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G A U G E - P E R I O D I C  P O I N T  P E R T U R B A T I O N S  O N  T H E  

L O B A C H E V S K Y  P L A N E  

J.  B r i i n i n g  1 a n d  V.  A .  G e i l e r  2 

We study periodic point perturbations of the Shr6dinger operator with a uniform magnetic field on the 
Lobachevsky plane. We prove that the spectrum gaps of the perturbed operator are labeled by the elements 
of the Ko group of a C* a/gebra associated with the operator. In particular, if the C* algebra has the 
Kadison property, then the operator spectrum has a band structure. 

I n t r o d u c t i o n  

Let H be the periodic ShrSdinger operator with a magnetic field on the Euclidean plane R 2. As is well 
known, the spectrum structure of the operator  critically depends on the magnetic field flow r/ across the 
elementary cell of the potential period lattice. If the value of 77 is rational, then the spectrum of H has a 
band structure. Otherwise, some of its sections are Cantor sets [1]. The discrete version of H (the so-called 
Harper operator)  has a purely Cantor spectrum for almost all values of r I [2-4]. The situation is different in 
the case of the periodic ShrSdinger operator  H with a magnetic field on the Lobachevsky plane. For example, 
the discrete version of H with the modular group ASL2(Z) as the period group has a band structure for 
all values of ? [5]. Sufficient conditions for the spectrum band structure in the case of an operator  H with 
a smooth potential  invariant with respect to the cocompact action of a properly discontinuous group were 
indicated in [6-8]. On the other hand, a very interesting class of periodic Shr6dinger operators that  give 
an extensive set of explicitly soluble models can be obtained using per turbat ion theory [9-11]. We note 
that  point perturbat ions of the two-dimensional ShrSdinger operator with a magnetic field are widely used 
in theoretical physics to study transport  properties of two-dimensional systems (e.g., see [12, 13] and the 
references therein). 

In this paper, we prove that  the spectrum gaps of a point perturbat ion of the ShrSdinger equation 
with a magnetic field on the Lobachevsky plane are labeled by the elements of the Ko group of a C* 
algebra associated with the operator.  In particular, if this algebra has the Kadison property, then the 
spectrum of the corresponding operator has a band structure (a broad class of algebras with the Kadison 
property is indicated in [7] and [8]). Among other things, this result is interesting in the context of the 
question of the effect of the curvature of a two-dimensional electron system on its spectral and transport  
properties [14-16, 8]. 

1. P r e l i m i n a r i e s  

In this paper, the Lobachevsky plane X is realized as the upper Poincard half-plane 

{ z = x  + i y E  C : y > 0 }  

with the s tandard metric 
a 2 

ds 2 = -y~ (dx 2 + dy2), 
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for which the curvature of X is equal to R = -2 /a  2. In this case, the distance between two points z, z' E X 
has the form 

d(z,z') = a a r c o s h ( 1  + Iz-z'12"~ 
2yy' J ' 

and the invariant area is given by the formula 

a 2 
do = ~ dx A dy. 

By definition, a constant homogeneous magnetic field B orthogonal to X is the 2-form 

a 2 
B = B - ~  dx A dy, 

where B E R is the field intensity. The form B is exact, i.e., B = dA, where the 1-form A is called the 
vector potential of the field B. We use the so-called Landau gauge 

A = Ba2y -1 dx 

for the vector potential. The Hamiltonian H ~ of a free quantum mechanical particle moving on the plane X 
in the field B is the closure of the symmetrical operator  

1 { _ y 2  ( 0  2 0@2 ) 0 } 
7 ~x 2 + + 2iby Ox + b2 

with the domain C~(X) [17]. We use the system of units in which e = c = h = 1 and m = 1/2, and we 
write b = Ba z. As is well known, D(H ~ C C(X) (e.g., see [18]). The spectrum of H ~ consists of two 
parts [17], namely, finitely many eigenvalues (Landau levels) 

1 
E,~ = a-2(Ibl(2n + 1) - n(n + 1)), 0 < n < Ibl 2' 

and the continuous spectrum 

The resolvent R~ = (H ~ - ( ) - l  of the operator H ~ plays the main role in our investigation. The 
integral kernel of the resolvent (i.e., the Green's function G~ z'; ~) of the operator  H ~ was found in [17]. 
It has the form 

a-teib~F(t+b) F( t -b )  ( 1 )  
G ~  F(2t) F t+b , t - b ;2 t ;  , (2) 

where F(ct,/~; 7; z) is the hypergeometric function, 

a = c o s h  '2 2a J q o = 2 a r c t a n  + , ' \ y  y ] '  

and, according to (1), the function t = t(~) is uniquely defined for C E C \ a(H ~ by the condition 

t(1 - t) + b 2 
- a2 , Ret  > 0. 

