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1. Introduction. A very intriguing feature of elliptic operators on compact -
- manifolds without boundary is the locality of their indices. Specifically, if M
_ denotes a compact Riemannian spin manifold, § — M a spinor bundle, E — M a
_ hermitian coefficient bundle with unitary connection, and DF the Dirac operator
__on M with coefficients in E, then, by the Atiyah-Singer theorem,

indDE=| A(M)AchE. 1.1
Y

~ Here DE arises from splitting S ® E under the involution induced by the com-

plex volume element on M.

If M decomposes along a compact hypersurface N as M = M; u M», with

OM; = N for i = 1,2, then one is lead to ask whether the obvious decomposition
of the right-hand side in (1.1) corresponds to a decomposition of the (essentially) _
selfadjoint operator D¥ into selfadjoint operators DE, defined in M; by suitable

 boundary conditions on N, such that

indDf, +ind D7, =ind DE. (1.2)

This question was answered in the affirmative by Atiyah, Patodi, and Singer
[APS] who formulated the correct boundary conditions (cf. Sec. 2 for details).
More importantly, the resulting index formula (2.7) displayed a new spectral
invariant of selfadjoint elliptic operators (defined on N), which they called the
7-invariant. It is not locally computable by a formula as in (1.1), as can be seen
from its behaviour under coverings. Nevertheless, one can ask how the 7-

Received 15 October 1996. Revision received 23 June 1997.

1991 Mathematics Subject Classification. 58G20, 58G25, 58G10.

This work supported by the Deutsche Forschungsgemeinschaft and the GADGET network of the
European Union.

425



426 BRUNING AND LESCH

invariant behaves under splitting N as NiuU Nj, and this is the problem we
address in this work.

One motivation for posing this question may be seen in trying to understand
the signature theorem on manifolds with corners. From a systematical point
of view, splitting formulas for spectral invariants should also be very useful for
computational purposes—as illustrated nicely by the analytic torsion (compare
with [Ch] and [M1])—and as a possible source of new invariants. Another
recent motivation is provided by topological quantum field theory.

The “gluing law” for #-invariants that we prove here (Thms. 3.10, 3.11) is not
new; compare with Section 2 for an account of previous work. Our proof, how-
ever, attacks the problem directly on the cut manifold M by analyzing families
of “generalized Atiyah-Patodi-Singer boundary value problems.” These new
abstract boundary conditions are defined by three simple axioms (see (3.23)—
(3.25)), which are designed in such a way that the heat kernel of the model
operator is explicitly computable. Incidentally, our formula generalizes a result
of Sommerfeld in the scalar case. Moreover, under this class we find the spectral
boundary conditions introduced by Atiyah, Patodi, and Singer, as well as the
(local) absolute and relative boundary conditions for the Gauss-Bonnet operator.
Thus, our method gives a uniform way to derive the asymptotic expansion of the
heat trace in both cases, generalizing in particular recent work by Grubb and
Seeley [GrSel] (cf. Thm. 3.4). The family we define interpolates between the
“uncut manifold” (the case of smooth transmission) and actual Atiyah-Patodi-
Singer boundary value problems. This is similar to Vishik’s approach [V] to the
splitting behavior of the analytic torsion, and we hope to explore this further in
another publication. The special structure of our family, on the other hand,
resembles closely the finite-dimensional variations constructed by Lesch and
Wojciechowski [LW]. This allows us to produce explicit variation formulas
(Thm. 3.5). We evaluate them using the vanishing of the noncommutative resi-
due on pseudodifferential idempotents and a special symmetry of the cutting
problem.

The plan of the paper is as follows. In Section 2, we review some abstract facts
on #-invariants and previous work on the gluing law. All results are presented in
Section 3, while the details of most proofs are carried out in Section 4.

2. Generalities. In this section we briefly review some more or less well-
known properties of #-invariants that are needed below, together with some of
the previous work leading to the gluing law.

The n-invariant was introduced in the seminal work [APS] by Atiyah, Patodi,
and Singer. They considered the signature operator on a smooth oriented Rie-
mannian manifold M with compact boundary dM = N,dim M = m = 4k. The
signature operator is the operator D = d + ¢ restricted to the space of self-dual
forms (cf. (2.6)). Assuming that the metric is a product in a neighborhood

U=~[0,1)xN (2.12)
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of the boundary, separation of variables leads to the representation
Py (2.1b
=73 - (2.1b)

Here, we use the decomposition of a smooth form « as a = dx A oz (x) + ().
Thus, the operator on the right acts on CP((0, 1), Q(N) @ Q(N)), Q(N) are the

smooth forms on N, and one has

0 0 -1
y—(_l 0)®I A=(_1 0>®(dN+5N). (2.10)
Thus A is symmetric, and we have the relations
Y==I, y'=-y, yA+Ay=0. (2.2)

'_A symmetric operator of type (2.1b) does not in general admit local boundary
conditions that define a selfadjoint extension (cf., however, [GSm] and [Si]),

even though local boundary conditions do exist in the special case (2.1c), that is,
the absolute and relative boundary conditions. But there is always a nonlocal

. boundary condition given (essentially) by the Calder6n projector (see [C]). Thus
_we introduce the boundary condition

Po(A)u(0) =0, (2.3)

here Pso(A) is the orthogonal projection onto the subspace spanned by eigen-
ectors of A with positive eigenvalues. To define a symmetric operator, this
eeds to be supplemented by

Psu(0) =0, (2.3b)

. where P, projects onto a Lagrangian subspace of ker 4 with respect to the sym-

lectic form (note that dimker A4 is even)

o(u,v) ;= {yu,v), u,vekerA.

Such a space can always be viewed as the +1-eigenspace of an involution ¢ on
ker A, satisfying

oy +yo = 0; (2.4a)
then

P, = % (I +0). (2.4b)
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In the case at hand, a convenient choice of ¢ is (Clifford multiplication by) the
complex volume element wyy; that is, we put gq := wulker A, and observe that it

takes the form

_01®
CUM—IO wn,

where wy denotes the complex volume element on N.

It is not hard to see that these data define a selfadjoint extension of D, Dy,
which anticommutes with wy. Then the signature operator Dg for a manifold
with boundary is the closure of

Dy, | D(Dg,) N {u € Q(M) | wopgu = u},

and [APS, Thm. 1.3.10] asserts that Dy is a Fredholm operator with

ind Dg = J L(M) - %(17(3) + dim ker B). 2.5)
M

Here, L(M) denotes the Hirzebruch L-form, and the operator B is defined by a
representation of Ds in U analogous to (2.1b). In fact, near M we have

Ds = oy (0x + wy(dy +6x))
=: wy(dx + B),
and a core is given by the space (with obvious notation)
D (Ds) = {u e Q(M)| P5o(B)u(0) = 0, mpu = u}. (2.6)

Rewriting (2.5) in terms of the signature of M (as a manifold with boundary)
gives

sign M = JM L(M) — %;7(3) (2.7)

(see [APS, Thm. (1.4.14)]), and thus it gives an analytic interpretation of the
additivity of the signature under cutting along a separating hypersurface.
The n-invariant figuring in (2.5) and (2.7) is derived from a meromorphic func-

tion generalizing the {-function of an elliptic operator. It is convenient to derive ;
the main properties of these functions in an abstract functional analytic setting. °

Thus consider a selfadjoint operator 4 with dense domain 2(A) in some Hilbert
space H. If we assume that

(A+i)le C,(H), forsomep>0 (2.8)
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{(where C, denotes the Schatten and von Neumann class of order p), then the
:_ function

1 ®© 2
7(4;s) := ———J 62 4y (de4%) dt = (sgnd)|A]™* (2.9)
F((s + 1)/2) 0 lespg\{o}

holomorphic for large Res. More generally, if B : 9(4) — H is any bounded
perator satisfying

Po(A)BPo(4) = 0, (2.10)

here Po(A) is the orthogonal projection onto ker 4, then the same is true of

1 ® e _
1(4, B;s) 1=WL ¢t Y72 try (Be tAZ) dt

>

Aespec A\{0}

(trker(A—l) B) I;LI -t . (2 1 1)

ere, by slight abuse of notation, Tker(a—2) B := tr(P;B), where P; is the orthog-
nal projection onto the A-eigenspace of A. It is very important to determine

nditions on A and B that guarantee the existence of a meromorphic extension
f(2.11) to the whole complex plane. The standard source of such an extension is
asymptotic expansion

trH(Be‘”Az) ~to0t Z aw (A4, B) *log*t.

