A]�;;; : (2.19b)Then we have the following variant of the Berezin-Patodi-Lemma.Theorem 2.4 For t; " 2 (0; 1]; p 2M , we haveFE"2t(p) = (�2p�1)k trH h�t �";p e�tT";pitop +O"(t) : (2.20)9



Proof With the notation (2.20) we have"�mtr��p
H h%";p �t �";pe�tT";pi = "�mXI;J trHh%";piIJ h�t �";p e�tT";piJI (2.21)=: G";t(p) :For any multiindex I � f1; : : : ;mg we denote by � I the (strictly ordered) com-plementary multiindex and by sgn (I;� I) the sign of the permutation fI;� Ig off1; : : : ;mg. Then we have!C � eI(p) = (�1)�(I) eI � !C(p)= (�1)�(I)p�1keI � eI � sgn(I;� I) e�I(p)= p�1k+�(I)(�(I)�1)sgn(I;� I) e�I(p) ;hence (2.10b) and the equivariance of � imply (with � the Hodge star operator)%";p(e[I(p) 
 !) = "2�(I)�mp�1k+�(I)(�(I)�1) � e[I(p) 
 ! (2.22)=: "2�(I)�m(�p 
 I)(e[I(p)
 !) :Here � is the involution de�ning the signature operator on 
(M). (2.22) and (2.23)yieldG";t(p) = "�mPI trH[%";p]I;�I [�t �";p e�tT";p]�I;I= PI "�2�(I)(�1)kp�1k+�(I)(�(I)+1)sgn(� I; I)trH h�t �";p e�tT";pi�I;I=:PI GI";t(p) : (2.23)Now observe that the theorem is proved if we can show that GI";t(p) = G;";t(p) forall I. To see this, we recall from the construction of �";p (cf. Section 3) that theoperators B�";p in (2.12) act on ��p only through operators of the formYi2I["�1w(e[i(p)) � " i(ei(p))] ; I � f1; : : : ;mg ;where i denotes interior multiplication, i.e. they act only through scaled Cli�ordmultiplication. In view of Theorem 2.3, the same is true for e�tT";p and we can writee�tT";p =:XJ Yi2J["�1w(e[i(p))� "i(ei(p))]
AJ";p(t) :10



A contribution to (2.24) can arise only if J = f1; : : : ;mg, and we obtain (withobvious notation)h�t�";pe�tT";pi�I;I= (�1)�(I)"2�(I)�msgn(� I; I) hw(e[�I(p))i(eI(p))i�I;I �t�";pA�;";p(t)= (�1)�(I)+�(I)(�(I)�1)=2sgn(� I; I) "2�(I)�m�t�";pA�;";p(t) :The proof is complete.It is natural to expect convergence in (2.21) as "! 0. However, �t involves a factort�m=2 and we are taking traces. The estimate necessary to handle this problem isthe analytic core of the paper and will be given in Section 5 below. As a simpleconsequence, also to be proved in Section 5, we obtain the following result.Theorem 2.5 There is a function � with lim"!0�(") = 0 such thatjj�t h�";p e�tT";p � e�tT0;pitop jjC1(H)) � C(�(") + t1=2) ; (2.24)uniformly in t 2 (0; 1] and p 2M .The �nal step in the argument uses again Getzler's calculations based on Mehler'sformula; it will be given in Section 4.Lemma 2.6j(�2p�1)k trH h�t e�tT0;pitop � Â(M) ^ ch E(e1; : : : ; em)(p)j (2.25)= O(pt) :The preceding results now easily yield theProof of Theorem 1.3 Combining (2.21), (2.25), and (2.26) we �ndjFE"2t(p) � Â(M) ^ ch E(e1; : : : ; em)(p)j� C"t+ C(�(") +pt) :11



3. ScalingWe now want to prove Lemma 2.1. This calculation is essentially well known but wehave to redo it in our special context. So we �x p 2M and a local orthonormal frame,(ei)mi=1, for TB1(p) as before. We choose a canonically associated local orthonormalframe (��) for SjB1(p) and a local orthonormal frame (��) for EjB1(p); (���) denotesthe dual frame for S�jB1(p). The �rst important fact we need is the Bochner-Lichnerowicz-Weitzenboeck formula [LM, p.164]:�DE(p)�2 =� mPi=1 �rS
E(p)ei rS
E(p)ei �rS
E(p)reiei �+ �=4 + 1=2 mPi;j=1 c(ei)c(ej)
REei;ej ; (3.1)where r := rTM and � is the scalar curvature of M . It is apparent from (3.1) thatthe main computation concerns rS
E(p)ei . Thus we choose ! 2 C1(B1(0); Ep) andobserve that (2.10) implies �";p�e[I(p) 
 !�=: "�(I) ^�p(eI(p)) 
 f!" ; (3.2)where a tilde denotes parallel translates i. e.^�p(eI(p))(expps) = P S
S�pp (s) (�p(eI(p)));f!"(expps) = PEp (s)(!(s=")) ;are parallel along radial geodesics from p. Hence we obtainrS
E(p)ei �";p(e[I 
 !)= rS
E(p)ei ("�(I) ^�p(eI(p)) 
 f!")= "�(I)�(rS
S�pei ^�p(eI(p))
 f!" + ^�p(eI(p))
rEeif!"�=: I + II : (3.3)We evaluate I, noting that the spin connection is given by the following formula forany section � 2 C1(SjB1(p)) which is parallel along radial geodesics from p [LM,p.110]: rSe � = 14 mXj;k=1 DrTMe ej; ekE c (ej � ek)� ; e 2 C1(TB1(p)): (3.4)12



