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On the spectral geometry of algebraic curves

By Jochen Briining and Matthias Lesch at Berlin

1. Introduction

Spectral geometry investigates the relationship between the geometry of Riemannian
manifolds and the spectral data of certain self-adjoint operators, naturally associated to
the geometry. The main analytic tool is the de Rham complex,

A1) 0 00— gy 2 - L om0,

where Qf(M) = C® (4 T*M) denotes the smooth j-forms with compact support on the
smooth manifold M, of dimension m, and d is the exterior derivative. If M carries a
Riemannian metric then we have an associated scalar product on Q4 (#), so (1.1) may be
viewed as a differential complex of densely defined operators in the Hilbert space L2(4*M).
The metric also determines on £§ (M) the transposed operators, dj, and the Laplacians,
A;=d!d,+d;_,df_,. The latter are nonnegative symmetric operators in (A’ T*M) and
hence admit self-adjoint extensions. If M happens to be complete then A, is essentially
self-adjoint on ©§(M); thus, the natural spectral data are provided by the closures, A;.
Their analysis, however, can be complicated by the presence of essential spectrum. Another
complication arises if M is incomplete because then A; may have infinitely many self-
adjoint extensions. A natural choice of such extensions is again linked with (1.1): if we
find a Hilbert complex extending the de Rham complex (i.e. a choice of closed extensions,
D;, for the d; preserving the complex property) then its Laplacians are automati-
cally self-adjoint. This is always possible since we can choose D;=d; ,,==d; or
D;=d; ., = (d})*. This seems most natural if & i, = &} ms, for all j, which we refer to
as the case of uniqueness (it should be noted that this uniqueness does not imply essential
self-adjointness for the Laplacians). Certainly, if M is compact we have uniqueness and
all Laplacians are discrete.

In this paper, we study a family, .4, of possibly incomplete Riemannian manifolds
which, nevertheless, displays uniqueness and discreteness in the sense just described. This
family consists of (the regular part of) all algebraic curves, equipped with metrics which
are induced from some hermitian metric on complex projective space—e.g. the Fubini-Study
metric — via projective embeddings. By the uniformization theorem, any compact orien-
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table Riemannian 2-manifold can be obtained in this way. Thus, this setting generalizes
the case of compact orientable surfaces, the spectral geometry of which is highly developed.
Of course, the difficulties encountered are caused by the singularities of the manifold. Our
main result says that from the spectral data we can decide whether or not the given algebraic
curve has singularities (other than multiple points). Thus, even though the singularities of
an algebraic curve are “small” in the sense that we are in the case of uniqueness — as
opposed e.g. to the case of manifolds with boundary — they can be detected from the
spectrum of the Laplacians; in fact, we will show that they have a rather drastic effect on
the shape of the heat asymptotics.

To explain our results in greater detail, we recall the following fact which was proved
in [BL2], Lemma 3.1 and Thm.3.7, and is the starting point of our analysis (note that
algebraic curves are conformally conic in the sense of [BL2], Sec.2).

Theorem 1.1. Let M e M. Then we are in the case of uniqueness, i.e.

IfT,,0 £ j < 2, denotes the corresponding self-adjoint Laplacian then T, equals the Friedrichs
extension of A,.

Finally, all T, are discrete (i.e. have empty essential spectrum).

The only assertion which is not obvious from loc. cit. is the discreteness of 7. This
can be seen as follows: by [BL2], Sec. 2, a conformally conic manifold is quasi-isometric
to a compact manifold with an isolated conic singularity. By [BL1]}, Lemma 2.17 and
Sec. 3, discreteness of the 7; is invariant under quasi-isometries. Now, for'a compact
manifold with isolated conic singularities the discreteness of the 7} is well known (see e.g.
[C3], Sec.3 and 4).

By Poincaré duality (cf. [BL1], Lemmas 2.16, 3.7 and 4.2) we sce that T, is unitarily
equivalent to 7. Moreover, the Hodge decomposition [BL1], Cor.2.5 implies a unitary
equivalence between T;|(ker T;)}* and two copies of Ty (ker Ty)*. Thus, a complete set of
spectral data is provided by specT, (with multiplicities) and B, where B;=dimkerT},
0 <j<2. In place of B, we can use the L*-Euler characteristic defined as

X(z)(M) =2, — By

it has been computed explicitly for the case under discussion in [BL2], Cor.5.14, using
the result in [BPS], Thm. 4.1; cf. also [N2].

These spectral data are translated into geometric information by certain averaging
processes, usually obtained from the asymptotic expansion of the trace of convenient para-
meter-dependent functions of T,. Well known examples are the heat kernel, the {-function,
and the resolvent, the latter providing slightly stronger information than the other two
(cf. Lemmas 2.1 and 2.2 for a precise statement). We will work with the resolvent throughout
but formulate the result in terms of the heat kernel, for convenience. It involves some
basic information on the structure of the singularities of M. In fact, let M € . and denote
by X the (finite) set of singularities relative to some projective embedding (which also
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induces the metric on M, from some hermitian metric on complex projective space). For
peZ, let L(p) be the number of irreducible components, locally near p, and let

Nip), 1=iZL(p),
be the multiplicity of the ith component. Then we have the following spectral information.
Theorem 1.2. (1) For ¢ >0, e "™ is trace class and we have the asymptotic expansion

(1.2) tr(e™ ™) ~, 4. Z T Y BT ogr+ Y Y ¢, p) iR
jzo jzt pes izo0
1sisLlip)

(2) In (1.2), we have

1M
1.3) gy =22
4n
and
a4 by =0.
)

. —tTo _ 1
(19) Hm (re™®—a ™) —xa(D/6=5 T MR +NET-2).

pe
1sisL(p)

(8) There are M e M with b, + 0. More precisel i
. ly, among the generalized parabolas
C*! (defined after Lemma 4.6), b, distinguishes the parabolas of type C', [ e N.p

(5) There are M e M with ¢, (i,p) + 0, for some pe X and 1< i < L(p).

The proof of this theorem is the main goal of this work; it will be given at the end
of S.ec. 4. We remark that in the nonsingular case the coefficients 4, and ¢,(i, p) all vanish
Thexr. appearance is dictated by our method of proof but, as usual,J the re;ulting formulac;
are difficult to evaluate. Nevertheless, (1.5) reveals the presence of the ‘singularities: the
right hapfi side vanishes if and only if all N;(p) are equal to one, and in this case we recover
the famxl_lar computation of a, (cf. e.g. [BGM], p.222). The logarithmic terms turn out
to be. quite subtle (cf. Section 4 for a more detailed discussion) but the class .# seems to
Provxde t.he most simple and natural setting for their appearance. It seems that very little
mforp-latlon on the spectral distribution of T, was obtained before. During the preparation
of thl§ paper we obtained the preprint [Y] where the leading asymptotics of tre™'T are
established, by quite different methods; this result was also proved in [L1], Sec.2.4, (4.5).

In );LT], an upper bound for the heat kernel of T, is given, even for algebraic varieties of
arbitrary dimension.

We turn to our method of proof which is governed by the nature of the singularities.
In fact, for algebraic curves we can describe the singularities very explicitly as follows (cf.
[BPS], Sec.2). We assume M o, CP", for some #, with singular locus X, a finite set. Fo1:
p &2 we choose homogeneous coordinates [z, ..., z,] in CP” such that r=1I[1,0,...,0].
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Moreover, we choose a neighborhood U, of p in CP" such that U,n2 = {p} and

Up\{ pPInM= U U,, where the U,,, the components of M near p, are connected and
1iSL(p)
mutually disjoint, and such that, for each component V:= U,

> We can find a biholomorphic
map

(1.6) p:D,={zeC|0<]|z|<g} >V,
w(z) =[1,P,(2),..., P,(z)], P, holomorphicin D,,

where we have with some keN, 15k <n,

an P()=0, 1Sisk—1,
P(2) =2,
P@)= Y ay7, k+1Zj=n.
12N;

Here N;e N with N, < Ny, < - <Ny N, = N(p) is called the multiplicity of the ith
component.