Rea—c0
0 k<k(n)

(2.12)

e notation used means, of course, that {« € C|ay (4, B) # 0 for some k € z,
< k(a)} is a countable subset of C whose real parts accumulate at most at co.
Using the notation f(s) =: 3", Resy f(s0)(s — 50) ¥, introduced in [BS2] for
urent expansions, one has the following lemma.

Lemma 2.1, Under the conditions (2.8), (2.10), and (2.12), 5 extends to a
romorphic function on C. The poles are situated at the points sy, = —20 — 1, and
principal part of nj at s, is given by

k(o)
mza“k(A’ B)(—1)* K12k (5 — 5,) 1,
k=0

In particular, the poles are of order
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(1) k(o + 1, ifa ¢ Zy and

(——l)k(")k(oc)!2k(“)+1
I'(~a)

Resy(ay+17(4, B; sy) =

Ay, k(o) (A7 B)7 (2133.)

and
(2) ko), if o € Z and
Resi 74, By s2) = (—1)"@+alk(a)124a, 4 (4, B). (2.13b)
LemMA 2.2. Under the conditions (2.8) and (2.10), the following statements
are equivalent.

(i) try (Be“Az) has an asymptotic expansion of type (2.12) that can be differen-
tiated; that is, for N, K > 0, we have

oy trH(Be‘tAz)— Z au(A,B) *logkt || < Cy xt®, t—0.

Reag N+K
0<k<k(a)

(2.14)

(i) T((s+ 1)/2)y(A, B;s) is holomorphic in the half-plane {s € C|Res > p} and
extends meromorphically to C. Moreover, for a,b € R, there exists sp = so(a, b) >
0 such that T((s+ 1)/2)5(A, B;s) is holomorphic for a < Res < b, |s| > so with
estimate

IT((s+1)/2n(4,B; )| < C(a,b,N)|s| ™, a<Res<bls|>s, (215

for any N > 0.

Proof. (i) = (ii). In view of (2.8) and (2.10) I'((s + 1)/2)5(4, B;s) is holo-
morphic in the half-plane {s € C|Res > p} and extends meromorphically to
by Lemma 2.1. Integration by parts gives

L((s+1)/2)n(4, B; 5)

= (172" Jw t6=D/2+NoN ¢y (Be4*) dz.  (2.16)
G+D)(s+3) - -(s+2N-1) ], t
In view of (2.10), we have fora < Res < b
® (s—1)/2+N AN —tA? * (b=1)/2+N ,—t
Jl t o) trg(Be ™) dr| < CJl t e~ dt=: Cyp. (2.17)
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urthermore, choosing K such that (a — 1)/2 + K + N > —1, we may write

1
62NN 1y (Bem ) dt
[

1 1
=;J 602N, v dt+ > auld,B) J te D/ 2NN @ 10k e (2.18)
0 Rex<N+K 0
O<k<k(e)

ith |og v (2)] < Ck,ntX. Hence, we have for a < Res < b

1
1 J £ DN () dt\ < Cyx. (2.19)
0
ng 0N t*logkt = oK c;t* N logit, we get
1 k . .
J 1602 NN loghede = Y~ ei(—1)'il((s + 1) /2 + &) (2.20)

0 =0

mbining (2.16) through (2.20), we reach the conclusion.
(i) = (i). In view of the estimate (2.15), we can apply the inverse Mellin
transform to find, for ¢ > p,

trgr(Be™ ) = ?4_;_ JRWC = ED2D((s + 1)/2)7(A, B; s) ds.

oreover, we can shift the contour of integration to the left and apply the resi-
theorem to get

1
trr (Be™#") ~ioy 5 > Resy (t—<s+1>/2r((s +1)/2)n(4, B; s)) .
seC

early, this asymptotic expansion can be differentiated.

Remarks. (1) Of course, B := I — Py(A) gives the {-function of A2,

Caa((s+1)/2) = n(4,I — Po(A);9).

1 particular, we can read off the regularity at zero of {,., provided that the
ymptotic expansion of try (e“‘Az) exists and does not contain contributions to
gkt ke N.

(2) If A and B are classical pseudodifferential operators on a compact mani-
ld M, dimM =: m, and A is selfadjoint elliptic of positive order, then (2.8)
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holds and we have an asymptotic expansion ifadjomt operators with fixed domain 2, satisfying (2.8). Moreover, assume

amily has kernel of constant rank; that is, for Po(a) := Po(A4(a)) we
0 0 ;
trg (Be ") ~ior 3 aj(d, BY tUm D2 N (by(4, B) log £ + ¢i(4, B))Y,

=0 =0 . . .
dim Po(a) is constant in J. 2.23b
(2.21) o(a) (2.23b)
where a := ord 4, b := ord B (see [GrSel, Theorem 2.7]). Moreover, this asymp-
totic expansion can be differentiated in view of the identity B(a): 92— H (2.23¢)

family of bounded operators satisfying (2.10), which, in addition,

oy trH(Be_tAz) = (-1)Ntry (BAzNe"‘AZ). ily
Ala)’? in the sense that

If, in addition, (2.10) holds then we can apply Lemma 2.2 to conclude that (2.15)
holds for 4 and B.

Note that in view of (2.21) and Lemma 2.1, in this case #(A4, B;s) has a mero-
morphic continuation to C with simple poles.

The estimate (2.15) suffices to shift the contour of integration and to deduce a
short time asymptotic expansion. However, for some classical pseudodifferential
operators A, B, an even stronger result holds—namely, if 4 has a scalar principal
symbol, then it follows from [DG] that #(4, B;s) is of polynomial growth on we assume that
finite vertical strips. Since I'((s + 1)/2) decays exponentially on finite vertical
strips, this implies the estimate (2.15). However, our method of proving (2.15)

| [B(@). (4@ -0 =0, aeJ, {¢specd(a) (2.23d)
0) and (2.23d) imply that

B(a) = (I — Po(a))B(a)(I — Po(a)).

fﬁefamﬂles (A(a)),e s, (B(a)) ey © £(2, H) are strongly

is completely elementary while [DG] uses the machinery of Fourier integral differentiable in J, with strongly continuous derivative. (2.23¢)
operators. ‘ '
Given these preparations we define, under the assumptions of Lemma 2.1 se assumptions, the operator families Po(a) and
(actually, a partial expansion in (2.12) would suffice), the #-invariant of A as _
A(a) := (I — Py(a))A(a) + Py(a) (2.24)

n(A) := Respn(4;0 2.22a . . .
() (4;0) ( ) differentiable, too. Using the representation

and, in view of the index formula (2.5), the reduced n-invariant of A as

e (o | e -oma
1 , T
E(A) = 3 (n(A4) + dimker 4). (2.22b)

suitable contour, one can easily derive the identity

Generally, #{A) is difficult to compute. It is thus of great importance that suit-
able 1-parameter variations turn out to be “locally computable” in the sense of
asymptotic expansions of the type (2.12).

To deal with variations in the abstract framework above, we now impose the
following assumptions. Consider a connected open subset J of R and foraeJ a
family

{B(a)e'“@z] = tr B (a)e ™4’

, . t%tm [B(a) (E%A(a)z) ,{(a)'ze_m(“)z]-

aptions imply the absolute and locally uniform convergence of the

Ala): 9 — H (2.23a) —integrals, and we arrive at the following lemma.
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fuﬁéﬁ(}n of a and is holomorphic in s € C. On the other hand,
- the expansion (2.12) are unaffected if we modify 4 and B
finite rank. Evaluating (2.29) with B(a) := A(a), we obtain

LemMa 2.3, Under the assumptions (2.8) and (2.23a—e), we have the identity

= 1(A(e), B(a);5) = n(A(e), B'(a); -
;;as}u,;{«%dimkerA(a) = Z %(sgnllll_s - 1),

AespecA(a)
O<ii|<e

_s sz L (A(a), B(a) (d;‘iA(a)z) Ala)%; s) . (25)

If we assume in addition that . obtain the following lemma.

2 that the family A(a),., satisfies (2.8), (2.23a,e), and

[B(a), (A(a) =)™ =0 forae J,{ ¢ spec A(a), (2.23d") "{q} in place of B. Then, for a,aq € J,

then (2.25) simplifies to

. 1 [
(@)~ £A@0) +—= | apol4(@), A @)dacz.  (230)
Lo ap
S 1(A@), B(@);s) = 1(A@), B(@)9) — (s-+ 1) n(A(@), ABAA(@) %), (226)
¢ . e function
So, if_ both §ides extend meromorphically to C, then (2.26) holds in C, too. We ' T(A(a)) = 2™ (A@) (2.31)
note in particular that

1n a € J under our assumptions; the invariant t was introduced
'z we use the reduced n-invariant

7(A(a)) := ¢(A(a)) mod Z, (2.32)

2 n(A(a);s) = —s n(A(a), 4'(a);s). (2.27)

Thus we obtain the following well-known corollary.