We will write �ijk := DrTMei ej; ekE ; (3.5)and �nd, with �p : ��p ! C`p the canonical isomorphism:I = "�(I)=4 mPj;k=1 �ijk c(ej � ek) ^�p(eI(p)) 
 f!"= "�(I)=4 mPj;k=1 ^�p�c(ej � ek(p))eI(p)� 
 ^�(�ijk � expp)1="!�"= "�(I)=4 mPj;k=1 ��p�p (w(e[j)� i(ej))(w(e[k)� i(ek))e[I(p)�

 ^�(�ijk � expp)1="!�"= �";p�14 mPj;k=1 ��ijk � expp�1="�"�1w(e[j)� "i(ej)��"�1w(e[k)� "i(ek)�e[I(p)
 !� :(3.6)We further evaluate this using the well known Taylor expansion�ijk(expp"s) = �"=2 mP`=1 s`hhRM (ei; e`)ej; eki + �̂i`jk(p; "s)i=: �"=2 mP`=1 s`�RMi`jk(p) + �̂i`jk(p; "s)� ; (3.7)with some continuous functions �̂i`jk 2 C(M � B1(0)) satisfying �̂i`jk(p; 0) = 0. Itfollows that " I = �";ph� 1=8 mP`=1 s`(RMi`jk(p) + �̂i`jk(p; "s))��(w(e[j)� "2i(ej))(w(e[k)� "2i(ek))
 !i : (3.8)To evaluate II we observe thatrEei f!"(q) = rEei(PEp (!" � exp�1p ))(q)= PEp (exp�1p q)(PEp (exp�1p q)�1 rEei PEp (!" � exp�1p )(q)) :Using the terminology introduced in [Br, Lemma 5.2] we obtain a unitary connection(PE)�rE =: ~rE on C1(B1(0); Ep) with the property thatrEei f!"(expps) = PEp (s) ~rE(Tsexpp)�1ei !"(s) : (3.9)13



Writing ~ei(s) := (Tsexpp)�1(ei) 2 TsRm, it follows thatII = "�(I) ^�p(eI(p))
rEei f!"= �";p�e[I(p)
 ( ~rE~ei !")1="� : (3.10)Now we have in the normal coordinates de�ned by (ei)mi=1~ei(s) =: mXj=1 aij(s) @@sj ;with aij 2 C1(B1(0)); aij(0) = �ij. Thus we obtain, with certain�̂i 2 C1(B1(0);End Ep),� ~rE~ei!"�1="(s) = "�1 mXj=1 aij("s) @!@sj (s) + �̂i("s)!(s)or " II = �";p�e[I(p) 
 � mXj=1 a1="ij @@sj + (�̂i)1="�� : (3.11)Combining (3.8) and (3.11) we now �nd"��1";p rS
E(p)ei �";p = mPj=1 aij("s) @@sj + "I��p 
 �̂i("s)�18 mP`=1 s`(RMi`jk(p) + �̂i`jk(p; "s))(w(e[j)� "2i(ej))(w(e[k)� "2i(ek))
 IEp : (3.12)The calculation of �";p is thus almost complete, in view of (3.1). Only the lastterm deserves some further attention:12 mPi;j=1 c(ei � ej)
REei;ej �";p �e[I(p) 
 !�(expps)= "�(I) 12 mPi;j=1 c(ei � ej)
REei;ej ^�p(eI(p)) 
 ^!"(expps)= "�(I) 12 mPi;j=1P S
E(p)p (s)��p�p((w(ebi)� i(ei))(w(ebj)� i(ej)) e[I(p) 

PEp (s)�1 REei ;ej PEp (s)(!("�1s))�= �";p�12 mPi;j=1("�1w(e[i(p))� "i(ei(p)))("�1w(e[j(p))� "i(ej(p))) 

((PEp )�1 REei;ej PEp )1="!�(expps) : (3.13)From (3.1), (3.12), and (3.13) one now easily reads o� the proof of Lemma 2.1.14



4. O�-diagonal decay of heat tracesWe begin this section with some abstract results which are often used in the spectralanalysis of elliptic operators, and which will lead to the proof of Theorem 2.2 andLemma 2.6 ; many special versions are, of course, well known. But the point hereis to use as little regularity as possible which forced us to present the treatmentbelow. We work with the resolvent and transfer the results to the heat semigroupvia Cauchy integrals.LetH be a Hilbert space, D a dense subspace, and T : D ! H a closed m-sectorialoperator in H. By de�nition [Ka, p.280] this means that the numerical range (andhence spec T ) is contained in a sectorfz 2 C j jarg (z � )j � �g ;  2 R; 0 � � < �=2 ; (4.1)and that we have the resolvent estimate [Ka, p.490]jj(T + �+ )�1jj � C�0 j�j�1; j�j � 1; jarg�j � �0 > �: (4.2)In what follows we assume for simplicity that � 1 : (4.3)We introduce the resolventG(z) := (T + z2)�1; z 2 Z� := fz 2 C j jzj � �; jarg zj < (� � �0)=2g ;where �0 > �, and we use `z2' in view of our applications to di�erential operators ofsecond order. The class of closed m-sectorial operators is natural since it containseg. the Friedrichs extension of second order elliptic di�erential operators with scalarprincipal symbol.To imitate the usual cut-o� procedure we introduce a subspace, S, of L(H) withthe following properties (the \cut-o� axioms"):(CO1) For all � 2 S; �(D) � D.(CO2) For all � 2 S, the operatorsT�1=2[T; �]; [T; �]T�1=2 : D ! Hextend to H by continuity.(CO3) There is a transitive relation ` <' on S such that �1 < �2 implies�1�2 = �2�1 = �1 ; (4.4a)15