Since T, is the Friedrichs extension, we can restrict the analysis to a single component,

U, with multiplicity N, cf. Lemma 2.4. Any hermitian metric on CP” will induce a metric
on U which, in polar coordinates (x, ¢) € (0, &) X [0, 2x), takes the form

18) gl oy=o("",@)dx@dx + (N, @) N2 x> dp @ dyp .
Here o, e C*([0,8) x S*) with «(0,) = B(0,-) =1. This leads us to a regular singular

Sturm-Liouville operator with operator coefficients as our model operator. In fact, in the
coordinates above we have, with &(x, @) = a(x!'¥, @), B (x, 0) = B(x'/¥, p),

Ag = —(xaB) 10, (xB|8) 3, — N">x"*(@B)*9,(a/ $)3, ,

acting on CZ((0,£) x S') in'the Hilbert space L*(R,, x S*, Nx&fdxdep). Here

i) 7}
dp=5m aw.=%,

With the unitary transformation
&:I2(R, x Y > I2(R, % St, Nxafdxde), fr-> (Nx&B)y Y2f,
we obtain the operator
To=@ 1A P

= —(x@B) Y20, (xB] 2)0,(xa )~ — N"2x"2(@f) 20, (& B0, @B~
(19) =—082+X 24,+R,,
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acting on C2((0,¢), C*(SY)) in the Hilbert space 5= L*(R,, L*(S*)). Here X is multi-
plication by the coordinate function x, and

The “perturbation” R, is built from the operators
(110)  Up=idpagy, U= U,0)=QX (4 + D2, U, ()=@"0,,

where Q is multiplication by @(x):=x/(x+1) and y =y(N) is some positive number.
Then, with certain operator functions C;e C([0,£), £(L*(S1))), we have

2
(1.11) R= Y UrCyU,.

i,j=0

The dependence on ¢ is singled out for the following reason: if we measure the strength
of the perturbation R, by

2
(1.12) 6(z,)= Z “ij”yu?)’
0

Li=

then lim 8(z,) = 0.
&0

By a suitable cut off, we may hence assume that &(z,) is as small as we please. Thus
(1.9) is well defined and semibounded on Cg ((0, ), C*® (SY) with values in # Again,
we can reduce the asymptotic analysis to the operator T, the Friedrichs extension of 7,
in # This is almost a regular singular operator in the sense of [BS2], only the perturba-
tion R, is considerably stronger than allowed in these papers. Our attempt to generalize
the analysis to the present case lead us to a new approach, bypassing the explicit construction
of the Neumann series. The necessary a priori estimates are reduced instead to estimates
for the operators (1.10), rendering a much simpler proof also in the cases treated before.
In particular, the Bessel functions make no appearance in our analysis any more.

Once the a priori estimates are established, the existence part of Theorem 1.2 follows
from the Singular Asymptotics Lemma [BS1] essentially as before.

The plan of the paper is as follows. In Section 2 we prove the existence of the
asymptotic expansion using the estimates mentioned above; they are proved in Section 3.
The explicit calculations are carried out in Section 4.

Most of the results in this paper have been announced in [BL3].

This work was supported by Deutsche Forschungsgemeinschaft and the GADGET
network of the EU.
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2. The existence of the asymptotic expansion

Asymptotic expansions for self-adjoint elliptic operators occur in various disguises,
notably resolvent or heat traces and zeta functions. These are more or less equivalent and
related in a well known way. Nevertheless, since we have to switch back and forth between
them we recapitulate the basic facts and fix some notation, for the convenience of the reader.

Consider first a self-adjoint operator, T, in some Hilbert space H which is bounded
below; without loss of generality we assume

2.1) (Tw, W) 2 ||ull>, ued(T).
We assume, moreover, that for some g > 0
2.2) T“qu(H),

where C, denotes the von Neumann-Schatten class of order ¢. It then follows from the
resolvent equation and the Hélder inequality for C,-norms that

2.3) (T+2z) "eC(H), g<neN,
with uniform trace norm estimate in
2.9 Zy={zeCl|largz| <8}, 0<d<m/2.

Here we have chosen to work with z? instead of z since all our applications will address
second order operators. In this general framework we now want to assume an asymptotic
expansion of the type

k()

.5 try (T+22) "~ i Y. A (n)z9" *loghz,

j=0 k=0

asz — o0 in Z;, n>g. Here k(j) e Z, for all J, (%)), is a sequence of complex numbers

with Rea; » — o0, and 4}, (n) are the coefficients (where “r” refers to “resolvent”).
(2.5) has implications for the zeta function, {;, of T defined by

@6) L= Y A7, Res>g,

Aespec T\{0}

which are easily derived from the representation

@7 <"n >g,()—sm’”j M1t (T4 2)™dz + Lo (s)
1

valid for Res > n, with fT entire.

Lemma 2.1. Under the assumptions (2.1), (2.2), and (2.5), {; extends meromorphi-
cally to the whole plane, with poles at most at the points 0;/2,jeZ,.
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The principal part of {1 at o;/2 is given by

(2.8) M < T (l—s))_1 kz 27Kk A () (5 — y/2)F

Thus, the poles of {; have order at most k() if «;/2€Z\{1,...,n—1}, and k(j}+1
otherwise.

(2.5) also implies an asymptotic expansion for the heat trace, tr(e™'7), as t — O+
following directly from the Cauchy integral

. _. (n=1)! “ _
tT _ 41-n 1473 n .
(2.9) e =1 T {e (T—w™"du;

here I' is composed from the two rays ¢, (£) = te*™/4, ¢ > 1, and the unit circle, traversed
upward.

Lemma 2.2. Under the assumptions (2.1), (2.2), and (2 5), we have the asymptotic
expansion

o k(j)
(2.102) tr(e™ ) ~or . D, Al 7% loght,

i=0 k=0

where

@100 4=t 3 402 () ) e

We note in particular that

F (n)

(2.10¢) Ay = (=™ 3 %75 Auipn@) -

The expansion (2.5) seems, in this generality, slightly stronger than the properties
expressed in Lemmas 2.1 and 2.2. It is known to hold, typically, for symmetric elliptic
operators e.g. for elliptic differential operators on compact manifolds [S1], elliptic boun-
dary value problems for these [S2], or, recently, for classical elliptic pseudodifferential
operators on compact manifolds and certain boundary value problems as well [GS]. In
view of our applications we now consider a Riemannian manifold, M, of dimension m, a
hermitian vector bundle, E, over M, and a symmetric elliptic differential operator of second
order, 7, acting on C§ (E). We then assume that

(2.11) (zu, u)LZ(E) 2 ”u”Lz,Z(E), ue Cy(E),

such that the Friedrichs extension, T, of ¢ satisfies (2.1). Since now M may be noncompact
it may happen that (2.2) fails but that

(2.12) 0, T, e C(L*(E)),
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for certain ¢, ¢, € %,
(2.13) &= {pe C*(M)|supp dy compact in M}.

If, in addition, the analogue of (2.5) holds for ¢ (T + z2) ™" we will write

© k()

(2.19) trLZ(E)(P(T"‘ Zz)-"“' Z Z A;k(”l; (P)Za,—anong,
Jj=0 k=0

with similar notation for the heat trace. Here, the coefficients 4 7. (n; @) are considered as
distributions on %,

If we restrict attention to C§ (M) = .& then we can say considerably more about the
coefficients in (2.14) due to the fact that the Schwartz kernel of the resolvent admlts a

pointwise expansion on the diagonal.

Lemma 2.3 ([S1], [Gr], [G], Sec.1.7). For ¢ e CP (M), we have the expansions

(2.15a) try o (T+2%) "~ Z Bi(n; @)zm 20+
o
and
(2.16a) g @e T~ Y Bi(p)r ™2t
i=o

The distributions Bj(n; @) and B} () are actually smooth functions i.e., with vol,, the volume
Sform

2.15b) Bi(n;9)=: | Bj(m; p) p(p)voly(p),
M
(2.16D) Bl (@)= | Bl (p) p(p)vol,(p),
M
where
_ I'(n)
217 Bi(p) = Trti—m/2) Bi(n;p) .

In view of Lemma 2.3 it is reasonable that we try to decompose M as
(2.18) M=MuU,

where M, is a compact manifold with boundary N:=9M, = dU and U, the “singular set”,
is open. The following result shows together with Lemma 2.3 that we can indeed reduce
the expansion problem to U. To be more precise we denote by Ry, : L2(E) — L*(E|U) the
restriction, by Ey: L*(E|U) —» L*(E) the extension by zero, and by 7Ty the Friedrichs
extension of t]C¢° (E| U) in L*(E|U). Then we have the following result [B], Lemma 4.1
(cf. also [L2], Thm. 2.10).
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Lemma 24. Put

2.19) %= {pe C*(M)|suppdy compact in U, =0 near U},
and assume that, for p,, p, € %, either

(2.202) 0 Ty, € C (L (1))
or

(2.20b) v T ', e C(I*(E)).

Then for all ye &y, p> 0, ze Z; with |z| 21, Jand NeN there is a constant ¢ =c(p,N)
such that

@21 e [(Ty + 227! = Ry(T+2°) T Elll, S c(p, N)| 2|7V

Observing that E; Ry is the orthogonal projection in L?(E) onto L?(E|U) we see that
Lemma 2.2 and Lemma 2.4 do in fact reduce the expansion problem in Theorem 1.2 to
the expansion of tfyz e [ (Ty + 2°) "] where U= is (0,8) x S equipped with the
metric (1.8). Indeed, assume that for p € %, we have (2.20a) and an asymptotic expansion

® k)
20 @+~ ¥ ¥ A5 (n; ) 2%~ *"logkz .
j=0 k=0
Then we can choose in particular y =1 — ¢ with ¢ € C¥ (M) and obtain from Lemma
2.3 and Lemma 2.4 the expansion
@ k()
(222 trLz(E)((T+ 237 ~ DY A5 (n;p) 247 2" log*z
j=0 k=0
+ Y Bi(m1—yp)zn20m
j=0
o k()
=3 3 A, mzf logz.