The lemma below enumerates the properties of the Green's function G O needed in what follows (we omit 
the corresponding purely technical proofs that are based oil formula (2)). 
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L e m m a  1. 
1. For any z E X ,  the limit 

[ 1 ] 
q(() = :'--,~lim G ~  - ~  logd(z , z ' )  

exists. It does not depend on z and is given by the formula 

1 
q(() = G [r + b) + r  - b) + 2CE - log4a2], 

where ~b(z) = logF(z) '  and CE is Euler's constant. 
2. Req( ( )  --+ - o o  as R e (  ~ - o o .  

3. Let K be a compact  subset in X and zo be a point belonging to X .  Then for any r > 0 and an 
arbitrary ( E C such that Re ( < 0, there are constants cl (K, Zo, E, () = cl > 0 and cl (e, () = cl > 0 such 
that 

suP{IG~ z'; ()[: z '  E K} _< cle -<  dC~,~o) 

when d(z, K)  >_ e. Moreover, i l K ,  z0, and e are fixed, then c1(() = o(1) and c1(() -~ +oo as R e (  -~ - o o .  
4. The integral 

x la~ ~'; ()12 do(z') 

is finite and is independent of  z for all ( E C \ a ( H  ~ and z E X .  

5. I f  K is a compact  subset in X and zo is a fixed point belonging to X ,  then for any ( E C such 
that R e (  < 0, there are constants c2(K, zo , ( )  = ca > 0 and c2(() = c2 > 0 such that 

[/g [GO(z, z,; ()t2 da(z,)] ~/'2 - C2 e-c2d(z'zO). 

Moreover, c2(() -+ +oo as R e (  -+ - o o .  I l K  and zo are fixed, then c2(() = 0(1)  as R e (  -+ - o o .  

2.  P o i n t  p e r t u r b a t i o n s  o f  t h e  o p e r a t o r  H ~ 

We consider an isometry group F of the plane X. Although the field B is invariant relative to the trans- 
formations in F, the Hamiltonian H ~ is not F invariant in the general case. To obtain the invariance group 
for H ~ we must  extend F to the so-called group of magnetic translations [19, 7]. We recall the construction 
of this group. Let U be the s tandard unitary representation of F in L2(X) ,  U-rf(z ) = f (3"- l z )  (3" E F 

and f E L2(X)) ,  and let 3"* be the induced map of the space of differential forms. We suppose that  3'*A ~ A. 
Then U-rH ~ ~ H ~  Nevertheless, we have d(3'*A - A) = 0 because 3"B = B. Consequently, there is a 
function w~ E C ~ 176  such that  dw~ = 3 ' * A -  A. We fix one of these functions w~ for each 3' E F. For 3' = 1, 
we set Wl = 0. Let T ~ be the unitary operator  in L'2(X) acting according to the formula T ~  = exp(iw~)U.rf,  

f E L2(X) .  Then T ~  ~ = H ~  ~ for all 3" E F. The map 3" ~-~ T ~ is a projective representation of F 
in L2(X).  In other words, T~T ~ = | TJ~ for any fl,3' E F, where |  E C and 1| = 1. The 
family | possesses the proper ty  @(71,3"2)| = | | i.e., it is a 2-cocycle 
on F with coefficients in U(1).  This cocycle defines the extension 1 ~ U(1) ~ M(F,  | -~ F ~ 1 of F 
using U(1). The group M(F,  | is called the group of magnetic translations. Its element is uniquely 
determined by a pair (7 , ( ) ,  where 3' E F and ( E U(1). In what follows, we identify it with the pair. 
Let [% (] denote the unitary operator  ( T  ~ Then the correspondence (7, () ~-+ [% (] is the exact linear 
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unitary representation of the group M(F,  | in L2(X).  This representation is denoted by T. Clearly, the 
operator H ~ is invariant with respect to T. 

In what follows, we consider only the groups F satisfying the conditions 

1. the action of F is properly discontinuous on X and 
2. the orbit space F \ X is compact. 