and there is �3 2 S with �1 < �3 < �2 and (4.4b)T�1=2[T; �1](I � �3) = (I � �3)[T; �1]T�1=2= T�1=2[T; �2]�3 = �3[T; �2]T�1=2 = 0 :(CO4) If IH 62 S, then for all � 2 S there is �0 2 S with � < �0.(CO5) S� = S.We remark that in view of (4.3) and [Ka, Ch V, x3.11] the operators T��; � 2(0; 1), are well de�ned bounded operators in H. We use again the von Neumann-Schatten classes of compact operators which we denote by Cp(H); p > 0, with normjj � jjp.Lemma 4.1 Assume that a subspace S of L(H) satis�es the assumptions (CO1)through (CO5), and that in addition�T�1 2 Cp0(H); for � 2 S and some p0 > 0 :Then, for all �1; �2 2 S with �1 < �2 and all p > 0 we have�1G(z)(I � �2) 2 Cp(H); z 2 Z� :Moreover, we have the norm estimatejj�1G(z)(I � �2)jjp � C(�1; �2; p;N)jzj�N ;valid for z 2 Z� and all N 2 N.Proof Using (4.4b) we determine �j 2 S; i � j � 4, such that �1 < �3 < �4 < �2.Since �G(z)u 2 D for u 2 H;� 2 S; z 2 Z�, we obtain from(T + z2)�3G(z)(I � �2) = [T; �3]G(z)(I � �2)and (4.46) the representation�1G(z)(I � �2) = (�1T�1=2)(T 1=2G(z)T 1=2)(T�1=2[T; �3])�4G(z)(I � �2) : (4.5)Now we observe the easy estimatesjjG(z)jj � Cjzj�2 ; (4.6a)jjT 1=2G(z)T 1=2jj = jjI � z2G(z)jj � C ; (4.6b)jj�G(z)jjp � jj�T�1jjp + jj�T�1 z2G(z)jjp � Cjj�T�1jjp ; (4.6c)16



where we have used the resolvent equation in (4.6c). Next we combine the integralrepresentation [Ka, p.281]T�1=2 = 12�i Z� ��1=2G((��)1=2)d� ; (4.7)where � is (e.g.) the wedge jarg zj = �0, �0 > �, traversed upward, with the interpo-lation inequality jjAjjp0 � jjAjj1�p=p0jjAjjp=p0p ; (4.8)valid for A 2 Cp(H) and all p0 > p > 0. Then we deduce that for p1 > 2p0jj�G((��)1=2)jjp1 � Cj�jp0=p1�1jj�T�1jjp0=p1p0 � Cj�jp0=p1�1 ;which gives with (4.7) �T�1=2 2 Cp1(H) : (4.9)Using (4.9) (with p1 = 3p0), (4.6b), (CO2), and (4.6a) in (4.5) we derivejj�1G(z)(I � �2)jj3p0 � C(�1; �2)jzj�2; z 2 Z� : (4.10a)Next we use the H�older inequality for Cp-norms in (4.5) to prove by induction onL 2 N jj�1G(z)(I � �2)jj3p0=L � C(�1; �2; L)jzj�2 ;i.e. for p > 0 jj�1G(z)(I � �2)jjp � C(�1; �2; p)jzj�2; z 2 Z� : (4.10b)Finally, we rewrite (4.5) as�1G(z)(I � �2) = �1G(z)T 1=2(T�1=2[T; �3])�4G(z)(I � �2)and use the estimate jjG(z)T 1=2jj � Cjzj�1 ; z 2 Z� ; (4.10c)which follows from (4.7) and the resolvent equation by a straightforward estimate.Then another induction will prove the assertion.By symmetry, the same reasoning also proves the following statement.Corollary 4.2 Assume that all the assumptions of Lemma 4.1 hold with the onlychange that now T�1� 2 Cp0(H) ;for � 2 S and some p0 > 0. Then, for �1; �2 2 S with �1 < �2 and all p > 0 wehave (I � �2)G(z)�1 2 Cp(H); z 2 Z� ;with norm estimate jj(I � �2)G(z)�1jjp � C(�1; �2; p;N)jzj�N ;z 2 Z�; N 2 N. 17



We will actually need the consequences of Lemma 4.1 for the heat operator,e�tT = 12�i Z� e�t�(T � �)�1d� : (4.11)Here we can choose � as in (4.7) but, by holomorphy, we can replace it by �t, thepath obtained from � by traversing the circle j�j = t�1 outside �, and then � forj�j � t�1. This givesLemma 4.3 Under the assumptions of Lemma 4.1 or Corollary 4.2 we have fort 2 (0; 1] and p > 0 jj�1e�tT (I � �2)jjp � C(�1; �2; p;N)tN (4.12a)and jj(I � �2)e�tT�1jjp � C(�1; �2; p;N)tN ; (4.12b)respectively.Now we turn to the class of operators which will be the main object of studyin the remainder of this section, and to which we will apply the abstract resultsabove. These are certain second order elliptic operators on Riemannian manifoldswhich are sectorial. Thus, consider a (smooth) connected Riemannian manifold Mof dimension m, a (smooth) hermitian bundle F of rank k overM , and a di�erentialoperator, � , on C10 (E). We assume that, in a bundle chart ' with local coordinatess = (s1; : : : sm) 2 B1(0), we have�' := ' � � � '�1 = � Xjj�2 @sB'; (4.13)where the coe�cients B' satisfy the assumptions (2.13a) and (2.13b").These conditions are independent of the choice of '. The following facts are provedby standard arguments.Lemma 4.4 Let � satisfy the conditions (4.13).1) � has a formal adjoint on C10 (E); � t, which is also elliptic of second order onC10 (E) and satis�es (4.13).2) For � 2 C10 (M) and u 2 C10 (E) we havejj�ujjH1loc(E) � C3(�)(Re (�u; u) + jjujj2) ; (4.14)where C3 also depends on a choice of norm in H1(Ej supp �).3) For � 2 C1(M) with supp d� compact and u 2 C10 (E) we havej(��u; �u)j � C(�)(Re (�u; u) + jjujj2) : (4.15)18