Jj=0 k=0

Next we specialize our considerations using (1.9). Thus, from now on we assume that
Ty is unitarily equivalent to the Friedrichs extension, 1, of

T=—02+ X 244+ R,

in L2((0, ¢), H) with domain ﬂ C&((0,2), 2(4%)), where & can be made arbitrarily small,

with R, in (1.11). We fix a convement ¢, the size of which will be determined in Sec. 3. We
conmder the Friedrichs extension, T, of 7, in #:= [?(R., H) with domain

=kﬂ Cg((0,0), D(4%)) .
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(T depends also on ¢ but we suppress this to simplify the notation.) Note that
(I+ A4,)"'e C,(H) for every p>1/2; we fix one such p in what follows. The general
setting above applies also to 7, 7: and we can invoke [B], loc. cit., once more, using this
time &= C§ (R, ). Thus the expansion problem is finally reduced to the study of

(2.23) Hp; )=t o(T+2)7", 0eCPR), zeZ;.

We abbreviate G(z):=(T'+ z%)~!; we are going to show that the Singular Asymptotics
Lemma (SAL) of [BS1] applies to establish the existence of an asymptotic expansion of
t of type (2.14). It is convenient at this point to introduce the scaled family 7., s € [0,1],
as the Friedrichs extension of i

.24 T, =52 UtU*in *(R,, H), t=r1,,
where
(2.25) Uy(x):=s"?0(sx), se[0,1].

We put G*(2):=(T, + z%)~", G,== G. Then we see from Theorem 3.9 below that for o >2
and n>2

V(s,2)i= (1 + X) 2 DXGr @) X e C, (),
with uniform trace norm estimate in s and z; the same estimate shows that, in addition,
[0.. V (s, 2)]€ C (o) .

Thus the Trace Lemma in [BS2], Appendix, applies, and we deduce that G"(z) has a
continuous kernel

(2.26) Gl'(z; x,y)e C (H), xy>0.
It follows, moreover, that

t(p;2) = ]9 @(x)try G™(z; x, x) dx .
0

Since U, is unitary, we find the scaling relation

(2.27) G"(z;x,y) = s Gl sz %/, ¥/5).s
hence
(2.28) Hp;zy = [ (x> "y GM(xz;1,1)dx .
[4]

Now we encounter a problem since G, is not differentiable with respect to x in [0,1]. In
fact, writing :

To=—0F+X 24, +R,,,
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we have from (1.11) the representation

(2.29) R.,= Y UrCHU,.

0si,js2

Here the operators U, are defined in (1.10), C; is a smooth function of ¥ in [0,1], and
we have 6(z, ;) = 6(t,). Moreover, it is easily checked that

(2:30) X la +X>-k'"<%>kciif”u Se®).-

0=ijs2

This suggests that G,~(z) is smooth in s and z,-s0 we substitute x = y¥ in (2.27) to get
" .
(2.31) 1g;2) = [ No(OM)y>" iy G (W)™ 1, 1) dy,
. 0

with w:=2z"". Hence we shall apply the SAL to the function
(232)  o(nO)= Ny oMy G (M 1,1), yeR,, (eZyy.
We will verify the assumptions of the SAL in the following sequence of lemmas.

Lemma 2.5 (Smoothness). Regarded as a map from R to the holomorphic functions
in Zsy, 6 is smooth.

Proof. 'We show first that, for M>2+j/N,jeZ,, and Be R, the map
R,oy—F(;2)=01+X)" " Gr@) 1+ X) e LK)

is j times differentiable as a map into the holomorphic functions in Z; with values in

Cp 12 (H). In fact, the kth derivative is a sum of terms of the type

(2.33) 1+ X) ™M EG,n(2) |: ]k_[ S,’*C'(y)S,”GyN(z)] a+x)°.
=1

Here k' £ k, the operators Sj, S}’ are in & (cf. Definition 3.1 below), and we have

Cle C=([0,1], £())
with estimates
(2.34 Ha+X)™C' Ml ey <o
Finally,
L k
(2.35) 1;1 0=
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Thus, we can apply Theorem 3.9 to (2.33): distributing suitable powers of (1 + X )

inside the product, we see that the first and the last factor is in C, p+1(3#) while all others
are bounded, with uniform norm estimates.

To establish (2.33) for j =1 we observe first that 9 (T,n) is independent of y € [0,1]
for ¢ sufficiently small; this follows from Theorem 3.2 below. Thus we obtain the identity

Gy (@) — G (2) = G (DR, )y — R, ,w) G,n (2) .

From this we obtain an integral representation

F(ys2)— Fyp )= | F(5;2)dt

y2

with Fi € C,,;,(#), by Theorem 3.9; the Bochner integral on the right converges in -

Z(#)and in C, ), (5#). In general, (2.33) is easily proved by induction on j> 1, using
the representation (2.29).

Using the “Hélder inequality” for Schatten norms we obtain the analogous result
for the map

(2.36) R+ays-—>(1+X)‘M"’G;‘N(z)(1+)E’)”EC1(¢7f),
for ze Z;, feR,, and M >2n+j/N. Repeating the above arguments, using again the
Trace Lemma and noting that 270, € & for y > 0, we find that all derivatives up to order
J of the operator function X (1 + X) ¥ ~# G)v(z)(1 + X)* X have a continuous kernel in
R, x R, with values in C, (H). Thus the same is true of the operator function
©1Gn (@, if 9,eCP0,00), i=12.
The estimate (4) in [BS2], p.425, then implies that G)v(z;1,1) e C,(H) has derivatives of
any order in y € R, which are holomorphic functions in Z; ;v With values in C, (H). This

completes the proof of the lemma. 0

In the following statements we leave aside the general notation introduced at the
beginning of this section, in order to simplify the writing.

Lemma 2.6 (Interior asymptotic expansion). o (y,{) has an asymptotic expansion
® N
(2.37a) TD D~ 2, GOINETH ez,
i=0

in the sense of [BS1], (1.2a) (note that dim M = 2). In fact, try Glv(LM;1,1) has an aspmp-
totic expansion

o
(2.38) trHG;N(CN;Ll) e Z 5j(y)CN(2_2jmzn), CGZ.;/N,
i=0
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which can be differentiated with respect to y. The asymptotics for all derivatives are uniform
in ye[0,1], ;e C*([0,1]), and

(2.37b) o (») =Ny Lo (yM) & (») .
Proof. This can be proved as Theorem 4.3 in [BS2]. O

Lemma 2.7 (Integrability condition). For jeZ., (€ Z;y with |{|=c, there is a
constant c(cq,j) such that for @ e [0,1]

o .
5}7 (Ost, s()‘ dsdt £ e(co,J) -

11
[]s
00

Proof. We have, by (2.32) and (2.27),
a(st, sy = N(s)>"™ o ((s))V) try Gy ()% 1, 1)
= Ns¥ =12 =16 ((st)¥) try G (CV; 57V, V),
hence

s/ <gy_d> (st,80) = Ns" 10/ [22"™ 1 ((s)") trg G (3 6™, s™)] .

We conclude, again with the Trace Lemma, that for p e CP(R) with »|[0,1]1=1 and
tef0,1]
1

{5
0

[N

ds=Zc
[

j 1
% (st, 50) [ sN 10K [ 2N ~ L, G (Y, s ds
0

[

|

=c trg 0F[12"N Ly G ({V; 5, 5)1 ds

k

Sc sup [P T G M ]llc,om
0sksj

M-
S

0

<c sup ]”ark(thN(cN))”C,(.#’) .

Osksj.tef0,1

The last expression is finite in view of (2.36) (with § = 0) which completes the proof of
the lemma. O

We remark that the full strength of the estimate in Theorem 3.9 is needed only in
the proof of Lemma 2.7. The SAL together with Theorem 2.4 now gives the following result.

Theorem 2.8. For n >1 and ye C(R), with p =1 near 0, we have the following
asymptotic expansion as z — o in Z;:

trLZ(E)(W(T+ 227" ~ trx’(‘/—’G"(Z))

o . * ;
~ § g
j=0 =0

-]
biz2 42" ogz +
J 1

j=

j=
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Here,

o« «©
(2.3%93) 4= 32 o () yNETH Iy = g x T2 (x) 3, (x' ) dx,

O.J'(N(2n+2j—2)—1)(0) 1 G- 1N
2.3 = = AU
(2399) = Wentm—9-DIN - GG-DMI Y ©.
(2.39¢) = ;ﬂo &—a‘f”"’“‘”@ Odt.

1= G+2aN-D)! ’

Note that the integrals in (2.392), (2.39¢) do not exist in the usual sense, but need
regularization (cf. [BS1], p. 135, for the definition) for which we use here the notation §.
However, (2.37b) and (2.39a) imply that no regularization is needed for j = 0, hence [ ={
in this case.