We fix a fundamental domain F of F once and for all, i.e., a set F C X such that  (a) F = Int F,  
(b) F is compact,  and (c) the restriction of the canonical map X -~ F \ X to F is bijective. To construct a 
F-periodic point perturbat ion of the operator  H ~ we select a finite subset K C F and let A = F �9 K denote 
the orbit of this set. Each element A E A has a unique representation of the form A = 7~, where 7 E F 
and ~ E K. In our further considerations, we need the following lemma, which was proved in essence in [20] 
(in what follows, # Y  denotes the number of elements in the set Y). 

L e m m a  2. There are constants cA > 0 and CA > 0 such that 

#{A E A: d(A, A0) < r} _< cae e~r 

for alI Ao E A a n d r E R ,  r >0.  

We now present the construction of a point perturbat ion for the operator  H ~ Because 7)(H ~ C C ( X ) ,  
the set 

7) = {f  E 7)(H~ f(A) = 0 VA E A} 

is well defined. Let S be the restriction of H ~ to the domain 7)(S) = 7). It is clear tha t  S is a symmetrical 
operator in L2(X).  The self-adjoint extension H of S is called a point per turbat ion of H ~ concentrated on 
the set A if 7)(H)MT)(H ~ = 7)(S). It is convenient to describe point perturbations of the operator  H ~ using 
the Krein resolvent formula (10.11 in [21]). For this, we fix a Hilbert space ~ isomorphic to an arbi t rary 
deficiency space of the operator S and define the holomorphic operator-valued functions 

B:  C \ a ( H  ~ + L(~ ,L2(X) ) ,  Q: C \ a ( H  ~ + L(G,G) 

satisfying the so-called Krein F and Q conditions [21] (as usual, L ( E , P )  denotes the Banach space of 
bounded operators from E into F).  Accordingly, B and Q are called the Krein P and Q functions. If the 
P and Q functions are fixed, then there is a one-to-one correspondence between the point perturbations H 
of H ~ concentrated on A and the self-adjoint operators A in the space G. This correspondence is expressed 
by the Krein formula for resolvents, 

(H - ~)-1 = (H 0 _ ( ) -1  _ B(()[Q(~) + A] - 1 B ' ( r  (3) 

In what follows, HA denotes the point perturbation of H that  corresponds to A in accordance with for- 
mula (3). The resolvent of HA is denoted by iRA (~). 

Below, we give explicit descriptions of the Krein F and Q functions using Theorem 4 and Proposition 4 
in [22] (the proof of these assertions in [22] for the space L2(X),  where X is a domain in the Euclidean 
space, remains valid in the case of a Riemannian manifold X). We let G denote the space/2(A) and Q(()  
denote the infinite matrix 

G~ () for 
Q(A, p; 4) = q(() for 

The lemma below is an immediate consequence of Lemma 1. 

A,a E A, A # ~ ,  

A,# E A, A = /z .  
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L e m m a  3. 
1. There are constants C3(()  ~ C 3 > 0 and c3(~) -- c3 > 0 such that 

IQ(A,#; 4)1 5_ e3(r e-~a(r 

for Re ( < 0 and A ~ #. Moreover, c3(~) = o(1) and c3(~) -~ +0,3 as Re~ ~ -oo .  
2. ]Q(A,A;()[ -+ +oo as a e (  --+ -oo .  

For arbitrary ( E C \ a(H ~ and A E A, we let g~(() denote the function z ~-+ G~ on X. It 
is clear that  g~(() E L2(X) (see Lemma 1). Lemmas 2, 3, and A.2 (in the appendix) imply the following 
lemma. 

L e m m a  4. There is a number E1 E R such that the matrices Q(() and ((g~(()[g~'(()))~,~,e^ define 

bounded operators in 12(X) for a11 ~ E C and Re ~ < El.  

We now state the main result of this section. 

T h e o r e m  1. 
1. For any ~ E C \ a(H~ the family (gx(())XeA forms the Riecz basis in the closure of its linear span. 

Let the map B(~): /2(A) --~ L2(X) be given by the formula 

B(r = ~ ~(~)g~(r ~ e l~(A). 
~EA 

Then B(~) is the Krein F function for the pair of operators (S, H~ 
2. There exists an Eo E R such that the matrix Q(r defines the Krein Q function of the pair (S, H ~ 

for all ~ E C and Re ~ < Eo. Therefore, 

For a/I f E L2(X). 