COROLLARY 2.4.  Assume (2.8), (2.23ab,e), and (2.12) with A(a) and A'(a) in
place of B. Then, for k = K(—y) e Z,,

of the r-invariant under the diffeomorphism S! > R/Z.

otic expansion of trg[4/(a)e~*4(@"] does not contain terms of the
with o< 0 and ke N for j = 0,1—as it is the case for (classical)
differential operators on compact manifolds (cf. the remarks after
then it follows from Lemmas 2.1 and 2.3 that zero is at most a
and that the residue is a homotopy invariant. This is the basis
t 77(4;s) is, in fact, regular at s = 0 if 4 happens to be a (classical)
tial operator on a compact manifold (cf [G, Sec. 3.8]). More
odzicki [Wod1], [Wod2] observed the remarkable fact that, in this

ors,

z;iaResk 1(A(a);0) = —Res,1 7(A(a), A'(a);0)

(—1)FF g1k
=

Condition (2.23b) is not satisfied in interesting situations. One can get rid of it
by choosing a real number ¢ > 0 so that ¢ ¢ spec(4(a)) for a near ag e J. Then
we put P_.(a) := P..(a)P>_c(a), Poc(a) := I — P,(a), and we replace A(a) by
A%(a) := P> (a)A(a) + P_.(a) and B(a) by B¢(a) := P5.(a)B(a)P>.(a) + P.(a),
obtaining the modified #-function #°(A(a),B(a);s) := 7(4°(a), B(a); s). ¢
admits, near ao, the same analysis as outlined for n with (2.23b), and from (2.11)
we obtain

a_y/2,k(A(a), A'(a)). (2.28)

Res B := (ord A) Res; 7(4, B; 1) = —2(ord A)ag ; (4, B) (2.33)

vmique trace (up to a constant) on classical pseudodifferential opera-
iptic of positive order ord 4. Wodzicki also observed the following
s stated without proof in his thesis [Wod1].

If B is a classical pseudodifferential operator on a compact mani-

(7 —n)(A(a), Bla);s) = D[4 teerag-n B(a) — dimP,(a). (2.29) otent, then
Aespec A(a)
0<jd|<e

ResB=0.
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The only proof we know of shows that the statement of this lemma follows
from the regularity at zero of the #-function for general, classical, elliptic pseudo-
differential operators on a compact manifold. For completeness, we indicate that
these facts are actually equivalent.

Lemma 2.7. The assertion of Lemma 2.6 is equivalent to the following. Let P
be a selfadjoint, classical, elliptic pseudodifferential operator of positive order on
the compact manifold M. Then

Res; #(P;0) =0
Proof. (1) First we assume Lemma 2.6. Let P be a selfadjoint, classical,

elliptic pseudodifferential operator of order d > 0 on a compact manifold M. We
consider the pseudodifferential operator

sgnP:=P|P| ' i x— { [P|'Px, xe ker P1,

0, x € ker P.

We find

n(P%,sgnP;s)= > (sgnd)|4| ™"

AespecP

=n(P;s+1),

an hence in view of (2.33) and Lemma 2.6

0 = Ressgn P = (ord P) Res; 7(P?, sgn P; —1) = (ord P) Res; 7(P;0).  (2.34)

{2) To prove the converse, we consider a classical pseudodifferential idem-
potent B on a compact manifold M. B is similar to a selfadjoint idempotent, and
it is not difficult to see that the similarity can be effected through a pseudo-
differential operator. Since the residue is a trace, similar operators have the same
residue. Hence we may assume B to be an orthogonal projection. The assertion
will follow from (2.34) if we can show that there exists an invertible selfadjoint
classical pseudodifferential operator P of order 1 with

B= —;—(sgnP +1I).

We choose a first-order, selfadjoint, classical pseudodifferential operator Q with
scalar principal symbol oy (&) = |£|. Furthermore, we may choose @ to be posi-
tive. Then put

P:=BQB—(I-B)Q(I - B).
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Mmutes with B. To make it invertible, we put

Px, xekerPi,
Px:=< x, xekerﬁnImB,
~x, xekerP nkerB.

have B — (sgn P +I)/2, and hence we reach the conclusion.

e regularity at 0 of z-functions is not essential if one
theorems [BS1] or the gluing law below; the definition
cient for these purposes.

widen ‘the class of operators that admit reasonable -
ost natural to consider elliptic boundary value problems.
uing question, one may also expect further insight in the
t work in this direction seems to be [GSm], which deals
nditions leading to (mildly) nonselfadjoint operators that
sonable n-invariants. This was used by Singer [Si] who
things, that the difference of #-invariants associated to two
e problems of this kind is an interesting spectral invariant
Ieast asymptotically. More precisely, let M be an odd-
ian spin manifold with spinor bundle S(M), and assume
€ is a product near N (this assumption is kept from now on).
od of N'in M is isometric to the cylinder Ng = [0, R) x N for
re we write My to make the dependence on R more trans-
‘again a representation of type (2.1b) for the Dirac operator
here A = DV becomes the Dirac operator on S(N) = S(Mg)|N.
ts into S*(N) @ S™(N) with projections Q. : L>(S(N)) —
M (DMr, Q) are well-posed boundary value problems
of [GSm] applies. Singer proves that by stretching Nz the
variants localizes, that is,

im (DY) — 7(D26)) = 7 log det (D). (239

‘was motivated by Witten’s identification of the covariant
so-cailed adiabatic limit of an #-invariant (see [Wi]), but his
‘uiated greatly the interest in #-invariants for manifolds with

ojciechowski [DW] then studied systematically the properties
generalized Dirac operators on odd-dimensional manifolds
2y assumed (2.1b) with the additional hypothesis

ker4 =0, (2.36)
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and they chose the boundary condition (2.3a). In this situation, they established
Lemmas 2.1 and 2.3, and for suitable families of such operators they proved
(2.28) for k = 0. Moreover, they showed that stretching the cylinder Ng produces
an “adiabatic limit” in the sense that

Jim 7(Dg) =: 7 (2.37)

exists. Then the challenge was to identify 7, and to extend the results to
ker 4 # 0. In this case, there is considerable freedom of choice for the “supple-
mentary” boundary condition-(2.4a,b), and its variation ought to be allowed,
too, in a suitable generalization of (2.28). Note that the analysis of Lemma 2.3
does not apply to this situation right away since the operators under considera-
tion do not have constant domain, so one has to search for a suitable trans-
formation of the family. This was done by Lesch and Wojciechowski [LW].
Since their method also served as a basic motivation for this paper, we present a
suitable version of their argument. Theorem 3.5 generalizes considerably the
original construction and is the main analytic tool of our present work.

The result of [LW] was obtained independently by Miiller [M2]. In addition,
Miiller presented a thorough analysis of the operators D, in the general case.

In particular, he showed that #,, exists and can be interpreted as the suitably

defined 7-invariant for an operator on the manifold M := M U N,,. Moreover,
he proved that

Moo = ﬂ(}Jal) (2.38)

for a suitable oy, obtained from scattering theory on M. He also obtained the
regularity of the #-function of D, if D is assumed to be of Dirac type.

In the context of Melrose’s “b-calculus,” Hassell, Mazzeo, and Melrose
[MM], [HMM] defined an #-invariant on manifolds with boundary, and they
proved a gluing law in this situation. This #-invariant coincides again with #,.

Equation (2.38) can be taken as the starting point to prove the gluing law for
n-invariants as done by Miiller [M3] and Wojciechowski [W1], [W2]. Bunke
[B] gave a complete proof of the gluing law based on cutting the manifold in
question three times and reassembling the pieces into a cylinder (carrying both
boundary conditions) and a compact manifold, where one can do essentially
only “interior” analysis, in view of the finite propagation speed enjoyed by all
D,. This reduces the analysis to the explicit computation on the cylinder carried
out in [LW]. Bunke’s result is, at least theoretically, more precise than ours since
he gives a formula for the unknown integer in (2.30). This is possible since his
deformation induces a relatively compact perturbation. By contrast, our con-
struction is more direct and more general but less rigid with regard to compact-
ness.