3. Resolvent estimates for regular singular operators
Our basic estimate, Theorem 3.9 below, applies to the class of operators introduced
above in (1.9), (1.10), and (1.11). We give an abstract treatment of their main properties
in this section. Thus let A be an arbitrary Hilbert space and 4, a self-adjoint operator in

H satisfying

&E)) A,

v

B =

and, with C,(H) the von Neumann-Schatten class in H,

(3.2) (4o +D'eC,(H) forsomep>0.
The differential operator

(3.3) To=—02 + X 24,,

i :
where 0,u(x) = _a__)u; (%), X~ 2u(x) = x " 2u(x), is well defined and symmetric in

H=L*R,, H)
with domain
(3.4 H*= () C§((0, @), D(4§)) -
kel

It is easily seen that 5 ® is dense in &, and that 7, maps # * to itself. Moreover, Hardy’s
inequality implies that 7, = 0 (this can also be seen from (3.13)).

In our applications, we meet perturbations of z, of the type (1.11). Precisely, we build
the perturbation on #® from the operators (1.10),

Up=1, U()=Q@X 4o+ D", U,(y)=Q"0,,
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where Q denotes multiplication by @ (x):=x/(x + 1) and y is positive; each U; maps #*
into itself. Abstractly, we now introduce linear operators, , as follows:

(3.52) T maps #* to H,
(3.5b) (tu, uy=0forue#*,
2
(3.5¢) (tu,v) = (rou,v) + Y, (Cy;Un, Up) for u,ve s,
Lj=0

where the coefficients C;; are bounded on 5 and commute with multiplication by functions
on R,. Moreover we assume that the C;; have support in a compact interval [0,¢]. We
measure the “strength” of the perturbation again by

2
(3.6) 6(x) = ZOHCiny(#)'

ij=
By (3.5b), we can form the Friedrichs extension, 7, of © which is our model operator. In
view of the remark after (1.12), for the application described in the previous sections we
may assume that 8(t) is as small as we want.

Our main goal are certain weighted estimates for the resolvent of T'; as before we write

G@)=(T+2)"".

For the case y =1 these estimates have been derived in [BS2] by an explicit construction
of G(z) via the Neumann series. This construction is complicated by the fact that ris a
singular perturbation of t,, moreover, the corresponding estimates for G, (z):= (T, + %)%,

T, the Friedrichs extension of 7,, make extensive use of Bessel functions. Here we propose
a much simpler approach based on the following useful concept.

Definition 3.1. A linear operator, S, in ## will be called controlled by 7 if the follow-
ing is true:

(3.7a) DS)=H#;
S is transposable on 3 in the sense that there is a linear operator, S*, with

D(SH>H™®
and

(3.7b) (Su,v) = (u, S'v) foru,ve#>;
for some constant, ¢(S), we have the estimate
(3.79 1Sull* £ o(S)[(zu, ) + [ ull?] = () ui? -

The set of all such operators is denoted by &
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Remarks. (1) & is a linear space, and every Se & is closable since, by (3.7b), $*
is densely defined.

(2) The closure of 3 under the norm || - ||, is 2 (T*/?). In view of (3.7¢), each S &
extends to 2 (T*'?) by continuity. This extension is closed, and (3.7¢) persists to hold on
D(TY?%). We will always identify S e & with this canonical extension. Moreover, for Se &
the operators S(T+ I)" Y2 and (T+ I)~25* are bounded on 2

(3) Clearly, £(#) = & These elements are regarded as trivial and will be assigned

the weight o(S):= 0. Every unbounded element, S, of & will be given the weight ¢(S):=1.
Such elements exist: a crucial example is T1/2.

(4) If Be £ () and B*(# ) — ™ then, for Se€ &, we have BSe &

Our first task is to identify the operators U, in (1.10) as elements of &
Theorem 3.2. Let y> 0. If 6(x) is sufficiently small, then U(y)e £, 0<LiZL2.
Proof. i=0is trivial in view of Remark (3) above.

Next we want to show that, for y > 0 fixed,

g

(3.8 NUull® € cllully, ues#=, i=12.

70?

Once (3.8) is proved we deduce from (3.5¢) (with ¢y:=1)

[NallZ = llull%} < 6(2) maxo g5 e lull?, -

If we require

1
S(t)maxygic26 < 3’
then we obtain
1 3
(3.9) §|Iullfu§ Null? < Sl

(3.8) and (3.9) together imply (3.7¢); moreover, we have
U0Y = Ui0), U0) = —U0) +y(X + 1) (do + DT2UL() -
Hence the theorem follows from (3.8).
The proof of (3.8) is done in two steps. First we prove it for
ue X °nCy((1/2,00), H),
then we prove it for ue #°n CP((0,1), H). Hence it remains to note only that for

@e C2((—1,1)) with ¢ = 1 near [ —1/2, 1/2] we have — as a simple consequence of (3.14)
below — the inequality
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(3.10) loull? +11¢ — @) ullf, < c(@lull,,, ue=.
Thus (3.8) will be proved.
Step 1. Consider u e # ® with support in (1/2, 00). From the identity
(tot ) = 1|12 + 1 X~ (Ao + DM 2ull® — A X~ ull?
(valid for all ue s#® and all A = 1/4) we deduce, with 1 =1/4,

10 )ull® £ ') < Null

0
and, with A =1,
N0, Mull> SN X~ Ao+ DV2ull> < 4lull? .

Step 2. Now we introduce the self-adjoint and discrete operator

1/2
(3.11) Byo=— % + (A(, + %) . D(By) =9 ((4y + V).

Then it is easily checked that the linear operator D on s# %, defined by

(3.12) Du=98.u+X"'B,,
satisfies
(3.13) D*Du=1tyu, ueH>.

Consequently, for ue #*,
(3.14) ullZ = Dull® + flufl®.

Choose now an orthonormal basis, (¢;);n, of H such that Bye, = b;e;, ;= —1/2. For
u; € C2((0,1)) we put
b;
u(x)+ ;l u(x) = v;(x) = Dyuy(x})

and obtain, since #,(0) = #;(1) =0,
w(x) = [ /"o (y) dy = B, ,v:(x)
]

== [0 dy=F, 0.0 .

On the space #°={ 3 u,e;|u;e CL(0,1), u; % 0 only for finitely many i} we then obtain
iz1
the identity u = PDu, where
P= P—l/l,a @ @ })bi,r'

bi> —1/2
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Schur’s test shows that P extends to s# by continuity and that, moreover,

(3.152) sup ||(BF+b,+ D)X 'R, <.
by>—1/2
To handle the case b, = —1/2 we estimate

1
| P_1)2,,0(0)] = _[(J’/x)_llzv()’)dy
x
< x'? 10gx|||””1,2(o,1) N
this implies that
(3.15b) 197X 1P_,, < oo
(3.15) now says that U, (y) P extends from #° to L?([0,1], H) by continuity, thus

(.162) 1T, 0)ull* = |U,(») PDull® £ CiliDull> £ Cyllully, ues#°.

o0
Observing that
U, () g, riaVi ()= (QVD —Bo(do+1)” 1/2 U, (V)) g, riali (x)
= (2= By(4o+ D712 Ul(v)Pb.r/a)vi(X) ,
we also obtain that U, (y) P extends boundedly, hence

(3.16b) N0 ull® < Collully,, ue®.

T0°

Finally, we note that s#° is dense in #® n CF((0,1), H) with respect to || -]|2, so that
(3.16) holds also on this space. O

The first step towards the estimate in Theorem 3.9 is the following boundedness
result.

Lemma 3.3. For S;e%, i=1,2, and ze Z;, the operator SlG(z) S¥:9(S)) > H
extends to H by continuity, with uniform norm bound in Z:

3.17) 115, G (@) SF | gy S (S, 82, 8).
Proof. From Remark (2) above we know that for Se &
ST+T) Y2, (I+T) 12S*eL(H).
Consequently, for ue 2(S¥),
15, G(2) SFull £ 1S, + T)"2INE+ T2 GERU + DRI+ T) ™12 SFul|
£ ¢(S1, S5, 0)lull,

using the Spectral Theorem. 0O
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Next we have to bring in the weight operators (I + X )*, pe R. The following result
is an obvious consequence of (3.14) and (3.9).

Lemma 3.4. If g C((0,0)) satisfies

sup [g(x)| + sup [g"(x}] < w0,
x>0 x>0

then multiplication by g on #® extends to a continuous map of 9(T*?) to iself.
In particular, the lemma applies to g{x) = (1 + x)*, pu<0.

Next we want to introduce the operator§ (1 + X)*G(2)(1 + X)*, which are a priori
not well-defined. As a preparation we need the

Lemma 3.5. For pe R and ue #* we have
U+ XYG(Rue2(TVY).

Proof. First we recall the following notation introduced above: for a real function,
denoted by a lower case letter, we denote the corresponding multiplication operator by
the corresponding capital letter. By the remark following the preceding lemma it suffices
to prove the assertion for pe Z .. We choose R so large that z|[R, o) = 7,, and we choose

we C* (R) with p|[R+1,00) =1, p|[—0,R] = 0. Then by Lemma 3.4’we have

A-—)YI+ XY GDueD(TY?)
for peR.

Now we show

YI+X)YGnued(T), pel,,

by induction on . For g = 0 this is obvious. Next we choose a sequence (¢,),.n = C*(R)
with

@i 0=¢,21, @,l(—w,n}=1,
(i) ¢,(x)=0, x=2n,
@iy o, S e/n!, j=1,2.