With � we associate the following sesquilinear forms on C10 (E):t[u; v] := (�u; v); t[u] := t[u; u] ; (4.16a)h[u; v] := �12(� + � t)u; v� =: (R�u; v); h[u] := h[u; u] ; (4.16b)k[u; v] := � 12i(� � � t)u; v� =: (I�u; v); k[u] := k[u; u] ; (4.16c)such that t[u; v] = h[u; v] + ik[u; v] :Observe that I� is a di�erential operator of �rst order.To ensure sectoriality of t (in the sense of [Ka, p.310]) we require, in addition tothe conditions (4.13), the estimatesh[u] � jjujj2 ; (4.17a)jk[u]j � ( tg �)(h[u]� jjujj2); � 2 [0; �=4) ; (4.17b)for all u 2 C10 (E). Without loss of generality we may assume that  � 1. Then his also sectorial and symmetric. So we can form the Friedrichs extension of both tand h, to be denoted by T and H, respectively (cf. [Ka, p.325]). The forms t and hare closable, with closures ~t and ~h, and it follows from (4.17b) thatD(~t) = D(~h) :Note that the estimates (4.14) and (4.15) extend to D(~h) by continuity.In the setting just described we now have to verify the assumptions (CO1) - (CO5)for T , the Friedrichs extension of � in L2(F ). We putS := C10 (M) ; (4.18)acting on L2(F ) by multiplication.For (CO1), we observe that by [Ka, p.322] we haveD(T ) = fu 2 D(~t) j j(u; � tv)j � Cujjvjj for all v 2 C1o (F )g : (4.19)For u 2 D(T ) we can thus �nd a sequence (un) � C10 (F ) such that un ! u inL2(F ) and limn;m!1 t[un � um] = 0. For � 2 S we obtain �un ! �u in L2(F ) and,from (4.15),jt[�(un � um)]j = j(��(un � um); �(un � um))j� C(�)(h[un � um] + jjun � umjj2L2(F ))� C(�)(jt[un � um]j + jjun � umjj2L2(F )) ! 0; n;m!1 :19



Hence �u 2 D(~t). Next, for v 2 C10 (F ) we get(�u; � tv) = (u; [�; � t]v) + (Tu; v) ;since [�; � t] is a compactly supported di�erential operator of order at most one onC1(F ), we obtain from (4.14) the estimatej(�u; � tv)j � Cujjvjj ;as desired.(CO2) we prove �rst for H�1=2 in place of T�1=2: for u 2 D(~h) = D(H�1=2) wehave in view of (4.14)jj[T; �]ujj2 � Cjjujj2H1(F j supp �) � C(jjH1=2ujj2 + jjujj2) :Setting u := H�1=2v gives the boundedness of [T; �]H�1=2; applying the same argu-ment to T � gives the boundedness ofH�1=2[T; �]. To relateH�1=2 to T�1=2 we choose 2 C10 (M) with  = 1 in a neigborhood of supp � and note that  D(T ) � D(H),in view of (4.14) again and the identity( u;Hv) = (T u+ iI��u; v) ;valid for u 2 D(T ) and v 2 C10 (F ). Then we derive the representation (T � �)�1 = (H � �)�1( + ([�;  ]� iI� )(T � �)�1)=: (H � �)�1( +A(�)) : (4.20)The arguments given above show thatjjH�1=2A(�)jj � Cj�j�1; j�j � 1 and Re� � 0 : (4.21)Using the representation (4.7) we deduce from (4.20) and (4.21) that T�1=2 =: H�1=2B ;for some bounded operator B. This gives the boundedness of [T; �]T�1=2 =[T; �] T�1=2; applying the argument to T � gives the boundedness of T�1=2[T; �].The remaining properties, (CO3) - (CO5), are easy to see if we make the obviouschoice for the relation ` <':�1 < �2 i� �2 = 1 in a neighborhood of supp �1 : (4.22)To apply Lemma 4.3 to T , it only remains to show that �T�1 2 Cp(L2(F )) for� 2 C10 (M) and some p > 0. So choose a compact manifold with boundary,20



M1 �M , such that supp � � �M1. Denote by HM1 the Friedrichs extension of R� inL2(F j �M1); then it is well known thatH�1M1 2 Cp(L2(F j �M1)) for all p > m=2 :But �T�1 maps into D(HM1 ) andHM1�T�1 = [T; �]T�1+ �� iI��T�1is bounded in view of the arguments proving (CO2).We have proved:Lemma 4.5 If T is the Friedrichs extension of a second order di�erential operatorwith the properties (4.13) and (4.17) then the estimates (4.12) hold, for all �1; �2 2C10 (M) with �2 = 1 in a neighborhood of supp �1.With these preparations we are ready to prove Theorem 2.2 and Lemma 2.6.Proof of Theorem 2.2 Choose �1; �2 2 C10 (B1=2(0)) with �1 > �2. By ellipticregularity, we have for u 2 D(T";p)�1P";p(t)�2u 2 D(T";p);and an easy calculation gives(@t + T";p)�1P";p(t)�2u = [T";p; �1]P";p(t)�2u =: v(t); t > 0; (4.23a)limt!0+�1P";p�2u = �2u: (4.23b)Now, for �xed " and p we may write, in view of (CO2) above,v(t) = A[(DE(p))2; ~�1]e�"2t(DE(p))2((DE(p))2 + 1)�1~u); (4.24)for some bounded operator A : L2(S 
 E(p)jB"(p)) ! L2(B1(0);��p 
 Ep); somefunction ~�1 2 C10 (B"(p)), and some ~u 2 L2(S 
 E(p)). The spectral theorem thenreadily shows that v is H�older continuous in [0; 1] with exponent 1=2; thus we canapply [Ka, Thm. IX, 1.27] to conclude the representation�1P";p(t)�2 = e�tT";p�2 + Z t0 e�(t�u)T";p[T";p; �1]P";p(u)�2du= e�tT";p�2 + Z t0 e�(t�u)T";pT";p1=2(T";p�1=2[T";p; �1])(I � �3)P";p(u)�2du;for any �2 with �1 > �3 > �2 (cf. (CO3)).21