P roo f .  The proof of the theorem follows directly from Theorem 4 in [22] with Lemma 4 taken into 
account. 

We are interested only in T-invariant point perturbations HA. To find a criterion for the T invariance 
of HA, we introduce the linear unitary representation T a of the group M(F, O) in the space 12(A) given by 
the formula T(d,r = ~exp(/w~(A))~('y-IA), where (% ~) E M(F, O) and ~ E 12(A). The proposition 

below (we omit its simple proof) gives a necessary and sufficient condition for the T invariance of HA. 

P r o p o s i t i o n  1. The operator HA is T invariant if and only if the operator A is T d invariant. 

In what follows, we consider only operators HA invariant with respect to the representations T. From 
the standpoint of physical applications, the most interesting class is formed by the Hamiltonians HA whose 
parameterizing operators A have diagonal matrices in the standard basis of the space 12(A) [11-13]. In par- 
ticular, only these operators can be limits of Hamiltonians with short-range local potentials [11]. Therefore, 
in what follows, we assume that A is determined by a diagonal matrix, A(A, #) = a~Sx~. The T d invariance 
of A implies that  the sequence (ax) is completely determined by its elements with indices belonging to K, 
namely, a~ = a ~  for all "y E F and ~ E K. We need the following assertion directly implied by Theorem A.1 
in the appendix. 

691 



T h e o r e m  2. There is a number EA E R with the following properties: 

1, i f R e r  < EA, then Q(() + A has a bounded inverse operator; 
2. for any ~ E C, Re~ < EA, there are constants c4(~) - c4 > 0 and c4(~) - c4 > 0 such that 

. 

I[Q(r + A]-' #)I <_ c4e 

for all A,# E A. Moreover, c4(() = O(1), and c4(~) ~ +oo as Re~ -+ -oo .  

C o r o l l a r y  1. The operator HA is semibounded from below. 

M a i n  r e s u l t s  

We first recall the notion of the twisted group algebra C*(F, (9) for the pair (F, fg) [23, 5]. We define 
multiplication and involution in the space of finite sequences Co (F) by the formulas 

(a.  b)('y) = ~ |  a(?f1-1) b(fl), 
fiEF 

a* (7) = (9(7- I , ' )  ") (9(1, 1) a(~,- ' ) .  

We let I denote an injective .-homomorphism of Co(F) into the operator algebra L(12(F)) such that  it 
transforms an element a E C0(F) into an operator Ia possessing the property 

(Xa):('y) = -' 

/~EF 

for qo E 12(F). The twisted group C* algebra C*(F, O) is defined as the completion of C0(F) with respect 
to the norm [lal] = []IalI. The algebra C*(F,(9) has the standard trace r defined as T(a) = a(1). We next 
let P-r ('Y E F) denote an operator in/2(F) acting according to the rule (p~qo)(fl) = (9(fl,~)~o(fl'y). It is easy 
to verify that  "y ~ p~ is a projective unitary representation of F in the space/2(F). 

We now define the "canonical" isomorphism ~:  L2(X) --~ /2(F) |  L2(F) = /2(F, L2(F)) by the rule 
(r = rF"  [% 1] f ,  where rF is the restriction operator to F, rF f  = f IF  [6]. Using 4,  we extend p 
to the projective unitary representation ~5 in L2(X) by the formula t5 = p | 1. It can be shown that the 
operator �9 intertwines the representations T and/5. Let K: be the algebra of compact operators in L2(X).  
We let A denote the tensor product C*(F, (9) | K:. The trace 7 in C*(F, (9) induces the standard trace on 
A, which, as before, is denoted by T. The isomorphism ~ determines the canonical embedding IK: of A in 
the C* algebra L(L2(X))  = L(/2(F) | L2(F)). Let .~ be the image of A under the embedding. We write 

.M(F, | = {A E L(12(F)| L2(X)): A ~  = ~ A  V~, E F}. 

It is easy to show that  .d C M ( F , O )  and RA(~) E M ( F , O )  for all ~ E C \ o ( H A ) .  
Following [6], we now define the Fourier coefficients for the operator A E M ( F , |  The Fourier 

coefficient .~i('y) for an element "~' E F is an operator in L2(F) acting on the function u in L2(F) according 
to the formula .4('7)(u) = fGA(61 | u)(1). 

L e m m a  5 (see [5, 6]). Let A E .M(F,@). If the operator fi(7) is compact for all ~ E F and satisfies 
the inequality 

IIA( )II < +oo, 
~EF 

then A Ef l .  