Then &,'(I+ X) - 0 in £ () and &,(I+ X) — 0 strongly since for £ € # we have
2n
e, I+ X)EI*S e f NEE)IEdx —0, n—o0.

Moreover, we have again by Lemma 3.4,

(3.18) w, = 8, ¥+ X)) 1G (@ ue D(TY2).
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Now we compute

G+, YU+ XY GERu= 8, ¥+ X)) u+[r, 8,7+ X)*11G(2)u,
[6, 8, %+ Xy 1] =[1, 8, + X)] P + X)*
+ &, + X[, P1U+ X)* + &, P+ X)[r,  + X)*1,
(1,8, +X)] = — &/ I+ X)—28,— 28I+ X) 0 — 28,0

By the induction hypothesis, (I + X)*G(z)ue 2(T1?), and since ¥ = ¥' + Yde & we
find that [, 8,(I+ X)]P (I + X)*G(z) ue # and that it converges as # — oo.

Furthermore, since
T+ X[, (T+X)*] =p(u+ DI+ X)) —2u0I + X)*
and [z, ¥] e & with supp [z, ¥] < [R, R + 1] we analogously conclude that
(3.19) v,,==(r+zz)¢n¥’(I+X)"+1G(z)ﬁe9f,

and that v:== lim v, exists in &

oo ¥
Thus, (3.18) and (3.19) imply that w, € 2(T). Moreover,
w,=8, Y1+ X)) GRu=GE@v,—> GErv, n—cw,
so w, converges in Z(T) to YU+ X} *"1G(Qu. ©
We introduce the operator [G(2)],,: #* — i,
(3.20) [G@,u=I+X» G I+ X)ueD (T c o,
z€Z;. By the preceding lemma, [G(z)],, is well defined.
Theorem 3.6. Let u+v<0.
(1) [G(2)],, defines a bounded operator in # (to be denoted by the same symbol).
(2) The operator [G(2)],, and its adjoint map into D(T'?).

(3) For S;e &%, i=1,2, ze Z;, the operator S, [G(2)],,SF: 2(S}) > H# extends to
H with uniform norm bound,

(3.21) 151 L6 @), S3 ooy < e(S1, 85, 8,4,9).

Proof.  Again, the proof is divided into several steps. First, we prove the result for
veZ,, by induction on v. Next, we prove it for ve R, finally for arbitrary real v.
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1. Step. Forv=0, p =0, [G(2)],, is clearly a bounded operator which maps into
2(T"?), in view of Lemma 3.4. Using the continuity of multiplication with (1+ x)* in
2 (T"?), we can proceed as in the proof of Lemma 3.3: for ue 2(S¥),

IS [G@)uo ST ullpory S NS, T+ DY 2INT+ TY2 I+ XU+ T)™ V2|
N+ TY2C@UI+ Y PINE+T) Y2 SFul
= (81, 82,0, 1, 0)jull .

Since [G(2)]}, = GEMI + X)* we conclude again from Lemma 3.4 that (G2
also maps into Z(T42).

Now assume that the theorem has been proved for ve Z ., v < v,. Then we compute
foru,ves##® and y >0

(3.22) [r+ 2%, I+ X)** Ju,0)
= (DI + X)** 1y, Dv) — (Du, DI+ X)*°*1v)
2
+ 2 {(CUMUT+ X))  y, U(y)v)
i,j=0

—(CLU®u U I+ X))}

M
= Y (G W+ X)),
k,t=1

for certain operators ¥V, Wje 1< k,! < M, and some M e N. In fact, this follows from
[Ci;, I+ X)]=0,0=4/<2,veR, and the identities

[O,+Xx) 1=l +X)0, =01 +X)y°, U,e2,
which are valid for &= D, U, (y), U, (y), and v, e Z.

The computation (3.22) is in fact valid for ve # with (I + X)*ve 2(TY?) for all y,
thus it holds by the induction hypothesis with G(Z)(I + X)*v in place of v. We find

(e +2)u,[G@)]f 1e410)

M
=@+, @AOU+Xy" ™" — F GOV IG5
kI=1

Observe now that for & e 2(T"/?) the identity ((z + z2)u, £) = 0 for all ue #* implies
¢ =0 since #°* is dense in Z(7"/%). The induction hypothesis thus implies

M
(3.23) [G(Z)],Z“,vonv=(G(5)(1+X)“”°“—kZ ENAVACIG TR
Wi=1

4 Journal fiir Mathematik. Band 474
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and the right hand side defines a bounded operator with adjoint

M
(29 [6@)ue1=T+XP*TC@) ~ 3 (G W HGE).

ki=1
(3.24) and the induction hypothesis imply (3.21) for [G(2)], ,,+1-
The desired mapping properties follow from (3.24) which implies that for

Sed, ueP(TY?), veD(S*)
we have the estimate
(T2, [G ()] + 1 S*0)| £ Cllull 0]l

since TH? e &,

2. Step.  Since [G(2)],,=U+X)***[G(2)]_,,. it is enough to consider the case
u= —v,v20. We apply complex interpolation to the function

(G-, ,mv), u veH™, Reve [vo,v +11,
to see that [G(2)]-,,, is a bounded operator. Then we can consider
(S,[G@]-,,SFuv), Sie¥ ueD(SP), ve D(SH),
and the same method proves (3.21).

The mapping property of [G(2)]_,, follows as above, for the adjoint we use the
representation (3.23).

3. Step. If u+v=0,v<0, we use the identity [G(2)],, = [G(@)]¥,. O

To complete our estimates we have to bring in von Neumann-Schatten norms. As
in [BS2], we construct a suitable comparison operator as follows.

Lemma 3.7. Let ¢ € C*R) satisfy

e(x)>0 for x>0,

and

s for x near 0,
3.25
(3.23) (p(x) { 22 @ > 1, for x near o0.

Then the differential operator

(3.26) 0=—0,00,+ A, +1
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is bounded below by 3[4 on #® so that its Friedrichs extension, R, exists. Then R=3/4
and with p from (3.2)

(3.27) R71eC,yypp ().
Proof. 'We only have to prove (3.27). We introduce the unitary transformation
@ 2R, H o dx)sur o Yue #
and compute
Pro=—0¢"0.00,0 " + 4o +1
=—p'?0, 020, + Ay +1+ B,
where B is multiplication by
b0 =™ (007~ 507 0.
For x near co we thus find

b(x) = —oz(2<x—1)x2"‘ 2 ;oczx“"2

2
_ 3 ——2ax2(u_1).

We put
s()= [ M2 (r)dt

0
and

@

c(p)=s(0)= [ "*()dt< .

]

Then, under the unitary transformation

@,: L([0,¢(9)], H) sur>uose L*R,, H, 0™ "2dx),
we obtain

O dFg=—02+Bos ™ +Ady+1=§.
2 ¥ x [

Again, § is 23/4 on ﬂ c2((0,c(9)), 2 (Ao)) and its Friedrichs extension, R, is uni-

tarily equivalent to R. For R we can separate varlables observmg that -2+ Bos™! has
eigenvalues 1, = n? we obtain as in [BS2], Lemma 3.5, that R~1e Cory2(06). O

Lemma 3.8. With a in (3.25) we have
RV I+ X)"e?.

Proof. For ue #“ we have, by straightforward estimates,
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IRY2I+ X)"*ull? =[928+ X)™*ull® + |+ X)™*(Ao + 1) ?ul|?
<20l I+ X) T 0ull® + 2l P (I + X) 7 ||
T+ X)7 (4o + D2 ull?

2
éc(R)';IIUi(iﬂ)uIIZ. o

We are now ready to prove our fundamental estimate. One further bit of notation:
for Sy, S, € & we write
5(S,,85)=2—0(S) —a(S,),
and we put C, (#):= L (H).

Theorem 3.9. Fix a>1. For z€Z;, S,,5,€ %, and u+v< —ad(S,, S,) we have
the estimate

1S, [G(Z)],H.Sz*||c(2,,+u,;(s,,s,)(m 2¢(8,8,85, 7).

Proof. If 6 =0 then the assertion follows from (3.21). Assume ¢(S,) = 0, o(S,) =1,
and write

S, =S, R-YU2RY2(J 4 X)‘“(I+ X .

Then the assertion follows again from (3.21) since o+ +v <0 and R~ 1% ¢ Cy 1 (F).
The remaining cases are treated similarly. 0O

4. Computations

We begin this section with the proof of (1.8). In the parametrization v, described in
(1.6), the given hermitian metric on CP" is defined by a positive form in Q1! (M),

= L z hiy(2)dz; A dE;,

so the induced metric on a single branch U is given by

:M=

wro = hijop@) dP(2) A dB(Z)

k

L

I

i lj°w(Z)Pil(Z)de/\d2

ﬁ ﬁ 1

I

h(z Z)dzndz.