Now we deduce from the Cauchy-Dunford representation analogous to (4.11) theestimate ke�(t�u)T";pT";p1=2k � c(t� u)�1=2;whereas the second factor in the integral is bounded by (CO2). The third factorcan be written as(I � �3)P";p(u)�2 = �";p�1((I � ~�3;")e�"2u(DE(p))2 ~�2;"�";p =: �";p�1Q";p�";p;with ~�2;" < ~�3;" in C1(M). Since the self{adjoint operator (DE(p))2 equals itsFriedrichs extension from C1(S 
 E(p)) and satis�es (4.13) and also (4.17), byself{adjointness, we get from Lemma 4.5k(I � �3)P";p(u)�2kC1 � k�";p�1kk�";pkC("; p;N)uN :The proof is complete.Proof of Lemma 2.6 This proof is achieved by exactly the same argumentsas above for Theorem 2.2, with only a few modi�cations. In L2(Rm;��p 
 Ep) weintroduce the integral operator, P (t), with kernelP (t; s1; s2) := (4�t)�m=2P1(
(p)t) P2(
E(p)t) P3(
(p)t; s1; s2); (4.25)P1(t) :=  det 2
(p)tsinh 2
(p)t!1=2 ; (4.26)P2(t) := exp � 14t < 2
(p)ttanh 2
(p)t (s1 � s2); s1 � s2 > +4it < 
(p)s1; s2 >)! ;(4.27)P3(t; s1; s2) := exp(�
E(p)t); (4.28)where 
 = (
ij) and 
E are de�ned in Lemma 2.1. Then, for �1 2 C10 (B1=2(0)),it is easy to see that �1P (t) maps into D(T0;p). Moreover, it follows from [BeGeVe,Ho] that P (t) solves the heat equation associated with �0;p so we derive the analogueof (4.23).The explicit formula (4.25) ensures H�older continuity and o�{diagonal decay sowe arrive at k�1(e�tT0;p � P (t))�2kC1 � C(N;�1; �2)tN ;for all N 2 N.The proof of the lemma is completed recalling (2.20) and observing that [P (t; s; s)]topis actually independent of t, hence can be evaluated at t = (2�p�1)�1.22



5. Estimates for e�tT";pIt remains to prove Theorems 2.3 and 2.5 which is the goal of this �nal section.The main point is to �nd a suitable representation of e�tT";p which allows to read o�the uniform estimates (and continuity properties) required in the proof of Theorem2.5. This is achieved by comparing T";p with the Friedrichs extension, T 0";p, of theprincipal part, � 0";p (cf. (2.15)). The advantage of this operator over T0;p lies in thefact that it is diagonal with respect to ��p; the corresponding Neumann series hasenough structure to carry through the estimates we need.Thus we have to consider the operators T";p and T 0";p in the coordinate Hilbert spaceH = L2(B2=3(0);��p 
 Ep), the Friedrichs extension of the di�erential operators �";pand � 0";p de�ned in (2.12) and (2.15), respectively. It follows from standard elliptictheory and the de�nition of the Friedrichs extension (4.19) thatD(T";p) = D(T 0";p) = H2(B2=3(0);��p 
 Ep) \H10 (B2=3(0);��p 
 Ep): (5.1)Thus we obtain for u 2 H(@t + T";p)e�tT 0";pu = � X�;;jj�1M�@sA�;";p e�tT 0";pu; (5.2a)limt!0 e�tT 0";pu = u: (5.2b)Since T 0";p generates a holomorphic semigroup, the standard a priori inequality foru 2 D(T 0";p) (cf. Lemma 4.4) gives for jj � 1k@s e�tT 0";pkH � Ct�jj=2; (5.3)(with C independent of " and p) such that we obtain, as in the proof of Theorem2.2, e�tT";p = e�tT 0";p + X�;jj�1 Z t0 e�(t�u)T";pM�@sA�";pe�uT 0";pdu: (5.4)This leads us to de�ne, as in Theorem 2.3,R0";p(t) = e�tT 0";p; (5.5a)R�+1";p (t) = X�;;jj�1 Z t0 R�";p(t� u)M�@sA�";pe�tT 0";pdu; (5.5b)one expects that the resulting Neumann series converges, as expressed in Theorem2.3.Proof of Theorem 2.3 The theorem follows if we prove that for positive con-stants C0; C1, independent of " and p, we have the estimatekR�";p(t)k � C0C�1 (�!)�1=2t�=2; � � 0; 0 < t � 1: (5.5)23



This is obvious for � = 0, from (5.5a) and (5.3).If the estimate holds for some � � 0 then (5.5b) and (5.3) givekR�+1";p (t)kH � C2 Z t0 kR�";p(t� u)kHu�1=2du� C2C0C�1 (�!)�1=2 Z t0 (t� u)�=2u�1=2du� C0C2C�1 (�!)�1=2t(�+1)=2�(�=2 + 1)�(1=2)�(�=2 + 3=2)� C0C�1C2C3((� + 1)!)�1=2t(�+1)=2;where we have used the asymptotics of the �{function. The assertion follows withC1 := C2C3 and ke�tT 0";pkH =: C0:We will need trace estimates, however, to achieve the proof of Theorem 2.5. Inwhat follows we work with the von Neumann Schatten classes of compact operatorsin H; we denote them, as before, by Cq(H) and write k � kq := k � kCq(H), for q > 0.In particular, we use k � k1 := k � kH.Lemma 5.1 There are positive constants C4; C5, independent of " and p, such thatkR�";p(t)k1 � C4C�5 ((� + 1)!)�1=2t(��m)=2: (5.6)Proof For � = 0, we recall that T 0";p is actually scalar and hence satis�es thekernel estimate, for s1; s2 2 B2=3(0),je�tT 0";p(s1; s2)j � Ct�m=2e�C0js1�s2j2=t; (5.7)again with C;C 0 independent of " and p (cf. eg. [Da, p.89]). This implies theestimates ke�tT 0";pk2 � Ct�m=2; (5.8a)ke�tT 0";pk1 � ke�t=2T 0";pk22 � Ct�m=2; (5.8b)and with (5.3), for jj � 1,k@s e�tT 0";pk1 � k@s e�t=2T 0";pk1ke�t=2T 0";pk1 � Ct�(m+jj)=2: (5.8c)Hence the case � = 0 is settled by (5.8b).If the assertion is true for some � � 0 we use (5.5b) again, now splitting theintegral in order to avoid nonintegrable singularities:kR�+1";p (t)k � C2n Z t=20 kR�";p(t� u)k1u�jj=2du24