Bunke’s argument, in turn, was generalized and simplified in a substantial
paper by Dai and Freed [DF]. They interpreted the invariant (2.31) as a section
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it line if one considers families of operators D, fibered over a
ian manifold. This allows a natural interpretation of Witten’s

mula and also illustrates nicely the philosophy developed in Singer’s

glumg law (Theorem 3.9) arises as a byproduct of an exten-
ion formula to a wider class of boundary conditions, thus
of a rather different nature than those described before.

theorems and the gluing law. Our approach to the proof of the
originally inspired by Vishik’s proof [V] of the Cheeger-Miiller
ang out the details, we discovered, however, that we were led to a
generalization of the approach in [LW], designed to determine the
. under-a change of o.

the analysis we present here deals with operators of type (2.1b)
general boundary conditions than in (2.3). We now explain how
naturally from the gluing problem, define it in general, and out-
the gluing law. Most details are deferred to Section 4.

a compact Riemannian manifold, dim M = m, and let

Dy : CP(S) — C2(S) (3.1)

etric, elliptic differential operator on the hermitian vector
main examples are, of course, Dirac operators associated
5.V), but we work in a more general context, allowing, for
tors with potential.
compact hypersurface. We assume that N has a tubular
sometric to (—1,1) x N and such that the hermitian structure
t0o. Moreover, we assume that on U the operator Dy has the

Do = y(;;m), (3.2)

(Sy)) is a unitary bundle automorphism and 4 is a first-order,
"diﬂ'erential operator on Sy := S|IN. If Dy is a compatible
then 7 is Clifford multiplication by the inward normal vector
ly) a Dirac operator on N. We assume, furthermore, that y and

restriction of Dy to C°(S|M\N). This operator is no longer
adjoint. In order to obtain selfadjoint extensions, one has to
_conditions. The natural boundary condition inherited from M
transmission boundary condition. Interpreting sections of S with
functions [-1,1] — L*(Sy) in the obvious way, this boundary
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condition reads
f(0=) =f(0+). (33)

It is fairly clear that the resulting selfadjoint operator is unitarily equivalent to
the closure of D in L2(S). On the other hand, D lives naturally on

M := (M\U) Usan\p) ((-1,0] x NU[0,1) x N), (3.4)

obtained by cutting M along N. (We adopt here the notation from [DF, p. 5164
and Sec. 4].) Thus, M is obtained from M by artificially introducing two
copies of N as boundary.

On M°* we can introduce spectral boundary conditions as in Section 2. The
natural interpolation between the continuous transmission and the Atiyah-
Patodi-Singer boundary condition is furnished by the boundary conditions

cos 0 P>o(A4)f(0+) = sin6 P5o(4)f(0-),
(3.5a)
sin @ P.o(A4)f(04) = cos @ Po(A) f(0-), ’
Po(A)f(0+) = Po(4)f(0-), (3.5b)

where |0} < n/2. To render this more transparent we employ the isomorphism
(with H := L*(Sy))

@ : L2(S|U) ~ L*([~1,1], H) — L*([0,1], H ® H), (3.6a)
which sends f e L2([-1, 1], H) to @f,
of (x) =f(x) ®f(-x), xe[0,1]. (3.6b)

It is easy to see that, under ®, D is transformed to

2=(0 5@+ (0 )i e

and the boundary condition is transformed to

08 0 P+o(A)u(0) = sin 8P o(A)u(0), (3.8a)
where
= ((1’ 0) ® In, (3.8b)

commutes with 42 in

commutativity with A, however. Instead we find
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P,u(0) =0, (3.8¢)
{0 P4
o:= (PO(A) 0 ) (3.8d)
T4 + Az, 2 =1, 7= (3.9)
that this boundary condition can be written as

B(8)u(0) =0, (3.10a)

0P<0(A) —= (sm 20)t(Pso(4) + Po(4)) + P,.
(3.10b)

mﬁe the following properties of this family of projections, all of

7B(6) = (I - B(6))5 (3.11)

[P(6), 4% = 0. (3.12)

P(0)AP(6) = cos 20| 4|P(6). (3.13)

: the argument of Lesch and Wojciechowski [LW], we are led to
“parametrization” of the family (P(0))|9| <nj2- It is easy to verify

mﬂ{g{,p{) + Poo(A)) + sin 6(Pso(A) — Peo(A))7) @1 ; (3.14)
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and
sgn 4 := Po(A) — Poo(A), (3.15)
we have
B(6) = U(O)P(O)U(H)*, (3.16)
where i
U(f) = elsendnd, (3.17)

Thus we obtain a family of generalized Atiyah-Patodi-Singer boundary condi-
tions, and the gluing law becomes just the variational formula for this class of
operators in the sense of Section 2.

In fact, we generalize the situation further. Thus from now on we consider
the following setting. M is a Riemannian manifold of dimension m, § —» M is a
smooth hermitian vector bundle over M, and D is a first-order, symmetric, ellip-
tic differential operator on C{(S). We assume that M can be decomposed as

M=UuM;, (3.18)

where M, is a compact manifold with boundary N = éM; = 8U and U is open.
Moreover, we assume an isometry of Hilbert spaces,

@ : L¥(S|U) — L2([0,1], H), (3.19)

where Sy is a smooth hermitian bundle over N and H = L?(Sy) as before. This
isometry maps smooth sections to smooth sections in the sense that

®(C®(S|U) n LA(S|U)) = C®((0,1), C*(Sx)) n L([0, 1], H). (3.20)
Thus we can transform D on U, and we require that
ODD* = y(dx + 4) =: D, (3.21)
with 4 a symmetric elliptic operator of first order on Sy, which we identify with
its selfadjoint closure, and y a bounded operator on H. We assume, moreover,
that y and A satisfy the relations (2.2) and (2.8).
Finally, we require that for ¢ € C§°(—1,1) we can find ¥, € C*(M) with the
following properties:
D(Y4u) = ¢Ou, ue L*(S|U); (3.22a)

and ¥, = 0 near 0M}, and
¢ = 1 near zero implies 1 — y; € C3°(M). (3.22b)
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P(6) = U(O)P(O)U(6)".

_representation

define boundary conditions for D and D via

:0},

U(e) — eiT(G)’

[v, T(6)] =0,

JH) O o | ue D(D*), P()u(0)

1 uED(D*), B(Y4u) € Dy
for some ¢ € CP(—1, 1) with ¢ = 1 near zero

AT(0) + T(6)A = 0.

443

 LA(Ry,H) =: o to obtain the model operator. To
y conditions, we proceed as in the above analysis of
o(msader a family P(6) g, /» of orthogonal projections

(3.23)

(3.24)

B{G?%AiP(H) for some a € C*(—n/2,%/2) with a > —1.

(3.25)

again-assumed to be conjugate to P(0) under a family of

(3.26)

(3.27)

_selfadjoint in H, smooth in (~=/2,7/2), and such

(3.28a)

(3.28b)

(3.29a)

(3.29b)

(3.30)
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A good part of the subsequent analysis rests on these assumptions. For the

; ' R ' ol P D and the same spectral invariants as Dy. It is easy to see
asymptotic expansions to exist, it is convenient to require in addition that

 {2.23a.¢). It remains to establish the asymptotic expan-
Ja/dl in place of B.

are expressed in terms of the Mellin transform of a cer-
F,, which we have to introduce first.

P(6), T(6) are classical pseudodifferential operators

3.31
of order zero on N, for |0] < =/2. (3:31)

rae(—1,1] and i
This assumption is clearly satisfied in the gluing case (3.10a,b). orae (1,1 and x > 0 the function

We refer to the family (Do) g/, With the properties listed above as a deforma-
tion of Atiyah-Patodi-Singer (APS) type. Then we have seen that cutting along a
compact hypersurface leads naturally to such a family. In this case, we do have a
bit more structure since, in (3.25), we have a(f) = cos 26, in view of (3.13), and
we have the additional symmetry 7 with the properties (3.9).

We note that a single projection P with the properties (3.23), (3.24), and (3.25)
defines a selfadjoint extension of D, Dp, to which the analysis of Section 2
applies. This we call a generalized APS operator since, clearly, P = P5o(A4) + P,
falls in this class.

We proceed to the spectral analysis of Dy. The proofs are given in Section 4.

' o0
()= J exfo(z)e—2% 4y,
; 0

eric(z) = %J e du

Yy error function. Then the Mellin transform of F, is, for

PROPOSITION 3.1.  The operators Dy and Dy are essentially selfadjoint.

We identify Dy and Dy with their respective closures in the following. 1—(1-a»™"Arw/2)
PrOPOSITION 3.2. Dy satisfies (2.8); that is, .