Tile theorem below is the main result in this paper. 
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T h e o r e m  3. Let A be a Td-invariant self-adjoint operator in the space/2(A) with a diagonal matrix 
in the s tandard basis of l2(A). Then the resolvent RA(() belongs to the a/gebra A for any ~ E C \ a(HA). 

P r o o f .  We first note that because the resolvent is analytic, it suffices to prove that RA(E) E .A for 
all E belonging to a semi-infinite interval ( -oo ,  Eo). We next note that  R~ E A for all ( E C \ a ( H  ~ [6]; 
therefore, it is only necessary to prove that V(E) = R~ - RA(E) E fi, for all E belonging to ( -oo ,  Eo). 
By Theorem 2, there is a number Eo E R such that 

V ( ( ) f  = Xe~A(.e~A M(A,#;  ( ) (9 . ( ( ) [ f ) )g~((~)  

when R e (  < Eo, where M(A,# ; ( )  = [Q(() + A] -1 (A,#). By Lemmas 2 and 3, there are constants co and 
Co(() such that 

IM(A,#;0I  _< coe -e~162 eo(O > 3ca (4) 

for Re ( < Eo, where eh is the constant in Lemma 3 and CO does not depend on (. 
We define the matrix Ma(A,/z; () by the relation 

M(,k, tz; () 
M e (k, #; () = 0 

if A = 7 ~  and # = T f l ~ '  for some 7 E F a n d ~ , ~ ' E K ,  

otherwise, 

where fl E F. Because (gx(())xE A is the Riecz basis, formula (4) and Lemma A.1 imply that  the series 

converges and defines a bounded operator in L'2(X) for any function f E L2(X). We prove that 

IIV~(r < +o~ (5) 
~3EF 

for Rer  < Eo. Because the family (gx(())aeA is the Riecz basis in its linear span, we have 

~-~,A~(A)9~(~) ~ ~:~(r I(.q:,(<~)lf)l 2 ~ cg(()l lf l l  = (6) 
.XEA 

for ~o E 12(A) and f E L2(X). Using (4) and (6), it is easy to derive the inequality 

IIVa(C)fll 2 5 ( # K )  c 52 c62 max{e-2eo(r162 : ~ , ~ ' E  K} Ilfll 2, 

whence (5) follows in view of Lemma A.1. 
We next note that 

~0(r = v ( o  (7) 
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for Re (  < Eo because by Lemmas 1, 3, and A.1, the series 

~(fl I Vo(()h) 
BEF 

is absolutely convergent for any f l ,  .f2 E C~~ 
It remains to prove that  V~(() E A for any fl E F whenever R e (  < E0. 

Vo(~t) = V~(()('Y), we obtain 

G(') ')(u) = 0(1,')') E E e'~('~o")L'~,'~"~'(u) 
aEF ~,~'EK 

For the Fourier coefficient 

by direct calculation. Here, Lo,~,~, is a one-dimensional operator of the form 

Lo . . . .  , (u) : M(c~, ~fld; ()<g~m~, (~)I~>G~ ((), 
where fi is the extension of the function u E L2(F) throughout the plane X and ~ is the restriction of 
9 E L2(X) to F. It is easy to show that  

IIL~:.,.II < +oo. 

Therefore, the operator ~'~(7) is compact. By Lemma 5, to complete the proof, it remains to verify that  

Let u E L2(F) and Ilull __ 1. In this case, 

llYm('j(u)ll <_ c7 

-~EF 

~ l(g~m~,(<)l~)l II~(r 
p:,,~' E K c~(EF 

Cumbersome calculations, which we omit, give 

whence 

I(g~.(<)l~)l IIGo~(<)ll _< ca(~, ( )exp ( - ~ A  d(~:, O,~:)), 
aEF2 

(8) 

3 

It remains to use Lemma A.1 to derive (8). 

C o r o l l a r y  2. Let El, E2 E R \ a(HA) and El < E2. Then the spectral projection P[E,,E21 of H4 
belongs to the algebra A. 

We now fix a number E' E R such that  E' < infa(HA) and consider the function 

T(P[E,,E]) for E >__ E', 
Af(E) = 0 for E < E'.  