+ Z tt=2C0C�1 (�!)�1=2(t� u)�=2k@s e�uT 0";pk1duo� C2(�!)�1=2nC4C�5 t(��m+2�jj)=22kB(�=2 + 1; 1=2)+C0C�1 t(��m+2�jj)=22kB(�=2 + 1; 1=2)o� t(�+1�m)=2((� + 1)!)�1=2C22k[C3C4C�5 + C0C3C�1 ]� C4C�+15 ((� + 1)!)�1=2t(�+1�m)=2;if C4; C5 is chosen appropriately.From Lemma 5.1, we derive the interesting consequence that�t 1X�=N R�";p(t)1 � C4t�m X��N (C25t)�=2(�!)1=2 k�kL1 (5.9)� Ct1=2; (5.10)if N > 2m. Consequently, the proof of Theorem 2.5 depends on properties of only�nitely many R� . To examine those, we will now heavily invoke the weight structureof �";p as expressed in (2.13c). To use it, we will have to rewrite the basic recursion(5.5b) in a more complicated fashion. It has to incorporate the multiplication oper-ators M�, a cut{o� in the t{variable, and also 'retarded arguments'. More precisely,we propose to estimate inductively the q{norms of the operator family~�tR�";p(u)M�; 0 < u � t � 1; " 2 (0; 1]; p 2M;� 2 Zm+; � 2 Z+; (5.11)where we have written �t =: t�m=2~�t; i.e. ~�t(x) = �(x=pt).We will prove:Theorem 5.2 There are positive constants C�, independent of " and p, such thatk[~�tR�";p(u)M�@�0s ]IJkq � C��qt(j�(I)��(J)j+j�j)=2(t=u)m=2qu�j�0j=2; (5.12)for 0 < u � t � 1; " 2 (0; 1]; p 2 M;�;�0 2 Zm+ ; j�0j � 1; I; J � f1; : : : ;mg; and0 < q �1.Let us remark that (5.11) does not follow from (5.5) in the case u = t; � = 0; q =1. Moreover, with Lemma 5.1 we have the following interesting estimate for theheat kernel.Corollary 5.3 For 0 < u � t � 1; �; �0 2 Zm+; j�0j � 1; we havek[~�te�uT 0";pM�@�0s ]IJk1 � C�t(j�(I)��(J)+j�j)=2(t=u)m=2u�j�0j=2; (5.13)and, in particular, k[�te�tT";p]topk1 � C: (5.14)25



For the proof of Theorem 5.2 we need several lemmas to which we turn now.The presence of the factorM� on the right of (5.10) creates the operators @s e�tT 0";pM�in the recursion, and we are forced to move M� to the left. Thus we want to write(suppressing the dependence on "; p in the right hand side for simplicity)e�tT 0";pM� =: X���M�S�� (t); (5.15)such that S00(t) = e�tT";p = S��(t). Clearly, S�� (t) is an integral operator with kernel(s1 � s2)���e�tT 0";p(s1; s2) (5.16)which allows to estimate the Cq{norms for 2 � q � 1, in view of (5.7). To incor-porate derivatives, we argue as often before to derive the representationM�e�tT 0";p = e�tT 0";pM� + Z t0 e�(t�u)T 0";p[� 0";p;M�]e�uT 0";pdu= e�tT 0";pM� � X�;jj=j0+00 j�2;j00j�1 Z t0 e�(t�u)T 0";pM��00C0@0s A�";pe�uT 0";p du;with certain constants C0, or for � < �S�� (t) = X�;=0+00;j00j�1 Z t0 S�+00� (t� u)C00@00s A�";pe�uT 0";pdu: (5.17)With this notation established, we now obtain from (5.5b) the following recursion:h~�tR�+1";p (u)M�@�0s iIJ == X�;jj�1;�;K Z u0 [~�tR�";p(u� v)M�@sM�]IK[A�";pS�� (v)@�0s ]KJdv= X�;jj�1;�;K Z u0 [~�tR�";p(u� v)(M�+�@s + (5.18)< ; � > M�+��)]IK[A�";pS�� (v)@�0s ]KJdv: (5.19)Thus we have to establish estimates on S�� (v)@�0s �rst.Lemma 5.4 We have the estimates, uniformly in " and p,kS�� (v)@�0s k1 � C�v(j���j�j�0j)=2; (5.20)k~�tS�� (v)@�0s kq � C�qtj���j=2(t=v)m=2qv�j�j=2; (5.21)k~�tS�� (v)@�0s (1� ~�1t )kq � C�qtj���j=2v�j�j=2: (5.22)Here 0 < q � 1, �; �; �0 2 Zm+ with � � � and j�0j � 1; 0 < v � t � 1, and �1 > �in the sense of (4.22) . 26