(Do +i)" € C(LX(S)) for every p > m. i"—az)“”/2 L(l — )™ g r((w + 1)/2)}, (3.34)

We want to apply Lemma 2.5 to the family (Dj) g/, Which requires that we
first apply a transformation to satisfy (2.23a,e). This we do as in [LW], and this

is the motivation for the assumptions (3.26), (3.27), and (3.28a,b). . 1
Thus we choose ¢ € CX(—1,1) with ¢ = 1 near zero, and we introduce the | HE(w) = zﬁr ((w+1)/2) (3.35)
unitary transformation
Wy : L2([0,1], H) — L*([0,1], H), .
#AT(O) (332 ol 2
Pou(x) := e?XTO (y(x)). 1(W) =3 I'(w/2) - w——-ﬁl"((w + 1)/2)] (3.36)

Then P(0)u(0) = 0 implies P(6)¥su(0) = 0 in view of (3.26). Hence, extending
¥, to L2([0,1], H) ® L*(S|M;) as the identity on L?(S|M;) and similarly @ in
(3.19), we obtain an isometry

romorphic in C with simple poles at the points —k, ke Z,.
re

@y := O*¥yd (1-(1-a®»h, lez,,

of L*(S) mapping Py to Dy. Consequently, the family . (3.37)
a4
L (1- a2y J (1= a4 lez,.

Dg := ®};DyDy (3.33) 0
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formula {4.1). Nevertheless, we can handle boundary condi-
¥ different from the APS condition.

- the APS condition - is sketched in Miiller [M2,
owever, the coefficients that are not local in M in
1 and for APS boundary conditions, these nonlocal

For a = 0,1, one has to take the corresponding limit in (3.37). More precisely,

Res; MFy(-21) =0, leZ,,

ReslﬂFo( 21—1)—(—)— l€Z+,

Jal’ t. To explain this, let for the moment D, be the
y condition. Then a simple symmetry argument
0o,  I=0, (3.38) e function ¢ € CY'(R),
Res; #MF(=2]) = (_1)1 ’ ~ -
TR leN, . Lt [#Dye™Pc] =0, t>0, (3.42)
__ -y
Resy AFy(-21-1) N OFE leZ,. d(0,1) = 0 (cf. [L3, Lemma 5.2.4]). For general

2} to hold.
tuate the formula for the variation of the 7-invariant in
tic expansion of tr((d Dg/d6)e=7).

Now we present our first expansion result.

THEOREM 3.4. Assume that (3.18) through (3.31) hold. For 1 = 0,1, we have

an asymptotic expansion of the form 'gssumptions of Theorem 3.4, we have the following

trr2(5) [Dhe D] ~1m0s Z 4(,1) 2 4 Z b;(8,1) ¢ logt
j=0 j=0

o0 0
+ )60, D2 4N " 40, 12 (3.39)

j=0 j=0

es(iT"(6)), (3.43)

age(4, 7iT'(6))
Here, the coefficients a; are integrals of local densities on the metric double M of ‘
M, b; and c;j are integrals of local densities on N, and d; are nonlocal invariants of . 2a(6)
N. They are given explicitly in the formulas (4.15), (4.21a), (4.21b), (4.30a), and 1/—
(4.30b).

For | = 0, the leading term is

= MF (1) — %) Res(yiT’(0)(sgn A)P(6)). (3.44)

5 the situation of Theorem 3.5, assume in addition that

ap(8,0) = T'(m/2 + 1) vol(T} M), (3.40) ,

where TEM = {& € T*M | aDz(f) 1. THOPG) = (I— PO))T'(6). (3.45)

The logarithmic terms vanish ifl=0 and m is odd. If | = 0 and m is even, then
by;(8,0) = 0. However, the logarithmic terms are present in general.

For =1, the expansion (3.39) implies that #(Dg;s) has a meromorphic exten-

sion to C with at most double poles. Zero is a simple pole, and for the residue at

Twm@mmm—(”hwww»
zero we find

Res; 7(Dy; 0) = %anﬂ(e, 1)+ (zi’/@ MF (1) — ;) Res(y(sgn A)P(6)). (3.41) "(6)) =0, then Res; 1(Do; 0) is independent of 6 and
For the APS boundary condition, this result was obtained by Grubb and / ’ ﬂ(Dg) _ 1 aoo( A, yiT'(6)).
Seeley [GrSel]. By contrast, our approach is simply based on the spectral theo- 48
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Proof. We use (3.45), (3.23), (3.25), and the trace property of the noncom-
mutative residue to compute
o U*
Res(yiT’(6)(sgn A)P(8)) = Res(yiT’(6)P(6)(sgn A)P(6)) 7= (U 0 ) rkerd — ker 4. . (3.50)

= a(f) Res(yiT'(9) P(H)). ¢ data we can introduce the projection (cf. (3.10b))
Here we have used that Res vanishes on smoothing operators. Furthermore, in 2 .9 1, .
view of (3.28a), 005" OP>0(A) + sin” 0P o(A4) — 5 (sin 20)2(P5o(4) + P<o(4)) + P,

Res(yiT'(8)P(6)) = Res(yi(I — P(0))T'(6)) 51
family (cf. (3.14))
= Res(i(I - P(8)) T'(9))
c0s O(P5o(A4) + P i = el Ayl
— Res(i(I — P(6))yT'(6)) oD Pl OB Slima = B 0
tely checks the relations (3.11)—(3.13) and (3.16), and hence we are
ation of APS type. We denote the corresponding family of opera-
mdicating explicitly the dependence on the choice of ¢. If we fix ¢
a l-parameter family of reflections o,, we obtain another defor-
type. In this way we recover the main result of Lesch and
FLW] as a special case of our present work.

3.7 (cf. [LW], [M2], [DF]). Let cos@#0, and let U, : K+ —
family of unitary operators. Put

e=( 9 Ui
“““\u, o)

.5 )y IS a deformation of APS type, Res;n(Dy,,,;0) is independent of u,

= Res(yiT'(0)(I — P(9))),

»

and we reach the conclusion. |

Next we introduce a special class of deformations of APS type, which is still |
slightly more general than the gluing situation (3.5a)—(3.17). We consider again
the framework (3.18)-(3.22b). Furthermore, let 7 : C®(Sy) — C®(Sy) be a uni-
tary classical pseudodifferential operator satisfying (cf. (3.9))

y+yr=0=14+ Ar, 2 =1, =1 (3.46)
We abbreviate

K* := (ker A) nker(y F i). (3.47)

The relations (3.46) immediately imply d 1
_ 1 d

721 Ds,0,) = 507 K [U,, T U,,] .

dimK* =dimK~. (3.48)

. . . . f. We put

However, the presence of 7 is not really necessary for this equality. Equation

(3.48) follows already from (3.18)—(3.22b). If D is a Dirac operator, then this is

the well-known cobordism theorem for Dirac operators (see [P, Chap. XVII]).

For general D, this is due to Lesch [L1, Thm. 6.2], [L3, Chap. IV]. It was also
proved independently by W. Miiller [M2, Prop. 4.26].

In view of (3.48), we can choose an isometry

. 1, .
cos® OP-q(A4) + sin? OP(4) — 3 (sin 20)7(P>o(A) + P<o(4)) + Po,.-
e, we fix:ug and define the unitary operator ¥, € Z(H) by

U:K* = K- (3.49)  KIKF :=UU,, ViK™ @ (kerd)* == 1I. (3.53)
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Then we choose a smooth family of selfadjoint operators T, such that ' of. In view of (3.52), we put

Vi=e®,  T,=0, T|K @ kerd)" =0. T(6) := —i(sgn A)76.

It follows that ne checks that (3.23)-(3.28b) and (3.45) are satisfied. We want to apply

3.6 to compute dij(Dy,;)/d0. Since Res vanishes on operators of finite

VP, ()V. = Pu(6), may replace

ey
and one checks that (Dy,), is a deformation of APS type. Since T, is an opera 7iT'(0) = y(sgn A)z

tor of finite rank, we have

Res(yiT)) = Res(yiT, (sgn 4)P,(0)) = 0. W(sgnd) + o)

We deduce from Theorem 3.5 that nptions of Corollary 3.6. Since

deReﬁ 7(Dg,s,;0) =0 (7((sgn4) + o)1)’ =1,

om Lemma 2.6 that Res(y((sgn A) + o)) = 0. Thus Res; #(Dg4;0) is
and

d 1 st
— = — T
dun(DG,au) e aOO(Av i u)

i 1 .
Eﬂ(Da,a) = ano(Aa yiT'(6))

= 51_ lim try [ﬂ;’e‘mz]

1
7T u—0 = 5;“00(1‘1, y(sgn A)7)
= EtrK+ [y’I;] — % I_;Ll})/I tI'H [y(sgn A)Te_tAl] ) I:I

pi%e’nt the gluing law. In this situation (see (3.5a)—(3.17)), we have
ire; namely, introducing (with the same notation as in (3.7)

(0 1
U= _101

ut+ T =i+ ju = pd+ Ap = 0.