In view of (1.7) it is easy to see that

h(z, 2) = hy 0) N2 | zP® "D 1 0| 2™ 1),
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so in polar coordinates (r, 8) for D, we obtain the induced Riemannian metric

g:=h(r, 0)(dr*+r?d6?)
where

B, 0) = by (O) N2 P20 1 0 (M)

Now we substitute x:= (%, (0))'/2r" so that

0.0 = (% ) 1.0, hO,6=1,
and obtain
g = hy (¥ (R, (0)) V2P 0) (dx? + N2 x2d6?)
=g (Y%, )2 (dx? + N2x2d0%),

as desired.

Having established the existence part (1.2) of Theorem 1.2 we now turn to the explicit
computations. We begin with the coefficients of type (2.39a), a}{(¢), which can be calculated
in terms of the coefficients &; in the expansion (2.38). These, in turn, can be related to the
coefficients Bf in (2.15b) which are, at least in principle, explicitly computable in terms of
the geometry. So we look again at a single component, U, near a singularity, of multi-
plicity N, and we assume as before that U is isometric to (0,¢) x [0,27) with the metric
(1.8). We denote by x the coordinate in (0,¢) and by = : U — (0, &) the projection onto the
first factor. Then we have

Lemma 4.1. Forj=0, xe(0,¢),

@1 x17Hg (M = [ aBl(n;)=B](x).

7= 1(x)

Proof. From Lemma 2.3 we have the expansion
(4.2 tpeple(T+22) 7"~ 3 2247770 [ o(p) B (n; p) vol y(p) ,
jzo M

valid for g e C§(M); let p =pon, pe CF(0,¢). Then we deduce from (2.31), (2.37a),
and (2.37b)

(4.3) trpapnlo(To+22) 7" = [ Ny*™  p(y™) trpasy Giv (2™, 1, 1) dy
V]

~ ¥ 220 "’J"Ny’”2 BTy a(y)dy

jz0

Y ZAmimn I x 72y (x) a;(x M) dx .
izo




50 Briining and Lesch, Spectral geometry

But

£ 2xm .
£<o(p)B,’(n;p) voly(p) = | | w(®) B! (m;x,0) x Nef(x'™,0) d0dx
00

= | 1p(x)|: [ aBi(n -)] dx. O
0 7~ 1(x)
Corollary 4.2.
volM
Al =ay = i

Proof. We only have to observe that for y e CP (R) with p =1 near 0, =y o,
from (2.39a) and (4.1)

a(e) = §x¢<x> Gy (e dx

&

= g o(x) [ oaBy(m)dx

= 1{x)

!] @ B5(n; ) volu(p) = Ao (@),

since the integrals converge. So, by Lemma 2.3,
b0 = [ Bi(mp)voly(p).
M
In view of (2.10¢) and (2.17) we also have

450 = | Bs(p)voly(p),
M

implying the assertion since Bf = (4n)"1. 0o

We have to study the limiting behavior of the geometry of #~*(x)'in order to proceed.
We introduce the curve

¢, [0,2n]at—> (x,0)eU.
Lemma 4.3. In the natural orientation of U we have

lim [ x,(c)=2nN,

x=+0 -1 x)
where k, denotes the geodesic curvature.

Proof. 'We use the coordinates from (1.8) such that the basis {;—, a—ag} is oriented.
With e, (1) = ¢.(£)/1¢,()] and e, (£) = # e, (2) we have *

Kg(cx) = <Ve1(r)e1 (), e, (1) = <e,(2), [ey, €, 1(2)) .
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Since

_, 0
, e)=—uo la

>
cx(t)

()= x5

cx(t}

we compute
_ . 0 NxB)-t 0 NxB)-! 0
Cer(t),Tea ] () = (=07 o (NxB) ™ =5, (NxB) ™" 5

_xB B+ U/N)xNo. B
@ (xB)*

= (s+am S @xp o).

This implies

[ERACHES an <ﬂ + (1/N)X”NZ—£) (axp)™ ' Nxp(x''", 6)d0
0

n=1(x)

2n Fl
=Nja? (ﬁ + (1/N)x”"—@> (x'~, 0)d6
S ox
=2rN+0(x""). o
Note that the orientation of ¢, is opposite to the boundary orientation required in
the GauB-Bonnet Theorem. We turn to the computation of a;; note that this term is not
well defined by the statement of Theorem 1.2.
Lemma 4.4. With v as in Theorem 2.8, ¢ =1 o 1, we hdve
ay=ai @)+ Alo(1 — 9)

—gen+g X (@ -1,

1si=sLip}

Proof. For simplicity of notation, we assume that we have only one singularity and
one singular branch of multiplicity N; the general case is an obvious extension. Then we
have from (2.39a) and (2.10c¢) )

@4 ay=ai@W)+ Al —0)=a®) +4,,(1—0)

o8

x () a (x"Nydx + J{(l—rp(p))Bi(n;p)volM(p)-

Now it is well known (cf. [BGM], p.222) that
(4.5) Bi(n;p) = Bi(p) = (127) 'K, (p), peM,

where K, denotes the GauB curvature. From Lemma 4.1 we get
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x7ta, (x"y= [ a(12m)7'K,,,

7= x)

hence, with U, = (0,8) X §* < U, we obtain as § — 0

4.6) [ Ky(p)voly(p) = 127rj£'x*‘ﬁl(x”N)dx
U\Us 8

= —4,(0)127logd + O(1)

=2y (U\Uy) — [ w,(c)+ [ #,(8)
= 1(g) = 1(3)

=0(1);

here we have used the GauB-Bonnet Theorem for surfaces with boundary [dC], p.274,
and Lemma 4.3 in the last two identities, and y denotes the Euler characteristic.

The identities (4.6) yield
@7 4,0)=0,

so we can replace p with 1y, := characteristic function of [0, 6] in (4.4), 6 € (0, ¢). It follows
that 4

4.8) lim § x™ 'y, (x) 3, (x*"™)dx = 0.
-0

Next we write M := M \U;. Using the Gaufl-Bonnet Theorem and Lemma 4.3 again we find

1 1
4.9 > AL Ky (p)voly(p) = x(M;) + " J" o K, {cs)
= y(M;)+ N+ 0@y,

To evaluate x(M;) we use the Mayer-Vietoris sequence in L2-cohomology ([C2], Lemma
4.3, [Z], Prop. 1.18) to obtain '

(4.10) X(z)(M) = X(Z)(Ma) -+ X(z)(Ua) - X(z)(S 1) .
Since S* and M, are compact manifolds with boundary we have (cf. e.g. [BL1], Thm. 4.1)
X(z)(sl) =8 =0,
X2) (M;) = x(M;) .

Us with the metric (1.8) is quasi-isometric to the metric cone, CS?, over S, hence its L*-
cohomology is known ([C2], Lemma 3.4, [Z], 2.41) to be

R, £=0,

He(Csh = {o k>0.
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S0
X(z)(Ua) =1.
Using this in (4.10) we derive ’

4.11) X(Ma)=X(z)(M)“‘1 s

hence from (4.11) and (4.9)

. 1
(4.12) lim — [ Ky(p)voly(p) = 2 (M)+N—1.
60 27 51,

Finally, we plug (4.5), (4.8), and (4.12) into (4.4) completing the proof. ©
We remark in passing that y,,(M) = x(#), M the normalization of M.
Next we turn to the logarithmic terms. From (2.39b) and (4.7) we get
(4.13) Bl =, (0)=0.

In principle, the coefficients b/ are computable by algebraic manipulations involving only
the derivatives of the function « in (1.8) at x =0. In fact, from (2.39b) and Lemma 4.1
the following assertion is obvious.

Lemma 4.5. The functions FJ’ defined in (4.1) have asymptotic expansions in powers
of x'"™ as x — 0. If we denote by Res the coefficient of x ™' in this expansion then

(4.14) B! = Res B[ (0).

This relation explains the logarithmic coefficients more geometrically; it reflects the conic
scaling (cf. also [C1]).

To do explicit computations, we observe that in the special case of (1.8) where
(4.15) a(x'™,0) = B(x'",0) = h(x"™),

for some he C*([0,¢)) with £(0) =1, we can substitute

(4.162) y(x)= R dr, ye[0,y(e),
0
to arrive at the metric
(4.16b) dy? + b, (1)2d0?, h(y(x) = Nxh(x'"y.

These metrics are known as ‘warped products’; observe that they are of the type (1.8),
too, with ¢« =1 and f independent of 8.
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The first candidate is b5, and we have from (4.14), (2.17) and Lemma 4.5

b% = Res B} (0) = Res|: { aBy(m -)} 0)

n~{x)

= nRes[ § ocB;':l (0).

n1(x)
The coefficient B% has been computed in [BGM], p. 225, [G], Theorem 4.8.18; it is given

in terms of the GauB curvature as

1
@17 Bi(p) = a)—n(-AKM(p)+KM(P)2)'

Now, for a metric of type (4.16) we have (cf. e.g. [O’N], p.214)

hi ()

@.18) Ki(r0) = = 355

and consequently
@19 B0 =20, 850 = 35 (- ( (1) ) + £ ) .
Next we use (cf. Lemma 4.7 below) that for fe C*(0, &) with an asymptotic expansion
(4.20) T ~ynose 2 Ly,
jz—k
we must have
(4.20b) Res f'(0)=0.
This implies
Lemma 4.6. If in (1.8) we have

a=1, B8 =h(x) with heC>([0,e]),
then

N
by = 30 Res h1

).