Proof (5.18) for � = 0 follows from (5.3) by taking adjoints, and in general itfollows easily, by induction on j�j, from (5.16).(5.19) and (5.20) are proved together by induction on �.For (5.19) with � = 0 we prepare the estimatesk~�te�uT 0";pk2 � C(t=u)m=4; (5.23a)k~�te�uT 0";p~�1t k1 � k~�te�u=2T 0";pk2ke�u=2T 0";p~�1t k2� C(t=u)m=2; (5.23b)k~�te�uT 0";p(1� ~�1t )k2 � CN(u=t)N ; N 2 N; (5.23c)which are easy consequences of (5.7). To proceed we write the commutator [~�t; e�uT 0";p]in the now familiar way to obtain the representation~�te�uT 0";p(1 � ~�1t )= � X�;jj�2 Z u0 ~�te�(u�v)T 0";pM�[@s ; ~�2t ]A�";pe�vT 0";p(1 � ~�1t )dv (5.24)=: X�;jj�2���;j0j�1Z u0 ~�te�(u�v)T 0";pM�S�� (u� v2 )@0s ~�3tA�0 (t)e�vT 0";p(1� ~�1t )dvwhere � < �2 < �3 < �1 andkA�0 (t)kL1(B2=3;End��p
Ep) � Ct(jj�2)=2: (5.25)Next we get from (5.21a) by interpolationk~�te�(u�v)=2T 0";pk2m � C(t=(u� v))1=4: (5.26)Using (5.24), (5.21c), (5.18), and (5.23) together with the H�older inequality forSchatten norms in (5.22) we arrive atk~�te�uT 0";p(1� ~�1t )k2m=(m+1) � CN (u=t)N : (5.27)Upon iteration we see that the same estimate holds for the norm of order2m=(m+ L); L 2 N; hence, for all q > 0,k~�te�uT 0";p(1� ~�1t )kq � CN;q(u=t)N : (5.28)Thus, with (5.21b), k~�te�uT 0";pk1 � C(t=u)m=2: (5.29)Now we can iterate as in the derivation of (5.21b), using the H�older inequality forSchatten norms, to derive (5.19) and (5.20) with � = �0 = 0.27



Next, from (5.19) (with � = �0 = 0) and (5.3) we getk~�te�uT 0";p@�0s kq � k~�te�u=2T 0";pkqke�u=2T 0";p@�0s k1� C(t=u)m=2qu�j�0j=2;which is (5.19) for � = 0.For (5.20) with � = 0, we use the representation following from (5.22) again,starting this time with the estimatek~�te�uT 0";p@�0s k2m � C(t=u)1=4u�j�0j=2:This leads to k~�te�uT 0";p@�0s (1 � ~�1t )km � Cu�j�0j=2;which gives (5.20) by iteration.We turn to the inductive step and note that (5.19) with q =1 follows easily from(5.16) and the induction hypothesis. For general q, we use again (5.16) splitting itby writing A�";p = ((1 � ~�2t ) + ~�2t )A�";p. The q{norm of the �rst integral is estimatedusing (5.19) and the induction hypothesis for (5.20). The second integral is split atu=2, using (5.20) on the �rst and (5.18) on the second factor in the integral from0 to u=2, and the other way around in the integral from u=2 to u. This, clearly,completes the induction for (5.19).An entirely analogous estimate gives (5.20).With these preparations we can give theProof of Theorem 5.2 The proof is by induction on �, using the recursion(5.17), the induction hypothesis is formed by the estimate (5.11) and the parallelestimate kh~�tR�";pM�@�0s (1� ~�1t )iIJkq � C��qt(j�(I)��(J)j+j�j)=2u�j�0j=2: (5.11')For � = 0 we write ~�tR0";p(u)M�@�0s = X���M�~�tS�� (u)@�0s :Since T 0";p is scalar, (5.11) and (5.11') follow in this case from (5.19) and (5.20).To establish the assertion (5.11) for � + 1, we insert 1 = 1 � ~�1t + ~�1t in (5.17)in front of A�";p; �1 > �, and estimate the two resulting terms separately. For theq{norm of the �rst term we obtain the boundX�;;���;K Z u0 C��t(j�(I)��(K)j+j�+�j)=2(u� v)�jj=2v(j���j�j�0j)=2dv� X�;;���;KC��t(j�(I)��(K)j+j�+�j)=2u(j���j�j�0j�jj+2)=2� X�;;���;KC��t(j�(I)��(K)j+j�j+j�j�jj+2)=2u�j�0j=2� C��t(j�(I)��(J)j+j�j)=2u�j�0j=2;28



since in a nonzero term in (5.17) we have, by (2.13c),j�j � jj+ 2 � j�(K)� �(J)j;hence j�(I)� �(K)j+ j�j � jj+ 2 � j�(I)� �(J)j:In the second term we split again the integral at u=2, using the q{norm on thefactor whose norm remains integrable. For the integral from 0 to u=2 the q{norm isbounded analogously byC�� X�;;�;K Z u=20 t(j�(I)��(K)j+j�+�j)=2(t=(u� v))m=2q(u� v)�jj=2tj���j=2v�j�0j=2dv� C�� X�;;�;K t(j�(I)��(K)j+j�j+j�j)=2(t=u)m=2qu(2�jj�j�0j)=2� C��t(j�(I)��(J)j+j�j)=2(t=u)m=2qu�j�0j=2:The second integral is estimated analogously by the same quantity; this establishes(5.11) for � + 1.The splitting with ~�1t leads, by the same arguments, to (5.11'). This completesthe proof.It remains to discuss the continuity properties of R�";p as a function of ". This wedo �rst in the C2 case; then an approximation argument will handle the C1;1 case.We now use the fact that we have obtained estimates for all q{norms with q > 0.Thus we obtain from (4.8) and Theorem 5.2���tr[�t(R�";p �R�0;p)(t)]top���� t�m=2k~�t(R�";p �R�0;p)(t)k1=21 k~�t(R�";p �R�0;p)(t)k1=21=2� C�k~�t(R�";p �R�0;p)(t)k1=21 t�m=4: (5.30)It is, therefore, enough to prove continuity in the operator norm of R�";p at " = 0;more precisely, we needLemma 5.5 Under the regularity condition (2.13b'), there are positive functionsC��("); � 2 Zm+; " 2 (0; 1], with lim"!0C��(") = 0 andkh~�t(R�";p �R�0;p)(u)M�@�0s iIJk1 � C��(")t(j�(I)��(J)j+j�j)=2u�j�0j=2; (5.31)for 0 < u � t � 1; p 2M; I; J � f1; : : : ;mg, and �0 2 Zm+ with j�0j � 1.Proof A straightforward estimate of the right hand side in (5.17), using thesmoothness assumption (2.13b), shows that the lemma follows inductively from thefollowing facts: 29