1 1 d
=5 trg+ [Uu 7 Uu:l .

Next we deal with the deformation (Dg,0)(g<z/2-

PrOPOSITION 3.8. Res; #(Dg q; 0) is independent of 6 and
4 (Do) = o aao(, (sgn A)7)
zé” 6,0} = 27Za00 'Y
1 —tA?
= EEI?LIXI try [y(sgn A)re ™.

feads to the following theorem.

law). Consider the deformation (Deﬁ)lol <ns2 Of APS type

Here LIM,_,o denotes the constant term in the asymptotic expansion as t — 0. (3.52). If there exists a unitary, classical pseudodiffer-
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ential operator p: C*(Sy) — C*(Sy) satisfying Now let #(D,M®, T) be the #j-invariant of the operator D with boundar

ndition given by y
w=-1, jpr+mpu=py+yp=pA+Ap=0, (3.55)
o Pr =Py (4) ® P(T). (3.59)
itting

d _
EW(DG,G) =0. 5 ~ ~ 1
7(8) = cos? BPo(A) + sin? OP o(A) — 5 (sin 20)t(P>o(A) + P<o(4)) + Por)

Proof. In view of (3.55), we have
/. (359 (3.60)

uy(sgn A)t + y(sgn Ayt =0, as in (3.10b), we obtain a deformation of APS type (Dgy(r)) . Then
ﬁ(Dg,,,(T)) is independent of 8 by Theorem 3.9. ’ w2 ’
; ‘qu T = —1I and 8 = n/4, the boundary condition is the continuous trans-
mission boundary condition, and hence 77(13,,/4,,,(_1)) = #7(D, M) (mod Z), the 7-
nvariant of the closure of D on L%(S). Furthermore, for = 0 we obtain ’

hence
trq [y(sgn A)re 4] = 0.

In particular ago(4,y(sgn 4)7) =0, and by Proposition 3.8 we reach the con
clusion. l

Naming Theorem 3.9 the “gluing law” calls for an explanation. We briefly .
explain how the usual gluing law for the n-invariant follows from Theorem 3.9.
We consider again the situation (3.5a)—(3.17). Then we have ‘

#(Do,o(ry) = (D, M™, T) modZ. (3.61)
Thus, for T = —I we have proved

(D, M®™,—I) = 7(D,M) modZ. (3.62)
For an arbitrary isometry T: KT @ K~ — KT @ K~, we choose a smooth

' p_ath of isometries (1)< <y With To = ~I and Ty = T, and we apply Proposi-
. tion 3.7 to Dy 51). Then

R* :=K*(A) =kerAnker(§ Fi).

=K*¥(A) ®KF(4)

= K* @ K7, i e R L, d 14
(3.56) 7D, M™, L) = —trgvex- ( T, 1‘—157;) =5-logdet(T,),  (3.63)

that is, K is canonically isomorphic to K* @ K~, and we use this identification .
in the following. As in.(3.49) and (3.50), we write involutions o of ker A with
g 4 o7 = 0 in the form ‘

o 1 1,
(D, M, T) = #(D, M°™, ~I) +—27t—ilog det(T) — E(dxm Kt +dimK~) modZ.

<3

o T
o(T) = ( ) ) (3.57)

T (3.64)
where T : K* — K~ is an isometry. The isomeiry corresponding to the distin- This can be written more nicely in terms of the z-invariant (2.31). Namely
guished involution ’

) o oD, M, T) = (—1)4mK+mE” 4ot T)e(D, M). (3.65)
o —rlkerA=—<1 0)®1H (3.58)
. Note that Ay := A|ker(y —i) is a Fredholm operator between ker(y —i) and

ker(y + i) with ind 4, = dim K* — dim K~, and hence we end up with the gluing

in (3.8d) therefore corresponds to the isometry —I : Kt®oK = K*®K". law in the version of Dai and Freed [DF, Prop. 4.5].



. R 455
454 BRUNING AND LESCH ON THE 7-INVARIANT

TeEoREM 3.10.  We have ©(D, M, T) = (—1)™44+ det(T)r(D, M). THEOREM 3.11. We have

Actually, this result is slightly more general than loc. cit. since Dai and Free
deal with Dirac operators on spin manifolds only.

In the special case where the hypersurface N separates M into two com
ponents My such that M =M_uyM,, the index of A, vanishes by the co
bordism theorem (cf. the discussion after (3.48)). Hence we can choose isometrie
T, : Kt — K-, T- : K~ — K* and put

0 T,
T-—(T_ 0)- (3.66

1
#(D,M) = (D, M4, Ti) + #i(D,M_, T.) +—2-m(kera(T1),kera(T2)) modZ.

Our last comment concerns the residue at zero of the n-ful_lction. We expect
that in general the residue in (3.41) will not vanish. In the cutting case, however,
there is no pole.

TueoreM 3.12.  If (Do) gj<n/2 arises from cutting M along a compact hyper-
surface (as explained in (3.5a)—(3.17)); then 7(De; 5) is regular at s = 0 for all 0.

Proof. By Proposition 3.8, Resi 7(Dg; 0) is independent of 0, and hence
Then _

Res; 7(Dg; 0) = Resy 7(Dza30) =0,
Do,o(r) = D oz, ® Doo(r.ys (3.67
" h w since the n-function of a selfadjoint elliptic differential operator on a compact

i i . 3.80). O
where D(fa(rt) is the operator D on the manifold M, with boundary conditio manifold is regular at zero (see [G, Sec 3.8])

given by P (4) ® Py, (tesp., P>(—4) ® P,r.)). Denoting their respective 7-
invariants by 7(D, M+, Ty ), we obtain the gluing formula for the n-invariant:

4. Proofs. We now prove the statements presented in the previous section.

Proof of Proposition 3.1. We consider Dy first. Let u € 2(D}) satisfy

1 ,
7(D, M) = 7i(D, My, To) + (D, M_, T) + 5 —logdet(~TiT) modZ (3.68) Byu = +V=Tu.

or, in multiplicative notation, This implies, for v € 9s, that

(D, M) = det(— Ty T2)t(D, M )t(D, M_). (3.69) (Dov,u) = FTV—1(v, ).

As explained in [B, Sec. 1], det(—TiT3) is related to the Maslov index of
the corresponding Lagrangian subspaces defined by L;:= kera(T), j=1,2.
Namely, putting

Then a standard regularity argument shows that u € C(Ry, L2(Sy)) with
P(0)u(0) =10

by (3.23). Choosing ¢ € C§’ (R) with ¢ = 1 near zero, we put dn(x) == ¢(x/N)
and obtain ¢3u & . Consequently, we find that

1
mLyL)=~~ > B
pe(-mn)
eP espec(—T1 Tz) )
+V=T|lul* = Jim (Dogyu, ) = Jim (@ Dogju) € R,
(see [LW, Thm. 2.1], [B, Def. 1.3]), then ©

and hence u = 0. . o . _
For Dy, we appeal to the localization principle for deficiency indices derived in

[L1, Thm. 2.1] (cf. also [L3, Chap. IV]). O

In what follows, it is crucial that we can give an explicit formula _for the
operator heat kernel of D. Tt is the operator analogue of a formula derived by
Sommerfeld [So, p. 61].

m(Ll,Lz) = j ‘L'(kL,L1,L2) dk.
K

Here, K is the stabilizer of 7 in the symplectic group, L is an arbitrary Lagran-
gian subspace, and 7 is the Maslov triple index (cf. [B, Sec. 2] for details).
Summing up, we can state the gluing law as follows.
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TaEOREM 4.1. We have for t,x,y > 0
e=Di x,y) = (47:1,‘)_1/2 (e‘(x_")z/ - 2P(9))e_(x+”z/ 4‘) et
o0 -
+ (=) Y21 — P(8)) J ety At f(g) A0t gy (4.1
0

where A(0) := (I — P(6))A(I — P(6)).