To produce an example with b} + 0 we introduce the family C"* of ‘generalized
parabolas’, where [, ke N, (/,k) = 1. They are defined by

Ch* = {[z,,2,,2,]€ CP?| 2" = 2z} .

It is easy to see that at most the points p,=[0,1,0] and p,:=[0,0,1] can be singular,
with only one branch and multiplicities N(p,) =1, N(p,) =k.

Briining and Lesch, Spectral geometry 55
Interchanging z, and z, if necessary and using the explicit parametrization
(4.21) C - Cr, zs 21,247

it is enough to study the case /= N(p,) =: N near p,. Then we see easily that the Fubini-
Study metric on CP2 induces on a pointed neighborhood U, = (0, &) X S* a metric of type
(4.15) where

2 2 1/2
(422)  h(x) = (1 +x2N 4 x2W )1 (1 + (—k ;,N) X+ (%) x2<“+N>> ‘

In order to do the explicit calculations it is convenient to digress a little and to treat some
simple properties of the residue. First, we give a slightly more general definition of the
residue: consider the linear space, & of all functions fe C*(0,c0) admitting a finite
asymptotic expansion of the type

1
(4.23) [fydi= Y Fevloghe+0(1),
€ 0<jsjo
0 sksk()

as ¢ — 0; here j, € N and a; € C. Denote by %, the subspace of all f having an expansion
of type (4.23) themselves,

(4.24) f@& = Y fre¥logte+ 0(1);
05jSjo
0SkSh())

ZF.. o contains, by definition, those fe % which have k(j) = 0 for all . Then we put for

as,0

fe#
(4.25) Resf(0):=F, ., if o,=0.

If £ is defined only near 0 then the residue is defined using a suitable cut-off. The following
result is then obvious.

Lemma 4.7. Let fe %, . Then:
(1) Resf'(0) =0.
Q) If feFyg o and [(x) = foo X% + O(x™ %) with ag, & > 0 then we have for g € F
Res(gof) f'(0) = aoResg(0).
Next we use these to express b} in terms of 4.
Lemma 4.8. We have, with
k() :=h"1(x) 0, (R~ (x) xh'(x)) = A 3() (AR (x) + xhR" (x) — xh'(x)?),

n N2 <2N—2

(4.26) b2=30N3(2N—2)! o\ 2j+1

> k(2j+1)(0)k(2(1v—2—j)+1)(0)

=nd(N, %),
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where d(N, k) is a universal polynomial in the derivatives of h up to~0rder 2N —2, with
coefficients depending on N. In particular, by =0 if N =1, and if h(y) = F(»)(1 + O (»*¥ 1Y)

then
d(N,B) = d(N, F).
x h(j)(O) xMHiN
Proof. Using y(x)= [h(!'™Mydizx+ Y — —— in Lemma 4.7 (2) we
find ° & Y 1+jIN

Res w (0) = Res (M ° yy') ()
hl hl

_ (™) 1 4 1 d 2

= Res |:xNh(x”N) (h(x””) pr eI ENxh(xl/N)) ](0)
1 d x d 2

= NRes |:xh(x1“")2 <E§ T dx h(xl/N)) :|(0).

Continuing with x = z¥ we end up with

BD? ) _ - L (LY
];1 0 =N 3RCS|:22N—1h(Z)Z <E Jh(2) > ](0)

= N"3Res[z! "Nk (2)*]1(0)
1 d 2N-2
= VS aN=o (d—) k@20

1 W2 (IN—-2 ; .
- W (0) KN 2= Q) .
NQN-2)! j;o ( J >k © ©

Res

It remains to note that # is an even function and hence k is odd at 0. From this, the
assertions of the lemma are obvious. O

We apply these calculations to (4.22); from Lemma 4.8 we see that we may replace

2 1/2
F(x)= (” (kij‘ ) xu) = (1+yx*H)H2.

hby

Then we obtain from the prescription of Lemma 4.8
E(x) = 2yk2x2 711 4 yx?0) 732
Thus, £2'*Y(0) + 0 at most if /+ 1 =0mod k. Hence, the sum in (4.26) contains a non-

zero term at most if N = 0mod k which can only happen if £ =1 since (N, k)= (/,k) =1
by assumption. If k=1 then

~oi 2 N /502
w2 oo (55 ()
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hence

an(NH1 N
. N ”‘2<2N—2
by

_ _ o —s52\ [ —5/2
TR 2j+1>(21+1)!(2(N 2 1)“)!( j ><N—2—j>

_4n(N+ 1PN N2 (—5/2) < —5/2 ) B 2n(N+1)2N< -5 )

TO30NIYFE L Lo\ N-2—j)  15N?*N*3 \N-2
‘We have proved

Lemma 4.9. Consider C*' < CP2, (k,1) =1, equipped with the metric induced from
the Fubini-Study metric on CP2. Then we haveby, =0 unless k=1 or [ =1.

Ifk=1,I=Nori=1,k=N, N2, we have

L 2a(N+1) [ -5
b=y \y_2):

Using (2.5), with ;=2 — 2, and (2.10c), and observing that |55] in Lemma 49 is
strictly increasing as a function of N =1 we obtain

Corollary 4.10. If C*'is as in Lemma 4.9 then

N+1)2¥ [ -5
by = b, — —%(N_2>,_k=lorl=landN>1,

0, otherwise .

In particular, b, distinguishes the curves C*' among the C*'.
Finally, we turn to the coefficients of type (2.39c).

Lemma 4.11. At a singular branch, U, of multiplicity N we have
@27) ' == (N"1=N)

’ °T 12 ’
Proof. In view of (2.32) and (2.39¢) we have

o= § NN g GE(C; 1,1y dg
0
=Respls=o | NEH2"V i, Go(LY; 1, 1)d¢
0

=Resyl,=o | N1, GR(C 1, 1)dE
0

= RCSO|S=0F(S/N)
= ReSOIS=0F(S) "
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It has been shown in [BS2], Sec.7, that F is holomorphic in the strip
—2n<Res<—2p—1
for any p>1/2 and n > p +1/2, and that it extends meromorphically to the whole plane.

Moreover, ¢g has been computed in [BS2], (7.12) and (7.16). For the answer we need the
1 172
{-function, {;, of T= (4, +1/4)"? = <— Vi 05) which is

tr=2Y% <%>_s=21vsgk(s), Res>1,

kz1

where {, denotes the Riemann {-function. Plugging this into [BS2], (7.16), gives

1 1
¢ = — 5 Resol, - 2N°Lr(5) + 7 By Res, |, 2N°Lx(s)

N' N

12 12°

1
using Res, {z(1)=1 and B, = — 3 o

The coefficients ¢ with j =1 are of considerable interest since they multiply the
“nonstandard” powers z /¥~ 2%, if they are nonzero then they reveal the occuring multi-
plicities of the singularities of C. We first express these coefficients as “‘regularized traces”.

Lemma 4.12. We have

S ! c’Ot Ghv(l; d
Cj_ﬁ d_y [y=0.£ Ty yN( 3%, X)dx
1

a\ ~
= 1] (d_y> ly=0 2@, m G (1)

*Proof. 'We have from (2.32) and (2.39¢)

N ° R d\’
(428) o= ﬁReso]Fo [NSARAE (5) ly=otty Gin (CY; 1, 1) d0
: 0

1/dV
= el 73 (35 oo 5039).

Using the substitution x = {¥ and (2.27) with s = 1/x we find
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@
F(y;8) =N [ {2y, Gny (CV; 1, 1) dL
0

xEFINE2 Lty Gl (x; 1, 1) dx

o8

o= 8

XM Gy (1 X, X) dx

Changing variables by 7:=x" ¥y in (4.28) we arrive at the assertion. O
To proceed, we assume now that we can rewrite the operator 1, in (1.9) in the form
4.29) To=—02+ X" 24(x'Y),

where the family A4 satisfies the following conditions (cf. [BS2], p.373):

(4.302) A(0)=A0=—N-2ag—%, A=A, forx=2e;

(4.30b) Az — =, x20;

1
e
(4300) 2(A() = D(4p), x20;

(4.30d) the function R, 5 x+— A(x)(4, + )" 'e L(H) is smooth.

Then we have the following more explicit formula.

Lemma 4.13.  Assume that 1, has the form (4.29) and that A satisfies the assumptions
(4.30). Then if A"(0) =0, 1 <1< j—1, we have

@31 o= (;'”) Fpag, i [XY " 2490) G2 1(1)].

Proof. By Lemma 4.12, we have to consider the derivatives of

o
4.32) E(y;s)= | x™try Gl (1; x, x) dx
[}
= o, m XN Gh(1)] .
Now it is enough to recall the identity (cf. Lemma 2.5)

d - ’
2, O =~ (DX 24 (px M) G (1),
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which implies in view of our assumption

~ day ~ N e
trLZ‘R*'H)[<ZI—y> |y=0GyN(1)} = (=T g, n X" 2490 G5 (1)].