(1) the estimate (5.19) with � = 0,(2) the estimate k(S�� ("; v)� S�� (0; v))@�0s k1 � C�(")v(j���j�j�0j)=2; (5.32)where the function C� satis�es lim"!0C�(") = 0.Using induction on j�j as before, we see that (5.29) follows readily from (5.16)once it is proved for � = 0. To achieve this we invoke once more the solution of theinhomogeneous heat equation to obtain the identity(e�uT 0";p � e�uT 00;p)@�0s= Xjj=2 Z u0 e�(u�v)T 00;p@s (A";p �A0;p)e�vT 0";p@�0s dv: (5.33)Since A";p is C1 in " and since the operators(T 00;p)�1 Xjj=2 @s (A";p �A0;p) and Xjj=2 @s (A";p �A0;p)(T 0";p)�1are bounded, we obtain the desired estimate by splitting again the integral at u=2.It remains only to prove (5.29) for � = 0. We have~�t(e�uT 0";p � e�uT 00;p)M�@0s = X���M�~�t(S�� (";u)� S�� (0;u))@0s ;so that the estimate follows from (5.30). The lemma is proved.We conclude this section with �lling the last gaps in the proof.Proof of Theorem 2.5 in the C2 caseFrom Corollary 5.3 we getk[�t(�";p � 1)e�tT";p]topk1 � C supp;s j�";p(s)� 1j =: �1(");with lim"!0 �1(") = 0. Furthermore, using (5.9) and (5.29) we �ndk[�t(e�tT";p � e�tT0;p)]topk1� t�m=2 2mX�=0 k[~�t(R�";p �R�0;p)(t)]topk1 + Ct1=2� sup��2mC�0(") + Ct1=2=: �2(") + Ct1=2:This completes the proof. 30



We remark that in this case the convergence is even in L1(M).Finally, we deal with the C1;1 case using an approximation argument. For this, it isuseful to rephrase the results of this section a little bit. So we look at all operators,� , satisfying the conditions (2.13) in L2(B2=3(0); F ), for some �nite dimensionalcomplex vector space F . We denote this set by T and introduce the normk�k1;1 := X�;;�� k@j�j@s�A�(s)kL1(B2=3(0)) + ��11 + �2: (5.34)For � 2 T , we let T again be the Friedrichs extension.Then we have, actually, proved the following facts.Corollary 5.6 (1) For � 2 T we have an estimatek[�te�tT ]topk1 � C = C(k�k1;1); uniformly in t � 1:(2) For any constants " > 0; C1 > 0 we can �nd � > 0 such thatk�k1;1 + k� 0k1;1 � C1and k� � � 0k1;1 � �imply, uniformly in t � 1,k[�t(e�tT � e�tT 0)]topk1 � ":Proof We simply have to go through the proofs of Theorem 5.2 and Lemma 5.5to see that they work literally in this situation, too.This allows us to give theProof of Theorem 2.5 in the C1;1 caseWe choose a C2 approximation of all data which locally approximates in the norm(5.32). This leads to functions FEt ; F n;Et according to (1.11) and also FE; F n;E whereFE(p) = FE(p; t) = tr[�te�tT 00;p]top;and F n;E(p) is de�ned similarly. Then we derive from Corollary 5.6 that, for given" > 0, jFEt (p) � F n;Et (p)j � "; (5.35a)if n � n(") and t � t("), uniformly in p. Next, it follows from the �rst case ofTheorem 2.5 that limt!0 jF n;Et (p)� F n;E(p)j = 0; (5.35b)31



uniformly in p but not necessarily in n. Finally, another application of Corollary 5.6shows that jFE(p) � F n;E(p)j � Cfor some constant C, uniformly in n and a.e. in p, andlimn!1 jFE(p)� F n;E(p)j = 0for almost all p. Thus we derive from Lebesgue's theoremlimn!1 kFE � F n;EkL1(M) = 0: (5.35c)The estimates (5.34) together yieldlimt!0FEt = FE in L1(M)as desired.References[Al] L. Alvarez-Gaum�e: Supersymmetry and the Atiyah{Singer index theorem.Comm. Math. Phys. 90 (1983), 161{173[AS] M. F. Atiyah and I. M. Singer: The index of elliptic operators on compactmanifolds. Bull. Am. Math. Soc. 69 (1963), 422{433[ABP] M. F. Atiyah, R. Bott and V. K. Patodi: On the heat equation and theindex theorem. Invent. Math. 19 (1973), 279{330[Br] J. Br�uning: L2{index theorems for complete manifolds of rank one type.Duke Math. J. 66 (1992), 257{309[BeGeVe] N. Berline, G. Getzler and M. Vergne: Heat kernels and Dirac operators.Berlin, Heidelberg, New York 1992[CSuT] A. Connes, D. Sullivan and N. Teleman: Local formulas for topologicalPontryagin classes. C. R. Acad. Sci. Paris 317 (1993), 521{526[Da] E. B. Davies: Heat kernels and spectral theory. Cambridge 1989[FW] D. Friedan and P. Windy: Supersymmetric derivation of the Atiyah{Singer index theorem. Nuclear Physics B 235 (1984), 394{416[Ge] E. Getzler: A short proof of the local Atiyah{Singer index theorem. Topol-ogy 25 (1986), 111{117 32
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