Proof. The point is the convergence of the integral in (4.1). Note that P(4
commutes with [A4| by (3.24) and the discreteness of 4. Thus from (3.23), (2.2
and (3.25)

- A(8) = yP(6)y* AyP(8)y* = —yP(6)AP(6)y"
= —a(0)y|4|P(6)y*
| = —a(9)|4|(I - P(9)).
In particular, A(6) commutes with (I — P(6)), so
A(6)e 04" = —a(9)|A|(I — P(§))e M4,

Introducing a- () := —min{0, a(6)} € [0, 1), we find

2
—a(6)|4z < a_(6) (‘fg 4 A2t>
and
0 < |A|(I — P(8))eX®==14* < | A|(I — P())e*- O /4= (1-a-(O)ed”, (4.2)

This implies that the integral converges in the trace norm of L?(Sy).
Now pick u € CP((0, 00), L%(Sy)) and form

Quu(x) = f 0.(x, y)u(y) dy,

where Q; denotes the right-hand side of (4.1). Then it is a routine matter to check
that we have '

Qi e CH{(0, ), 2(D*)) N C(Ry, ),
@+ (BP)Qu(x) =0, 1,x>0, (43)

tl_ig:_ Q:u(x) = u(x).
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Hence it remains to verify the boundary conditions. Clearly,

P(O)Qt(x, y) — (471:t)_l/2 (e—(x-y)2/4t _ e—(x+y)2/4t) P(e)e—ml 7.:0:) 0,

and the same holds for P(8)Q:u(x) and AP(6)Q:u(x) by dominated convergence.
This implies

Qtu € g(ﬁa) .

We finally have to show that

0= lim P(6)y(0x+ A)Quu(x)

= Jir&_ y(I — P(8))(0x + A)Qsu(x)

Jim {(2:+ A(6))U - P(6))Quu(x) + y(I — P(0))AP(6)Quu(x)}

= i 5(2: + AO)(I - P(E)Quu(x).

An easy calculation shows that

(0x + 4(6))(I — P(6))2:(%,)

= (dnt) ™V {e—b‘-y)z/‘" (y—;t—’f + ,«I(o))

+ e-(x+y)2/4t (_X';_x+ z‘i(@))}([ _ P(H))e‘“‘z

— (rt)" V24 () (I - P(6))e~ " —— 0.

x—0+

Then the proof is completed using dominated convergence as above. O

Proof of Proposition 3.2. We propose to show that, for ue P(Df) with
k > m/2, we have the estimate

ju(p)| < C(1 = a-(9)) ™ (lullas) + 1Dl o)) - (44)
As explained in [L2] (cf. also [L3, Sec. 1.4]), this estimate implies the Hilbert-

Schmidt property of suitable functions of Dy and, in particular, the assertion of
the proposition.
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To prove (4.4), it is clearly enough to assume that suppu < U, and we
reduced to proving the analogue of (4.4) for Dy if suppu < [0,1). To do so
write forge N

To determine .#F,, we observe that

Fo(x) = e~(1-a)> erfc(ax),
u(x)(g) = (B3 + 1) (B3 + 1Y u(x)(q) o
and we derive a differential equation in . In fact, for Rew > 0,0 < |a| < 1,

- ﬁr et J:O e (x, ¥)(DZ + 1) u(y) dy dt(q).

0 i} 2\w/2 ~ J (® 1 %2 a
‘ é;(l—a) .//lFa(W)=%J x¥ 1™ erfe N dx
From the ellipticity of 4 we get, for k > (m — 1)/2, 0 -4
2 © _x2 _aZ —
() (@) < CUllCA? + D4 a5 =), e -
hence, withj=k+1/2+¢,¢> 0, 1 Wi
] / ‘ =~ = T(w+ 1/2)(1 - )", (4.10)
00 [e0] .
[u(x)(q)| < CkJ et z”J (42 + 1)¥e D (x, y) s
0 0 The initial condition at a = 0 is
- ((Bf + D2 u(y) | ags, dy dt. i 1
o L2(8w) MFo(w) = sT(w/2). (4.11)

From (4.1) and (4.2) we derive the norm estimate

o . :52( Y The solution of this initial value problem is, for |a| < 1,
” A+ 1) e e (x,y L(L2Sy))

MFo(w) = (1 — a?) ™ (%r(w/z) L rw+12) J ‘(1= 2yt dt),
T 0

< Cu(l = a_(g)) 1 *-1/2 (e—-(x—y)z/4t + e~(x+y)2/4t)‘ Tr

Using (4.7) and the Cauchy-Schwarz inequality in (4.6), we obtain the result.

Proof of Lemma 3.3. An integration by parts gives o .

1(® 9 MFo(w) =5 [(1 —(1=a)™%) 2T (w/2)

— Y (,~2axz—-x?

Fa(x) = 2a Jo erfe(z) dz (e )dz 1 a
2 1 -] (za 2 2) +ﬁ(1 f— a2)_w/2 Jo(l —_— tZ)W/Z_I dtr((w+ 1)/2)] . (4,12)

— e X —(2axz+x*+z

2a ) avn .[o ) dz

1 Furthermore,

=5 (60— Fu()).

- [oe]
MEF(w) = J x¥Lerfe(x) dx
Clearly, 0

MG(w) = %r(w/z). e dx = ;vl—nr((w +1)/2), (4.13)

=3 7
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thus Next, as an easy consequence of (3.23) we see that

MFy(w) = % [r(w/z) - ;%r((w +1) /2)] : (a1 I0(r) = 0. (4.19)

7

The poles and residues of .#F, can now easily be calculated in terms of the pol
and residues of the I'-function.

Proof of Theorem 3.4. We choose ¢ € C§°(—1,1) with ¢ = 1 near zero. The
from [G, Lemma 1.9.1] (cf. Remark (2) after Lemma 2.2), we obtain the asymp-
totic expansion, for [ =0, 1,

For III(), we write, with

¢(4) := dimker(|4] — ) = 2 tryer()-1)(P(6)),
ce]
0

II(t) =—a(0)J Jw ¢(x\/i)\/i_e‘("+z)2 S cd)Vire MOVt gy gy

, o . 0 ” Aespecldl\{0}
trLZ(S)[(1 - '//¢)Dll9e_wa] ~i—0+ Z aj(¢? a, l)tj_m/z' (4 a(6) [©
=0 , ~1o0+ ’Tj effc(z) Y. c(A)Vide 2OV gy
0
Aespec|A]\{0}

The coefficients can be computed locally in terms of the natural extension
to the metric double M of M, and 4 Thus, since e~D* can serve as a parame
for D2, we obtain from [L2, Thm. 2.10 and Prop. 3.4] (what Lesch called
“singular elliptic estimate” was proved in (4.4)) that

-4 Z ¢(A)F 45 (V'tA)

AespeclA]\{0}

_ a(6) 1
t Dle=P8] gt Dle~tD; , =—-Z c(,{)__I t_w/zll‘“’ﬂFa d
TL2(s5)[WgDge™"7] ~1vo+ trap[pDge ™) j,espec%ﬂ{o} 271 JRew=c»0 ) (w) dw
and it is enough to expand the right-hand side of (4.16) for I = 0, 1. ’
Consider I = 0 first. We obtain from the explicit formula (4.1) and th

lemma [BS1, Appendix] that

__99

—-w/2
| D E g ) . (420

We now collect the various contributions. First, replacing ¢ by ¢, ¢,(x) =

=]
—tDh2 — A2
tryp[ge o] = L #(x)(dnt) " trple~4] dx (x/€), and letting & — 0, we obtain from (4.15) and (4.18) a contribution

|, e e 2P0 1) ~car 3 0(6,0) #777, (421a)

j=0

00 oo
— a(g) J J ¢(x)e—(2x+z)2/4t(nt)—l/2 trH[P(a)‘Ale—a(9)|A|z-tA2] dz
0 Jo

= 1(¢) + I(t) + IIL(¢). (41 4(6,0) = ‘JM #(6,0),

Since A is elliptic on Sy, we have for the first term s .
p N ith #; a local density computed for the natural extension of D to the double M

M. The remz.lining contribution ITI(t) can be evaluated by the residue theo-
m, since the integrand decays in vertical strips with bounded real part (by

, - ©
I(t) ~m0t (47Zt)_1/2 J ¢(X) dx Z bj(AZ)tj—(m—l)ﬂ_ (4.1
emma 3.3, Lemma 2.2, and (2.21)). Thus we find (using, e.g., the description of

1} j=0
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the singularities of {42 in [BL, Lemma 2.1]) which implies