Clearly, it does not depend on the choice of the point E' .  The values of Af(E) are constant on the spectrum 
gaps of HA and thus give a natural parameterization of the gaps [24]. 
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Coro l la ry  3 (the gap parameterization theorem). The values of  the function ]V'(E) on the spectrum 

gaps in or(Ha) belong to a denumerable set of  real numbers T*(KoC*(F, 0)),  where KoB denotes the Ko 
group of  the C* Mgebra B. 

We recall that, by definition, a pair (F, O) possesses the Kadison property if there is a constant CK > 0 
such that T(P) _> CK for any nonzero projection P in the C* algebra C*(F, O) | 

Coro l la ry  4. I f  the pair (F, O) has the Kadison property, then the spectrum a(HA)  has a band 
structure. 

We note that the condition in this corollary holds for a torsion-flee Fuchsian group F and a magnetic 
field with a rational flow across the fundamental domain F [7, 8]. (For a detailed discussion of the Kadison 
property in the context of the Hall quantum effect on the Lobachevsky plane, see [8].) 
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A p p e n d i x  

We consider a discrete metric space A with a metric d possessing the property 

there are constants ch > 0 and ~h > 0 such that 

#{A �9 A: d(~, ~o) ___ ~} _< che ~^~ 

for all Ao E A and r E R ,  r > 0 .  

(For the proof of the lemmas below, see [25].) 

L e m m a  A.1. Let a function ~: A ~ C satisfy the inequality 

[~o(A)] _< ce -('+~)e^a(~'") 

for some # E A and positive c and ~. Then 

I~(~)1 ~< ceh~ -~. 
AEA 

L e m m a  A.2 (Schur's test). Let (L(A, #))~,u6h be an infinite matr ix  such that 

sup Z IL(A,#)I _< C, 
pEA AEA 

acAsup .~ A IL(A'#)I -< C 

for some C > O. Then L(A ,p)  defines a bounded linear operator L in 12(A) such that [[LII <_ C. 

T h e o r e m  A.1. Let ( K,~ ),~>_o be a sequence of  bounded linear operators in 12(A) satisfying the following 
conditions in the standard basis of  the matr ix  (Kn(A, #)).~,u~A : 

1. i f  A ~ #, then [K,(A, tL)[ _~ aexp( -b ,~d(A,#) ) ,  where a does not depend on n and bn ~ +oo as 
n --+ --koo; 

2. infx~,x [Kn(A, A)[ -~ +oo as n ~ +oo. 
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Then for any a ,  0 < a < 1, there is an no E N such that for all n >_ no, the operator K~ has a 
bounded inverse operator L,~ = K~ 1 whose matrix satisfies the condition ]L~ (A, p)[ < 2en exp ( - a b e d ( A ,  #)), 
where c,~ = (inf~eh [Kn(A, A)[) -1 �9 

P r o o f .  Let Dn(A,#)  = Kn(A, A)~xu and Sn(A,#) = K,~(A,#) - Dn(A,#) .  We can assume without 
loss of generality that  inf{[Kn(A,A)]: A E A} > 0 and bn > 5h for all n E N.  In this case, we have 
Kn = Dn(1 + D~lSn), where D,, and S,~ are determined by the corresponding matrices.  Conditions 1 
and 2 in Theorem A.1 and also Lemmas A.1 and A.2 imply that  the opera tor  1 + D~IS~ has a bounded 
inverse operator  Tn = (1 + D~IS,~) - l  for sufficiently large n. To prove the theorem, it suffices to show that  

[Tn(A, p)[ <_ 2e -~b"  d(x,~) (9) 

We fix a E (0, 1) and take a sufficiently large n such that  

1 
(1 - a)bn >_ 2 ~ A ,  aCaCn <_ -~, IID~I&II < 1. 

We estimate the sum 
Tn(A,#)  = E(-DnlSn)J(A,#). 

j>_o 

To prove (9), it suffices to show by induction that  

I(Dfil&)J( A, ~)l < (achcn) je-abnd()~'~). (10) 

Inequality (10) is obvious for j = 0. We suppose that  it holds for some j >_ 0. Then 

I(DX~&)J+~()"#)I = Kn("X'A)-~ ,,CA ~ S'~(A'~)(DnlSn)J(tc'#)] <- 

Cn E ae-bnd(~'~)(aCAcn)Je-ab"d(~'P) ~- 
~EA 

aCn(aCACn)Je-ab"d(A'P') E e-2e^d(A'~) ~- 
~EA 

(aCA Cn) j+l e-~b.d(X,~'), 

that  is, (10) holds for j + 1 as well. 
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