Using this in (4.32) implies the lemma. O

In view of the techniques of [BS2], Sec. 7, we thus can hope to compute ¢} from (4.31)
if A(0) is nonzero and commutes with 4(0). This case does, in fact, occur if the metric
has the special form (4.16b).

We consider first a one-dimensional example. We put for v = 0
2 -2 2 1
(4.33) L=—02+X"2(v?— i)

and we denote by L, the Friedrichs extension of /, in L?(R,). Furthermore, we put
G™¥(z)=(L,+z%)"".
Proposition 4.14.  Consider the operator
(4.34) 1= =82+ X" 2a(X1Vy,

where ae C*(R), a(x) = —1/4, a(x) = a(0) = v: —1/4 for x = x,. Then if a®(0) =0, for
1£1Zj—1 and some j < N, we have

35) ye PO @+j2NIW/2—j/2N) TO+j/2N)
' ’ j1aY/an— 1) Ty+1—j/2N)

In particular, if a9 (0) + 0 then ¢} + 0. More generally, we have

Fr41+45/DT(—1/2 = s/ +1+5/2)
41/mn' (v —s5/72)

(4.36) f x°*G"*1r(4;x, x)dx =
3

2

for max(—2—2n,—2—2v)<Res< —1.

Proof. 'We first prove (4.36). Denote by I,, K, the modified Bessel functions. Follow-
ing [BS2], p.418, we find for max(—2 —2n, —2—2v) <Res< —1

10

37 a—£> xI,(x) K, (x0) ;=1 dx

o] 1 @
fxG (1 x, x)dx = —}x3<
0 nl g
?x’”"“ _1e "I(x)K(x)dx
o 2x 9x) 7 v

SR

T+ )T m—w/ T +z2m+1)
B 41/ n! ry—zmw) ~’
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where wi=s+2n+1, z(w)=(w 41 —2(n +1))/2 = 5/2; thus we obtain (4.36). (4.35) is
an immediate consequence of (4.36) and Lemma 4.13. 0O

Now we consider the metric (4.16b),

dy*+hy (»)?d0%, by (y(x) = Nxh(x'"™),

h(x) =1 for x sufficiently large .

A (0) x1+ilN

x
Since y(x)= [ A(t*™M)dr=x+ 3, we can write
0 jz1

j' 1+j/N
(4.37) hy ()= Nyh, ('), h,e C*(R,), h(0)=1.
Assume that
. h(i) (1)
(4.38) KO0)=0, 1ZIgj—1, b= ;,;!)H,

i.e. that we have

By () = Ny + byt 4 O (yh+ U+ o).

Then the Laplacian is unitarily equivalent to

1 hu 1 h/ 2
4. = —@2—p2p2 4L 22
(4.39) T 02 — h3 "+2h1 4<h1
= —92 + X 24 (x'N),
where A satisfies the assumptions (4.30). In fact, introducing

L) =hy(x)™Y, L) =xhy (k)7 L(x)=x2h;(x)h(x) 7",

we have the explicit formula
@40 4G9 = ~o0PN 25— 3~ LCN) ™ — (PN

1 1
+3(N+DNT2L @) + 5N L)

Moreover, we have

1 t

@4) A0 =-550-7
A% =0, 12igj-1,
1 2 j? 2b 1 j
240 = L2y L VLS p2 )2 =2
j!A © b( 3‘3”21\/3) N( w2 o l)’ Sy

5 Journal fir Mathematik. Band 474
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Lemma 4.15. For 0 A< % the function

flz, )= i <<ﬁ>2_lz)w

m=1 <%—z—i+1>

is holomorphic for Rez < —1 and admits a meromorphic extension to the complex plane,
regular at z=0.

Using this, we have for the operator T in (4.39), with 2 =j/2N,

4.42) g:é’xl+"ﬂx—l+1ﬂ)[_p roy
=5

V- I(=i+1)

Proof. For|w|= w, one has the asymptotic expansion (cf. [BS2], p.419, and the
reference there)

+21f(0,/1):|.

rv+wy | Ttk
To—wtl) k=§0Pk(W)v ,+ wR,(w,v),
and

[R(w, V)| < C, v2 7172, vzv, >0,

with polynomials P, € C[w]. Moreover,

(4.44) P,=1, P,=0, P0)=0 for k=1,
Pz(w)=—%w3+%w2—%w.

Denoting by { the Riemann {-function and substituting 1/ N = 24/j we infer from (4.43)

1 21 2(z+A)+1-k v
=3 Pk(z+/1)[<7> Celk—1—-2(@z+ 1)
k=0

2{(z4+2)~1~k
—,12<%_/—1> CR(k+1—2(z+).)):|

4D Y ((2/}—_'")2—&2> R, <z+z,2)}im).
m=1

This proves the existence of f(z, A) and that it extends meromorphically to C. Moreover,
since 0 < A <1/2, f(z, A) is regular at z = 0. Next, putting

reo+24

_ 241 p (yy22-3
To—i+D ' SO

(4.45) A, )=
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we get from (4.43) the estimate
(4.46) [A@, DS CWH 4, v=y,>0,
and we find

447 f0,H= <%>u+l((—1 22— (%i)uq {123
22-3

+P2(/1)(2]—,A>“_1£(1-—2/1)—-P2(l)/12 (?) {3—24)
2((5) -)a(3)
1 7 J

" . 1
Now we infer from Lemma 4.13 and Proposition 4.14, since (— mag-ﬁ) and
1 .
-

ts

+

It

m

1
o2 — i commute,

2b . o 1 »
G = TV“”trLZ(m.LZ(sl» [XJ/N 2 (— Wag - lz) Go“(l)]

454 ~ 1
- Resg | v -2 12w, 1251y I:Xs <— e 0 — /12> Gg“(l):|

4bA
= ——Resg|s= yn-2 F (s, 2,

where again we have used 1/N =21/j. With (4.36) we find

F(s,2) = —=Antipag, 12 [X°G" 10 (1)]

@

2
tm ((@ "”) Bosgr. i (X6 (1))
1

m=

_TG/2+n+ I (= (+1)/2) [—/12 I(s/2+1)

4)/z(n ~1)! I'(-s/2)
+2 i;l ((n/ Ny — 2y FE2 LIV £ 1) (Iféime_/ JSV/’ZL)D ] ,

and the lemma is proved. O

Formula (4.42) is rather involved and it is a priori not obvious that ¢ 4 0 in general.
However, we can show the following.
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Theorem 4.16. Under the assumptions (4.41) we have
b
(4.48) c;=C) 7
where C is a function independent of the algebraic curve under consideration. Moreover, for
fixed j one has
. J
lim C(4) = =.
mCW=1
Proof. (4.48) is an immediate consequence of formula (4.42). (4.42) also shows that
we only have to prove

: J
lim 247(0,4) = —.
AI-IR) SO, 2) 12
This, in turn, follows from the identity (4.47) and the next lemma. O

Lemma 4.17. We have with A in (4.45)

© 2
lim 2 5 ((2_’"> _1),1(“__’",1):0.
100 =y J J.

Proof. Choose ¢ > 0. The estimate (4.46) holds for any v, > 0. Thus we first consider
the sum with m > ¢/2 and estimate for A <1/2

B3

2i—-4
Se@ Y A(Zi_m) m?

m>eja

o«
e (@A ] x*"2dx

é
£j2
1 g 22-1
< 22_ - {Z
RO 21_1(1)
<@

Next we need to estimate 4 (v, 2) for v small. From (4.45) we obtain for 0 < A< ¢v < vy, v,
small,

riv+2) _
2 _ g2 < 2_ g2 24+1 24-1
o “lA(V”D|=|I‘(v—,1—1)‘(V )+t 4 gy B
- Tev+i+1) _ 22+1 24-1
= —F(v—l—l)‘(v A)+dyy +d, | P,(A)|v

SEVHEYTL L E T Cvih <
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where we have used that P, (0) = 0. This gives

2
e () e g e
1smseli J J 1smse/d

and we reach the conclusion. O

Corollary 4.18. Consider C*' < CP? as in Lemma 4.9. Then for the singular point
p,=[0,1,0] we have ¢j(p,) =0,1<j <2k, and

L, k
llirg ca(py) = VR
Here we write ¢;(p,) instead of ¢;(1, py) since we have L(py)=1.

Proof. From (4.22) one easily computes that, using the notations of (4.38), we have

j=2k and
2kl k+1\?
b‘b(k’l)_2(2k+l)< ! >

Thus the assertion follows from Theorem 4.16. O
Summarizing the results of Sections 3 and 4 we now give the

Proof of Theorem 1.2. (1) The existence of the asymptotic expansion follows from
(2.22) and Theorem 2.8.

(2) This follows from Corollary 4.2 and (4.13).
(3) This follows from Lemmas 4.4 and 4.11.
(4) This is Corollary 4.10.

(5) This, finally, is the content of Corollary 4.18.
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