I(t) = — “—(2@ S Res; (6772 2 (w/2) MF o) (w)) Ty =o. (4.26)

=t Furthermore,

0) X ~ i [®
~0t @Z zf—"/2{1og tRes; {42(n/2 — j) Resy MF y0)(n — 2j) Ii(t) = (4nr)™12 JO ¢(x)e 1 tralyA(I ~ 2P(0))e~"4"] dx
=0

—2Resy L 42(n/2 —j)Resg ‘///Fa(g)(n -2 = (477:)_1/2 ? ¢(X\/E)e—-x2 dx trH[yA(I - 2P(0))e;tAz]
‘ 0

© \ l —tA2
_ Egzg—) Z P2 Res; CAz(—j/Z) Res; .//lFa(g)(—j). ) ( 421b 04 2 trH[VA(I P (0))6 ]

=0
= 1 —tA2

From this, we can read off our assertions on the structure of the coefficie 2trH[yAP(0)e I (4.27)
First of all, the leading contribution comes from (4.21a) only, as apt™™/2, an
it is computed as in the compact case. Next, we observe that {42 has no poles
the points n/2 —j for j = n/2 if n is even. If n is odd, however, the log terms
occur, as can be seen from Lemma 3.3. The coefficients of the terms in the first
sum in (4.21b) are computed from local densities on N, whereas those.in
second sum are, in general, nonlocal.
Next we consider the case [ = 1. In view of (4.15) and the previous analysis,
is enough to expand

 Finally, we note that, using again (3.23) and (2.2),

tralyA(I - P(6)) A(6)eO**4] = a(6) tey[yAP(6)|Ale—2OMi~t4%] (4 2g)

and so, as in (4.20), with d(1) := trker(|a)-2) [PAP(6)],

— 0 00

ITi(¢) = a(6) L Jo‘ P(x)e~ @ 14 ) "12 try [y AP(9) | Ale~2OAI—14%) g7 1y
© _tﬁz - . - — «w o0 2 5

J (x) trg[p(8x + A)e™ 5 (x, x)] dx =: I(t) + II(z) + ITI(¢), 4 = a(f) J J F(xVE) —= = +2) Z d(A)vie=2OVa= 3, g
0 . 0 Jo ﬁ Aespec|A|\{0}

numbering again the contributions according to the three terms in (4.1). In- ~i0+ a(f) Z d(A)F 46 (VtA)
of (3.23), (3.24), (2.2), and (3.48), we find Aespectal\{o} ,

™" 2(A4, yAP(@);w —
tra[ye ™4’ = tra[yP(0)e '] = 0, = HAPAPChiv = 1) AF g ) - (@)

(42 Combining our computations, we see that the terms local on M protrude from
(4.15) as before.

We obtain the second contribution from (4.27). However, since P(0) is a
pseudodifferential operator, we now have to employ the general expansion theo-
rem for pseudodifferential operators (2.21) (see [G1Sel, Thm. 2.7]). Namely,

trulyP(6)|4le=*O4=4"] — o,
and thus

tr[yoxe D% (x, x)] = 0. (4.2

=~ 1
I(t) ~i04 —5 tralpAP(6)e 4]
Again from (2.2) we conclude that 2

0 00
~ioor Y cl(6, 1)tz 4 3 (b} (6, 1)t logt + d}(8, l)tj). (4.30a)

try [yAe“Az] =0, (42 j=0 j=0
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A3

Here, b}, c} are integrals of local densities over N, whereas the d}(6,1) are, in =y )
general, nonlocal spectral invariants on N. ;
For the third contribution, we use again the estimate (2.15) with B = yAP(6)

Dovru = @L0*y(0, J

(stemming from the fact that P(6) is a pseudodifferential operator) to obtain oV 6P"y(0x + A)@DyYu (4.31)
= (I)*iy¢’T(0)cI>|ﬂu + (D*<I>;yA<I)g(I)|ﬁu +, (4.32)
weC -

IL(£) ~m0+ a(6) Z Res; (t"“’/ 25(A,yAP(8); w — 1).MF 44 (w))
. with v independent of 6. Hence,

From the expansion (4.30a) and Lemma 2.1, one derives that #(4, yAP(6); w) i i
meromorphic in C with simple poles at the points n— k, k € Z,.. Furthermore, — Dgju = DD iy(¢ T'(6) — 26T'(6) A) DDpiu
the residues of the poles are integrals of local densities over N. Thus 9

 and

— ) . g
II(t) ~t-0+ ~——a(2 ) E t//%1og t Res ((A, yAP(0); —j — 1)) Resy M F y0)(—) p
= B oibt] _ -
] tre [ fgDoe” ] = 529 HOT'O) - T O M. (w33)
o0
+ a(6) E tU-™/2 Res; (n(A, yAP(8);m — j — 1)) Reso MF 5g)(m ~j)

ya We can argue as in the proof of Theorem 3.4 to replace e~t27 by e~tD; , that is,

+ a(6) i #/2 Reso(n(A4, yAP(8); —j — 1)) Resy MF ,5(—j).  (4.30b itrpas) [7(#' T'(6) — 24T'(6) d)e i

=0
: ; ~iot itipas) [P0 T'(0) — 20T (6) A)e P2y (4.34)
The coefficients in the first and second sum are again local, like cj1 in (4.302

whereas those in the third sum are not. ‘
It remains to compute the contribution to t=1/2 from (4.30a,b). Using Lemma

2.1, it turns out to be equal to

Again as in the proof of Theorem 3.4, we obtain three terms twi i
4, ce fi

the kernel (4.1) in (4.34). ® from plugging

We start with

- %0—1/2,0(14; yAP(8)) + a(6) Reso M F 45,(1) Res; (A4, yAP(6);0) itrpa [y¢'T’(9)e“53] = iro ¢ (%) trH[yT/(g)e—tf)g (x,x)] dx
0
= (—$+ a(0).//{Fa(g)(1)) Res; 71(4, yAP(8);0) =:1(z) + II(z) + III(2). (4.35)

_ <_ g + a(0)JlF,,(g)(1)> Res; (4, y(sgn A)P(6); —1) )
1(¢) = i(dnt)~> L #(x) dx tgp T (6)e 4]

= (- + al0) P (1) ) Resr(s3n A)P(O),
= —i(47zt)'1/ 2 trglyT’ (H)e“‘Az]. (4.36)
using (2.33) in the last step.

Proof of Theorem 3.5. We choose de CP(—1,1) with ¢ =1 in a neighbo
hood of supp ¢, with ¢ from (3.32). Then, for u € 9, one easily computes (writing

i‘ Since ¢’ is supported away from zero, it is easy to see that

II(t) ~t—’0+ III(t) ~t—=0+ O (4.37)
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The second contribution is

—2itryas[yPT"(0) Ae™D8) = —2i J: #(x) trg[y T’ () Ae~D4 (x, x)] dx
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< d . - , .
1720 (Dor5D0) = ~ ()™ aw( A HT0) + 0y WT'(8)AP(0)

= 2a(6) M Fo(9)(1) Resy (A, yiT'(6) AP(6); 0)

It

—(4m) " ago( 4, yiT'(6))

=:T(¢) + T(z) + TH().
+ (\/7-7_[ - 2a(0).//lFa(g)(l)) Res(yiT'(6)(sgn A)P(6)).
We compute
(4.39) 1 In view of (2.28), we reach the conclusion. O

T(t) = —2i(4nt)™"/? J:’ #(x) tr[yT'(0) de~4" dx = 0,

since y commutes with T/(d) but anticommutes with 4. Next we see that [APS]

Ti(r) = —2i(4nt)~"/? J: p(x)e iy T'(O)A(I - 2P(8))e ™| dx

~ps0r PtE [yT'(G)AP(G)e"AZ] .

—£4?
Finally, with d().) == tTyer(la|-2) [yT’(())AP(G)e tA ],
Aespec|4/\{0}

> dA)Fae(Vid)

Aespec|4[\{0}

MI(t) ~r0r —2ia(6)

©
0

d0) \/izj ¢~ 2O grfe( ) dy
= —2ia(0)

.___‘_‘(_")J £/ (A, yT' () AP(6); w — 1) MFyqy(w)dw. (441
T JRew=c

i i i from our assump-
The existence of the asymptotic expansion hence follows '
tions, Lemma 3.3, (4.36), (4.40), and (4.41). Consequently, with (2.13a), (2.11),

(2.33), and (2.21), we obtain

N - ,
1721 (Do Do) = ~(4m) o (A 1IT'8)

= Z—% Res(yiT'(6)),
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